
Spacecraft Formation Flying 
using differential dynamic 
programming 
Tomohiro Sasaki

Nov 29th, 2022



SSDL Meeting Nov 29th, 2022

Name

• Sasaki, Tomohiro(佐々木, 智宏)


• Origin

• Born and raised in Fukui, Japan


• In my free time

• powerlifting


• Bachelor’s Degree

• B.E. in AE from the Tokyo Metropolitan University in Tokyo, 

Japan

• Research topic: RF Cathode for Low-power Hall Thruster”


Current interest

• High-performance optimal control

• Stochastic optimal control -> master’s problem

• Motion planning under uncertainty -> dissertation
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• Autonomous motion planning and control  
is an active research area for future intelligent robotic 
systems

• spacecraft formation flying

• self-driving car 

• autonomous underwater vehicle (AUV)

• unmanned aerial vehicle (UAV)

Motivation (1/3)
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• Autonomous motion planning and control  
is an active research area for future intelligent robotic 
systems

• spacecraft formation flying

• self-driving car 

• autonomous underwater vehicle (AUV)

• unmanned aerial vehicle (UAV)


• Although optimal control was born in 1697 and 
established in 1956, its capability is not enough as 
the application becomes complex

Motivation (1/3)
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• Planning: providing a “good” nominal trajectory to track -> Open-loop

• Control: providing 1) stability, 2) tracking, 3) disturbance rejection,  

4) robustness -> Closed-loop

Motivation (2/3)

8



SSDL Meeting Nov 29th, 2022

• Planning: providing a “good” nominal trajectory to track -> Open-loop

• Control: providing 1) stability, 2) tracking, 3) disturbance rejection,  

4) robustness -> Closed-loop

• General perception, planning, and control (or guidance, navigation, and 

control; GNC) flow

Motivation (2/3)
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• Usually, planning and control algorithms are not identically chosen

• i.e. choose tree search for planning and LQR for control

• planning algorithm may not provide feedback

• control algorithm may not be efficient by itself

Motivation (3/3)
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• Usually, planning and control algorithms are not identically chosen

• i.e. choose tree search for planning and LQR for control

• planning algorithm may not provide feedback

• control algorithm may not be efficient by itself


• Ultimately, we want to find the best combination of these algorithms 

• Or, we want to develop an algorithm that completes both tasks at the same 

time. 

Motivation (3/3)
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• Developing an algorithm that solves planning and control tasks under 
arbitrary constraints at the same time and ultimately provides robustness 
to the system even in an uncertain environment

Contribution
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• Dynamic Programming (Principle of Optimality)

• compositionality rules of optimal paths 

• Finds a closed-loop solution

• curse of dimensionality


• Calculus of Variations (Pontryagin Maximum Principle)

• Extrema of functionals (functional derivative = 0)

• Finds an open-loop solution

Optimal Control (1/2)

13

min
u ∫

T

0
[∥x(t)∥p + ∥u(t)∥p] dt

 s.t.  ·x(t) = f(x(t), u(t))
x(0) = x0
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Optimal Control (2/2)
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Consider the finite-horizon discrete-time optimal control problem:


Using dynamic programming


Differential Dynamic Programming (DDP)

16

V(X) = min
U

J(X, U) = min
U [ϕ (xN) +

N−1

∑
k=0

ℓ (xk, uk)]
subject to xk+1 = f (xk, uk), k = 0,…, N − 1, f, ϕ, ℓ ∈ C2

Vk(xk) = min
uk

[ℓ(xk, uk) + Vk+1(xk+1)] where VN = ϕ(xN)
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Consider the finite-horizon discrete-time optimal control problem:


Using dynamic programming


Quadratically approximate  about the nominal trajectory


Minimize  w.r.t. , then


Vk

Q δu

Differential Dynamic Programming (DDP)

17

V(X) = min
U

J(X, U) = min
U [ϕ (xN) +

N−1

∑
k=0

ℓ (xk, uk)]
subject to xk+1 = f (xk, uk), k = 0,…, N − 1, f, ϕ, ℓ ∈ C2

Vk(xk) = min
uk

[ℓ(xk, uk) + Vk+1(xk+1)] where VN = ϕ(xN)

Q(x + δx, u + δu) ≈ Q(x, u) + [Qx
Qu]

T

[δx
δu] +

1
2 [δx

δu]
T

[
QxxQxu

QT
xuQuu] [δx

δu]

δu* = k + Kδx with k = − Q−1
uu Qu, K = − Q−1

uu Qux
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Consider the finite-horizon discrete-time optimal control problem:


Using dynamic programming


Quadratically approximate  about the nominal trajectory


Minimize  w.r.t. , then


Using , propagate trajectory forward in time 

Vk

Q δu

u + δu*

Differential Dynamic Programming (DDP)
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V(X) = min
U

J(X, U) = min
U [ϕ (xN) +

N−1

∑
k=0

ℓ (xk, uk)]
subject to xk+1 = f (xk, uk), k = 0,…, N − 1, f, ϕ, ℓ ∈ C2

Vk(xk) = min
uk

[ℓ(xk, uk) + Vk+1(xk+1)] where VN = ϕ(xN)

Q(x + δx, u + δu) ≈ Q(x, u) + [Qx
Qu]

T

[δx
δu] +

1
2 [δx

δu]
T

[
QxxQxu

QT
xuQuu] [δx

δu]

δu* = k + Kδx with k = − Q−1
uu Qu, K = − Q−1

uu Qux
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DDP Flow

19
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DDP Flow

20

Qk(xk, uk) = ℓ(xk, uk) + Vk+1(xk+1)

fx, fu, fxx, fxu, fuu at (x̄, ū)

δu* = k + Kδ x
with k = − Q−1

uu Qu

K = − Q−1
uu Qux

Qx = ℓx + f T
x V′￼x

Qu = ℓu + f T
u V′￼x

Qxx = ℓxx + f T
x V′￼xx fx + V′￼x ⋅ fxx

Qxu = ℓxu + f T
x V′￼xx fu + V′￼x ⋅ fxu

Quu = ℓuu + f T
u V′￼xx fu + V′￼x ⋅ fuu
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DDP Flow

21

Qk(xk, uk) = ℓ(xk, uk) + Vk+1(xk+1)

fx, fu, fxx, fxu, fuu at (x̄, ū)

δu* = k + Kδ x
with k = − Q−1

uu Qu

K = − Q−1
uu Qux

Qx = ℓx + f T
x V′￼x

Qu = ℓu + f T
u V′￼x

Qxx = ℓxx + f T
x V′￼xx fx + V′￼x ⋅ fxx

Qxu = ℓxu + f T
x V′￼xx fu + V′￼x ⋅ fxu

Quu = ℓuu + f T
u V′￼xx fu + V′￼x ⋅ fuu

xnew
0 = x0

unew
k = uk + γ kk + Kk(xnew

k − xk)
xnew

k+1 = f (xnew
k , unew

k )

Feed-forward gain

Feedback gain

k = − Q−1
uu Qu

K = − Q−1
uu Qux
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• CDDP can deal with state and control constraints using the primal-dual 
interior point method (feasible and infeasible)

• Optimality of control is satisfied by the perturbed KKT system

Constrained DDP

23
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• CDDP can deal with state and control constraints using the primal-dual 
interior point method (feasible and infeasible)

• Optimality of control is satisfied by the perturbed KKT system

Constrained DDP

24

∇xL(x, u, λ, s) = 0
∇uL(x, u, λ, s) = 0
∇sL(x, u, λ, s) = 0

diag(λ)c(x, u) + μ = 0
c(x, u) ≤ 0, λ ≥ 0
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Consider the finite-horizon discrete-time optimal control problem:


Using dynamic programming


CDDP

25

min
U

J(X, U) = min
U [ϕ (xN) +

N−1

∑
k=0

ℓ (xk, uk)]
subject to xk+1 = f (xk, uk)

c(xk, uk) ≤ 0, k = 0,…, N − 1, f, c, ℓ, ϕ ∈ C2

Vk (xk) = min
uk s.t. c(x,u)≤0 [ℓ (xk, uk) + Vk+1 (xk+1)]
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Consider the finite-horizon discrete-time optimal control problem:


Using dynamic programming


Applying the minimax DDP technique, this recursive equation can be transformed into,


CDDP

26

min
U

J(X, U) = min
U [ϕ (xN) +

N−1

∑
k=0

ℓ (xk, uk)]
subject to xk+1 = f (xk, uk)

c(xk, uk) ≤ 0, k = 0,…, N − 1, f, c, ℓ, ϕ ∈ C2

Vk (xk) = min
uk s.t. c(x,u)≤0 [ℓ (xk, uk) + Vk+1 (xk+1)]

Vk (xk) = min
uk

max
λk≥0 [ℒ (xk, uk, λk) + Vk+1 (xk+1)] where ℒ(xk, uk, λk) = ℓ(xk, uk) + λT

k c(xk, uk)
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Consider the finite-horizon discrete-time optimal control problem:


Using dynamic programming


Applying the minimax DDP technique, this recursive equation can be transformed into,


Now, quadratically approximate  about the nominal trajectory and minimize  w.r.t.  to find 


Using  and , propagate trajectory forward in time 

Vk Q δu

u + δu* λ + δλ*

CDDP

27

min
U

J(X, U) = min
U [ϕ (xN) +

N−1

∑
k=0

ℓ (xk, uk)]
subject to xk+1 = f (xk, uk)

c(xk, uk) ≤ 0, k = 0,…, N − 1, f, c, ℓ, ϕ ∈ C2

Vk (xk) = min
uk s.t. c(x,u)≤0 [ℓ (xk, uk) + Vk+1 (xk+1)]

Vk (xk) = min
uk

max
λk≥0 [ℒ (xk, uk, λk) + Vk+1 (xk+1)] where ℒ(xk, uk, λk) = ℓ(xk, uk) + λT

k c(xk, uk)

δu* = k + Kδx and δλ* = h + Hδx
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CDDP Flow (feasible)
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DDP Flow (Infeasible)
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• Dynamics

• Clohessy-Wiltshire linear model

• quaternion attitude model

Dynamics (6DoF) and Constraints

31

x =
r
v
q
ω

∈ ℝ13, ·x =

v
1
m f HCW(r, v, u)

1
2 q ⊙ ω

J−1 (τ − ω × (Jω))

• Constraints
tT fixed

x(t0) = x0

x(tT) = xT

−umin ≤ u(t) ≤ umax

39 m ≤ ∥r1:2(t)∥2

in-plane safe constraint

• Performance Index

• quadratic cost

ϕ(x) = xTR1x, ℓ(u) = uTR2u
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• 


•

q(t0) = [0.5657,0.5657,0.5657, − 0.2]T → q(T ) = [0,0,0, − 1]T

ω(t0) = [0,0,0]T → ω(T ) = [0,0,0]T

Initially Feasible Case: Attitude

33
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Initially Feasible Case: Path
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Initially Infeasible Case: Path
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• CDDP under uncertainty 

• dynamics and constraints are no longer deterministic

• can’t use deterministic CDDP directly


• reachability of constrained optimal control

Further Motivation and Current Progress

37
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Chance-constrained Differential Dynamic Programming

38

min
U

J(X, U) = min
U

𝔼 [ϕ(xN) +
N−1

∑
k=0

ℓ(xk, uk)]
subject to xk+1 = f(xk, uk) + G(xk, uk)wk

Pr[c(xk, uk) ≤ 0] > 1 − ε
k = 0,…, N − 1, f, c, ϕ, ℓ ∈ C2
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• DDP and CDDP showed successful fast convergence when it’s applied to 
the linear relative motion model and quaternion model

• The academic and practical values of chance-constrained DDP will further 

be discussed

Conclusion

39
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Thank you for your attention!


I appreciate your comments and questions!


Good Luck with your Projects and Exams!

Tomohiro Sasaki

tomohiro.sasaki@gatech.edu

mailto:tomohiro.sasaki@gatech.edu

