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UNCUED SATELLITE INITIAL ORBIT DETERMINATION USING
SIGNALS OF OPPORTUNITY

Johnny L. Worthy III∗, Marcus J. Holzinger†

This paper investigates the application of signal of opportunity based multilatera-
tion to generate initial orbit estimates. Using at least 4 observer stations, the time
differential of arrival of signals of opportunity can be measured and used to de-
termine a 3D position estimate of the source of the signal with some associated
covariance on the position estimate. While this solution gives the position of the
object, admissible region theory may be applied to bound the possible velocity
states belonging to a particular source. Two constraints are considered and analyt-
ically derived for the time differential of arrival problem to constraint the possible
velocity solutions for a given position estimate. Once a joint admissible region is
formed from these constraints, it may be sampled and used as an initial distribu-
tion for a particle filter. This work shows an example application of particle filter
initiation with a time differential of arrival measurement based admissible region.

INTRODUCTION

Multilateration is a general navigation technique that uses a measurement of the difference be-
tween stations that broadcast or receive a signal. This measurement is of the difference in the time of
arrival of the signals often referred to as time differential of arrival (TDoA). Multilateration solves
the problem of locating a receiver with a network of transmitters or locating a transmitter with a
network of receivers. Measuring TDoA at the receiver locations generates range information as
the signals travel at the speed of light and the position of the receivers is already known. Thus the
solution for finding a transmitter with two receivers lies on a hyperboloid [1]. The addition of more
receiving devices generates additional hyperboloids and geometrically the emitter must be located
at the intersection of the hyperboloids. In contrast with GPS, multilateration with TDoA does not
require synchronized clocks nor does it require knowledge of the time of origin of the signal. This
enables passive geolocation and it has been implemented in aircraft for operation similar to ADS-
B and SSR [2] [3]. Further, with the ubiquity of communications signals emitted from a variety
of known sources, the concept of passive geolocation is of recent interest for Earth-based location
and navigation systems because GNSS signals can be jammed and interrupted [4]. These so-called
signals of opportunity present possible robust and persistent navigation capabilities with existing
systems. In general, the applications of TDoA focus on geolocating targets on the surface of the
Earth. However, the techniques apply to satellites and space objects as well and TDoA provides an
alternative phenomenology for observing the state of a space object.

TDoA techniques for space applications were introduced by Escobal et. al. in the 1970s [5]. This
work demonstrates a laser ranging network capable of one centimeter accuracies in determining
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the position of a vehicle passing over the ranging network [5]. However, since such a network did
not exist, Escobal went on to show that a network of ground stations receiving signals are capable
of providing range information. In this work, Escobal et. al. introduces a multilateration method
for a spacecraft (or airplane) passing over a network of at least five ground station by using TDoA
measurements [6]. An actual solution to the geolocation problem considered by Escobal et. al.
is first presented in [7]. Ho et. al. defines the geolocation problem applied to a transmitter on
the Earth’s surfaces being located by a set of geostationary satellite receivers. By restricting the
location problem to objects on the surface of the Earth, the geolocation solution is simplified since
the solution must lie on the Earth and a minimum of three receivers is required, but if the altitude
of the transmitter is unknown at least four receivers are required. An exact solution for the both
cases is given in [7]. This work is the basis of much of the research done in this area. Ho et. al.
incorporated frequency difference of arrival (FDoA) in to the solution by accounting for the relative
movement of the sensors and the effect of the frequency shift due to the motion [8]. Fletcher and
Okello demonstrate that by utilizing moving targets, only two receivers are needed by incorporating
multiple TDoA measurements [9] [10]. Mus̆icky et. al. detail geolocation using TDoA as well as
frequency difference of arrival (FDoA) [11] by using them as arguments to the Complex Ambiguity
Function (CAF) [12].

General application of TDoA localization for satellites or other space objects is largely absent
in the literature. The advantages of such a system lie in the potential use of signals of opportu-
nity as the signals received by the ground station. These signals could then be used identically to
typical beacons used for geolocation via TDoA. To demonstrate the feasibility of TDoA for space
objects with Earth based receiving stations, this paper 1) states the TDoA problem and assesses the
contribution of observer error to the TDoA solution accuracy, 2) derives the TDoA problem as an
admissible region problem, 3) redresses orbit energy and periapse radius constraints for the TDoA
admissible region in inertial cartesian coordinates, and 4) simulates the initialization of a particle
filter from TDoA observation system.

TIME DIFFERENTIAL OF ARRIVAL SOLUTION

The basic problem geometry for time differential ranging problems is shown in Figure 1. The
receiver positions are denoted as rs,i and are assumed to be known. The position of the source
of the signal is denoted as r and is the desired quantity. Each of the ranges ρi is determined by
knowledge of the time it takes a signal to propagate from the source to each of the i receivers. From
the basic problem geometry, the following system of equations can be solved to give a position
estimate of the source

ρ1 = c∆t1 = ‖rs,1 − r‖ (1)

ρ2 = c∆t2 = ‖rs,2 − r‖ (2)

ρ3 = c∆t3 = ‖rs,3 − r‖ (3)

where c is the propagation speed of the signal and ∆ti represents the time it takes the signal to
travel from the source to the ith observer. The general method of determining r using hyperbolic
localization is introduced by Chan and Ho [13]. The actual time difference ∆ti giving range ρi may
not generally be measured unless the clocks at the receiver and the source are synchronized. For
TDoA measurements synchronized clocks are not utilized and thus a relative formulation of Eqns.
(1)-(3) is necessary. Figure 1 shows this relative formulation where Observer i receives the signal
first with some unknown differential τ . Then Observer j receives the signal with a delay relative
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to Observer i of ∆ti,j . Many variations and applications of this approach have been introduced [8]
[14] [9] [10] [11] [15]. In the relative formulation, one of the receivers acts as a reference once the
signal is detected. The difference in time between the arrival at the reference and each of the other
receivers comprises the measurements. An integral part of this process is the identification of the
signal at the reference and the subsequent identification of the signal by the the observers. Matched
filters are frequently used with TDoA systems to determine the signal arrival time and/or extract the
unknown signals at the reciever [16] [17] [18] [19]. Future work will include a full discussion and
application of such filters to simulate a TDoA observation system for analysis.

In TDoA systems, the true range ρi can then be expressed as a function of a pseudorange pi and
a delay τ , where pseudorange is defined as

pi = c∆t1,i

where c is the speed of light, and ∆t1,i is the time difference of arrival of the signal relative to
receiver 1. Since, the first receiver is taken as the reference p1 = 0. Now Eqns. (1)-(3) may be
rewritten as a system of 4 equations where τ is an unknown in addition to the source location.

cτ = ‖rs,1 − r‖ (4)

p2 + cτ = ‖rs,2 − r‖ (5)

p3 + cτ = ‖rs,3 − r‖ (6)

p4 + cτ = ‖rs,4 − r‖ (7)

The measurement function for this observation may then be written as

y = h(r, rs,i, τ) =
1

c
[‖rs,i − r‖ − cτ ] (8)

which physically signifies the time differential of arrival of the signal between locations i and j.
With this form, four receivers are required to obtain an estimate of the position of the source of the
signal. Note, in this paper, all positions and velocities are expressed in the Earth centered inertial
frame.

Uncertainties in TDoA Measurements

Eqns. (4)-(7) are very sensitive to timing accuracy as well as the position knowledge of the
receivers. Thus it is of interest to be able to quantify how the timing and observer position errors
and uncertainties affect the accuracy of the position estimate. Treating Eqns. (4)-(7) as a vector
valued function and equating to zero as follows

e(r, y,k) = c(ymeas − y) = c(ymeas − h(r, rs,i, τ)) (9)

=


cτ − ‖rs,1 − r‖

p2 + cτ − ‖rs,2 − r‖
p3 + cτ − ‖rs,3 − r‖
p4 + cτ − ‖rs,4 − r‖

 = 0 (10)

where y ∈ R4 is the measurement vector and k ∈ R12 is a parameter vector containing the positions
of the observer. The measurement vector may be written as

y =
[
∆t1,1 ∆t1,2 ∆t1,3 ∆t1,4

]T (11)
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Figure 1: The geometry of the TDoA problem in the Earth centered inertial frame. ∆ti,j represents
the time difference between the signal arriving at observer i and j.

and the parameter vector may be written as

k =
[
rTs,1 rTs,2 rTs,3 rTs,4

]T
(12)

A first order Taylor series approximation is used to define a covariance on the position estimate
based on covariances of the timing accuracy and observer position knowledge. The first order
Taylor series is given by

e(r + δr, y + δy,k + δk) ≈ e(r, y,k) +
∂e
∂r
δr +

∂e
∂y
δy +

∂e
∂k
δk (13)

which can be rewritten as

−∂e
∂r
δr =

∂e
∂y
δy +

∂e
∂k
δk (14)

The matrix ∂e/∂r ∈ R4×4 is a full rank, and thus invertible, matrix and Eqn. (14) can be rewritten
as

δr = −
[
∂e
∂r
−1
] [

∂e
∂y

∂e
∂k

] [δy
δk

]
(15)

Combining the measurement and parameter vectors into a single vector δz. If the covariances on the
errors for z is known, then δz may be treated as a random variable δZ ∼ N (0,Pz) and Eqn. (15)
may be written stochastically as

δR =
∂e
∂r

−1∂e
∂z
δZ (16)

where R is now a random variable. Defining,

M =
∂e
∂r

−1∂e
∂z

(17)
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he statistics of δR are determined as follows.

E[δR] = E[MδZ] (18)

= ME[δZ] = 0 (19)

The covariance of δR is determined similarly, yielding

Pr = MPzMT (20)

Eqn. (20) gives the covariance on the estimate r for a TDoA system based on timing inaccuracies
and observer position knowledge error.

Dilution of Precision

The geometry presented in Figure 1 also plays an integral role in the accuracy of the overall
solution. For GPS, the geometry of the satellite receivers is important to the overall accuracy of the
GPS position estimate. For TDoA, the accuracy of the estimate of the position of the source changes
based on r itself. To quantify this, it is possible to define an equivalent dilution of precision (DOP)
metric which informs the accuracy of the TDoA position estimate [20] [21]. Consider the gradient
matrix H defined as the partial derivative of the measurements y with respect to r,

H =
∂y
∂r

(21)

The H matrix is representative of how sensitive the measurements are to the position. Following the
approach outlined in [20], the dilution of precession for the TDoA problem is defined as

DP =
√

tr
(
(HTP−1t H)−1

)
(22)

where Pt is the covariance of the measurement timing error in meters. The quantity DP is unitless
and relates the timing uncertainty (in meters) to the overall position estimate uncertainty [20]. It
signifies that with some timing uncertainty expressed in meters by cσt, the overall position uncer-
tainty in the estimate is given by cσtDP . As such, it is desired that DP < 1, which implies that
the accuracy of the estimated position r is only significantly affected by the timing accuracy of the
sensors.

ADMISSIBLE REGION FOR TDOA MEASUREMENTS

The TDoA solution only gives the position of the source object. An admissible region approach
may then be used to constrain the possible source velocity solutions. Note that it is possible to get
a full state estimate if several TDoA observations are made, but since this approach is based on
TDoA using signals of opportunity, it is unlikely that more than one observation will be captured
over a short time period. The admissible region approach is well defined in the literature [22], [23],
[24],[25], [26].

Deriving the Admissible Region

An admissible region problem formulation of the TDoA problem can be derived by applying the
process outlined in [27] which is founded on the process shown in [28] for radar observations. The
state vector of interest is the cartesian state of the source object given by

xT =
[
rT vT

]
(23)
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where r, as already defined, is the position of the source obtained by solving Eqns. (4)-(7) and xu
is the velocity of the source object. It is clear from Eqn. (9) that the determined state is the position
of the source r and the undetermined state is the velocity of the source xu, allowing,

xT =
[
xTd xTu

]
(24)

Thus, the state vector may be partitioned and Eqn. (9) may be rewritten as

e(xd, xu, y,k) =


cτ − ‖rs,1 − xd‖

p2 + cτ − ‖rs,2 − xd‖
p3 + cτ − ‖rs,3 − xd‖
p4 + cτ − ‖rs,4 − xd‖

 = 0 (25)

where xu belongs a continuum of source velocities yielding the same position estimate.

A set of hypothesis constraints may be constructed for the TDoA problem to bound this contin-
uum of possible solutions. These constraints are written in the form

κi(xd, xu; k, t) ≤ 0 (26)

where κi is a scalar valued function representing the ith constraint. The admissible regionAi for
the ith TDoA constraint is defined as

Ai := {xu ∈ R3 |κi(xd, xu; k, t) ≤ 0} (27)

For a given TDoA constraint, Ai is a 3-dimensional region over the velocity space of the source
object. The total admissible regionA is given by

A =A1 ∩A2 ∩ · · · ∩Ac (28)

where c is the total number of constraint hypothesis applied.

Constraints for TDoA

The constraint hypotheses for a TDoAA are functions of the velocity of the source. The two
constraints considered are on the orbital energy and the radius of periapsis of the orbit. These
constraints are derived in topocentric spherical coordinates in [28] and will be derived in inertial
cartesian coordinates in this section.

The primary constraint for observing Earth objects ensures that the object is in a closed orbit.
Rearranging the vis-viva equation for a Keplerian orbit gives

‖xu‖ = µ

(
2

xd
− 1

a

)
(29)

Using Eqn. (29), a constraint on the maximum velocity of the source is derived by allowing a→∞
yielding

‖xu‖ − µ
(

2

‖xd‖

)
≤ 0 (30)
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where states satisfying Eqn. (30) are in closed orbits. Eqn. (30) can be rewritten in constraint form
as

κ1(xd, xu,k, t) = ‖xu‖ − µ
(

2

‖xd‖

)
(31)

It is also important to exclude velocities which do not generate a sustainable orbit, thus imposing
a minimum periapse radius to ensure the source object does not enter the Earth’s atmosphere. The
periapse radius of an orbit is given by

rp = a(1− e) (32)

where rp is the periapse radius, a is the semi-major axis, and e is the eccentricity of the orbit. The
eccentricity is a function of the specific orbital energy, ε, and the specific angular momentum h
given by

e =

√
1 +

2εh2

µ2
(33)

At periapsis, the specific angular momentum is given simply by h = ‖xd‖‖xu‖ cos γ. The specific
orbital energy may be expressed as

ε =
‖xu‖2

2
− µ

‖xd‖
(34)

Because the geometry is simply a sphere, a representative admissible region of the energy constraint
will not be shown.

Combining Eqns. (32), (33), (34), the minimum periapse radius constraint can be written as

rp,min +

µ

(√
1−

r2v2 cos2 γ( 2µ
r2
−v2)

µ2
− 1

)
2µ
r2
− v2

≤ 0 (35)

where r = ‖xd‖, v = ‖xu‖, and rp,min is the minimum allowable periapse radius. For simplicity,
define

c1 =
2µ

r2
− v2 (36)

c2 = 1−
r2v2 cos2 γ(2µ

r2
− v2)

µ2
(37)

Then Eqn. (53) may be written as

c1rp,min + µ(c
1/2
2 − 1) ≤ 0 (38)

After manipulation, Eqn. (38) becomes

µ2c22 − µ2 + 2rp,minc1 − r2p,minc
2
1 ≤ 0 (39)
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Expanding and collecting terms in Eqn. (39) gives a 4th order polynomial in v defining the surface
of the admissible region for the periapse radius constraint,

0 = (r2 cos2 γ − r2p,min)v4 + (−2µrp,min − 2µr cos2 γ +
4µr2p,min

r
)v2 + (

4µ2rp,min

r
−

4µ2r2p,min

r2
)

(40)

Defining l = v2 then an analytical solution for v exists by solving the quadratic formula for l.
Multiplying through by r2 and letting

c3 = (r4 cos2 γ − r2r2p,min) (41)

c4 = (−2r2µrp,min − 2µr3 cos2 γ + 4µr3r2p,min) (42)

c5 = (4rµ2rp,min − 4µ2r2p,min) (43)

Then,

l =
−c4 ±

√
c24 − 4c3c5

2c3
(44)

v = ±
√
l (45)

In general, there are 4 solutions for v, but since v ≥ 0, conditions on real solutions for can be
analytically stated. For a real solution for v, Eqn. (44) must satisfy l ≥ 0 and l ∈ R. For l ∈ R,
there are two possible cases which result in a real, positive value for v. The first case is,

l1 =
−c4 +

√
c24 − 4c3c5

2c3
(46)

=

√
µ2r4(rp,min − r cos2 γ)2 + 2µrr2p,min − µr2rp,min − µr3 cos2 γ

r2r2p,min − r4 cos2 γ
(47)

The second case is,

l2 =
−c4 −

√
c24 − 4c3c5

2c3
(48)

= −
√
µ2r4(rp,min − r cos2 γ)2 − 2µrr2p,min + µr2rp,min + µr3 cos2 γ

r2r2p,min − r4 cos2 γ
(49)

For real solutions for v it is required that l1 ≥ 0 and l2 ≥ 0. The square root term in the expression
for l1 and l2 is always positive, thus for a real v1 = +

√
l1 to exist, the following must be satisfied√

µ2r4(rp,min − r cos2 γ)2 + 2µrr2p,min ≥ µr2rp,min + µr3 cos2 γ (50)

r2r2p,min − r4 cos2 γ ≥ 0 (51)

For a real v2 = +
√
l2 to exist,

sign(r2r2p,min − r4 cos2 γ) = −sign(
√
µ2r4(rp,min − r cos2 γ)2 (52)

− 2µrr2p,min + µr2rp,min + µr3 cos2 γ)
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Figure 2: Representative periapse radius constraint boundary

Any negative solutions for l1 or l2 will yield imaginary solutions for v1 or v2. Solutions for v that
are imaginary or negative for a given rp,min, r, and γ are ignored. The admissible region for v then
has two cases, either both l1 and l2 are real in which case there are two solutions for v given as
v1 = +

√
l1 and v2 = +

√
l2 or only one of l1 or l2 is real in which case v3 = +

√
li where i is

the index of the real solution. The geometry for the admissible region of the periapse constraint
is essential a sphere, defined since v3 = max(v1, v2). For values of γ yielding v1 and v2, valid
solutions for v must satisfy min(v1, v2) ≤ v ≤ max(v1, v2). For values of γ yielding v3, valid
solutions must satisfy v > v3. This admissible region constraint is visualized in Figure 2.

In constraint form, the periapse equation may be written as

κ2(xd, xu,k, t) = c3v
4 + c4v

2 + c5 (53)

Thus, the totalA for the TDoA problem considered in this paper is defined as

A = {xu ∈ R3|κ1(xd, xu,k, t) ≤ 0 ∩ κ2(xd, xu,k, t) ≤ 0)} (54)

From Eqn. (54), the probability that a velocity resides inA may be written as a piecewise mem-
bership function

P(xu ∈A) =

{
1 κ1(xd, xu,k, t) ≤ 0 ∩ κ2(xd, xu,k, t) ≤ 0

0 otherwise
(55)

But, since the analytical conditions for κ1(xd, xu,k, t) ≤ 0 and κ2(xd, xu,k, t) ≤ 0 have been
defined, Eqn. (55) is simply given by

P(xu ∈A) =

{
1 v ≤ µ

2r ,max(v1, v2) ≤ v ≤ max(v1, v2)

0 otherwise
(56)

or

P(xu ∈A) =

{
1 v ≤ µ

2r , v ≥ v3
0 otherwise

(57)

depending on the number of real, positive solutions to Eqn. (53).
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The Effect of Uncertainty

It is previously shown how the observer position and timing errors contribute to the accuracy
of the position estimate through Eqn. (20). These uncertainties and errors contribute to how the
admissible region is constructed as well. The process outlined in [27] is used to determine the
contribution of the uncertainties and errors toA. Using the same Taylor series approach as shown
in Eqn. (11), the first order Taylor series approximation of each constraint is given by

− ∂κi
∂xu

δxu =
∂κi
∂xd

δxd (58)

Each constraint κi is a scalar function and the resulting partial derivative ∂κi/∂xu cannot be in-
verted. Additional relationships must be derived so that an expression for δxu can be written. In
a process identical to what is outlined in [27], orthogonal vectors can be constructed such that the
δxu is orthogonal to the surface defined by κi. For the TDoA admissible region, the first orthogonal
vector t1 can be taken as any vector orthogonal to ∂κi/∂xu such that ∂κi/∂xu · t1 = 0. The second
orthogonal vector may be obtained by

t2 =
∂κi
∂xu
× t1 (59)

The vectors ∂κi∂xu, t1, and t2 are by definition linearly independent and can be formed into an
invertible matrix as follows

Di =

 ∂κi∂xu
t1
t2

 (60)

and Eqn. (58) may be written as

δxu = D−1i

∂κi∂xd
0
0

 δxd (61)

Defining,a

Ni = D−1i
∂κi
∂xd

(62)

and following the same statistical analysis shown in [27], it can be written that

Pi,xu = NiPxdNT
i (63)

Note that while Eqn. (63) is not explicitly a function of the observer position and timing errors and
uncertainties, it is a function of the covariance on the position estimate which already accounts for
the observer position and timing error. As shown in [27], the probability that a given state lies inside
the ith admissible region is now defined by a continuous function

P(xu ∈Ai) =
1

2

[
1− erf

(
‖xu − xu,⊥,Ai

‖√
2trPi,xu

)]
(64)
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where xu,⊥,Ai
is the nearest point on the surface defined by Eqn. (54) orthogonal to xu. Unlike Eqn.

(55), Eqn. (64) gives a continuous, smooth boundary at the edge of the admissible region. Assuming
that each of the constraints are independent, the total probability that a point xu lies inside ofA is
given by

P(xu ∈A) =

c∏
i=1

P(xu ∈Ai) (65)

Eqn. (64) can be quantified for both constraints in this paper. Applying Eqn. (64) to Eqn. (31)
define,

‖xu − xu,⊥,Ai
‖ = ‖xu‖ − µ

2

xd
(66)

since the constraint surface is a sphere. The periapse radius constraint may be considered as essen-
tially concentric spheres defined by a radius of v1 = +

√
l1 and v2 = +

√
l2 if l1 and l2 are real and

positive for a given value of γ. The periapse radius constraint may be considered as the superpo-
sition of a sphere and hyperbolic body of revolution. In general, the quantity ‖xu − xu,⊥,A2‖ can
then be given by,

‖xu − xu,⊥,A2‖ = min(‖xu‖ − v1, ‖xu‖ − v2‖) (67)

Thus given any estimate xd and a corresponding velocity xu, the probability that xu is in the admis-
sible region can be determined analytically as

P(xu ∈A) =
1

4

[
1− erf

(
‖xu‖ − µ 2

xd√
2trP1,xu

)][
1− erf

(
min(‖xu‖ − v1, ‖xu‖ − v2‖)√

2trP2,xu

)]
(68)

SIMULATION

The purpose of this section is to demonstrate how an admissible region can be applied to the
TDoA problem for space object initial orbit determination. The first subsection shows the impor-
tance of the observer location in the accuracy of the TDoA position estimate by showing the DOP
for different observer configurations. The second subsection shows how an estimation scheme may
be initiated from a set of TDoA measurements.

Observer Placement

Eqn. (22) is very sensitive to the placement of the observers. The DOP is effectively a measure of
how accurate an estimate in a given region can be give the configuration of the observer stations. To
demonstrate this, 3 configurations will be used to demonstrate the effect on DOP. The latitude and
longitude of each observer site for each configuration is shown in Table 1. The purpose of choosing
these observer configurations is to demonstrate the baseline between observing stations required for
good TDoA DOP.

In general, the TDoA DOP is very similar to DOP as seen in GPS measurements. A geometric
configuration with GPS satellites dispersed across the sky provides a much lower DOP, and thus
higher accuracy, measurement that if the GPS satellites are clustered. Likewise, the TDoA DOP
is centered around the dispersion of the observers. Figures 3-5 show how DOP changes with the
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North America Southeast Atlanta

Site 1 (33.7774, -84.3989) (34.9253, -80.9841) (33.7774, -84.3989)

Site 2 (34.1374, -118.1256) (33.7899, -84.4025) (33.7671, -84.2951)

Site 3 (42.3608, -71.0928) (30.2798, -81.4849) (33.7951, -84.3214)

Site 4 (30.2852, -97.7348) (36.2180, -86.7638) (33.7454, -84.4120)

Table 1: The observer locations for the DOP analysis

position of the source of the signal. For these calculations, DOP is only computed if a particular
source position has line of sight to each observer.

The geometric line of sight restriction can be seen in Figure 3b where the shape of the iso-surface
dips back toward the Earth near the centerline of the observer locations. This contrasts directly with
the plots in Figure 4, where the iso-surface of coverage is a smooth dome shape over the region. It
is worth mentioning that while the North America and Southeast observer cases perform reasonably
well regarding DOP, the Atlanta based observers perform very poorly due to the geometry of the
observers. At these levels of DOP, the uncertainty in the measurements is on the same order of
magnitude as radius of the Earth. With such poor DOP, a TDoA system based on a tight observer
configuration, such as a city, would be unable to provide any useful information on the position of
the source object.

Position Estimate Using TDoA

Admissible region approaches can be used to initiate filters by sampling from the admissible
region itself. The purpose of this section is to show the geometry of the admissible region for the
TDoA problem and demonstrate the initialization of a particle filter from the admissible region.
Since the lowest DOP is achieved with the North America configuration, it is used as the observer
positions for this section. For the purposes of this section, the true object state is given as

xd,true =
[
−0.9121 0.3707 0.6046

]
DU (69)

vtrue =
[
−0.5571 −0.5820 −0.4253

]
DU/TU (70)

The standard deviations on the observer position knowledge and timing error are taken to be

σrs = 1m (71)

σt = 5× 10−9s (72)

With these covariances defined, a position estimate for the source object by directly solving Eqns.
(4)-(7).

xd =
[
−0.9121 0.3708 0.6047

]
DU (73)

The covariance of the z vector is then given by

Pz =

[
σ2rsI(12×12) 0

0 σ2t I(4×4)

]
(74)
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(a) DOP = 25 (≈ 37.5m) (b) DOP = 75(≈ 112m)

(c) DOP = 150(≈ 225m) (d) DOP = 300(≈ 450m)

Figure 3: Iso-surfaces of DOP for the North America observer case

And the covariance on the estimate shown is given by evaluating Eqn. (20). Taking the diagonal
elements of Pxd gives the covariances on the estimate of the object position and the time delay in
the system.

σxd,x = 0.1657× 10−5 DU = 10.571m (75)

σxd,y = 0.7645× 10−5 DU = 48.762m (76)

σxd,z = 0.1213× 10−5 DU = 7.734m (77)

σcτ = 0.7506× 10−5 DU = 47.870m (78)

The DOP for this measurement is then given by evaluating Eqn. (22) giving,

DP = 47.2717 (79)

which is a unitless quantity.

Filter Initiation Using TDoA Admissible Regions

The estimate and covariance obtained only correspond to the position of the object, the admissible
region must be applied to bound the velocities consistent with this object position in order to initiate
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(a) DOP = 25(≈ 37.5m) (b) DOP = 75(≈ 112m)

(c) DOP = 150(≈ 225m) (d) DOP = 300(≈ 450m)

Figure 4: Iso-surfaces of DOP for the Southeast observers case

a filter. An overview of the procedure is shown in Figure 6. Following the outline, the admissible
must now be constructed after the position estimate is made.

A joint admissible region is considered by generating the energy and periapse radius admissible
regions individually and taking the piecewise product to be the joint admissible region. The estimate
covariance is included in the admissible region formulation to account for the errors in timing and
position accuracy of the observers through their impact on the estimate. These uncertainties have
a considerable effect on the admissible region and the boundaries of the admissible region are thus
expanded, accounting for vastly more states than if uncertainties are neglected. To demonstrate
this, a joint admissible region with and without uncertainties is generated and the resulting sampled
points are shown in Figures 7 and 8. As can be seen, there is a much smaller set of points spanning
the state space when no uncertainty is considered. The covariance on the position estimate conveys
how accurate the estimate is and it is expected that with less accuracy, more possible undetermined
state solutions must be considered and this is reflected in Figures 7 and 8. The sampled points in
Figure 8 will be used to initiate a particle filter for to get a velocity estimate.
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(a) DOP = 5× 105(≈ 750km) (b) DOP = 1× 106(≈ 1500km)

(c) DOP = 5× 106(≈ 7500km) (d) DOP = 1× 107(≈ 15000km)

Figure 5: Iso-surfaces of DOP for the Atlanta based observers case

Figure 6: Outline of the filter initiation process using TDoA measurements

The particle filter used in this example will use the PDF defined by

f(xu) =
P(xu ∈A)∫
A

dxu
(80)

as the initial weighting for each of the points sampled from the admissible region. The particle
filter assumes a new measurement is available 2 hours after the first measurement and the resulting
distribution of velocity states are shown in the Figures below. Figure 9 shows the new distribution
of particles after the new measurement is made. For a point of comparison, the same analysis is
performed on the set of points shown in Figure 7 where no uncertainty is included. Figure 11 show
the results from the particle filter initiated on an admissible region for TDoA measurements both
with and without measurement uncertainties taken into account. Likewise, 12 shows the resulting
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Figure 7: Sampled points from the joint admissible region without considering the covariance on
the position estimate. The different views show the geometry of the admissible region constraints.

Figure 8: Sampled points from the joint admissible region considering the covariance on the posi-
tion estimate. As can be seen, the uncertainty relaxes the constraint boundary and more points are
included closer to the center of the sphere as well as outside the hyperbola bounds.

distribution of the position after the measurement is ingested for both the uncertainty and no uncer-
tainty cases. This figure serves to show a representation of how a particle filter initiated on a set
of TDoA measurements would behave. In this particular example, it appears that the inclusion of
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uncertainty in the generation of the admissible region yields a better distribution of particles near
the true source object velocity.

CONCLUSIONS AND FUTURE WORK

This paper shows how the concept of admissible regions for initial orbit determination can be
applied to a set of time differential of arrival (TDoA) measurements. The effects of uncertainty on
the TDoA position estimate and the impact of dilution of precision (DOP) of the measurement are
shown. The underdetermined and determined states for TDoA measurements are identified as the
velocity and position of the observer respectively. Energy and periapse radius are considered as con-
straint hypotheses to constraint the admissible region. An analytical approach is then derived which
enables a direct solution for the probability that a given velocity state is in the admissible region.
An example TDoA observation simulation is shown, comparing DOP for different observer config-
urations. From the best observer configuration an admissible region is constructed and sampled to
initialize a particle filter.

The results shown in this paper focus on ground based observers for TDoA using signals of
opportunity. Future work will include an application of TDoA to space based observers and the
design of observer placement for space based TDoA measurements. The TDoA solution as proposed
in [13], assumes that the observers all share a common focus. Space based observers will not satisfy
this criteria and an alternative solution approach must be employed. In this paper, the signals were
considered to be received at the observer with some prescribed uncertainty in timing error and
position knowledge. A full treatment of the signal processing, matched filtering, and signal arrival
difference is planned for future work. A comparison will also be made between the admissible
regions of TDoA measurements and those of radar measurements.
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