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ANALYTIC INITIAL ORBIT DETERMINATION USING SATELLITE
STREAKS IN DIGITAL IMAGES

John A. Christian*

Earth orbiting satellites often appear as streaks in images collected by inertially pointed cam-
eras or telescopes. This work presents a novel method of initial orbit determination (IOD)
by recognizing that such streaks define a plane tangent to the observed satellite’s orbit and
passing through the sensor’s location. Using results from algebraic projective geometry, an
analytic IOD solution may be found by solving for the disk quadric defining the 3D orbit.
This solution is exact, recovering the orbit to within machine precision for two-body motion
and without measurement noise. Performance in the presence of noisy measurements is also
discussed.

INTRODUCTION

Well-known methods exist for determining the orbit of an observed object from a collection of bearing
measurements (i.e., so-called angles-only IOD) [1, 2, 3], of position vectors [4], or of velocity vectors [5, 6].
In this work we consider a novel IOD solution for bodies forming streaks in images—a common measurement
type encountered within the context of space domain awareness (SDA).

Consider a telescope or camera that produces a digital image. Suppose this optical sensor collects an image
with a fixed inertial pointing direction, such that stars appear (nearly) as point sources within the image.
Satellites transiting the sensor’s field-of-view often appear as streaks in the resulting image. Assuming the
data association problem is solved (i.e., we know that the satellite forming a streak in one image is the
same satellite forming a streak in another image), we present here a novel IOD algorithm based on algebraic
projective geometry. While a brief review of the essentials of algebraic projective geometry are presented
here, the reader interested in learning more about this subject is directed to Refs. [7, 8, 9]. The solution
developed in this paper is analytic and non-iterative, solving the problem exactly for two-body motion in the
absence of measurement noise.

GEOMETRIC PRELIMINARIES

Classical Two-Body Motion

Consider the scenario of a small body (e.g., spacecraft) having a position r relative to a large central body
(e.g., Earth). Supposing the central body has a spherically symmetric mass distribution and ignoring all forces
other than the gravitational attraction of the central body, we arrive at the classical two-body equations-of-
motion,

r̈ = − µ

‖r‖3
r (1)

where µ is the central body’s gravitational parameter. The solution to Eq. (1) is a conic section and is
described by the trajectory equation

r =
h2/µ

1 + e cos θ
(2)
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where r = ‖r‖, h = ‖h‖ is the magnitude of the specific angular momentum, e is the orbit eccentricity, and
θ is the true anomaly. In the discussion that follows we will focus on closed (circular or elliptical) orbits,
having 0 ≤ e < 1.

The representation for the orbit conic in Eq. (2) describes the conic locus as expressed in the perifocal
frame. Describing the full 3D orbit requires we also capture the orientation of the perifocal frame, which is
accomplished using the set of orthonormal basis vectors {p, q,w}. Here, p is the unit vector in the direction
of periapsis, w is the unit vector in the direction of the orbit angular momentum, and q completes the right-
handed system.

We note that the classical expression of Eq. 2 is written in polar coordinates, which is not the most conve-
nient representation of a conic section for projective geometry. Thus, we suggest an alternative representation
of a two-body orbit that significantly simplifies the mathematics of geometric localization.

The Disk Quadric

The present study is interested in orbit determination with optical systems (e.g., cameras, telescopes).
Thus, since the measurements are governed by projective geometry, it is often more convenient to operate in
projective space Pn than in Cartesian space Rn.

A 3D conic (e.g., an orbit) represents a degenerate quadric surface. The locus of points along this 3D conic
are most often defined as a conic section, specifically the intersection of a quadric cone (another degenerate
quadric surface) and a plane (yet another degenerate quadric surface). Like the trajectory equation in Eq. (2)
in conjunction with the perifocal basis {p, q,w}, this is a mathematically cumbersome way to work with 3D
conics when dealing with projective geometry.

A more natural way to represent a 3D Keplerian orbit is with the quadric envelope for a 3D conic—usually
referred to as the disk quadric [7, 9]. The disk quadric is described by a symmetric 4 × 4 matrix Q∗ of rank
three and arbitrary scale that defines all planes π that are tangent to the 3D conic. The duality of points and
planes in P3 shows us that

πT Q∗π = 0 (3)

where π is a 4× 1 vector in P3 describing a plane tangent to the orbit.

It is straightforward to compute Q∗ for an elliptical orbit in terms of the perifocal basis vectors and classical
orbital elements

Q∗ ∝
[

ppT + qqT (c/b2)p
(c/b2)pT −1/b2

]
(4)

where c = ea is the distance of the focus form the ellipse center, b = a
√

1− e2 is the ellipse semi-minor axis,
and a is the ellipse semi-major axis. The proportional relationship in Eq. (4) captures the scale ambiguity of
Q∗. Letting α = c/b2 and β = 1/b, this is the same as

Q∗ ∝
[

I − wwT (c/b2)p
(c/b2)pT −1/b2

]
=

[
I − wwT αp
αpT −β2

]
(5)

To see the distinct advantages of this representation of a Keplerian orbit, we first review the geometry of
projective cameras.

Projective Cameras and Digital Images

To understand how points (e.g., an unresolved satellite) project into a digital image, we must keep track
of a few different coordinate systems. Suppose that a camera (or telescope) located at position sI observes
an orbiting object located at position rI . The subscript I indicates that these quantities are expressed in an
inertial frame (e.g., ICRF, TEME). Further suppose that the the camera frame C has an orientation relative
to the inertial frame (passive interpretation of a rotation [10]) described by the attitude transformation matrix
TI
C , such that

rC = TI
CrI and sC = TI

CsI (6)
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If the observed satellite is unresolved, it will appear as a point in an image. To find the coordinates of
this observed point on the focal plane [xf , yf ] or on the image plane [x, y] we define the ray connecting the
camera center to the observed object as a point in P2 (i.e. a direction in 3D space),xfyf

−f

 ∝
xy

1

 ∝ rC − sC (7)

Explicit use of focal plane coordinates is inadvisable. It is generally easier to work entirely in the image
plane, as discussed extensively in Ref. [9].

We see that the action of a projective camera viewing a 3D point is a mapping P3 → P2. To make this
mapping explicit, first define the observer and satellite locations as points in P3 by use of homogeneous
coordinates (subscripts omitted since this is true in any frame):

r̄ =

[
r
1

]
and s̄ =

[
s
1

]
(8)

Then the projection onto the image plane is given by

x̄ =

xy
1

 ∝ P r̄I (9)

where P is the projection matrix
P = TI

C

[
I −sC

]
(10)

The image plane points [x, y] may be converted to pixel coordinates [u, v] in a digital image using the
camera calibration matrix. The camera calibration matrix K is given by [9, 11],

K =

dx α up
0 dy vp
0 0 1

 (11)

and represents a simple affine transformation. An extensive discussion and development is provided in Ref.
[9]. Here, dx is the ratio of focal length to pixel pitch, α is the focal plane array skewness, and [up, vp] are
the pixel coordinates of the principal point. The transformation is

ū = Kx̄ ∝ KP r̄I or x̄ = K−1ū (12)

where ūT = [u, v, 1]. The matrices K and K−1 are known for a calibrated camera, which is usually the case
for orbit determination applications.

Two-Body Motion with Projective Geometry

We will now develop a few results related to the action of a projective camera on various quantities related
to a 3D Keplerian orbit.

Orbit Velocity in 3D using Plücker Matrices The orbit velocity is tangent to the orbit conic and lies in the
plane of the orbit. Since imaging using a camera or telescope follows projective geometry, it is instructive to
work in projective space P3 instead of R3. Therefore, we define the 3D line on which the velocity vector lies
using a Plücker matrix.

The most straightforward way to form a Plücker matrix is as the join of two points {a, b} ∈ R3. We express
these as points in P3 as

ā ∝
[

a
1

]
b̄ ∝

[
b
1

]
(13)
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such that the Plücker matrix is a 4× 4 skew-symmetric matrix of rank two

L ∝ āb̄T − b̄āT (14)

Therefore, we can construct the line long which the velocity vector lies by defining the points ā and b̄ as

āI ∝
[

rI
1

]
b̄I ∝

[
rI + αvI

1

]
(15)

where α 6= 0 is an arbitrary scale factor. Substitution into Eq. (14) yields the 4× 4 skew-symmetric matrix

LI ∝
[
[(vI × rI)×] −vI

vTI 0

]
(16)

Note that the arbitrary scale factor α does not appear in the result.

Now, if L∗
I is the dual of the Plücker matrix [8], then we may compute the 3D plane formed by the join of

the 3D line LI and a point s̄I ∈ P3 as
πI ∝ L∗

I s̄I (17)

Therefore, if LI is the 3D line containing the velocity vector [e.g., computed via Eq. (16)] then πI is a plane
tangent to the orbit ellipse that also passes thorough the 3D point s̄I . It follows that πI belongs to the quadric
envelope described by Q∗,

πI = L∗
I s̄I ∈ {π|πT Q∗π = 0} (18)

The projection of the 3D line LI in an image is the 2D line ` formed by the intersection of the plane πI

and the image plane. The location and orientation of the image plane is governed by the projection matrix P
from Eq. (10) and is converted to pixel coordinates using the camera calibration matrix K from Eq. (11). The
2D line ` in the image is computed directly as

[`×] ∝ KPLIPT KT (19)

where ` is in units of pixels. An image point ū lies on this line when

ūT ` = 0 (20)

Projection of a Keplerian Orbit Suppose we have an orbit described by the disk quadric Q∗ from Eq. (4).
The projection of the disk quadric into an image is a conic. We may analytically compute this pojection to
find the conic envelope C∗ in the digital image as

C∗ ∝ KPQ∗PT KT (21)

The conic envelope defines the set of lines ` tangent to the conic. From the duality of points and lines in P2,
we know that

`T C∗` = 0 (22)

Clearly, the line ` defined here is the same as the line ` computed in Eq. (19). Moreover, if the 2D image
point ū is on an image conic and ` is the tangent line at that point, then

ū ∝ C∗` (23)

INITIAL ORBIT DETERMINATION FROM STREAK OBSERVATIONS

Consider the case where the observer is stationary (or the spacecraft is moving much faster than the ob-
server) or where the camera/telescope is pointed nearly along the observer’s own veloicty vector. In such
situations, the streak formed by a spacecraft in a digital image corresponds directly to the line formed by the
projection of the velocity vector. Using the results introduced above, this allows for the direct recovery of the
disk quadric Q∗ from streak observations and, hence, a direct recovery of the observed satellite’s orbit. The
result is a novel initial orbit determination (IOD) routine for streak observations.
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Streak Localization in Digital Images

The first task is to localize the streak within a digital image. We do this with subpixel accuracy using the
isolated streak localization procedure presented in Ref. [12]. With points belonging to the streak identified
in pixel coordinates, we may fit a line to the streak points—we find this to be an excellent approximation for
short exposure times.

Therefore, let the m points belonging to the streak be given by {ūi}mi=1, where ūT
i = [ui, vi, 1] is in

homogeneous coordinates. Recall that an image point ūi lies on the line ` when the following constraint is
satisfied:

ūT
i ` = 0 (24)

where ` is a 3× 1 vector of arbitrary scale. Thus, given a set of m points belonging to a straight-line streak,
we may solve for ` by solving the linear system

ūT
1

ūT
2
...

ūT
m

 ` = 0m×1 (25)

where it is clear that ` has arbitrary scale. This is a null space problem with an easy solution found via the
singular value decomposition (SVD).

Unconstrained IOD from Streaks

Suppose we have n images containing streak observations of the same satellite. For each image we have
the observed line `j , and observed streak midpoint ūj , the known projection matrix Pj , and the known camera
calibration matrix Kj .

Begin by considering just the jth image. Recalling Eq. (23), we can remove the unknown proportionality
by taking the cross-product with the known streak midpoint ūj ,

[ūj×] ūj = [ūj×] C∗
j`j = 03×1 (26)

where C∗
j describes the apparent conic envelope in the jth image. Now, substituting from Eq. (21)

[ūj×] C∗
j`j = [ū)j×] KjPjQ∗PT

j KT
j `j = 03×1 (27)

where we observe that the only unknown is the symmetric matrix Q∗ and that our equation is linear in this
unknown. We can rearrange this expression to better isolate the unknowns as

[ūj×]
(
`Tj KjPj ⊗ KjPj

)
vec(Q∗) = 03×1 (28)

where ⊗ is the Kronecker product and vec(·) is the vectorization operator. Recognizing that Q∗ is symmetric
we may define the 16× 10 duplication matrix D such that

vec(Q∗) = Dξ (29)

where ξ is a 10× 1 vector of the unique entries in Q∗. Therefore, we have

[ūj×]
(
`Tj KjPj ⊗ KjPj

)
Dξ = 03×1 (30)

where the only unknown is ξ.
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If we now collect this result for all n images, each containing a streak formed by the same satellite, we
may construct a linear system 

[ū1×]
(
`T1 K1P1 ⊗ K1P1

)
[ū2×]

(
`T2 K2P2 ⊗ K2P2

)
...

[ūn×]
(
`TnKnPn ⊗ KnPn

)

Dξ = 03n×1 (31)

which requires n ≥ 5 for a solution. It is possible to solve directly for ξ (and, thus, Q∗) in the least squares
sense using a SVD.

We note that the estimate of Q∗ found in this way is not constrained to have the specific structure of
Eq. (4). Applying such constraints reduces the number of required observations, but produces a non-convex
quadratically constrained quadratic programming (QCQP) problem. We are presently working on various
methods for solving this problem [e.g., Shor relaxation [13, 14]].

The task of recovering the standard conic parameters (e.g., semi-major axis, eccentricity, inclination) is
straightforward once Q∗ is known. Recovering p, q, c, and b [see Eq. (4)] is simple if we always scale our
solution for Q∗ such that Q∗

11 + Q∗
22 + Q∗

33 = 2. These can be converted into the classical orbital elements
using whatever textbook relations the analyst prefers.

NUMERICAL EXAMPLE

As an illustration, we will consider IOD using observations of a low-Earth orbit (LEO) satellite as seen
from three separate ground stations. We consider a LEO orbit with a semi-major axis of a = 7420 km,
an eccentricity of e = 0.1, and an inclination of i = 60 deg. The orbit is observed from ground stations
located at latitudes of 30 deg, 45 deg, and -35 deg. If three streak observations are made during each pass,
the observation geometry is similar to that shown in Fig. 1.

In the absence of measurement error or observer motion, the orbit is recovered to machine precision. Now,
suppose the optical observations have a bearing error of 1 arcmin (1/60 deg) and an error in image streak
orientation of 0.1 deg. A 5,000-run Monte Carlo analysis was performed to assess the orbit determination
performance in such a scenario, both with and without observer motion. The orbit determination performance
is summarized in Table 1.

The results of Table 1 make intuitive sense. First, we note that errors in the direction of w are significantly
smaller than errors in the direction of p. That is, the orientation of the orbit plane is more observable that
the direction to periapsis. This is a result of the measurements being tangent planes with the observer always
being close to the orbit plane. It is also an artifact of the relatively low eccentricity.

We also observe that including the observer motion (which always is present in practice) reduces perfor-
mance. This is because the streak is formed by the relative velocity between the observer and the satellite,
and not just the satellite’s velocity alone. Hence, the plane formed by the streak and observer location is not
perfectly tangent to the orbit. Methods for mitigating this are a topic of ongoing research.

Table 1. Orbit determination performance (1σ) from a 5,000-run Monte Carlo simulation.

Orbit Parameter Stationary Observer Moving Observer
Direction of p 0.6753 deg 7.909 deg
Direction of w 0.0997 deg 1.216 deg
Semi-major axis, a 15.73 km 217.66 km
Eccentricity, e 0.0011 0.0168
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Figure 1. Illustration of 3D orbit (red) as viewed by stations on the Earth’s surface.
A total of nine observations are made, with the observer location shown in green and
the spacecraft location shown by black dots.

CONCLUSIONS

This work provides some initial steps in the application of algebraic projective geometry to the problem of
initial orbit determination (IOD) for an object obeying Keplerian motion. A number of useful relations are
developed for the disk quadric describing the 3D orbit conic and for the Plüker matrix describing the line on
which orbit velocity vectors lie. Analytic relations exist for projecting these constructs onto an image. The
utility of this is illustrated with a novel streak-based IOD algorithm.
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