Spacecraft Formation Flying using differential dynamic programming

Tomohiro Sasaki Nov 29th, 2022

Daniel Guggenheim School of Aerospace Engineering **SSDL | Space Systems Design Laboratory**

About M

Name

- Sasaki, Tomohiro(佐々木, 智宏)
- Origin
	- Born and raised in Fukui, Japan
- In my free time
	- powerlifting
- Bachelor's Degree
	- B.E. in AE from the Tokyo Metropolitan University in Tokyo, Japan
	- Research topic: RF Cathode for Low-power Hall Thruster"

Current interest

- High-performance optimal control
- Stochastic optimal control -> master's problem
- Motion planning under uncertainty -> dissertation

Daniel Guggenheim School of Aerospace Engineering **SSDL | Space Systems Design Laboratory**

World Cup Group E table

Outline

- Motivation
- Differential Dynamic Programming (DDP)
- Constrained DDP
- Dynamics and Constraints
- Numerical Simulations
- Future Work and Current Progress
- Conclusion

Outline

• Motivation

- Differential Dynamic Programming (DDP)
- Constrained DDP
- Dynamics and Constraints
- Numerical Simulations
- Future Work and Current Progress
- Conclusion

Motivation (1/3)

- Autonomous motion planning and control is an active research area for future intelligent robotic systems
	- spacecraft formation flying
	- self-driving car
	- autonomous underwater vehicle (AUV)
	- unmanned aerial vehicle (UAV)

Daniel Guggenheim School of Aerospace Engineering **SSDL | Space Systems Design Laboratory**

SSDL Meeting Nov 29th, 2022

Motivation (1/3)

- Autonomous motion planning and control is an active research area for future intelligent robotic systems
	- spacecraft formation flying
	- self-driving car
	- autonomous underwater vehicle (AUV)
	- unmanned aerial vehicle (UAV)
- Although optimal control was born in 1697 and established in 1956, its capability is not enough as the application becomes complex

Daniel Guggenheim School of Aerospace Engineering **SSDL | Space Systems Design Laboratory**

SSDL Meeting Nov 29th, 2022

Motivation (2/3)

- **Planning**: providing a "good" nominal trajectory to track -> **Open-loop**
- **Control**: providing 1) stability, 2) tracking, 3) disturbance rejection, 4) robustness -> **Closed-loop**

Motivation (2/3)

- **Planning**: providing a "good" nominal trajectory to track -> **Open-loop**
- **Control**: providing 1) stability, 2) tracking, 3) disturbance rejection, 4) robustness -> **Closed-loop**
- General perception, planning, and control (or guidance, navigation, and control; GNC) flow

Motivation (3/3)

- Usually, planning and control algorithms are not identically chosen
	- i.e. choose tree search for planning and LQR for control
	- planning algorithm may not provide feedback
	- control algorithm may not be efficient by itself

Motivation (3/3)

- Usually, planning and control algorithms are not identically chosen
	- i.e. choose tree search for planning and LQR for control
	- planning algorithm may not provide feedback
	- control algorithm may not be efficient by itself
- Ultimately, we want to find the best combination of these algorithms
- Or, we want to develop an algorithm that completes both tasks at the same time.

Contribution

• Developing an algorithm that solves planning and control tasks under arbitrary constraints at the same time and ultimately provides robustness to the system even in an uncertain environment

Optimal Control (1/2)

$$
\min_{\mathbf{u}} \int_{0}^{T} \left[\|\mathbf{x}(t)\|_{p} + \|\mathbf{u}(t)\|_{p} \right] dt
$$

s.t. $\dot{\mathbf{x}}(t) = f(\mathbf{x}(t), \mathbf{u}(t))$
 $\mathbf{x}(0) = \mathbf{x}_{0}$

- Dynamic Programming (Principle of Optimality)
	- compositionality rules of optimal paths
	- Finds a closed-loop solution
	- curse of dimensionality
- Calculus of Variations (Pontryagin Maximum Principle)
	- Extrema of functionals (functional derivative = 0)
	- Finds an open-loop solution

Optimal Control (2/2)

Outline

- Motivation
- Differential Dynamic Programming (DDP)
- Constrained DDP
- Dynamics and Constraints
- Numerical Simulations
- Future Work and Current Progress
- Conclusion

Differential Dynamic Programming (DDP)

Consider the finite-horizon discrete-time optimal control problem:

$$
V(\mathbf{X}) = \min_{\mathbf{U}} J(\mathbf{X}, \mathbf{U}) = \min_{\mathbf{U}} \left[\phi\left(\mathbf{x}_N\right) + \sum_{k=0}^{N-1} \mathcal{C}\left(\mathbf{x}_k, \mathbf{u}_k\right) \right]
$$

subject to $\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k), \quad k = 0, ..., N-1, \ f, \phi, \mathcal{C} \in \mathbb{C}^2$

Using dynamic programming

$$
V_k(\mathbf{x}_k) = \min_{\mathbf{u}_k} \left[\ell(\mathbf{x}_k, \mathbf{u}_k) + V_{k+1}(\mathbf{x}_{k+1}) \right] \quad \text{where } V_N = \phi(\mathbf{x}_N)
$$

16

SSDL Meeting Nov 29th, 2022

Differential Dynamic Programming (DDP)

Consider the finite-horizon discrete-time optimal control problem:

$$
V(\mathbf{X}) = \min_{\mathbf{U}} J(\mathbf{X}, \mathbf{U}) = \min_{\mathbf{U}} \left[\phi\left(\mathbf{x}_N\right) + \sum_{k=0}^{N-1} \mathcal{C}\left(\mathbf{x}_k, \mathbf{u}_k\right) \right]
$$

subject to $\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k), \quad k = 0, ..., N-1, \ f, \phi, \ell \in \mathbb{C}^2$

Using dynamic programming

$$
V_k(\mathbf{x}_k) = \min_{\mathbf{u}_k} \left[\ell(\mathbf{x}_k, \mathbf{u}_k) + V_{k+1}(\mathbf{x}_{k+1}) \right] \quad \text{where } V_N = \phi(\mathbf{x}_N)
$$

Quadratically approximate V_k about the nominal trajectory

$$
Q(\mathbf{x} + \delta \mathbf{x}, \mathbf{u} + \delta \mathbf{u}) \approx Q(\mathbf{x}, \mathbf{u}) + \begin{bmatrix} Q_{\mathbf{x}} \\ Q_{\mathbf{u}} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \delta \mathbf{x} \\ \delta \mathbf{u} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \delta \mathbf{x} \\ \delta \mathbf{u} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} Q_{\mathbf{x}\mathbf{x}} Q_{\mathbf{x}\mathbf{u}} \\ Q_{\mathbf{x}\mathbf{u}}^{\mathrm{T}} Q_{\mathbf{u}\mathbf{u}} \end{bmatrix} \begin{bmatrix} \delta \mathbf{x} \\ \delta \mathbf{u} \end{bmatrix}
$$

 M inimize Q w.r.t. $\delta \mathbf{u}$, then

$$
\delta \mathbf{u}^* = \mathbf{k} + \mathbf{K} \delta \mathbf{x}
$$
 with $\mathbf{k} = -Q_{\text{uu}}^{-1} Q_{\text{u}}$, $\mathbf{K} = -Q_{\text{uu}}^{-1} Q_{\text{ux}}$

SSDL Meeting Nov 29th, 2022

Daniel Guggenheim School of Aerospace Engineering **Space Systems** Laboratory

Differential Dynamic Programming (DDP)

Consider the finite-horizon discrete-time optimal control problem:

$$
V(\mathbf{X}) = \min_{\mathbf{U}} J(\mathbf{X}, \mathbf{U}) = \min_{\mathbf{U}} \left[\phi\left(\mathbf{x}_N\right) + \sum_{k=0}^{N-1} \mathcal{C}\left(\mathbf{x}_k, \mathbf{u}_k\right) \right]
$$

subject to $\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k), \quad k = 0, ..., N-1, \ f, \phi, \ell \in \mathbb{C}^2$

Using dynamic programming

$$
V_k(\mathbf{x}_k) = \min_{\mathbf{u}_k} \left[\ell(\mathbf{x}_k, \mathbf{u}_k) + V_{k+1}(\mathbf{x}_{k+1}) \right] \quad \text{where } V_N = \phi(\mathbf{x}_N)
$$

Quadratically approximate V_k about the nominal trajectory

$$
Q(\mathbf{x} + \delta \mathbf{x}, \mathbf{u} + \delta \mathbf{u}) \approx Q(\mathbf{x}, \mathbf{u}) + \begin{bmatrix} Q_{\mathbf{x}} \\ Q_{\mathbf{u}} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \delta \mathbf{x} \\ \delta \mathbf{u} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \delta \mathbf{x} \\ \delta \mathbf{u} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} Q_{\mathbf{x}\mathbf{x}} Q_{\mathbf{x}\mathbf{u}} \\ Q_{\mathbf{x}\mathbf{u}}^{\mathrm{T}} Q_{\mathbf{u}\mathbf{u}} \end{bmatrix} \begin{bmatrix} \delta \mathbf{x} \\ \delta \mathbf{u} \end{bmatrix}
$$

 M inimize Q w.r.t. $\delta \mathbf{u}$, then

$$
\delta \mathbf{u}^* = \mathbf{k} + \mathbf{K} \delta \mathbf{x}
$$
 with $\mathbf{k} = -Q_{uu}^{-1}Q_u$, $\mathbf{K} = -Q_{uu}^{-1}Q_{ux}$

Using $\mathbf{u} + \delta \mathbf{u}^*$, propagate trajectory forward in time

SSDL Meeting Nov 29th, 2022

Daniel Guggenheim School of Aerospace Engineering **Space Systems**

DDP Flow

DDP Flow

DDP Flow

 $x_0^{\text{new}} = x_0^{\text{new}}$

Outline

- Motivation
- Differential Dynamic Programming (DDP)
- Constrained DDP
- Dynamics and Constraints
- Numerical Simulations
- Future Work and Current Progress
- Conclusion

22

SSDL Meeting Nov 29th, 2022

Constrained DDP

- CDDP can deal with state and control constraints using the primal-dual interior point method (feasible and infeasible)
- Optimality of control is satisfied by the perturbed KKT system

Constrained DDP

- CDDP can deal with state and control constraints using the primal-dual interior point method (feasible and infeasible)
- Optimality of control is satisfied by the perturbed KKT system

 $\nabla_{\mathbf{r}} L(\mathbf{x}, \mathbf{u}, \lambda, \mathbf{s}) = 0$ $\nabla_{\mathbf{u}}L(\mathbf{x}, \mathbf{u}, \lambda, \mathbf{s}) = 0$ $\nabla_{\mathbf{S}}L(\mathbf{x}, \mathbf{u}, \lambda, \mathbf{s}) = 0$ $diag(\lambda)c(x, u) + \mu = 0$ $c(x, u) \leq 0$, $\lambda \geq 0$

Daniel Guggenheim School of Aerospace Engineering **Space Systems** SSDL I Design Laboratory

24

SSDL Meeting Nov 29th, 2022

CDDP

Consider the finite-horizon discrete-time optimal control problem:

$$
\min_{\mathbf{U}} J(\mathbf{X}, \mathbf{U}) = \min_{\mathbf{U}} \left[\phi\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{C}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \right]
$$
\nsubject to $\mathbf{x}_{k+1} = f(\mathbf{x}_{k}, \mathbf{u}_{k})$
\n
$$
c(\mathbf{x}_{k}, \mathbf{u}_{k}) \leq 0, \quad k = 0, ..., N-1, \quad f, c, \mathcal{C}, \phi \in C^{2}
$$
\n
$$
V_{\mathbf{x}}(\mathbf{x}_{k}) = \min \left[\mathcal{C}(\mathbf{x}_{k}, \mathbf{u}_{k}) + V_{\mathbf{x}}(\mathbf{x}_{k}) \right]
$$

Using dynamic program

$$
V_k(\mathbf{x}_k) = \min_{\mathbf{u}_k \text{ s.t. } \mathbf{c}(\mathbf{x}, \mathbf{u}) \le 0} \left[\mathcal{C}(\mathbf{x}_k, \mathbf{u}_k) + V_{k+1}(\mathbf{x}_{k+1}) \right]
$$

25

SSDL Meeting Nov 29th, 2022

CDDP

Consider the finite-horizon discrete-time optimal control problem:

$$
\min_{\mathbf{U}} J(\mathbf{X}, \mathbf{U}) = \min_{\mathbf{U}} \left[\phi\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} \mathcal{E}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \right]
$$
\nsubject to $\mathbf{x}_{k+1} = f(\mathbf{x}_{k}, \mathbf{u}_{k})$
\n $c(\mathbf{x}_{k}, \mathbf{u}_{k}) \leq 0, \quad k = 0, ..., N-1, \quad f, c, \ell, \phi \in C^{2}$

п.

m.

Using dynamic programming

$$
V_k(\mathbf{x}_k) = \min_{\mathbf{u}_k \text{ s.t. } \mathbf{c}(\mathbf{x}, \mathbf{u}) \le 0} \left[\mathcal{E}\left(\mathbf{x}_k, \mathbf{u}_k\right) + V_{k+1}\left(\mathbf{x}_{k+1}\right) \right]
$$

Applying the minimax DDP technique, this recursive equation can be transformed into,

$$
V_k(\mathbf{x}_k) = \min_{\mathbf{u}_k} \max_{\lambda_k \ge 0} \left[\mathcal{L}(\mathbf{x}_k, \mathbf{u}_k, \lambda_k) + V_{k+1}(\mathbf{x}_{k+1}) \right] \quad \text{where} \quad \mathcal{L}(\mathbf{x}_k, \mathbf{u}_k, \lambda_k) = \ell(\mathbf{x}_k, \mathbf{u}_k) + \lambda_k^{\mathrm{T}} c(\mathbf{x}_k, \mathbf{u}_k)
$$

CDDP

Consider the finite-horizon discrete-time optimal control problem:

$$
\min_{\mathbf{U}} J(\mathbf{X}, \mathbf{U}) = \min_{\mathbf{U}} \left[\phi \left(\mathbf{x}_{N} \right) + \sum_{k=0}^{N-1} \mathcal{C} \left(\mathbf{x}_{k}, \mathbf{u}_{k} \right) \right]
$$
\nsubject to $\mathbf{x}_{k+1} = f(\mathbf{x}_{k}, \mathbf{u}_{k})$

$$
c(\mathbf{x}_k, \mathbf{u}_k) \le 0, \ k = 0, ..., N - 1, f, c, \ell, \phi \in C^2
$$

┓

Using dynamic programming

$$
V_k(\mathbf{x}_k) = \min_{\mathbf{u}_k \text{ s.t. } \mathbf{c}(\mathbf{x}, \mathbf{u}) \le 0} \left[\ell(\mathbf{x}_k, \mathbf{u}_k) + V_{k+1}(\mathbf{x}_{k+1}) \right]
$$

Applying the minimax DDP technique, this recursive equation can be transformed into,

$$
V_k(\mathbf{x}_k) = \min_{\mathbf{u}_k} \max_{\lambda_k \ge 0} \left[\mathcal{L}(\mathbf{x}_k, \mathbf{u}_k, \lambda_k) + V_{k+1}(\mathbf{x}_{k+1}) \right] \quad \text{where} \quad \mathcal{L}(\mathbf{x}_k, \mathbf{u}_k, \lambda_k) = \ell(\mathbf{x}_k, \mathbf{u}_k) + \lambda_k^{\mathrm{T}} c(\mathbf{x}_k, \mathbf{u}_k)
$$

Now, quadratically approximate V_k about the nominal trajectory and minimize Q w.r.t. $\delta{\bf u}$ to find δ **u*** = **k** + **K** δ **x** and $\delta\lambda$ ^{*} = **h** + **H** δ **x**

Using $\mathbf{u} + \delta \mathbf{u}^*$ and $\lambda + \delta \lambda^*$, propagate trajectory forward in time

SSDL Meeting Nov 29th, 2022

DDP Flow (Infeasible)

Outline

- Motivation
- Differential Dynamic Programming (DDP)
- Constrained DDP
- Dynamics and Constraints
- Numerical Simulations
- Future Work and Current Progress
- Conclusion

Dynamics (6DoF) and Constra

• Dynamics

- Clohessy-Wiltshire linear model
- quaternion attitude model

$$
\mathbf{x} = \begin{bmatrix} \mathbf{r} \\ \mathbf{v} \\ \mathbf{q} \\ \boldsymbol{\omega} \end{bmatrix} \in \mathbb{R}^{13}, \ \dot{\mathbf{x}} = \begin{bmatrix} \frac{1}{m} f^{HCW}(\mathbf{r}, \mathbf{v}, \mathbf{u}) \\ \frac{1}{2} \mathbf{q} \odot \boldsymbol{\omega} \\ J^{-1} (\tau - \boldsymbol{\omega} \times (J \boldsymbol{\omega})) \end{bmatrix}
$$

- Performance Index
	- quadratic cost

 $\phi(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{R}_1 \mathbf{x}, \quad \mathcal{C}(\mathbf{u}) = \mathbf{u}^{\mathrm{T}} \mathbf{R}_2 \mathbf{u}$

• Constraints *t ^T* fixed **x**(*t* 0) = **x**⁰ **x**(*t ^T*) = **x***^T* −**u**m*in* ≤ **u**(*t*) ≤ **u**m*ax* 39 m ≤ ∥**r**1:2(*t*)∥² in-plane safe constraint

Daniel Guggenheim School of Aerospace Engineering

Design Laboratory

Space Systems

SSDL I

Outline

- Motivation
- Differential Dynamic Programming (DDP)
- Constrained DDP
- Dynamics and Constraints
- Numerical Simulations
- Future Work and Current Progress
- Conclusion

Initially Feasible Case: Attitude

- $\boldsymbol{q}(t_0) = [0.5657, 0.5657, 0.5657, -0.2]^\text{T} \rightarrow \boldsymbol{q}(T) = [0, 0, 0, -1]^\text{T}$
- $\omega(t_0) = [0, 0, 0]^T \rightarrow \omega(T) = [0, 0, 0]^T$

Initially Feasible Case: Path

SSDL Meeting Nov 29th, 2022

Daniel Guggenheim School of Aerospace Engineering **SSDL | Space Systems Design Laboratory**

Initially Infeasible Case: Path

SSDL Meeting Nov 29th, 2022

35

Daniel Guggenheim School of Aerospace Engineering **SSDL | Space Systems Design Laboratory**

Outline

- Motivation
- Differential Dynamic Programming (DDP)
- Constrained DDP
- Dynamics and Constraints
- Numerical Simulations
- Future Work and Current Progress
- Conclusion

Further Motivation and Current Progress

- CDDP under uncertainty
	- dynamics and constraints are no longer deterministic
	- can't use deterministic CDDP directly
- reachability of constrained optimal control

Chance-constrained Differential Dynamic Programming

$$
\min_{\mathbf{U}} J(\mathbf{X}, \mathbf{U}) = \min_{\mathbf{U}} \mathbb{E} \left[\phi(\mathbf{x}_N) + \sum_{k=0}^{N-1} \mathcal{C}(\mathbf{x}_k, \mathbf{u}_k) \right]
$$

subject to $\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k) + G(\mathbf{x}_k, \mathbf{u}_k) \mathbf{w}_k$

$$
\Pr[c(\mathbf{x}_k, \mathbf{u}_k) \le 0] > 1 - \varepsilon
$$

$$
k = 0, ..., N - 1, f, c, \phi, \ell \in C^2
$$

Daniel Guggenheim School of Aerospace Engineering **SSDL | Space Systems Design Laboratory**

38

SSDL Meeting Nov 29th, 2022

Conclusion

- DDP and CDDP showed successful fast convergence when it's applied to the linear relative motion model and quaternion model
- The academic and practical values of chance-constrained DDP will further be discussed

Thank you for your attention!

I appreciate your comments and questions!

Good Luck with your Projects and Exams!

Tomohiro Sasaki tomohiro.sasaki@gatech.edu

