

Space Systems **Optimization Group**

Time-expanded Space Logistics Network Modeling and Optimization for On-Orbit Servicing, Assembly, and Manufacturing (OSAM) nd Optimization for On-Orbit

ssembly, and Manufacturing

(OSAM)

<u>sspl presentation</u>

n Sarton du Jonchay, Ph.D. Student

Yuri Shimane, Ph.D. Student

Masafumi Isaji, Ph.D. Student

nalli Gunasekara, Ph.D. student

tant P

SSDL presentation

Tristan Sarton du Jonchay, Ph.D. Student Yuri Shimane, Ph.D. Student ITIA UPUITTIIZALIOIT TOT UIT-UIT

SSEMbly, and Manufacturi

(OSAM)

SSPL presentation

tan Sarton du Jonchay, Ph.D. Student

Yuri Shimane, Ph.D. Student

Masafumi Isaji, Ph.D. Student

Onalli Gunasekara, Ph.D. student

ist Hao Chen, Assistant Professor, Stevens Institute of Technology Koki Ho, Assistant Professor 1996 and 1997

Agenda

-
- **nda**
1. Project's vision
2. OSAM Logistics Software
3. Static network
a) Overview
- -
- **nda**
 2. Project's vision

2. OSAM Logistics Software

3. Static network

a) Overview

b) Customer satellites and service needs **nda**
 1. Project's vision

2. OSAM Logistics Software

3. Static network

a) Overview

b) Customer satellites and service needs

c) OSAM architectural elements **a**
 a
 Project's vision
 OSAM Logistics Software
 Static network
 a) Overview
 b) Customer satellites and service needs
 c) OSAM architectural elements

Dynamic network **B**
Project's vision
OSAM Logistics Software
Static network
a) Overview
b) Customer satellites and service needs
c) OSAM architectural elements
Dynamic network
a) Static network time expansion **architect**
 Constant Constant C Communist C Project's vision
 OSAM Logistics Software
 Static network
 a) Overview
 b) Customer satellites and service needs
 c) OSAM architectural elements
 Dynamic network
 a) Static network time expansion
 b) Tran **B**
 B
 Project's vision
 OSAM Logistics Software
 Static network
 a) Overview
 b) Customer satellites and service needs
 c) OSAM architectural elements
 Dynamic network
 a) Static network time expansion
 Project's vision

OSAM Logistics Software

Static network

a) Overview

b) Customer satellites and service needs

c) OSAM architectural elements

Dynamic network

a) Static network time expansion

b) Transportation arcs

c 1. Project's vision

2. OSAM Logistics Software

3. Static network

a) Overview

b) Customer satellites and service needs

c) OSAM architectural elements

4. Dynamic network

a) Static network time expansion

b) Transporta 1. Project's vision

2. OSAM Logistics Software

3. Static network

a) Overview

b) Customer satellites and service needs

c) OSAM architectural elements

4. Dynamic network

a) Static network time expansion

b) Transporta
	-
- -
	-
	-
-
-
- -
	-
- 2. OSAM Logistics Software

3. Static network

a) Overview

b) Customer satellites and service needs

c) OSAM architectural elements

4. Dynamic network

a) Static network time expansion

b) Transportation arcs

c) Service Static network

a) Overview

b) Customer satellites and service needs

c) OSAM architectural elements

Dynamic network

a) Static network time expansion

b) Transportation arcs

c) Servicers and orbital trajectories

Rolli a) Overview

b) Customer satellites and service needs

c) OSAM architectural elements

Dynamic network

a) Static network time expansion

b) Transportation arcs

c) Servicers and orbital trajectories

Rolling Horizon proce b)

Customer satellites and service needs

C) OSAM architectural elements

Dynamic network

a) Transportation arcs

c) Transportation arcs

c) Cervicers and orbital trajectories

Rolling Horizon procedure

COSAM logistics c) OSAM architectural elements

Dynamic network

a) Static network time expansion

b) Transportation arcs

c) Servicers and orbital trajectories

Rolling Horizon procedure

d) Overview

b) Overview

b) Assumptions

c) Use 4. Dynamic network

a) Static network time expansion

b) Transportation arcs

c) Servicers and orbital trajectories

5. Rolling Horizon procedure

6. OSAM logistics framework

7. Case studies

a) Overview

b) Assumptions

	-
-

1. Project's vision
The need for robotic On-orbit Se The need for robotic On-orbit Servicing (OOS)

Hubble Space Telescope

-
-
-
- astronauts

GEO satellites: Intelsat 901 \rightarrow near term market for OOS

-
-
-
- going to change thanks to spacecraft modularization)
- 3
-

1. Project's vision
On-Orbit Servicing State-of-the-A On-Orbit Servicing State-of-the-Art

On-Orbit Servicing state of the art has mainly focused on:

- Development of space robotics and manufacturing technologies
- Multi-transfer trajectory design to service a finite sequence of satellites
- High-level cost benefit analysis

OOS operators will soon need a system-level logistics modeling tool to concurrently optimize:

- Operations scheduling of large scale, long-lasting OOS infrastructures
	- o When to assign service needs? To what servicer?
- \triangleright Logistics mission planning for fuel/parts/materials
	- \circ How frequently to resupply the orbital depots?
- \triangleright OOS infrastructure design
	- o How large the depots? How many servicers?

2. OSAM Logistics Software Our response to the upcoming industry need

Overview

Commodity flows (variables)

- Bi-propellant: continuous
- Mono-propellant: continuous
- EP propellant: continuous
- Spares: continuous
- Servicer tools: integer
- Vehicle: integer

Vehicles

- Servicers: free flying in space (high-thrust, low-thrust, multimodal)
- Orbital depots: stationed at OOS parking node(s)
- Launch vehicles: from Earth to parking node

Service needs:

- Refueling: deterministic
- Station keeping: deterministic
- Inspection: deterministic
- Retirement: random
- Repositioning: random
- Repair: random
- Mechanism deployment: random

Customer satellites and service needs

Inputs common to all service needs

- ❖ Service fee [\$]
- ❖ Delay penalty cost [\$/day]
- 'No-service' penalty cost [\$]
	- e.g, if the OSAM operator is not committing to a contract
- ❖ Service duration
- ❖ Service window (illustrated in slide 27)

Additional service specific parameters

Inputs specific to deterministic needs

- \div Time of 1st service need occurrence
- \div Time interval between occurrences

Input specific to random needs

- Mean time interval between occurrences
	- Needs generated from Poisson probability distribution
- Refueling: amount of propellant needed to refuel the satellite
- \triangleleft Repair: amount of spares needed to repair the satellite
- 7 • Repositioning: angular position of the desired new orbital slot of the satellite $\frac{1}{7}$

OSAM architectural elements

Servicers

- Tools: type and number
- Orbital transfer: trajectory, Isp, propellant capacity, dry mass…
- \triangleleft Costs: manufacturing and operations
- Payload capacity for each type of commodity

Orbital depots

- Dry mass
- \triangleleft Costs: manufacturing and operations
- ❖ Payload capacity for each type of commodity
- ❖ Own propellant consumption for station keeping maneuvers

Launch vehicles

- Launch frequency (assumed deterministic)
- **❖** Mass-specific launch price tag
- ❖ Payload capacity to launch commodities in GTO or GEO
- 8 'Flight flexibility' parameter: is the launcher allowed to resupply a servicer anywhere in space or just at the depot location?

OSAM architectural elements

Servicers' tools

- Tools are used by the servicers to provide services (e.g., robotic arm, refueling apparatus)
- * Tools are swappable or not, depending on the desired design for the servicer
- The software user freely defines:
	- Tool mass
	- Tool cost
	- Service-tool mapping

arm.

4. Dynamic network

Static network time expansion

4. Dynamic network

Transportation arcs

4. Dynamic network

Servicers and orbital trajectories

High-thrust, low-thrust,… or both?

4. Dynamic network

Servicers and orbital trajectories

High-thrust, low-thrust,... or both?

Framework allows OSAM operators to model and simulate servicers with all kinds of

propulsive technologies and user-defined tr **4. Dynamic network**

Servicers and orbital trajectories

Framework allows OSAM operators to model and simulate servicers with all kinds of

propulsive technologies and user-defined trajectories (as plug-ins to the softwar **4. Dynamic network**

Servicers and orbital trajectories

High-thrust, low-thrus

Framework allows OSAM operators to model a

propulsive technologies and user-defined trajector

High-thrust trajectory model

ligh-thrust t **4. Dynamic network**

Servicers and orbital trajectories

High-thrust, low-thrust,... or b

Framework allows OSAM operators to model and simular

propulsive technologies and user-defined trajectories (as plus

High-thrust **-thrust,... or both?**

del and simulate servicers with all kinds of

ectories (as plug-ins to the software).
 Low-thrust trajectory model

<u>Inputs:</u>

- Orbital parameters of the departure and arrival nodes at t_0 (st -thrust,... or both?

del and simulate servicers with all kinds of

ectories (as plug-ins to the software).

Low-thrust trajectory model

low-thrust trajectory model

low-thrust trajectory model

or the time window)

- lo **-thrust,... or both?**

del and simulate servicers with all kinds of

ectories (as plug-ins to the software).
 Low-thrust trajectory model

<u>Inputs:</u>

Orbital parameters of the departure and arrival nodes at t_0 (star

High-thrust trajectory model

Inputs:

- t_0 (start of the time window)
Length of the time window (ie., $t_f t_0$)
-

Outputs:

Low-thrust trajectory model

Inputs:

- of the time window)
-
-

Outputs:

The Rolling Horizon approach:

- Application: make decisions in a **dynamic stochastic** environment
- Underlying idea: make most immediate decisions, i.e., during a time period called control horizon (CH), based on a forecast (deterministic or stochastic) of relevant information over a longer time interval called planning horizon (PH) mvironment

, during a time period called *control*

chastic) of relevant information

+)

Modification of traditional rolling

horizon approach for application to

on-orbit servicing operations:

. mvironment

during a time period called control

dechastic) of relevant information

(a)
 **Modification of traditional rolling

horizon approach for application to**
 on-orbit servicing operations:

• Only deterministic s muironment

during a time period called *control*

(contastic) of relevant information

(h)
 **Modification of traditional rolling

horizon approach for application to**

on-orbit servicing operations:

(a)

only determinist ronment

uring a time period called *control*

astic) of relevant information

dification of traditional rolling

izon approach for application to

orbit servicing operations:

Only deterministic service needs

are forecas

Illustration of the rolling horizon procedure. The prediction horizon is the planning horizon.

the Simultaneous Energy Supply and Demand Planning in Microgrids" [1]

- horizon
- Auring a time period called *control*
chastic) of relevant information

+)
 Modification of traditional rolling
 horizon approach for application to
 on-orbit servicing operations:

 Only deterministic service nee A and the period called control
astic) of relevant information
dification of traditional rolling
ion approach for application to
orbit servicing operations:
Only deterministic service needs
are forecasted over the pl dification of traditional rolling

izon approach for application to

orbit servicing operations:

Only deterministic service needs

are forecasted over the planning

horizon

A new planning horizon is defined

whenever a r **dification of traditional rolling**
 izon approach for application to
 orbit servicing operations:

Only deterministic service needs

are forecasted over the planning

horizon

A new planning horizon is defined

whenev

5. Rolling Horizon Procedure

Plan/optimize OOS operations over planning

horizon [0,360] based on service needs

recorded before time step t = 360.

FREE CREAM CONTABLE CONTAINS (SA...)

FREE CREAM CONTAINS (SA...)

FR

f1: [50, deterministic, G3,…] f2: [110, deterministic, G2,…] f3: [220, deterministic, G1,…]

5. Rolling Horizon Procedure

Plan/optimize OOS operations over planning

horizon [120,480] based on service needs

recorded between time steps t = 120 and t = 480.
 $\frac{11: [50, Pre-plane, 6, 3,...]}{12: [210, Pre-plane, 6, 2,...]}$
 $\frac{11: [20$

Service timeline

f1: [50, Pre-planned, G3,…] f2: [110, Pre-planned, G2,…] r1: [200, Random, G3,…]

5. Rolling Horizon Procedure

Plan/optimize OOS operations over

planning horizon [200,560] based on service

needs recorded between time steps t = 200

and t = 560.

Fi: [20, Pre-planned, G1,...]

Fi: [22,0, Pre-planne **5. Rolling Horizon Procedure**

Plan/optimize OOS operations over

planning horizon [200,560] based on service

meeds recorded between time steps t = 200

and t = 560.

Total time horizon

Fotal time horizon

Fotal time h **5. Rolling Horizon Procedure**
Plan/optimize 005 operations over
planning horizon [200,560] based on service
needs recorded between time steps t = 200
and t = 560.
 $Sat 4$
 $Sat 3$

Service timeline

f1: [50, Pre-planned, G3,…] f2: [110, Pre-planned, G2,…] r1: [200, Random, G3,…] f3: [220, Pre-planned, G1,…]

Project novelties

- Model the OSAM logistics problem as a Dynamic Generalized Multi-Commodity **AM logistics formulation**

viect novelties

Model the OSAM logistics problem as a *Dynamic Generalized Multi-Con*

Network Flow (DGMCNF) problem

Extend the classical DGMCNF problem formulation with variables and

constra
- Extend the classical DGMCNF problem formulation with variables and constraints specific to OSAM logistics due to the service provision (cf next slide)

17 A DGMCNF problem is modeled and solved as a Mixed-Integer Linear Program (MILP). More detailed about the traditional space logistics formulations can be found in [2].

DGMCNF formulation extension motivations

- Traditional space logistics formulation cannot hold a given vehicle at a given node for some time
- This is essential to force a servicer at a customer satellite's location where a service has to be provided for some duration

Two additional sets of binary variables are defined that leverage the structure of the timeexpanded network:

- $\mathbf{\hat{\cdot}}$ Service assignment variables $h_{s\nu\tau}$
	- h_{svt} = 1 if a servicer v must start providing service s at time step τ
	- $h_{sv\tau}$ is defined only at those time steps τ defined within the service window associated with service s (cf next slide)
- $\mathbf{\hat{\cdot}}$ Servicers' logistical variables b_{svt}
	- b_{svt} = 1 if a servicer v must be providing service s at time step t
	- \cdot b_{svt} is defined at every time step of the time-expanded network

The concept of service window

- The service window of a service s is the interval of time within which a servicer must start providing service s, provided that the optimizer actually decides to provide it
- Introduced to give more flexibility to the optimizer in the assignment of services to servicers

- $\mathbf{\hat{P}}$ The h_{surf} variables are only defined within the service window associated with service s.
- \triangle The h_{SUT} variables are defined only once per period T (red dots)
-
- 19 • The blue dots immediately preceding the red dots are for transportation between nodes \bullet 19

Relationship between $h_{sv\tau}$ and b_{svt} variables: $b_{svt} = \sum_{\tau \in W_s} h_{sv\tau} \beta_{s\tau t}$
where $\beta_{s\tau t}$ is a binary parameter defined by the software before the optimization

COSAM logistics formulation
 Relationship between h_{svt} and b_{svt} variables: $b_{svt} = \sum_{\tau \in W_s} h_{svt} \beta_{srt}$

where β_{srt} is a binary <u>parameter</u> defined by the software before the optimization

For example in sl **For example in slide 24 we had** W_s **we had bottomed in slide 24 we had** $W_s = \sum_{\tau \in W_s} h_{svt} \beta_{sxt}$ **

For example in slide 24 we had** $W_s = \{22, 32\}$ **, so at any time step t:** $b_{svt} = h_{sv,22} \beta_{s,22,t} + h_{sv,32} \beta_{s,32,t}$ **
 \beta_{s,2** $\beta_{s,22,t}$ and $\beta_{s,32,t}$ are assigned to the time steps of the time-expanded network to specify when a servicer must be providing service s at time step t if the service starts at $t = 22$ or $t = 32$ respectively.

Once the $h_{sv\tau}$ and b_{svt} variables are well defined, we can define the logistics constraints and objective functions associated with the provision of services.

Constraints

(1) Service s may be scheduled at most once:

$$
\sum_{v \in \mathcal{V}_s} \sum_{\tau \in \mathcal{W}_s} h_{sv\tau} \le 1 \qquad s \in \mathcal{S}'
$$

(2) At most one service is provided to a customer satellite per time step:

$$
\sum_{v \in \mathcal{V}_s} \left\{ \sum_{s \in \mathcal{S}'_t} b_{svt} \right\} \le 1 \qquad i \in \mathcal{N}_c, t \in \mathcal{T}
$$

(3) Provide a service s with the right tools:

$$
x_{vitik}^{+} \ge \sum_{s \in \mathcal{S}_{i}^{\prime}} \gamma_{sk} b_{svt} \quad v \in \mathcal{V}_{s}, i \in \mathcal{N}_{c}, t \in \mathcal{T}, k \in \mathcal{K}_{tools}
$$

 γ_{sk} is the mapping between tools and service types (*cf* slide 16) $\frac{21}{2}$

6. OSAM logistics formulation
The software optimizes the OSAM logistics plane
revenues – costs) generated over the planning
Objective functions
(1) Launch cost J_l
(2) Purchase, development and manufacturing c
(3) Pena **6. OSAM logistics formulation**
 The software optimizes the OSAM logistics planning so as to maximize the profits (*i.e.,***

revenues – costs) generated over the planning horizon.**
 (b) purchase, development and manufac 6. OSAM logistics formulation

The software optimizes the OSAM logistics planning so as to maximize the profits (*i*

revenues – costs) generated over the planning horizon.

Objective functions

(1) Launch cost J_l

(2 **6. OSAM logistics formulation**

The software optimizes the OSAM logistics planning so as to maximize the profits *(i.e.,*

revenues – costs) generated over the planning horizon.

(1) Launch cost J_t

(2) Purchase, devel **The software optimizes the OSAM logistics planning so as to maximize

revenues – costs) generated over the planning horizon.**
 Objective functions

(1) Launch cost J_l

(2) Purchase, development and manufacturing cost **The software optimizes the OSAM logistics planning so as to maximize the prevenues – costs) generated over the planning horizon.**
 Objective functions

(1) Launch cost J_l

(2) Purchase, development and manufacturing The software optimizes the OSAM logistics planning so as to maximize the profits (i.e., **revenues – costs) depending to the planning so as to max**
The software optimizes the OSAM logistics planning so as to max
revenues – costs) generated over the planning horizon.
bjective functions
) Launch cost *I*,

Objective functions

-
-
-
-
-
- (6) Revenues generated from the provision of services J_r (using h_{svt} and b_{svt} variables)

Maximize the profits: $J = J_r - J_l - J_{\text{ndm}} - J_{\text{delay}} - J_{\text{ns}} - J_{\text{obs}}$

Overview

2 case studies

Case study #1

Case studies

View

Case study #1

Case study #1

GOAL: demonstrate the operational

Scheduling of 4 specialized high-thrust

Servicer over a single planning horizon

With GEO satellites at different different inclination Case studies

View

2 case study #1

Case study #1

Case study #2

Case study #1

Case study #2

Case **EXECUTE:**

Service Studies

Case study #1

Case study #1

Case study #2

Case study #1

Case study #2

Case study # View

View

2 case studies

Case study #1

GOAL: demonstrate the operational

scheduling of 4 specialized high-thrust

servicer over a single planning horizon

with GEO satellites at different

inclinations

SOFTWARE VALU inclinations **EXECUTE:** Case study #1
 EXECUTE: demonstrate the operational

Scheduling of 4 specialized high-thrust

servicer over a single planning horizon

with GEO satellites at different architectures with GEO satellit

inclinat Case study #1

Case study #1

Case study #2

Schelling of 4 specialized high-thrust

planning of 2 di Case study #1

Case study #2

Case study #2

SCOAL: demonstrate the operational

scheduling of 4 specialized high-thrust

servicer over a single planning horizon

with GEO satellites at different

inclinations

scort ware COAL: demonstrate the **operational**

scheduling of 4 specialized high-thrust

servicer over a single planning horizon

with GEO satellites at different

inclinations

software value. allow OSAM

operators to make the best

transfer

Case study #2

udies

Case study #2

GOAL: demonstrate *long-term strategic*

planning of 2 different OSAM

architectures with GEO satellites at

different inclinations **udies**
 Case study #2
 Case study #2
 GOAL: demonstrate long-term strategic

planning of 2 different OSAM

architectures with GEO satellites at

different inclinations **udies**

Case study #2

Case study #2

COAL: demonstrate *long-term strategic*

planning of 2 different OSAM

architectures with GEO satellites at

different inclinations

SOFTWARE VALUE: support technology **udies**

Case study #2

Continuity of a proposition of a proposition of a proposition

architectures with GEO satellites at

different inclinations

SOFTWARE VALUE: support technology

portfolio management and

Case study #2

COAL: demonstrate *long-term strategic*

planning of 2 different OSAM

architectures with GEO satellites at

different inclinations

SOFTWARE VALUE: support technology

portfolio management and

roadmappin **COAL:** demonstrate *long-term strategic*
 gOAL: demonstrate *long-term strategic*

planning of 2 different OSAM

architectures with GEO satellites at

different inclinations

<u>SOFTWARE VALUE</u>: support technology

portfo Case study #2

COAL: demonstrate *long-term strategic*

planning of 2 different OSAM

architectures with GEO satellites at

different inclinations

SOFTWARE VALUE: support technology

portfolio management and

roadmapping forecast

Assumptions

Tools and mapping to services

Assumptions

Servicers' models (baseline)

Assumptions

Depot

- Assumed pre-deployed at an OSAM parking node located on a non-inclined circular GEO orbit
- Propellant consumption rate for station keeping: 0.14kg/day [10]
- Manufacturing cost: \$200M
- Operating cost: \$13,000/day

Launch vehicle (Falcon 9)

- 1 launch vehicle every 30 days
- Max payload capacity: 8,300 kg
- Launch price tag: \$11,300/kg

Commodities' costs

- Spares: \$1,000/kg
- Mono-propellant for depot and customer satellites: \$230/kg
- Bi-propellant for the high-thrust and multimodal servicers: \$180/kg

Tools

Each tool costs \$100,000 and weighs 100kg

Use case 1: operational scheduling of high-thrust servicers

Objective and motivation

• demonstrate the tool capability in planning the operations of 4 specialized high-thrust servicers with several time-of-flight options and with GEO satellites on different orbits

Use case 2: long-term strategic planning

Objective and motivation

- Compare the performance of different OSAM architectures:
	- How long is the payback period?
	- How well do they react to different market conditions, e.g., as the customer base increases?
- Useful for decision makers and investors to trade OSAM architecture alternatives with respect to initial investment and profitability
- Trade architecture options (Distributed VS Monolithic)

Trade architecture options (DSAM architecture alternatives with respect to

and profitability

, an architecture may require a larger initial investment but may be sl of an alternative may require a low initial investment but may be slow to per architecture may require a larger initial investment but may better levers at forecast
extert forecast
or externes (monolithic VS distributed),
 Fractification inay require a larger initial investment but may better left forecast
extremes (monolithic VS distributed),
demand (customer base = 30, 71, 142 satellites)
Analysis
Trade architecture options (Distributed **2** Objective and motivation

2 Compare the performance of different OSAM architectures:

2 How long is the payback period?

2 How well do they react to different market conditions, *e.g.*, as the customer base in

2 Usef Objective and motivation
 \bullet Compare the performance of different OSAM architectures:

• How woll do they react to different market conditions, *e.g.*, as the customer base increases?
 \bullet Useful for decision makers an • For example, an architecture may require a low initial investment but may be slow to pay it back; another architecture may require a larger initial investment but may better leverage future market forecast

Experiment: run software for

-
-

Analysis

Metrics to compare architectures

-
-

Use case 2: long-term strategic planning

Trading architectural options within the generalized multi-orbit OSAM framework

The rate of profitability (slope of the curves) of the distributed architecture increases faster as the market grows (i.e., as the number of customer satellites increases)

30-sat, 57-sat, 114-sat markets: distributed and monolithic architectures can't pay back their initial investments within 5 years of operations curves) of the unstituted
itecture increases faster as
market grows (*i.e.*, as the
bber of customer satellites
eases)
at, 57-sat, 114-sat markets:
ributed and monolithic
itectures can't pay back their
al investments withi eases)

at, 57-sat, 114-sat markets:

ributed and monolithic

iitectures can't pay back their

al investments within 5 years

perations

-sat market:

Distributed architecture

becomes more valuable than

monolithic after at, 57-sat, 114-sat markets:
ributed and monolithic
itectures can't pay back their
al investments within 5 years
perations
sat market:
Distributed architecture
becomes more valuable than
monolithic after 2.8 yrs of
operati

228-sat market:

- Distributed architecture becomes more valuable than operations
- $\frac{1}{2}$ \triangleright Distributed and monolithic architectures become

8. Concluding remarks

- Current software gives users a flexible way to model and simulate any kind of servicer:
	- \triangleright Different propulsion technologies
		- To evaluate low-thrust vs high-thrust at the system level
	- \triangleright Different times of flight
		- To perform tradeoff between time of flight and fuel consumption of servicers
	- \triangleright Different trajectory options
		- To evaluate different operational strategies
- Current version of the software generalizes previous versions to the multi-orbit case
	- \triangleright OSAM market analyses can be extended to fleet of customer satellites distributed along orbits of various shapes and sizes
- Current software may be used for at least two OSAM applications:
	- \triangleright Short-term operational scheduling
	- \triangleright Long-term strategic planning
- Next steps:
	- \triangleright Low-thrust simulations long to run: use neural networks and/or Gaussian Processes to build surrogate models that can quickly be evaluated during the simulations
	- \triangleright Deliverables:
		- \triangleright Simulation framework dedicated to long-term strategic planning (for new entrants)
		- $\mathbf{5}$ 2 \triangleright Simulation framework dedicated to short-term operational scheduling (for existing, actors)

8. Summary of Publications So Far

Publications:

- **Summary of Publications So Far**
Publications:
- K. Ho, H. Wang, P. DeTrempe, T. Sarton du Jonchay, and K. Tomita, "Semi-Analytical
Model for Design and Analysis of On-Orbit Servicing Architecture," AIAA Journal of
Spacecr Model for Design and Analysis of On-Orbit Servicing Architecture," AIAA Journal of Spacecraft and Rockets, Vol. 57, No. 6, pp. 1129-1138, 2020.
- **Summary of Publications So Far**
 Publications:

 K. Ho, H. Wang, P. DeTrempe, T. Sarton du Jonchay, and K. Tomita, "Semi-Analytical

Model for Design and Analysis of On-Orbit Servicing Architecture," AIAA Journal of

5 and Optimization of On-Orbit Servicing Operations under Demand Uncertainties," AIAA Journal of Spacecraft and Rockets (Published). **Summary of Publications So Far**
 Publications:
 **C. K. Ho, H. Wang, P. DeTrempe, T. Sarton du Jonchay, and K. Tomita, "Semi-Analytical

Model for Design and Analysis of On-Orbit Servicing Architecture," AIAA Journal of
 DETENT CONFIGENT CONTROVIS SO FET**

Solications:

K. Ho, H. Wang, P. DeTrempe, T. Sarton du Jonchay, and K. Tomita, "Semi-Analytical

Model for Design and Analysis of On-Orbit Servicing Architecture," AIAA Journal of

Spa **Publications:**

- K. Ho, H. Wang, P. DeTrempe, T. Sarton du Jonchay, and K. Tomita, "Semi-Analytical

Model for Design and Analysis of On-Orbit Servicing Architecture," AIAA Journal of

5 Spacecroft and Rockets, Vol. 57,
- AIAA Journal of Spacecraft and Rockets (Published).
- Framework Generalized to the Multi-Orbit Case," 2021 AAS/AIAA Astrodynamics Specialist Conference (Conference paper)

References

- ECTENCES
[1] Silvente, J., Kopanos, G. M., Pistikopoulos, E. N., Espuna, A., 2015, "A Rolling Horizon Optimization Framework for the Simultaneous Energy Supply and Demand
Planning in Microgrids," Appl. Energy 155, 485-501. **PICACS**
Silvente, J., Kopanos, G. M., Pistkopoulos, E. N., Espuna, A., 2015, "A Rolling Horizon Optimization Framework for the Simultaneous Energy Supply and Demand
Planning in Microgrids," Appl. Energy 155, 485-501. doi: **ECHENCES**
[1] Silvente, J., Kopanos, G. M., Pistikopoulos, E. N., Espana, A., 2015, "A Rolling Horizon Optimization Framework for the Simultaneous Energy Supply and Demand
Planning in Micrograts," Appl. Energy 155, 485-50 **ROCKET (1988)**
Silvente, J., Kopanos, G. M., Pistikopoulos, E. N., Espuna, A., 2015, "A Rolling Horizon Optimization Framework for
Planning in Microgrids," Appl. Energy 155, 485-501. doi: 10.1016/j.apenergy.2015.05.090
Ch **Example:**
[3] Silvente, J., Kopanos, G. M., Pictikopoulos, E. N., Espuna, A., 2015, "A Rolling Horizon Optimization Framework for the Simultaneous Energy Supply and Demand
Planning in Microgrids," Appl. Energy 155, 485 50 **Example 18 Shows in Gurobi (Margoland Science)**

14 Shows in Microgrids," Appl. Energy 155, 485-501. doi: 10.1016/j.apenergy.2015.05.1990.

12 Chen, H., Ho, K., "Integrated Space Logistics Mission Planning and Spacecraft **ECPEPICES**

[15] Silvente, J., Kopano, G, M., Pislikopoulos, E. N., Espuna, A., 2015, "A Rolling Horicon Optimization Framework for the Simultaneous Energy Supply and Demand

Planning in Microgrids," Appl. Energy 155, 485 Silverte, J., Kopanos, G. M., Pistikopoulos, E. N., Espuna, A., 2015, "A Rolling Horizon Optimization Framework for the Simultan
Planning in Microgrids," Appl. Energy 155, 485-501. doi: 10.1016/Japenergy.2015.05.090 .
Chen (1) Silvente, J., Kopanos, G. M., Pictikopoulos, E. N., Espuna, A., 2015, "A Rolling Horizon Optimization Framework for the Simultaneous Energy Supply and Demand
Flaming in Microgros," Appl. Energy 155, 485-501. doi: 10.10 (1) Silvente, J., Kopanos, G. M., Pistikopoulos, E. N., Espuna, A., 2015, "A Rolling Horizon Optimization Framework for the Simultaneous Energy Supply and Demand

Planning in Microgros, "Appl. Tneey 155, 485-501. doi: 10.1
-
-
-
-
-
- 153, Dec. 2018, pp. 109–121. https://doi.org/10.1016/j.actaastro.2018.10.040
- 2006, pp. 458-498.
-
- [8] Silvente, J., Kopanos, G. M., Pistikopoulos, E. N., Espuna, A., 2015, "A Rolling Horizon Optimization Framework for the Simultaneous Energy Supply and Demand

Planning in Microgrits," Appl. Energy 155, 485-501. doi: 10 Planning in Microgros," Appl. thergy 135, 485-501. doi: 10.101b/j.apenergy, 2015305.090 .

19 Cher, H., Ho, K., "hetegrated Space Logistics Mission Planning and Spacecraft Design with Mixed-integer Nonlinear Programming", (2) Che, H., B., K., "Integrated Space Logatics Mission Planning and Spacecraft Design with Mixed-Integer Profamming", Journal of Spacecraft and

19. "Nixed-Integer Programming (MIP) – A Primer on the Basics", https://www. 5261, 2012. doi:10.2514/6.2012-5261 "Muxel-Integer Programming (WIP) – A Primer on the Basics", In<u>testallite distanction (Philopositic Particles) (14</u>532401)
"Algorithms in Gurabil", <u>https://www.gurobi.com/radis/user-events/2016-frankfurt/Die-Algorithmen.a</u> "Algorithms in Gurobi", <u>https://www.gurobi.com/pdfs/user-events/2016-frankfurt/Die-Algorithmen.pdf [accessed 7/13/2020]</u>
Verstraete, A. W., Anderson, D., St. Louis, N. M., and Hudson, J., "Geosynchronous Earth Orbit Robot mgonumia in Gurous, <u>means, new propulsion-spread terms</u>, 2013. The means of the theodocic Servicere Mission Design," Journal of Spacecraft and
Westheate, A. W., Anderson, D., St. Louis, N. M., and Hudson, J., "Geosynchron
- [11] UCS Satellite Database, www.ucsusa.org/resources/satellite-database [accessed 7/17/2020]
- 34 [12] Session 6: Analytical Approximations for Low-Thrust Maneuvers, https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-522-space-