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SENSITIVITY OF SEPARATION INDICATORS IN SPACECRAFT
FORMATION COLLISION RISK ANALYSIS

Ulises E. Núñez Garzón*, and E. Glenn Lightsey†

The 99.73% minimum distance, denoted as ρ3σ , is the 0.27%-percentile in the distribution of
the norm of the instantaneous relative position between two agents. Previously, ρ3σ has been
proposed as a probabilistic collision risk boundary for spacecraft formation flight under the
assumption of Clohessy-Wiltshire (CW) relative orbital dynamics. In this case, agents with
lesser separation than ρ3σ have an instantaneous collision probability higher than 0.27%.
This work validates the foregoing interpretation of ρ3σ by showing that small changes to the
target probability of ρ3σ also result in small changes to ρ3σ itself.

INTRODUCTION

Spacecraft formation flying (SFF) is defined as a “set of more than one spacecraft whose dynamic states
are coupled through a common control law”.1 Spacecraft formations are attractive from a space mission
design perspective. In particular, SFF can enable missions with increased system robustness, as deterioration
or failure of an agent in a spacecraft formation may only cause performance degradation in the mission,
rather than causing the end of the mission.2 Conversely, spacecraft formation missions may also have longer
lifetimes due to the ability to replace failed agents or add new ones. This adds new options to space mission
architectures beyond those available to traditional, monolithic spacecraft missions.3 Additionally, missions
that implement SFF have an opportunity for enhanced system flexibility through improved “adaptability,
scalability, evolvability, and maintainability”.4 Spacecraft formations can also enable high precision scientific
missions by distributing a formation over regions larger than those spanned by large, monolithic spacecraft
and by using sensor fusion.5 Doing so has a plethora of applications, such as gravimetry,6 weather forecasting
and climate monitoring,7 exoplanet detection,8 gravitational wave detection,9 and more.

Spacecraft formations are intended to exhibit safe and continued operation, but this goal might be jeopar-
dized by the ever-present risk of collision events, which could occur among agents in a formation or between
any such agent and debris that are external to a formation.10, 11 Since orbit navigation, dynamic modeling,
and actuation errors, even if reducible, cannot be fully eliminated, some level of inter-spacecraft drift is in-
herent to spacecraft formations;2 hence, it is always possible that such drifting might cause internal collision
events. Approaches to SFF collision avoidance (COLA) can be broadly classified into two groups: passive
and active.12, 13 Passive SFF COLA methods focus on designing and keeping orbits that are passively safe (ap-
proximately), without directly addressing internal collision risk in an ongoing basis.14–16 Conversely, active
SFF COLA methods propose conducting internal collision risk quantification and assessment on a recurring
basis, as well as planning and executing corrective actions when necessary.

Active SFF COLA methods are characterized by their collision risk indicators, which are used to quantify
collision risk; these indicators are employed in developing threshold criteria through which it can be de-
cided whether collision risk warrants corrective maneuvers. The first indicator type, distance-based, employs
some statistical description of the physical separation between two agents as measured by, for example, the
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Euclidean distance or Cartesian components of relative position.17–20 The second indicator type, probability-
based, quantifies collision risk as the probability measure of the relative position over a region in which the
collision event is understood to occur.10, 12, 13, 21–23 Generally, collision risk is mitigated by setting constraints
in an optimal control problem in terms of these indicators. Because distance-based and probability-based in-
dicators have distinct physical interpretations, active SFF COLA methods are philosophically and practically
distinct depending on the choice of collision risk indicator. For an extended discussion on distance-based and
probability-based collision risk indicators and their relationship, the reader is encouraged to refer to the work
of Núñez Garzón et al.12, 13

For an individual agent, its hard-body radius (HBR) is a safety parameter that describes the minimum
safe distance from its center of mass to any objects outside itself. Consequently, the joint hard-body radius
for two agents, which is the sum of their individual hard-body radii, may be understood as a minimum safe
separation distance between such agents. Hence, a collision between two agents may be defined to occur when
the distance between their centers of mass is less than their joint HBR. Then, the kinematic probability of
collision (KPC) between two agents is the probability of this instantaneous collision event, given a stochastic
description of the relative geometry between such agents.

If p3σ is defined as a constant with an approximate value of 0.27%, then the 99.73% minimum distance
value, also known as ρ3σ , is the distance away from the origin (of the frame of the relative position between
two agents) such that 100(1 − p3σ) percent of randomly drawn points (according to the relative position
distribution) have a distance from the origin greater than ρ3σ . In the context of Clohessy-Wiltshire (CW)
relative orbital dynamics,24, 25 ρ3σ has been proposed as an inter-agent separation indicator with two bene-
fits.12, 13 First, through its definition, ρ3σ has the following probabilistic risk interpretation: ρ3σ is the joint
HBR such that the corresponding KPC is equal to p3σ . Second, with a fixed joint HBR, the corresponding
KPC time-waveform has a correlation relationship with the ρ3σ time-waveform such that, roughly, local min-
ima of KPC correspond with local maxima of ρ3σ , and vice versa. That is, roughly, ρ3σ indicates closest
inter-agent distance in the same conditions that the KPC indicates highest collision risk, and ρ3σ indicates
furthest inter-agent distance while the KPC indicates lowest risk. Therefore, ρ3σ and the KPC are correlated
to each other in a way that is consistent with intuition.

In the following way, ρ3σ can be interpreted as a probabilistic risk boundary: if the joint HBR for two
agents were equal to ρ3σ , then the instantaneous probability of collision between the agents would be equal
to p3σ . Hence, if the true joint HBR is less than ρ3σ , the instantaneous collision probability is less than p3σ;
conversely, if the true joint HBR is greater than ρ3σ , the instantaneous collision probability is greater than
p3σ . As a result, ρ3σ conceptually bridges the gap between probabilistic and distance-based approaches to
collision risk quantification.

In order to validate this interpretation of ρ3σ , it is important to understand the effects on ρ3σ caused by
variations in its target probability, i.e. the value of the probability measure to be achieved at the ρ3σ value,
which should be equal to p3σ by definition. However, because of errors inherent to numerical methods, it is
expected that there would be a discrepancy between the prescribed p3σ value and the computed radial prob-
ability measure at the true ρ3σ . Such discrepancies may affect both the meaning of ρ3σ and its computation.
First, finding a ρ3σ candidate that achieves a target probability that approximates (but is not exactly equal to)
p3σ is equivalent to solving for ρ3σ with a target probability different from p3σ . Hence, if small variations
in target probability result in changes to ρ3σ that are small compared to the magnitude of ρ3σ , then it makes
sense to assert that a collision risk of approximately p3σ is incurred when the inter-agent keep-out distance is
approximately ρ3σ . Second, if small changes in target probability cause small changes in ρ3σ , the outcome of
an estimator of ρ3σ could be trusted to hold the same interpretation as the true ρ3σ . Therefore, the goal of this
work is to examine the sensitivity of ρ3σ to small variations in its target probability. If such an investigation
validates the foregoing interpretation of ρ3σ , especially over extended propagation horizons, it would justify
application of the ρ3σ construct in spacecraft formation collision risk analysis.

This work is organized as follows. In the Background section, the notation and terminology employed
is expounded, and the topological notions of collision events and collision probability are formulated. In
the Theory section, the norm of the relative position is characterized as a random variable. This allows
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for the computation of radial probability measures, as well as for the interpretation of ρ3σ as a quantile of
the distribution of the norm of the relative position – all of which lays the foundation for the sensitivity
analysis of ρ3σ . The Methodology section details the precise techniques employed for numerical and sample
computation of ρ3σ , which, in turn, are applied to computing the sensitivity of ρ3σ . In the Results and
Conclusion sections, the outcome of this analysis is summarized, and the implications are discussed.

BACKGROUND

This section introduces some preliminary concepts that are used in the following analysis. First, the nota-
tion used in this work is established. Next, the formal, topological notions of collision events and collision
probability are presented. Finally, simulation cases with the assumption of Clohessy-Wiltshire (CW) relative
orbital dynamics and geometry are defined.

Notation

Vectors are underlined, while matrices and functions are not. Although boldface is reserved for multi-
dimensional variables (i.e. vectors and matrices), sometimes boldfacing such variables may be avoided for
clarity. Let X ∈ RnX and R ∈ RdR denote a dynamic state and position state, respectively. The dimensions
of X and R are denoted by nX and dR, respectively. (Note: dR ∈ {1, 2, 3}.) When used with the subscript
i, Xi and Ri denote the dynamic state and position of agent i, respectively. It is understood that Ri specif-
ically refers to the position of the center of mass of agent i. When used with a composite subscript such
as “i-j”, Xi,j and Ri,j denote the dynamic state and position of agent i relative to agent j, respectively, i.e.
Xi,j

.
= Xi − Xj and Ri,j

.
= Ri − Rj . (For a mathematical object a and expressions LHS and RHS, the

statement “a .
= RHS” denotes that a is defined via the expression RHS, whereas the statement “LHS =: a”

indicates that the expression LHS is equal to a by definition.)

When written in uppercase, X and R denote an uncertain dynamic state and uncertain position, respectively,
i.e. a dynamic state X (t) and position R (t) are random variables (RVs) for any time t. Conversely, when
written in lowercase, x and r denote specific, deterministic “instances” or values that X and R may take on,
respectively. When inside a square bracket and with a subscript outside of such bracket, [R]J ∈ RdR denotes
that R ∈ RdR is expressed in the coordinates of a reference frame J ; similarly, [b]J ∈ R denotes the bth

component of R in the J -frame (b ∈ {x, y, z}).
It is assumed that X(t) and R(t) are absolutely continuous for any time t; that is, probability measures

of X(t) and R(t) are zero-valued on sets of zero measure in their respective sample spaces.26 Consequently,
probability density functions (pdfs) for X(t) and R(t) exist almost everywhere (a.e.) in their respective sample
spaces, and probability measures on X(t) and R(t) can be computed as integrals of their pdfs.27 Additionally,
only instantaneous events are considered in this work; that is, only events that pertain to the distribution of
X(t) and R(t) at a single time t are considered. Hence, the dependence of the distribution of X(t) and R(t)
on t is often implicit. Finally, the cumulative distribution function (cdf) of a univariate, real-valued random
variable X is denoted by cdfX(·).

Definition of a collision event

This subsection mirrors the topological notions of collision as previously presented by Núñez Garzón
et al.12, 13, 21 A collision event (between two agents) occurs whenever their respective physical, nonempty
“volumes” in dR-dimensional space have a nonempty intersection, i.e. a collision occurs when agents bodies
occupy portions of the same volume of space at the same time.

Definition 1 (n-ball and (n−1)-sphere28, 29). The n-ball and (n−1)-sphere of radius r (centered at x ∈ Rn),
denoted by Bnr (x) and S(n−1)

r (x), respectively, are defined as the sets

Bnr (x)
.
=
{
¯
y ∈ Rn :

∥∥x−
¯
y
∥∥ < r, r > 0

}
(1)

S(n−1)
r (x)

.
=
{
¯
y ∈ Rn :

∥∥x−
¯
y
∥∥ = r, r > 0

}
(2)

Note: when the dimension of elements in Bnr (x) is implicit, it is referred to as Br (x) for simplicity. ♦
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The characteristic length (or hard-body radius) of agent i, li ∈ (0,∞), is defined as

li
.
= sup
x∈Bi

‖x− ri‖ (3)

where Bi ⊆ RdR is the set of all points in the body of agent i, and where sup(·) denotes the supremum
operator. In this work, the Bi is approximated as the ball with radius li centered at the ith center of mass, i.e.
Bi = BdR

li
(ri); this is referred to as the hard-body radius (HBR) assumption, and it is illustrated in Figure 1.
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Figure 1: Agents under the HBR simplification: a) not colliding, and b) colliding. Note: these circles
represent dR-balls that circumscribe agent bodies, not position pdf’s.12, 13, 21

Let i and j refer to two agents in proximity. Through the HBR simplification, li represents a no-contact
zone, i.e. agent i does not collide with any other agent j (i 6= j) if no point belonging to the body of agent j
becomes closer to the ith center of mass than a distance li. Thus, in order to avoid a collision with agent i, it
is sufficient for agent j to be at least a distance li away from agent i, and vice versa. Using this intuition, the
i-j collision event is formally defined as the condition given by

Bli (ri) ∩ Blj (
¯
rj) 6= ∅ (4)

Whenever the condition in Eq. 4 holds, the distance between the respective centers of mass is less than
the sum of their respective hard-body radii, as seen in Figure 1. Letting li,j

.
= li + lj denote the i-j joint

hard-body radius, an equivalent collision condition is given by

‖ri −¯
rj‖ < li,j (5)

When the exact positions of agents i and j are known, Eqns. 4 and 5 list Boolean conditions from which
it can be ascertained, deterministically, whether such agents are colliding. In practice, however, because
agent positions must be estimated, it is not possible to know them precisely. Therefore, whether a collision
is occurring can only be established in a probabilistic sense. Nonetheless, the equivalent collision conditions
listed in Eqns. 4 and 5 are employed in defining the probability measure in relative position space that
corresponds to a collision event.

Definition 2 (Kinematic probability of collision). The kinematic probability of collision of agents i and j at
time t, denoted by KPCi,j(t), is defined as the probability of “the event that agents i and j are colliding at
time t”. Assuming the HBR simplification holds, then, KPCi,j(t) can be expressed as

KPCi,j(t) = p
(∥∥Ri,j(t)

∥∥ < li,j
)

(6)

Assuming that Ri,j(t) is absolutely continuous, the probability measure in Eq. 6 can be computed as an
integral of the pdf of Ri,j(t), i.e. as given by

KPCi,j(t) =

∫
r∈Vi,j

pdfRi,j(t)
(r) dr (7)
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where the i-j intersection volume, denoted by Vi,j , is defined as the set

Vi,j
.
= BdR

li,j

(
0dR×1

)
=
{

r ∈ RdR : ‖r‖ < li,j
}

(8)

and where
¯
0n×1 denotes the zero-valued vector in Rn. ♦

Definition 2 is illustrated with two-dimensional example where the relative position is normally distributed,
as shown in Figure 2, where the d-contours represent contours of constant Mahalanobis distance.21
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Figure 2: Conceptual KPC computation through integration of relative position pdf for a system with nor-
mally distributed (two-dimensional) relative position.

CW dynamics and geometry

In this work, it is assumed that simulation cases obey Clohessy Wiltshire (CW) relative orbital dynamics.
The position of the deputy k about the chief c0 ([rk,c0 ]H ∈ R3, or simply [rk]H ) is expressed in the coor-
dinates of the Hill frame,24 which is a rotating reference frame, and which is also designated as the RIC,30

RTN,31 and LVLH frame.5 The CW relative dynamic state [xk]H is completed by the relative position rate,
i.e. [xk]TH =

[
[rk]TH , [ṙk]TH

]
. A CW dynamic system displays linear, time-invariant (LTI) dynamics. Hence,

if the initial relative state is known at some time t0, the relative state [xk]H (t) may be computed as

[xk]H (t) = Φc0 (t, t0) [xk]H (t0) (9)

where Φc0 is the c0 state transition matrix (STM), given by

Φc0 (t, t0) =



4− 3c 0 0 s
nc0

2
nc0
− 2c

nc0
0

−6nc0 (t− t0) + 6s 1 0 − 2
nc0

+ 2c
nc0

4s
nc0
− 3 (t− t0) 0

0 0 c 0 0 s
nc0

3nc0s 0 0 c 2s 0
−6nc0 + 6nc0c 0 0 −2s −3 + 4c 0

0 0 −nc0s 0 0 c


(10)

where nc0 refers to the mean periodic orbital motion of agent c0 (in angular rate units), and where c =
cos (nc0 (t− t0)) and s = sin (nc0 (t− t0)). Furthermore, if the CW trajectory of agent k about agent c0 is
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closed, i.e. if the relative trajectory is bounded (that is, there are no relative position terms that grow without
bound), then the initial relative CW state [xk]H (t0) is constrained such that

[ẏk]H (t0) = −2nc0 [xk]H (t0) (11)

Closed relative CW trajectories can be described in terms of the geometric parametersA0, B0, yoff , α0 and
β0 as given by Equations 12, 13 and 14, in accordance with the notation of Schaub, et al.5

[x]H (t) = A0 cos (nc0(t− t0) + α0) (12)

[y]H (t) = −2A0 sin (nc0(t− t0) + α0) + yoff (13)

[z]H (t) = B0 cos (nc0(t− t0) + β0) (14)

It should be noted that these are five, not six, geometric parameters, owing to the closed CW trajectory
constraint, given by Eq. 11, and they can be interpreted as follows:

• A0: amplitude of [x]H motion.

• yoff : steady-state offset of [y]H motion. Note: the amplitude of [y]H motion about yoff is 2A0.

• B0: amplitude of [z]H motion.

• α0: phase angle of [x]H motion. Note: the [y]H motion leads the [x]H motion by a phase difference
of π/2, i.e. by 0.25 chief orbit periods, regardless of the value of α0. Thus, the [x]H -[y]H motion is
always a 1:2 ellipse centered at (0, yoff).

• β0: phase angle of [z]H motion.

The α0 and β0 angles are only meaningful if the A0 and B0 amplitudes, respectively, are nontrivial. If
defined, the β0−α0 geometric parameter creates the greatest variability in the shape of closed CW trajectories.
In particular, the following cases are noteworthy:

• mod(β0 − α0, 2π) ∈ {0, π}. Here, the [x]H and [z]H motions are in phase and are either correlated or
anti-correlated straight lines, whereas the [y]H and [z]H motions are out of phase, creating a 2:(B0/A0)
ellipse. For example, in this β0 − α0 case, if B0 = 2A0, then the relative trajectory as perceived in the
[y]H -[z]H plane is a 1:1 ellipse (i.e. a circle) centered at (yoff , 0).

• mod(β0 − α0, 2π) ∈ {π/2, 3π/2}. Here, the [y]H and [z]H motions are in phase and are either
correlated or anti-correlated straight lines, whereas the [x]H and [z]H motions are out of phase, creating
a 1:(B0/A0) ellipse.

• mod(β0−α0, π/2) 6= 0. Here, the [z]H motion is neither in phase nor out of phase with either the [x]H
or [y]H motions, creating either correlated or anti-correlated ellipses in the [x]H -[z]H and [y]H -[z]H
planes.

THEORY

Throughout the remainder of this work, for simplicity, the relative state Xi,j and relative position Ri,j are
denoted as X and R, respectively. Furthermore, only three-dimensional (3D) relative positions are considered.

Introducing radial probability measures

Radial probability measures – definition. This work draws heavily on the concept of radial probability
measures of the relative position R; that is, in measures h : [0,∞)→ [0, 1] of the form

h(ρ) = p (R ∈ Vρ) (15)

where, for ρ ≥ 0,
Vρ

.
=
{

r ∈ R3 : ‖r‖ ≤ ρ
}

= B3
ρ

(
03×1

)
∪ S2

ρ (
¯
03×1) (16)
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Because the relative position random variable R is assumed to be absolutely continuous, the measure h can
be computed as the integral

h(ρ) =

∫
r∈Vρ

pdfR (r) dr (17)

where pdfR(·) exists a.e. and is non-negative where defined.

Because the set S2
ρ

(
03×1

)
=
{

r ∈ R3 : ‖r‖ = ρ
}

has zero measure in R3, it follows that

h(ρ) =

∫
‖r‖≤ρ

pdfR (r) dr =

∫
‖r‖<ρ

pdfR (r) dr (18)

Therefore, by definition, KPCi,j is simply the radial probability measure of R evaluated at the joint hard-
body radius li,j . That is,

h(li,j) =

∫
‖r‖<li,j

pdfR (r) dr =: KPCi,j (19)

Norm of the relative position – definition. The norm of the relative position, or R, is defined as R .
=

‖R‖ =
(
RTR

)1/2
. Thus, R can be understood as the true inter-agent distance, which, due to uncertainty,

cannot be known exactly.

Proposition 3. Let X be an absolutely continuous random variable in Rn. Define X .
= ‖X‖ =

(
XTX

)1/2
.

Then, X is an absolutely continuous random variable as well. ♦

Proof. Omitted due to paper length limitation.

Because R is assumed to be absolutely continuous, via Proposition 3, it follows that R is absolutely con-
tinuous. Therefore, pdfR exists a.e., and cdfR is an absolutely continuous function. Furthermore, h is an
absolutely continuous function as well, which can be seeing by noting that

h(ρ) = p (‖R‖ ≤ ρ) = p (R ≤ ρ) =: cdfR(ρ) (20)

If pdfR is known, h(r) for r ≥ 0 can be computed as

h(r) =

∫ r

0

∫ 2π

0

∫ π

0

pdfR (r(ρ, θ, φ)) ρ2 sinφ dφ dθ dρ (21)

where r (ρ, θ, φ) is a traditional spherical coordinate representation of r as given by

rT (ρ, θ, φ) = ρ
[
cos θ sinφ sin θ sinφ cosφ

]
(22)

where ρ ≥ 0, 0 ≤ θ < 2π, and 0 ≤ φ ≤ π. It follows that pdfR(r) can be computed as an integral of pdfR
as given by

pdfR(r) =
dh(ρ)

dρ

∣∣∣
ρ=r

= r2

∫ 2π

0

∫ π

0

pdfR (r(r, θ, φ)) sinφ dφ dθ (23)

Alternatively, the Lambert area-preserving mapping between the unit square and the unit 2-sphere, denoted
by T : [0, 1)× [0, 1]→ S2 as given by

T

([
y1

y2

])
=

√1− (1− 2y2)2 cos(2πy1)√
1− (1− 2y2)2 sin(2πy1)

1− 2y2

 ,

[
y1

y2

]
∈ [0, 1)× [0, 1] (24)
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may be used to create a spherical coordinate representation of r.32 Using the Lambert transform, the compu-
tation of h(r) becomes

h(r) = 4π

∫ r

0

∫ 1

0

∫ 1

0

pdfR (r(ρ, y1, y2)) ρ2 dy2 dy1 dρ (25)

and the computation of pdfR(r) becomes

pdfR(r) = 4πr2

∫ 1

0

∫ 1

0

pdfR (r(r, y1, y2)) dy2 dy1 (26)

where ρ ≥ 0, 0 ≤ y1 < 1, and 0 ≤ y2 ≤ 1, and where r(ρ, y1, y2) = ρ T
(

[y1, y2]
T
)

.

The spherical coordinate-based integral methods presented in this subsubsection for computing radial prob-
ability measures (in Eqns. 21 and 25) and the pdf of R (in Eqns. 23 and 26) are not only intuitive, but also
general in the sense that they are applicable regardless of the distribution of R – as long as its pdf is accessible
and well-defined.

Radial probability measures for non-singular, normal relative position

Within this subsection, let R have a non-singular, multivariate normal distribution (MVN), i.e. R ∼
N (µ, Σ), where µ ∈ R3, Σ ∈ R3×3, Σ > 0, where the notation “> 0” implies that such is a symmet-
ric, positive definite matrix. Then, for r ∈ R3, pdfR (r) is given by

pdfR (r) =
(

(2π)
3

det Σ
)−1/2

exp

[
−1

2
(r− µ)

T
Σ−1 (r− µ)

]
(27)

Norm of non-singular, normal relative position – integral computation. When R is non-singular normal,
computing h(r) and pdfR (r) in terms of traditional spherical coordinates can be accomplished by modifying
Eqns. 21 and 23 into

h(r) =

∫ r

0

∫ 2π

0

∫ π

0

g1 (ρ, θ, φ) dφ dθ dρ (28)

and

pdfR(r) =

∫ 2π

0

∫ π

0

g1 (r, θ, φ) dφ dθ (29)

where r (ρ, θ, φ) is as given by Eq. 22, and where

g1 (ρ, θ, φ) =

[
det(Σ−1)

(2π)3

]1/2

exp

[
−1

2
(r (ρ, θ, φ)− µ)

T
Σ−1 (r (ρ, θ, φ)− µ)

]
ρ2 sinφ (30)

Similarly, h(r) and pdfR (r) can be computed in terms of Lambert equal-area spherical coordinates by
adjusting Eqns. 25 and 26 as given by

h(r) =

∫ r

0

∫ 1

0

∫ 1

0

g2 (ρ, y1, y2) dy2 dy1 dρ (31)

and

pdfR(r) =

∫ 1

0

∫ 1

0

g2 (r, y1, y2) dy2 dy1 (32)

where r(ρ, y1, y2) = ρ T
(

[y1, y2]
T
)

, and where

g2 (ρ, y1, y2) =

[
2

π
det(Σ−1)

]1/2

exp

[
−1

2
(r (ρ, y1, y2)− µ)

T
Σ−1 (r (ρ, y1, y2)− µ)

]
ρ2 (33)
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Radial probability measures – approximations

Radial probability measures – Monte Carlo integration. An integral I of a function f : Ω → R of a
random variable X over its sample space Ω ⊆ Rd can be understood as the expectation of f(X); that is,

I [f ] =

∫
x∈Ω

f(x) pdfX (x) dx =: E [f(X)] (34)

assuming that pdfX (·) exists. If {xk}k∈{1,...,N} is a statistically random sample of X with sample size
N ∈ N (that is, the elements of the sample are independent and identically distributed (i.i.d.), with the same
distribution as X), then I [f ] can be approximated through the expectation estimator given by33

ÎN [f ] =
1

N

N∑
k=1

f(xk) (35)

This technique is the most simple version of Monte Carlo-based integration, and it has the following advan-
tages.34 First, through application of the expectation operator to Eq. 35, and noting that E [f(xk)] = E [f(X)]

for all k ∈ {1, . . . , N}, it follows that E
[
ÎN [f ]

]
= I [f ]. Consequently, via the strong law of large numbers,

ÎN [f ] converges to I [f ] almost surely,35 i.e. p
(
ÎN [f ]→ I [f ]

)
= 1,36 or

p
(

lim
N→∞

ÎN [f ] = I [f ]
)

= 1 (36)

Second, through the Central Limit Theorem (CLT), it can be shown that for large N , the approximation error
magnitude

∣∣∣I [f ]− ÎN [f ]
∣∣∣ is proportional to N−1/2 (assuming an unbiased estimator), so increasing sample

size generally improves the accuracy of the approximated integral.33 Although this convergence rate is very
slow, it does remain as O(N−1/2) regardless of the dimension of elements in a Monte Carlo sample; hence,
Monte Carlo integration is a consistently viable tool for approximating integrals in high-dimensional spaces.
The Monte Carlo (MC) estimator presented in Eq. 35 is crude or naı̈ve because it does not implement variance
reduction techniques such as importance sampling, antithetic variates or control variates.35, 37

A crude MC estimator ĥN (·) for the radial probability measure h(·) is given by

ĥN (r) =
1

N

N∑
k=1

fh,r(rk) (37)

where {rk}k∈{1,...,N} is a Monte Carlo sample of R, and where fh,r : R3 → {0, 1} is an indicator function,36

which is based on the definition of radial probability measures, and thus satisfies

fh,r(r) =

{
1, ‖r‖ ≤ r
0, otherwise

(38)

for r in R3 and r > 0.

Characterizing the 99.73% minimum distance (ρ3σ)

99.73% minimum distance (ρ3σ) – definition. Let the constant p3σ be defined as

p3σ
.
= 1− cdfχ2

1

(
32
)
≈ 1− 0.9973 = 0.0027 (39)

As previously noted, the 99.73% minimum distance, or ρ3σ , is the distance away from the origin so that
100(1− p3σ) percent of relative position cases have Euclidean distances from the origin that are greater than
ρ3σ . In other words, ρ3σ can be defined as

ρ3σ
.
= min {r ∈ [0,∞) : cdfR(r) = p3σ} (40)

It will be shown ρ3σ is a quantile of the distribution of R.
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Definition 4 (Quantiles and quantile function38, 39). Take p ∈ (0, 1). For a univariate, real-valued RV X with
cdf denoted by FX , a quantile x ∈ R of order p of the distribution of X satisfies FX(x) ≥ p and

p (X < x) = lim
ε→0+

FX(x− ε) ≤ p (41)

The quantile function of X , F−1
X : (0, 1) → R is a generalized inverse of FX , i.e. it satisfies F−1

X (p)
.
=

inf Sp, where Sp = {x ∈ R : FX(x) ≥ p}, where inf(·) denotes the infimum operator. Since cdfs are right
continuous, Sp is closed on the left, i.e. inf Sp ∈ Sp.27 Therefore, F−1

X (p) is given by

F−1
X (p) = min {x ∈ R : FX(x) ≥ p} (42)

and it exists for p ∈ (0, 1). Therefore, F−1
X (p) is the minimum quantile of order p of the distribution of X .

If X is continuous, its cdf is continuous, so it has no jump discontinuities. In this case, F−1
X (p) is given by

F−1
X (p) = min {x ∈ R : FX(x) = p} (43)

Finally, if FX is strictly increasing, then F−1
X is the true inverse of FX . ♦

In the context of real-valued random variables, absolutely continuous RVs (i.e. RVs that have pdfs) are also
continuous RVs (i.e. RVs with continuous cdfs), although the converse is not true (see the Cantor function, a
classical counterexample: it has a continuous cdf, as well as a zero a.e. derivative; hence, the cdf is not equal
to the integral of its derivative).27 SinceR is absolutely continuous (per the assumption of absolute continuity
of R, and via Proposition 3), cdfR is a continuous function by implication. Therefore, via Definition 4, ρ3σ

is the minimum p3σ-quantile of R; furthermore, ρ3σ exists and is unique.

It should be noted that there may be p3σ-quantiles of R other than ρ3σ . For example, it is possible that
pdfR(r) = 0 a.e. for r ∈ (ρ3σ, ρ3σ+ε) for some ε > 0; in that case, for any such r, cdfR(r) = p3σ . However,
it is useful to define ρ3σ = cdf−1

R (p3σ) because, as an output of the quantile function, ρ3σ is the smallest
p3σ-quantile of R, which is consistent with its interpretation as a collision risk boundary. Additionally, if
cdfR is strictly increasing in the neighborhood of p3σ , then ρ3σ is the unique p3σ-quantile of R.

99.73% minimum distance (ρ3σ) – sensitivity analysis. For a univariate random variableX , the derivative
of the quantile function of X is given by

d

dy
cdf−1

X (y)
∣∣∣
y=u

= lim
ε→0

cdf−1
X (u+ ε)− cdf−1

X (u)

ε
(44)

for 0 < u < 1. When X is absolutely continuous (i.e. when its pdf exists; see the Notation subsection),
Parzen has shown that the derivative of the quantile function of X satisfies the relation

pdfX
(
cdf−1

X (u)
) [ d
dy

cdf−1
X (y)

∣∣∣
y=u

]
= 1 (45)

for 0 < u < 1.39 When applied to R, and noting that ρ3σ satisfies cdf−1
R (p3σ) = ρ3σ , it follows that

d

dy
cdf−1

R (y)
∣∣∣
y=p3σ

=
1

pdfR(ρ3σ)
(46)

Since ρ3σ = cdf−1
R (p3σ) = ρ3σ(p3σ), the derivative of quantile function of R evaluated at p3σ can be

interpreted as the derivative of ρ3σ with respect to its target probability, p3σ . Therefore,

dρ3σ

dp3σ
=

1

pdfR(ρ3σ)
(47)

Hence, the effects on ρ3σ caused by small changes in p3σ may be quantified via Eq. 47.
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It should be noted that this sensitivity analysis could be extended to apply to cases where pdfR(ρ3σ) is
undefined. One example of this is when pdfR(ρ−3σ) and pdfR(ρ+

3σ) both exist and are finite, yet do not
share the same value; in this case, the derivative of cdfR evaluated at ρ3σ (i.e. pdfR(ρ3σ)) does not exist.
Another example is when pdfR(ρ+

3σ) = 0; in this case, there are multiple p3σ-quantiles of R, and ρ3σ is the
smallest one. Since any ρ < ρ3σ satisfies h(ρ) < p3σ , it follows that cdfR(ρ) is strictly increasing for ρ that
approaches ρ3σ from the left. Therefore, pdfR(ρ−3σ) > 0, which also implies that pdfR(ρ3σ) does not exist.

In both of the aforementioned examples, the sensitivity analysis could be carried out by replacing pdfR(ρ3σ)
in Eq. 47 with pdfR(ρ−3σ) instead, given that it is not only well defined, but because it carries the same in-
terpretation as pdfR(ρ3σ), i.e. how much p3σ would be reduced with a small reduction in ρ3σ . Clearly,
when h(ρ) is strictly increasing in the neighborhood of ρ3σ , it follows that pdfR(ρ3σ) exists and is equal to
pdfR(ρ−3σ), so pdfR(ρ−3σ) could be used without loss of generality.

METHODOLOGY

99.73% minimum distance (ρ3σ) – numerical computation methodology

The approach undertaken here for the numerical computation of ρ3σ is through nested numerical solution
of ordinary differential equations (ODEs), as seen though the combination of Figures 3 and 4. This is ac-
complished by using MATLAB’s ode113 function, which is an ODE solver best suited for high accuracy
numerical solution of non-stiff ODEs.40

ode113 (over 𝑦2) 
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Figure 3: Numerical computation of the pdf of the norm of the relative position using nested implementation
of the ode113 solver.

The notation of the ode113 function, as well as for the other MATLAB ODE solvers, assumes that the
variables to be integrated have computable time derivatives, and that it is the desire of the user to solve for
the time histories of such variables over a closed interval of time. In the present paradigm, however, instead
of integrating with respect to time, use of the ode113 solver is adapted in order to integrate a function with
respect to degrees of freedom that represent spatial coordinates.

It should be noted that y1 and y2 are the coordinates of the Lambert equal-area unit square parametrization
of the unit 2-sphere. Then, as shown in Fig. 3, for a given ρ ∈ (0,∞), pdfR(ρ) = dh/dρ is computed
through ode113 as the integral of d2h/dρ dy1 over the sample space of Y1 (i.e. [0, 1)), which, in turn, is
computed through ode113 as the integral of d3h/dρ dy1dy2 over the sample space of Y2 (i.e. [0, 1]).

By definition, the definite integral of pdfR(·) over the interval [0, r] for r ≥ 0 is the radial probability
measure h(r). Hence, ρ3σ can be interpreted as the solution of the constrained optimization problem

ρ3σ = min
r∈(0,∞)

r (48)
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Figure 4: Numerical computation of radial probability measures and the 99.73% minimum distance (ρ3σ)
using nested implementation of the ode113 solver.

where r ∈ (0,∞) is subject to the integral equation constraint given by

p3σ =

∫ r

0

pdfR(ρ)dρ =: h(r) (49)

However, because h(·) is non-decreasing, numerical computation of ρ3σ can be accomplished as follows.
First, a small value of r ∈ (0,∞) is chosen, and h(r) is computed. Second, if h(r) < p3σ , then r is increased
until h(r∗) = p3σ , as posed in Eq. 49. When this condition is first met, the value of r∗ will also satisfy the
condition posed in Eq. 48; consequently, ρ3σ = r∗ in this case. Hence, optimization is avoided by using the
non-decreasing property of h(·).

The foregoing methodology for the numerical computation of ρ3σ is implemented in the ode113 solver
(integrating over ρ coordinates, as seen in Fig. 4) through use of the events setting, which employs root-
finding in order to check for one or multiple univariate equality constraints. In this case, the events setting
is used to approximately identify the first r∗ such that h(r∗) − p3σ = 0, and integration is stopped when
this condition is first met. Overall, there are three levels of ode113-based numerical integration: the highest
level (i.e. in ρ), the mid level (i.e. in y1), and the lowest level (i.e. in y2); additionally, the logic for solving
for ρ3σ is implemented at the ρ-level.

99.73% minimum distance (ρ3σ) – sample computation methodology

Given the statistical guarantees of crude MC estimators as previously discussed, such estimators may be
used to construct approximations to univariate probability distributions via the empirical cdf; in turn, the
empirical cdf may be used to formulate quantile estimators.35 Therefore, Monte Carlo sampling is chosen for
validating the foregoing ode113-based approach for numerical computation of ρ3σ .

The methodology is illustrated in Fig. 5, and it begins by drawing a Monte Carlo of the relative position
between two agents, R, based on instantaneous statistics of the distribution. Subsequently, the norm of each
element in the sample is computed, which induces a MC sample ofR; this sample is then sorted, which yields
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Figure 5: Sample computation of the 99.73% minimum distance (ρ3σ) through Monte Carlo simulation
based on instantaneous relative position statistics.

the order statistics of the sample of R, i.e. r(1) ≤ · · · ≤ r(N), where N is the sample size. Then, ρ̂3σ is
obtained through a linear interpolation estimator,38 which is described as follows:

1. Compute k = b(N − 1)p3σ + 1c, where b·c is the floor operator.

2. Compute τ = ((N − 1)p3σ + 1)− k.

3. Obtain ρ̂3σ as given by
ρ̂3σ = (1− τ)r(k) + (τ)r(k+1) (50)

In MATLAB, this sample quantile estimator is implemented through the prctile function.41 It should
be noted that, even though the notation of Fig. 5 assumes that the relative position has a multivariate normal
distribution (whose samples can be drawn in MATLAB using the mvnrnd function41), the general process
of quantile computation presented herein is applicable to Monte Carlo samples drawn from any absolutely
continuous relative position distribution.

99.73% minimum distance (ρ3σ) – derivative computation methodology

As previously stated, this work aims to investigate the regularity of ρ3σ , i.e. whether small changes of the
defining parameter of ρ3σ (namely, p3σ) result in commensurately small changes to ρ3σ itself. Such effective
changes to p3σ would naturally arise from numerical errors in checking whether h(ρ3σ) = p3σ . In particular,
with some given initial uncertainty description, if such regularity were exhibited over extended time horizons,
this would be helpful for the purposes of predicting the risk of future collisions via ρ3σ , as it would give
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validity to ρ3σ over propagated horizons. Since the formulation of ρ3σ is instantaneous (i.e. it depends on the
uncertainty at a single time t only), ascertaining ρ3σ(t) regularity over extended horizons entails the following
basic steps: propagating relative state statistics to a given time, extracting relative position information,
computing ρ3σ , performing regularity calculations, and then repeating the process at a subsequent time.

The ode113-based ρ3σ computation methodology was developed so as to directly mimic the iterated inte-
gral formulation of h(·) listed in Eq. 25, which itself follows directly from its definition through a coordinate
transformation; hence, this methodology allows for estimates of ρ3σ that conceptually retain its interpreta-
tion. However, it is not feasible to implement this methodology accurately in practice over extended time
horizons. For example, with a ρ-level step size of 1 m, and a ρ3σ of 1 km, the total spatial volume increase
with each step size in the vicinity of ρ3σ is 1.26 × 107 times larger than 1 m3. Thus, unless the pdf of R
has zero mean and is spherically symmetric, capturing probability masses in such radial shells accurately
requires increasingly small angular step sizes (in y1 and y2). The likelihood of round-off errors introduced to
the computation, as well as the general computational expense, are exacerbated when increasingly small step
sizes are needed for an acceptable resolution in ρ3σ itself – especially if, after extended horizons, uncertainty
diverges in some (but not all) directions (which does occur in CW dynamics with MVN prior distribution).
However, in order to quantify the sensitivity of ρ3σ to small changes in p3σ , which can be accomplished via
dρ3σ/dp3σ , Eq. 47 implies that ρ3σ must be first calculated, and then pdfR (ρ3σ) must be evaluated.

Therefore, in this work, a hybrid approach is adopted for estimating dρ3σ/dp3σ . First, ρ3σ is approximated
through the crude MC estimator ρ̂3σ as shown in Fig. 5; the validity of this assumption is explored in the
Results and Discussion section. Second, the pdf of R is evaluated at ρ̂3σ using the ode113-based approach
shown in Fig. 3. Finally, dρ3σ/dp3σ is approximated as

dρ3σ

dp3σ
≈ 1

pdfR (ρ̂3σ)
(51)

RESULTS AND DISCUSSION

Simulation parameters and CW dynamic cases

As mentioned previously, dynamic cases in this work are assumed to be subject to CW dynamics. Fur-
thermore, it is assumed that the distribution of the initial relative state X(t0) is multivariate, non-degenerate
normal (MVN); that is, the pdf of X(t0) is given by

pdfX(t0) (x) =
(

(2π)
6

det ΣX(t0)
)−1/2

exp

[
−1

2

(
x− X̄(t0)

)T [
ΣX(t0)

]−1 (x− X̄(t0)
)]

(52)

for x ∈ R6, where X̄(t0) = E [X(t0)] and where ΣX(t0) > 0 are the expected value (or mean) and covariance,
respectively, of the initial relative state X(t0). This is denoted as X(t0) ∼ N

(
X̄(t0), ΣX(t0)

)
.

Because CW dynamics are linear, the distribution of the relative state remains multivariate, non-degenerate
normal; that is, X(t) ∼ N

(
X̄(t), ΣX(t)

)
, where X̄(t) and ΣX(t) are analytically propagated, as given by

X̄(t) = Φ (t, t0) X̄(t0) (53)

ΣX(t) = Φ(t, t0)
[
ΣX(t0)

]
ΦT (t, t0) (54)

where Φ (t, t0) is the CW STM listed in Eq. 10. The initial expected relative state X̄(t0) is prescribed in
terms of the geometric parametrization of a closed CW relative orbit as depicted in the Background section,
and these parameters are listed in Table 1. Hence, the expected value of the distribution follows a closed CW
trajectory, even though the covariance matrix may grow without bound over time.

For simplicity, the initial relative state covariance is assumed to be diagonal, i.e. as given by

ΣX (t0) = diag
([
σ2

[x]H
(t0) σ2

[y]H
(t0) σ2

[z]H
(t0) σ2

[ẋ]H
(t0) σ2

[ẏ]H
(t0) σ2

[ż]H
(t0)

])
(55)
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Table 1: Initial relative state expectation parameters

Cases Comments Ā0 B̄0 ȳoff ᾱ0 β̄0 − ᾱ0

[km] [deg]
3D.001 No [z]H motion 1 0 0 0 N/A

3D.002 With [z]H motion ([x]H 1 0.1 0 0 0and [z]H motion in phase)
3D.c (c ∈ With [z]H motion ([x]H 1 0.1 0 15(c− 3) (α0 ∈ 90{003, 004, . . . , 026}) and [z]H motion out of phase) {0, 15, . . . , 345})

Table 2: Initial relative state covariance parameters

Parameter at t0 σ[x]H
σ[y]H

σ[z]H
σ[ẋ]H

σ[ẏ]H
σ[ż]H

Value 10 m 5 m 0.5 m 0.25 m/s 0.75 m/s 0.05 m/s

where its components are listed in Table 2.

The semimajor axis of the orbit of the chief agent is assumed as ā = 6800 km; hence, its mean motion
n̄ may be computed in terms of Earth’s standard gravitational parameter µE as n̄ .

=
√
µE/ā3, where µE =

3.986004418× 105 km3/s2. The simulation horizon is two orbit periods of the chief agent, and the timestep
resolution is 3.8754 seconds, which corresponds to 1/1440th of one orbit period, or 1/4th of one degree (of
mean anomaly) of one revolution of the orbit of the chief spacecraft.

This particular choice of orbit altitude, and of initial relative state expectation and covariance parameters,
are driven by previous work, which suggests that, for those specific parameters, ρ3σ and the KPC (for a joint
hard-body radius li,j of 32 m) are related to each other in a way that is consistent with intuition.12, 13 That
is, over a horizon of two orbit periods, ρ3σ indicates smallest separation while the KPC indicates highest
collision risk, and the ρ3σ indicates largest separation while the KPC indicates lowest collision risk; this is
not observed with other separation indicators studied. Hence, such parameters are used in order to validate
the foregoing interpretation of ρ3σ as a true probabilistic risk boundary in relative position space.

Finally, the Monte Carlo sample size is chosen as 3.2 × 108 particles. For an MVN distribution, it is
conjectured that such a sample size should be able to capture the probability of significant events where the
significance threshold is set at 10−7.12, 13 Under this assumption, this sample size affords agreement of the
p3σ-quantile of R to within approximately 4.4 significant digits in p3σ .

99.73% minimum distance (ρ3σ) – sample validation results

The first result in this work, summarized in Figs. 6 and 7, demonstrates the agreement between numerical
and sample approaches to the computation of ρ3σ . Even though this is only corroborated for Example 3D.001,
these results are representative of other examples as well because of their shared methodology.

For Example 3D.001, Fig. 6 shows that the numerical and sample ρ3σ waveforms agree to within 9.15
cm over 0.0729 chief orbit periods (or 6.78 minutes, which corresponds to 106 timesteps). At worst, the dis-
crepancies observed represent no more than 0.0098% difference relative to the computed magnitude of ρ3σ .
Therefore, to within low discrepancy, the numerical and sample ρ3σ waveforms converge to each other over
the restricted horizon [0, tc], where tc denotes the cutoff propagation time for the numerical ρ3σ waveform.
This kind of agreement is adequate for the computation of ρ3σ sensitivity, as effects on dρ3σ/dp3σ (from
errors in ρ3σ) are proportional to the derivative of pdfR (i.e. a second derivative of probabilities in R, which
is a higher order effect). It remains to be ascertained whether ρ3σ itself is estimated sufficiently accurately.

LettingCb ([0, 2P ]) denote the space of continuous and bounded functions (under the sup-norm) in [0, 2P ],
where P denotes the chief orbit period, Figure 7 shows that ρ̂3σ ∈ Cb ([0, 2P ]). Since both numerical and
sample approaches can be made arbitrarily accurate, it is possible to create sequences of ρ3σ waveform
estimators that are Cauchy (i.e. sequences whose elements become arbitrarily close to one another). Since
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Cb ([0, 2P ]) is a complete function space (i.e. a space in which Cauchy sequences converge to an element
of said space),29 the numerical and sample ρ3σ waveforms each converge to an element of Cb ([0, 2P ]),
and since both methods converge to each other, it follows that both methods converge to the same function
f ∈ Cb ([0, 2P ]) (which could be interpreted as the true ρ3σ waveform) – at least when limiting the domain
to [0, tc]. Within this restricted horizon, this establishes that the sample approach is representative of the
numerical approach (so the former is an acceptable substitute for the latter), and that the sample approach
converges to the true ρ3σ . Given the general MC convergence guarantees aforementioned, it is concluded that
the sample methodology is an acceptable estimator for ρ3σ over the full horizon [0, 2P ].

Figure 6: Example 3D.001, ρ3σ waveform results: (upper) numerical and sample results; (lower) absolute
difference between numerical and sample results.

Figure 7: Example 3D.001, sample ρ3σ waveform results over full horizon.

99.73% minimum distance (ρ3σ) – sensitivity analysis results

For Example 3D.001, Figure 8 shows the time history of the derivative of ρ3σ with respect to its target
probability p3σ , dρ3σ/dp3σ (in units of [km/probability unit]), as approximated via Eq. 51, i.e. as computed
via the hybrid numerical/sample approach described in the Methodology section. For this example, it is found
that dρ3σ/dp3σ is continuous over time. Let δp = 0.01%. If the target probability p3σ were to change by
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as much as δp (which would be a significant change since δp/p3σ ≈ 3.7%), a first order estimate of the
corresponding change in dρ3σ , δρ3σ , would yield that δρ3σ = 5.1 m at worst over [0, 2P ]. This is a small
change compared to ρ3σ , considering that ρ3σ is in the order of hundreds to thousands of meters over [0, 2P ].

Figure 8: Example 3D.001, derivative of ρ3σ with respect to its target probability p3σ , dρ3σ/dp3σ , full
horizon time-history.

For Example 3D.001, Figure 9 shows the first order approximation of the relative sensitivity of ρ3σ to a
change δp in p3σ; that is, it shows δρ3σ/ρ3σ . For this example, it is found that a relative change in target
probability of 3.7% causes, at worst, a change in ρ3σ of up to 1.88%. This shows that, within the confines of
Example 3D.001, ρ3σ exhibits regularity, i.e. small changes in p3σ also result in small changes to ρ3σ . The
regularity of ρ3σ is observed more generally in other relative orbit regimes. As displayed in Figure 10, given
a 3.7% variation in p3σ , the maximum relative change in ρ3σ is less than 1.9% for relative orbits with no
cross-track motion (Example 3D.001), with along-track and cross-track motion in phase (Example 3D.002),
and with along-track and cross-track motion out of phase (Examples 3D.003–026).

Figure 9: Example 3D.001, relative sensitivity of ρ3σ to a change δp = 0.01% in target probability p3σ

Whether these relative (and actual) sensitivities are acceptable depends on the specific operational scenario
at hand. For example, for a minimum ρ3σ of 125 m, in a scenario where the tolerance for instantaneous
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Figure 10: Examples 3D.001-026, maximum relative sensitivity of ρ3σ to a change δp = 0.01% in target
probability p3σ .

collision risk is p3σ and the inter-spacecraft keep-out distance (i.e. joint HBR) is 50 m, a 5.1 m error in the
ρ3σ estimate would not be problematic, but it would be for a keep-out distance of 120 m. Rather, these results
imply that, to within commensurate tolerances, it is valid to interpret ρ3σ as a probabilistic risk boundary in
the first place, with the understanding that errors in its computation must be accounted for in practice.

These results demonstrate that, for the dynamic examples considered in this work, that ρ3σ is regular with
respect to p3σ , i.e. small changes in p3σ cause small changes in ρ3σ . This validates the interpretation of ρ3σ

as a probabilistic risk boundary in relative position space under the assumptions made (CW dynamics, and
the specific relative state uncertainties chosen). Considering that the 1-σ error rms (in the relative position)
grows to as much as over 25 km over the propagation horizon considered (for all cases, since they have the
same relative state covariance), the regularity displayed by ρ3σ is especially noteworthy.

CONCLUSION

In this work, when the relative position between two objects is a random variable, the norm of the relative
position is characterized as a univariate random variable in its own right. The 99.73% minimum distance, or
ρ3σ , is intepreted as the p3σ-quantile of the distribution of the norm of relative position, where p3σ is a con-
stant with approximate value of 0.27%. It has been proposed that ρ3σ should be interpreted as a probabilistic
collision risk boundary in relative position space in the sense that, for actual keep-out zones smaller than ρ3σ ,
the kinematic (or instantaneous) probability of collision (KPC) between two objects is less than p3σ , and for
keep-out zones larger than ρ3σ , the KPC is less than p3σ . Under the assumption of Clohessy-Wiltshrire (CW)
dynamics over several regimes of relative orbits in Low-Earth Orbit, it is found that ρ3σ exhibits regularity
with respect to p3σ . That is, small changes in p3σ produce changes in ρ3σ that are commensurately small as
well. Therefore, under these assumptions, the regularity of ρ3σ validates the aforementioned interpretation of
p3σ as a probabilistic collision risk boundary in relative position space.

These findings motivate further exploration of the ρ3σ construct. It would be helpful to establish whether
ρ3σ exhibits similar regularity under different relative orbit representations (e.g. relative orbit elements),
under different dynamic models (e.g. including higher order gravity effects, as well as atmospheric drag),
and under different assumptions regarding the nature of the uncertainty (e.g. non-normality of relative state
distributions). If ρ3σ exhibits regularity under more general conditions such as those listed, the foregoing
interpretation of ρ3σ would also hold in such conditions, which would afford greater applicability to this
construct. Additionally, utilizing ρ3σ as a constraint in chance-constrained optimal control problems should
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be explored in the context of applications to spacecraft formation station-keeping and collision avoidance.
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