

Lightsey Research Group Overview

Presentation to Space Systems Design Lab September 21, 2021

> E. Glenn Lightsey David Lewis Professor of Space Systems Technology

> > Georgia | Space Systems Tech ∦ Design Laboratory

Getting From Here to There in a Small Form Factor ...and All That Enables

Navigation: Where Am I?

Software Defined Radionavigation Reduced Infrastructure Navigation

Autonomous Formations Proximity Operations

Guidance: Where Do I Want to Be?

Control/Actuation: How Can I Get There?

Small Satellite Propulsion Attitude Determination & Control

Spacecraft Formations Interplanetary Missions

Systems Engineering: Flight Projects

Georgia Space Systems Tech Design Laboratory

Reduced Infrastructure Radionavigation

- Use pseudorange and doppler measurements from just one or two satellites for navigation
- Nearby reference station for relative position fixes
- Prototype design for lunar and Martian surface navigation

Number of Satellites in Scheme	Known altitude	Gaussian Error Type	Mean (m)	Standard Deviation (m)	Root Mean Squared (m)
1	Yes	Nominal	19.9222	13.0868	23.8361
		Optimistic	6.6321	3.9542	7.7214
2	No	Nominal	14.7187	9.6877	17.6207
		Optimistic	7.5728	5.4586	9.3351

Jun, W.; Cheung, K.M.; Lightsey, E.G.; and Lee, C.; "Time Position Determination on the Mars Surface Using Relative Joint Doppler and Ranging Measurements," The Interplanetary Network Progress Report, Vol. 42-224, pp. 1-14, February, 2021.

Stochastic Analysis of Spacecraft Collision Risk

- Examine alternate indicators of collision risk for spacecraft operations (e.g. IPC, Pc, 99.73% distance)
- Develop risk informed spacecraft guidance laws
- Stochastically safe formation flight in a constrained form factor

Núñez Garzón, U.E.; and Lightsey, E.G.; "Sensitivity of Separation Indicators in Spacecraft Formation Collision Risk Analysis," 2021 AAS/AIAA Astrodynamics Specialist Conference, Big Sky, MT, August 2021.

Cold-Gas Propulsion System For CubeSat Formation Flight SunRISE Heliophysics Mission

- Sun Radio Interferometer Space Experiment
- Six 6U CubeSats flying in formation near Geostationary Orbit
- JPL managed, Georgia Tech is providing cold-gas propulsion systems for each spacecraft
- Design, Assembly, and Testing of seven flight unit thrusters occurring this academic year
- Design is derived from heritage BioSentinel propulsion system (with modifications*)

Skidmore, L.; and Lightsey, E.G.; "Design of a Cold Gas Propulsion System for the SunRISE Mission," AE 8900 Masters Report, August 2021.

Lunar Flashlight Monopropellant Propulsion System for CubeSat Lunar Orbit Insertion

- Lunar Flashlight is a JPL 6U CubeSat mission to look for lunar ice
- GT was tasked to design and deliver the integrated monopropellant system in 24 months
- Delivery was completed in May 2021!
- When Lunar Flashlight flies it will be the first CubeSat to perform an orbit insertion maneuver beyond Earth orbit

Andrews, D.; Huggins, G.; Lightsey, E.G.; Cheek, N.; Lee, N.D.; Talaksi, A.; Peet, S.; Littleton, L.; Patel, S.; Skidmore, L.; Glaser, M.; Cavender, D. Williams, H.; McQueen, D.; Baker, J.; and Kowalkowski, M.; "Design of a Green Monopropellant Propulsion System from the Lunar Flashlight CubeSat Mission," 34th AIAA Small Satellite Conference, Logan, UT, August 2020.

Lunar Flashlight Propulsion System Controller

- Responsible for operation of the system's thruster valves, heaters, and pump
- Firmware development using F Prime framework used on JPL rovers and CubeSats
- Multiple techniques implemented for radiation tolerance using COTS electronics
- System was environmentally tested for radiation, vibration, and thermal vacuum
- It works!

Cheek, N.; Daniel, N.; Lightsey, E.G.; Peet, S.; Smith, C.; and Cavender, D.; "Development of a COTS-Based Propulsion System Controller for NASA's Lunar Flashlight CubeSat Mission," 35th AIAA Small Satellite Conference, Logan, UT, August 2021

Tech ∦ Design Laboratory

Spectre: Bimodal CubeSat Propulsion System

- Combines green-prop, high impulse thruster with high efficiency electrospray system
- Both systems are fed from same tank for volume efficiency
- Selected for Phase II product development over next 2 years
- Possible NASA Pathfinder Technology Demonstration Mission in 2024

Colón, B.J.; Lightsey, E.G.; Bruno, A.R.; Cavender, D.P.; and Lozano, P.; "Spectre: Design of a Dual Mode Green Monopropellant Propulsion System," submitted to AAS Guidance Navigation and Control Conference, Breckenridge, CO, February 2022

GT-1 and GT-2 1U CubeSats

- Sponsored as an Internal Research & Development (IR&D) activity
- Develop and demonstrate a flight-proven 1U CubeSat bus for future missions
- Create rapid design-to-operations mission lifecycle of less than 2 years per flight
- Train student workforce on space flight hardware and operations
- Provide value-added space engineering experience beyond traditional classroom and ground-based laboratory
- GT-1 delivered September 2021 and will launch on ISS reservicing mission in December (with TARGIT and Dr. Carr's biology experiment!)

Kolhof, M.; Rawson, W.; Yanakieva, R.; Loomis, A.; Lightsey, E.G.; and Peet, S.; "Lessons Learned from the GT-1 1U CubeSat Mission, 35th AIAA Small Satellite Conference, Logan, UT, August 2021.

SWARM-EX: Extensible CubeSat Swarms

- Space Weather Atmospheric Reconfigurable Multiscale Experiment
- Deploy a reconfigurable swarm of 3x3U CubeSats in near-circular orbits with mean along-track separations of 0.1km - 100km and cross-track separations of up to 10km using differential drag control and low-thrust propulsion.
- Multi-university NSF project
- GT is responsible for the attitude determination and control system (procured) and the cold-gas propulsion system (produced)
- Planned launch in 2024

Radial/ Crosstrack formations

Gundamraj, A.; and Lightsey, E.G.; "Attitude Guidance and Control Law Design for the Science Phases of the SWARM-EX Mission AE 8900 Masters Report, May 2021.

VISORS: Distributed CubeSat Space Telescope

- VIrtual Super-resolution Optics using Reconfigurable Swarms
- Employing CubeSat formations to create a virtual telescope with unprecedented resolution
- Multi-university NSF project
- GT is providing:
 - Mission systems engineer
 - Cold-gas propulsion system
 - Systems integrator for instrument and spacecraft bus
 - Mission operations
- Planned Launch in 2024

Thatavarthi, R.; Gundamraj, A.R.; Carter, C.A.; and Lightsey, E.G.; "Systems Architecture and Conceptual Design of a CubeSat Formation Serving as a Distributed Telescope," 2020 AIAA ASCEND, November 2020.

Lunar Flashlight Spacecraft Integration and Testing

- JPL has contracted with GT and GTRI to conduct full spacecraft I&T and mission operations for Lunar Flashlight
- Spacecraft bus, solar panels, and GT's propulsion system have been delivered to GTRI's Center for Spacecraft Handling Assembly Fabrication and Testing facility
- Spacecraft I&T to happen Fall 2021

• Expected launch on Artemis I in 2022

Littleton, L.M.; and Lightsey, E.G.; "Assembly, Integration, and Testing of a Green Monopropellant Propulsion System NASA's Lunar Flashlight Mission," AE 8900 Masters Report, August 2021.

Georgia Tech Mission Operations Center (GT MOC)

- GT MOC will be integrated with Georgia Tech and other ground stations
- GT missions will be operated and controlled at the GT MOC
- GT MOC must be ready to operate by December 2021 for GT-1, TARGIT, and LF

Lunar Flashlight Mission Operations

- Lunar Flashlight will launch in 2022 for lunar flyby with 9-month mission
- GT propulsion system will be used for lunar orbit insertion
- Communication with satellite will be conducted through GT MOC via NASA's Deep Space Network
- Lots to do to prepare for this

Georgia Space Systems Tech Design Laboratory

GTRI Precision Aggregated Space Systems Initiative

- A unifying grand challenge collaboration between GTRI and the academic colleges at Georgia Tech
- GT will create a decadal goal in space technology of relevance to US space policy and national interest
- Coordinated multi-vehicle space missions require an interdisciplinary team of thought leaders
- Example missions:
 - Reconfigurable Space Sensor Arrays
 - In-Space Assembly and Manufacturing
 - Large Space Structures

Georgia Space Systems Tech Design Laboratory

Questions?

NASA Administrator Bridenstine's Visit to SSDL on July 31, 2019 NASA Administrator Bolden's Visit to SSDL on November 17, 2019

Georgia Space Systems