Georgia Space Systems Tech Design Laboratory

DESIGN OF THE 3-D PRINTED COLD GAS PROPULSION SYSTEMS FOR THE VISORS MISSION

44th Annual AAS Guidance, Navigation and Control Conference

Sam Hart, Nathan Daniel, Mark Hartigan, and E. Glenn Lightsey 02/07/2022

Georgia Space Systems Tech Design Laboratory

VISORS Mission Description

- Diffractive telescope observing solar corona
- Composed of two precisely positioned 6U CubeSats
- Requires both spacecraft to be maneuverable
- ~1U available for propulsion in each spacecraft

System Specifications

- Cold gas system
- Propellant info: R-236fa, a commercially available refrigerant, nontoxic
- Majority of system is 3-D printed using Somos PerFORM
 - SLA printed
 - Ceramic filled resin
- orthogonal nozzles

Heritage

 The VISORS propulsion systems are designed based on heritage from several cold gas propulsion systems previously developed by the Georgia Tech Space Systems Design Lab

• The system is TRL 6

BioSentinel flight unit

Propellant Selection

- Systems have traditionally been limited by volume
 We desire high
- volumetric specific impulse

Propellant	Volumetric Specific Impulse (N*s/L)
R-236fa	584.1
SF_6	517.9
R-134a	532.9
Butane	388.8
CO2	254.8
Ammonia	589.0
Nitrogen	78.0

Georgia Space Systems Tech Design Laboratory

3-D Printing

- Complex system geometries often required
- Not possible with traditional manufacturing techniques
- Advantages
 - Allows for complex internal geometries
 - Rapid design iterations and trade studies
 - Multiple components can be combined into one part
 - Lowers production cost
- Disadvantages
 - Tolerancing issues
 - Designing for printability
 - Inconsistencies in prints

Fluid Block Diagram

Concept of Operations

CAD Images – DSC

CAD Images – DSC

CAD Images – OSC

CAD Images – OSC

System Performance - DSC

Parameter	Value	Parameter	Value
Wet Mass (kg)	1.278	Main Tank Volume (cm ³)	242
Dry Mass (kg)	1.031	Δ <i>V</i> (m/s)	8.4 (assuming 13.8 kg spacecraft)
Propellant Mass (kg)	0.247	Time to Deplete Plenum (s)	1.7 @ -5°C 1.5 @ 49°C
Plenum Volume (cm³)	69.3	Time to Refill Plenum (s)	~3 across operating range
Minimum Impulse Bit (µN*s)	200 (nominally)	Valve Timing Resolution (ms)	1

System Performance - OSC

Parameter	Value	Parameter	Value
Wet Mass (kg)	1.540	Main Tank Volume (cm ³)	414
Dry Mass (kg)	1.117	ΔV (m/s)	14.6 (assuming 13.2 kg spacecraft)
Propellant Mass (kg)	0.410	Time to Deplete Plenum (s)	1.7 @ -5°C 1.5 @ 49°C
Plenum Volume (cm³)	69.3	Time to Refill Plenum (s)	~3 across operating range
Minimum Impulse Bit (µN*s)	200 (nominally)	Valve Timing Resolution (ms)	1

FEA, On-Orbit Configuration - DSC

FEA, On-Orbit Configuration - OSC

Georgia Space Systems Tech Design Laboratory

Structural Supports

- High stress concentrations in main tank
- Solutions attempted
 - Thicker walls
 - Larger fillets
 - "Ribs" along walls
 - Support beams
- Beams efficiently reduced stresses
- Possible due to additive manufacturing

Effects of Temperature

- The impulse that can be achieved before refilling the plenum varies significantly across the operating temperature range
- Multiple small maneuvers may have to be substituted in place of one large maneuver when operating at low temperatures

DSC Engineering Design Unit

DSC Engineering Design Unit

Status

- Design phase complete
- EDU manufacturing in progress
- Future work:
 - Assemble and test EDUs
 - Assemble, integrate, and test flight units

Acknowledgements

- This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-2039655.
- This material is based upon work supported by the National Science Foundation under Award No. 1936663.

References

- Koenig, A., D'Amico, S., and Lightsey, E. G. (2021). Formation flying orbit and Control concept for THE VISORS MISSION. AIAA Scitech 2021 Forum. https://doi.org/10.2514/6.2021-0423
- Lightsey, E. G., Stevenson, T., and Sorgenfrei, M. (2018). Development and testing of A 3d-printed cold Gas thruster for an Interplanetary CubeSat. Proceedings of the IEEE, 106(3), 379–390. https://doi.org/10.1109/jproc.2018.2799898
- Wilk, M. D. (2019). Development of Maneuverable Deep Space Small Satellites (thesis). https://ssdl.gatech.edu/sites/default/files/ssdl-files/papers/mastersProjects/WilkM-8900.pdf
- Stevenson, T. (2018). Development of multi-functional structures for small satellites (dissertation). https://ssdl.gatech.edu/sites/default/files/ssdlfiles/papers/phdTheses/StevensonT-Thesis.pdf

Questions