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The NASA exploration roadmap envisions a sustainable human presence beyond Earth orbit
with an emphasis on Mars habitation. Establishing an interplanetary transportation system
in orbits that periodically intersect Earth and Mars have been under study since 1969 to meet
this end, but solutions generally suffer from high ∆v requirements, high approach veloci-
ties, and unfeasibly long transit times or impractical simplifying assumptions like co-planar,
circular orbits. This work seeks to expand investigations to connective low-thrust, low-∆v
trajectories that also take advantage of Venusian gravity assists when available to further
optimize cyclic systems. By leveraging supercomputing resources, this work also seeks to
diverge from studies using cycler templates and explore a larger parameter space for potential
solutions that take advantage of realistic planetary ephemeris like plane change maneuvers.
To optimize the process, a piecewise multi-objective Newton’s method optimization is ap-
plied to combinations of planets resulting in several tours per year with less than 7 km/s ∆v
including Earth departure v∞. This method is demonstrably better than an even sampling of
launch and encounter dates for investigations with limited computational resources. The in-
clusion of Venus allows the algorithm to take advantage of fortuitous alignments of Venus for
plane change maneuvers, reducing the overall cost. Venusian-inclusive tours also provides
launch opportunities outside the usual Earth-Mars launch windows.

INTRODUCTION AND BACKGROUND

The logical predecessors to n-body connective trajectory analysis for low ∆v continuous spacecraft trans-
portation between Earth and Mars are cycler trajectories. These trajectories are a class of orbits connecting
Mars and Earth in a regularly repeating pattern and have been under study since at least 1969 with the work
of Rall.1, 2 The use and study of these trajectories was later popularized by former astronaut Buzz Aldrin3

who suggested that a solution connecting Earth and Mars existed that repeated every synodic period in 1985.
The one synodic period Earth-Mars cycler, nicknamed the “Aldrin cycler,” was confirmed by Byrnes et. al.4

in 1993 along with several investigations into other orbits by Friedlander et. al.5 and Brynes et al.6

Using a series of simplifying assumptions including circular, in-plane orbits for both Earth and Mars, Mc-
Conaghy and Longuski7 generate an exhaustive list of connective orbits of up to four synodic periods and
seven revolutions by using gravity assists at Earth encounters and patching together trajectories. Using the
GALLOP tool,8, 9, 10, 11 McConaghy et. al.12 extended the study to realistic planetary ephemeris for two-
synodic period cyclers. Their work was subsequently extended to three-synodic period cyclers by Chen.13

Both solutions use the possibility of intermediate impulse maneuvers to rectify the co-planar cycler templates
with the realistic planetary ephemeris. Using a similar template strategy, Russell and Ocampo14 investigate
using analytically calculated partial derivatives with SNOPT15 to generate promising near-ballistic trajecto-
ries with low arrival velocities at both bodies from template cyclers. They produce a comprehensive list of
cyclers with well minimized ∆v costs for a range of launch years and cycler classes. While these results
provide an extensive overview of repeating connective trajectories between Earth and Mars, they do not nec-
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essarily explore the full parameter space of promising trajectories between the two planets nor is their method
extensible to the inclusion of more planets in a Solar System tour.

This work proposes to explore classes of trajectories that take advantage of gravity assists from Earth,
Mars, and Venus to explore optimization of the required ∆v, hyperbolic excess velocities on encounters with
Earth and Mars, and Earth-Mars transit times with respect to the ephemeris-based gravity assisted Mars-Earth
Aldrin cycles described by both Russell and Chen. The contradictory requirement for low times of flight, low
arrival velocities, and low spacecraft ∆v for most robotic and human spaceflight applications requires a
substantial optimization effort of trajectories and a flexible parameter space. Therefore, the use of a template
cycler is abandoned in favor of an open-ended simultaneous optimization of gravity-assisted trajectories and
transit times over a large number of launch dates. This approach is inherently computationally expensive
so an algorithm that recursively minimizes the cost of a tour of planets incrementally is developed. To help
expand the solution space, a flexible solution-finding approach that allows the transition between cyclers and
seizes fortuitous alignments to make or avoid a plane changes is applied.

This work contributes a) a novel optimization approach for many-planet gravity assist trajectories, b) new
classes of solutions for Mars-Earth transportation, and c) a multi-objective optimization of time of flight,
hyperbolic excess velocity, and ∆v for hundreds of potentially feasible tours.

APPROACH

Due to the introduction of Venus into the analysis, an exhaustive analysis of possible connective trajecto-
ries that include repeated encounters between Earth and Mars requires the investigation of several branching
solutions which must be independently optimized against a cost function. The total ∆v of an individual tour,
which is calculated as the required thrusted change in velocity of the spacecraft including the hyperbolic ex-
cess velocity needed to initially depart Earth, and the time-of-flight are minimized by numerically-determined
second order partial derivatives of cost with respect to encounter times. Each planetary body is assumed to
contribute the possibility of a ballistic or powered gravity assist. Additionally, a low thrust trajectory that
results in the same encounter dates at each planetary body is calculated using iterative local linearization by
method of a state transition matrix for use in relevant applications.

Optimization Hierarchy

Cost Function The cost of the three-planet optimization of a multi-planetary tour is calculated to account
for the total trip ∆v, the time of flight, and the hyperbolic excess velocity. The time of flight cost is taken
to be the mean of the average time since the last Earth encounter to the next Mars encounter and the average
time since the last Mars encounter to the next Earth encounter. The hyperbolic excess velocity cost is taken
to be the mean of the average Earth departure and Mars arrival v∞. These three factors are reasoned to be
the most pertinent in an interplanetary human transportation system and the cost of a trajectory is therefore
calculated using the multi-objective cost function of the form
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where w0, w1, and w2 are the weights for calculation of ∆v, time of flight, and hyperbolic excess velocity
respectively. Weights are changed as required to explore the entire solution space. The cost is constructed to
be an implicit function of a column matrix of encounter times at each planet in J2000 time units.

Selection of Planets Useful combinations of planets are calculated using a Cartesian product of the planets
Earth, Mars and Venus allowing n − 2 repetitions where n is the number of planets. These combinations
are then culled to planet lists that offer a predetermined number of Earth-Mars and Mars-Earth encounters
after appending Earth to beginning and end of each combination. To explore possible launch and subsequent
encounter dates, an even sampling of Earth departure dates is assigned to each processor for each combination
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Figure 1. Flow chart of optimization loop for a single combination of planets and for
a single launch date and a single combination of cost function weights.

of planets. Then, an even sampling of transit times between one fifth of a year and two and a half years are
conducted to search for a minimum cost to the next two planets using a gravity assist maneuver at the second
planet. Minima for each launch date and the first three planets in each combination are stored and used as
initial guesses in the optimization process.

Optimization Loop From the initial guess for the encounter times of the initial three planets, another min-
imum for an incremental fourth planet is again calculated using an even sampling of transit times. Due to the
piecewise nature of this search and the propensity of any minima to be local in nature, a random sampling
of encounter times with a flat distribution about the initial guess is explored to provide flexibility between
adjacent concave regions of the cost. The best cost between the even sampling and random sample is selected
to begin a second order quadratic optimization using the first and second partial derivatives of the cost with
respect to a column matrix of the encounter times.

The optimization root-finding equation is given as

ti+1 = ti − γ[Hf(ti)]−1∇(ti) (2)

where t is the list of encounter dates, H is the Hessian of partial derivatives, and γ is a scaling parameter
which is limited iteratively during descent to satisfy the Wolfe conditions.17 These are given as

pi = γ[Hf(ti)]−1∇(ti) (3)

f(ti + αipi) ≤ c1αipTi ∇f(ti) (4)

|pi∇f(ti + αkpi)| ≤ c2|pTi ∇f(ti)| (5)

where c1 and c2 are weights set to 1×10−6 and 0.9 respectively to encourage convergence and α is the step
length. If the conditions cannot be applied, the initial guess is taken to be the minimum. Else, the optimization
terminates after twenty successful descents or when each step reduces the cost by less than 1× 10−6.

This result serves as the initial guess for the addition of the next planet which undergoes the same process
including the minimization against random encounter times and the full optimization iteration. This is shown
in Figure 1 and later demonstrated in more detail.
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Figure 2. Inner radius of impact parameters about a planet (left) and possible turn
angles for an arrival ~v1 (right) given possible impact parameters outside ofRp +hmin.

Gravity Assist Optimization

Assuming the availability of a gravity assist, a broad range of possible velocity states are available after
each planetary encounter. These available states are dependent on the position and velocity of the planet in
its orbit so fundamentally, optimizing trajectories that use gravity assist require the optimization of both the
targeted time of encounter and the maneuver itself. While solutions that exactly connect planets ballistically
may be preferred, they cannot be assumed to be available and thus accounting for the possibility of either a
position error or velocity error is explored.

Optimizing with Respect To Velocity Error Gravity assist maneuvers take advantage of the gravity of a
body to rotate the arrival v∞ by some angle determined by the mass of the body and the impact parameter.
By enforcing a final position state for the spacecraft, gravity assist maneuvers can be optimized to minimize
the required change in velocity needed to accomplish both the rotation and change in magnitude that results
in a Keplarian trajectory towards an encounter with the next planet at a given time. Since gravity assist-
maneuvers are an extension of a hyperbolic two-body orbit and cannot change the magnitude of a hyperbolic
excess velocity, a ∆v-minimized maneuver can only change the magnitude of the sun-centered velocity by
method or rotation of the excess velocity vector. The possible rotation angle, δ, is given by

sin

(
δ

2

)
=

1

1 + rpv2∞/µplanet
(6)

The minimum distance to the planet rp used in this analysis is the sum of the mean equatorial radius and
a standoff distance of 500, 300, and 150 km for Venus, Earth, and Mars respectively. It is assumed that an
approaching spacecraft can easily adjust the encounter trajectory so that the gravity assist maneuver turns the
arrival ~v∞, ~v1, in any direction within a cone of possible final ~v∞, ~v2, directions that subtends an angle of 2δ.
The algorithm enforces that the final velocity magnitude after the maneuver must match the required free-fall
velocity to reach the target body and any changes in magnitude must occur before reaching the sphere of
influence of the encounter body. Using the final magnitude as the radius of a spherical sector centered on the
final velocity direction with subtending 2δ, the minimum change in velocity required of the spacecraft is the
minimum difference between ~v2 and the outer surface of the sector as demonstrated below. For reference, the
l2-norm of a vector is hereafter abbreviated as ||~x|| = x for any vector ~x.

Figure 3 (bottom right) shows a two dimensional cross section of a rotated spherical coordinate system
centered at the vertex of the vectors with the positive z-axis along the direction of ~v2 and the positive x-axis
upward in the plane of the diagram. To minimize ∆ve, an objective function f(~x) is minimized with equality
and inequality constraints using a Lagrange multiplier.

~v1 = ~v1(v1, θ1, φ1), ~v = ~v(v, θ, φ1) (7)
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Figure 3. Gravity assist geometry diagrams showing the calculation of ∆~ve from
arrival and departure velocities ~va and ~vd where ~vp is the orbital velocity of the planet.
Also shown is a reference figure with variable names for the proof (bottom right).

g(~x) = v − v2 = 0 (8)

h(~x) = θ ≤ δ (9)

f(~x) = ||~v1 − ~v||2 = v21 + v2 − 2v1vcos(γ) = v21 + v2 − 2v1vcos(θ1 − θ) (10)

By the Karush-Kuhn-Tucker conditions, the following equations and inequality are satisfied for the extrema
of f(~x).

∇f(~x)− λ∇g(~x)− µ∇h(~x) = 0 (11)

µ(θ − δ) = 0, µ ≥ 0 (12)

These conditions and constraints are sufficient to find unique classes of general solutions that minimize ve.
Equation 11 provides the following system of equations after taking the gradient.

2v2 − 2v1cos(θ1 − θ)− λ = 0 (13)

2v1sin(θ1 − θ)− µ/v2 = 0 (14)

From Equation 12 either µ = 0 or θ = δ. When µ = 0, Equation 14 reduces to

sin(θ1 − θ) = 0 (15)

θ = θ1 + nπ, n ∈ Z (16)
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Figure 4. Position error for an example arrival velocity vector showing the possible
departure vectors and errors for an unthrusted gravity assist maneuver.

All values of n except 0 are rejected by reasoning that odd values of n correspond to maxima and even
values of n are coincident with the solution where n = 0. Thus the solution θ1 = θ ≤ δ is obtained when
combined with Equation 9 to accommodate the range of possible gravity assist maneuvers. This implies that
if the initial angle between ~v1 and ~v2 is less than δ, only the length of the vector changes from v1 to v2 with
no change in the polar angle.

When θ = δ, Equation 14 reduces to

2v1v2sin(θ1 − δ) = µ (17)

Since µ ≥ 0 and solutions in quadrant III and IV are again eliminated when seeking a minimum, the
condition θ1 ≥ δ must correspond to the solution θ = δ. This implies that if θ1 is greater than the maximum
gravity assist turn angle δ, ∆~ve is both a change in magnitude from v1 to v2 and change in polar angle of
exactly θ1 − δ towards the positive z-axis. The resulting ∆~ve orientations are shown in Figure 3.

Thus the required thrusted encounter velocity change, ∆~ve, is either a maneuver to change the velocity
magnitude or the difference between v∞,a and the edge of the sector displaced a full δ from v∞,d, depending
on whether the angle between the two v∞ vectors is less than or greater than δ respectively.

Optimizing with Respect to Position Error By assuming ∆~ve and constraining the departure to unassisted
gravity turns and allowing the encounter time to vary, it is possible to optimize with respect to a minimized
miss distance at the third planet. Figure 4 shows an ecliptic histogram of the position error given the allowable
zero-thrust departure angles from a planet in a sample scenario. Miss distances of zero are preferable and it
is assumed that the lowest miss distance also corresponds to the most desirable trajectory and corresponding
set of encounter dates.

Universal Time of Flight and Gauss’s Problem

To simulate connective trajectories between planetary bodies, a patched conic method is employed as-
suming two-body dynamics throughout the flight of a spacecraft including during encounters with planetary
bodies. This simplifying assumption allows the use of well-established time-dependent iteration algorithms
for the location of an object traveling along a gravitationally-induced conic section. Specifically, solutions
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to the Gauss Problem and the Lambert Problem and are used extensively in this work and are thus briefly
described along with the particulars of their implementation.

Gauss’s Solution to Lambert’s Problem (p-iteration) The determination of an orbit from two specified
position vectors and a fixed time-of-flight is called Lambert’s problem. In contrast to Lambert’s own solution
which is computationally sensitive to small transfer angles between the initial position vectors, Guass’s solu-
tion requires no careful treatment of special cases and is therefore used in this study. Guass’ solution takes
advantage of the direct monotonic relationship between the semi latus rectum and the orbital time of flight
of an object in two-body motion when one body is sufficiently large to allow the mass of the larger object to
approximately act as a non-accelerating inertial reference frame. Given two position vectors and a time of
flight, one may therefore iterate estimates of the semi-major axis and the semi latus rectum until achieving
convergence with the desired time-of-flight. Due to the ambiguity of the short or long flight path between the
given position vectors, each set of initial conditions yields as many as two unique solutions or as few as none
in special cases.

In practice, convergence to a relative error of 1× 10−9 is achieved in as little as 6 iterations and thousands
of such calculations can be completed within a few seconds on a single processor. There are two singularities
in the relationship between the semi latus rectum and the semi-major axis which can cause difficulty with an
improperly chosen initial guess. When the code fails to converge, an initial semi latus rectum guess closer to
the singularity usually decreases the step-size and allows for convergence. Code for this study attempts this
four times before assuming that no useful solution exists. Once the orbit has been determined, the initial and
final velocity vectors can be calculated using functions of the orbital elements. The utility of this approach
for this project is an ability to determine trajectories between bodies with known positions such as planets
since the mass of the sun roughly satisfies the two body inertial frame requirement.

Universal Variable Formulation For Time of Flight The universal variable formulation of Kepler’s time-
of-flight (UTOF) solution is so named due to its use of a single variable for hyperbolic, parabolic, and elliptic
orbits and was first derived by Bate.17 Given an initial position and velocity vector and a given time of flight,
the mean motion and the universal variable are iterated until convergence. If successful, the final position and
velocity state of the body can again be determined with the known orbital parameters, using functions of the
orbital parameters and their derivatives.

While UTOF is powerful tool for determining the location of celestial bodies and spacecraft as a function
of time, it suffers from numerical precision and convergence errors for longer times of flight. As with the
p-iteration algorithm, convergence is sensitive to the initial guess for the universal variable and four attempts
are made before the possibility of a useful solution is ruled out. For longer times of flight, the trajectory is
segregated into two or more parts as needed. Because the p-iteration and UTOF techniques both have the
final velocity as an output, they may be used in conjunction as an error checking tool.

The theoretical framework for the UTOF and p-iteration codes are constructed in agreement with a Bate,
Mueller, and White text.18 Python and numpy (which handles arrays using an efficient underlying C algo-
rithms) are chosen as the scripting languages for all simulations. Each section of code is segregated into helper
functions and wrapper functions at logical breaking points to allow recursion and to aid multi-threading.

Planetary Positions Princeton University19 provides a list of orbital elements for the major bodies in the
solar system and their time of periapsis near Jan 2006. Assuming that the orbits of the planets repeat exactly
every orbital period, the position of the planets are propagated forward from their most recent periapsis using
the UTOF algorithms to determine their position at an arbitrary point in time.

Since both the p-iteration and UTOF codes depend on factors of the square root of µ = GM , computational
time and numerical error is reduced by introducing a canonical coordinate system where µ� = 1 DU3/TU2.
The distance unit (DU) is taken to be 1 AU and thus assuming two-body Keplarian motion with an inertial
reference frame fixed to the center of the sun, the time unit must be 1 year/2π and the velocity unit is 1 DU/TU
≈ 29.79km/s. The code internally converts between time units, seconds, and dates as needed. These orbits
are found to be consistent with the orbital period times provided by Princeton.

Therefore the optimization algorithm can be summarized with the pseudocode given in Algorithm 1 with
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Orbital Element Venus Earth Mars

a (AU) 0.723336 1.000003 1.52371
e 0.00678 0.001671 0.09339
Ω (deg) 76.7 N/A 49.6
i (deg) 3.3947 0.0 1.850
ω (deg) 54.9 102.9 286.5
tp 2006 Oct 06, 05:19 UTC 2007 Jan 15, 00:30 UTC 2007 Jun 01, 07:20 UTC

logical commands capitalized for clarity.

Algorithm 1 Recursive Opitmization of Tour Cost
1: for w0,w1,w2 in [0,0.1,...,0.9,1] do
2: for all planetary combinations (1, 12, and 86 for 7, 8, and 9 planet tours respectively) do
3: for 60 launch dates per year do
4: for an even sample of encounter dates to the second planet do
5: if NOT taking a derivative AND finding an initial cost before descent then
6: for a large even sample of gravity turn angles at the second planet do
7: Use UTOF and p-iteration to find the miss distance for each turn angle
8: Determine the corresponding encounter time to the third planet
9: Add the encounter time corresponding to the minimum miss distance to the sample

10: Add an even sample of encounter dates at the third planet
11: Use UTOF and p-iteration to find the cost of each set of encounter times
12: # The interior of the loop above is hereafter used to determine cost.
13: Randomly sample encounter times for a lower cost
14: Use the best-cost encounter time sequence for the following descent loop
15: while NOT converged AND descents ≤ 20 do
16: Find the first and second derivatives of cost with respect to encounter times
17: Calculate the descent direction
18: Vary the step size up to 40 times to satisfy the Wolfe conditions
19: Descend
20: # The loop above is hereafter used to descend to a minimum cost.
21: while number of planets ≤ length of tour do
22: Add an even sample of encounter times to the next planet
23: Determine cost by chaining cost calculations for multiple gravity assists
24: Randomly sample encounter times for a lower cost
25: Descend to a cost minimum

Low Thrust Optimization

Each planetary tour collected in the main algorithm corresponds to an idealized impulse solution assuming
powerful rockets are available to impart a significant change in velocity at the point of encounter. Reasoning
that the optimized impulse solution corresponds roughly with the tour and launch date of the best low thrust
trajectory solution, useful tours are studied to determine low thrust alternatives.

Low thrust trajectories are built under the assumption that their goal is to achieve ∆~ve with a minimized
continuous thrust solution. These solutions are constructed to achieve the required change in velocity before
the planetary encounter such that the spacecraft is on a free-fall trajectory to the next encounter after the
gravity assist. Therefore no thrust is used on the final leg of a tour. The encounter time at all planets is held
constant with respect to the solution generated in the planetary tour algorithm.
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To calculate low thrust trajectories, a linearization and discretization of the trajectory is performed starting
from the Cartesian equations of motion (Equation 18) where the origin is taken to be the position of the sun.

~̇x =
−1

x3
~x+ B~u (18)

Thus the time derivative of the state vector ~̇x is the sum of µ-normalized function of the state and time
f(t, ~x) and the constant control matrix B acting on the thrust vector ~u. Treating ∆~ve as a small variation in
the final state allows a first order approximation of the relationship between the initial variation in state to the
final variation in state. This is taken with respect to the free-fall trajectory under gravitation attraction.

δ ~xf ≈ Φ(tf , ti)δ ~xi (19)

Φ(tf , ti) = e
∫ tf
ti

∂f
∂~xdτ (20)

Under thrust, Equation 19 expands to Equation 21 where δ~u is the variation in thrust from the ballistic
solution.

δ ~xf ≈ Φ(tf , ti)δ ~xi + Γ(tf , ti)δ ~ui (21)

Γ(tf , ti) =

∫ tf

ti

Φ(tf , τ)Bdτ (22)

δ ~xf = Φ(tN, t0)δ ~x0 + [Φ(tN, t1)Γ1, · · · ,ΓN · · ·Γ1δ ~uN]

δ ~u1...
δ ~uN

 (23)

[Φ(tN, t1)Γ1, · · · ,ΓN · · ·Γ1δ ~uN]−1[δ ~xf − Φ(tN, t0)δ ~x0] =

δ ~u1...
δ ~uN

 (24)

δ ~x0 = ~0, δ ~xf =

[
~0

∆~ve

]
(25)

~xlow−thrust,k|ti = ~xk|ti + δ ~xik|ti (26)

The variation in state is calculated incrementally to allow for a time varying solution for ~u where each
initial state in each increment is the final state of the previous increment and thrust is constant between. Thus
by using ∆~ve as the total change in the velocity state and enforcing no change in the position state, the locally
linearized solution to the required thrust can be solved directly and iterated to convergence. This solution is
taken as an approximation of the required trajectory and the total ∆v required for a tour and used only for
comparisons with other tours.
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Even Sampling Base Case

The method of piecewise optimization of trajectories is the result of a trade-off between the complete
sampling of the solution space of encounter times and the need for restraint in the use of computational
time. Using approximately the same computational time, an alternate method of even sampling is applied for
comparison.

After launching from Earth, 200 transit times from 0.2 to 2 years (3.28 days/increment) after the launch
date at Mars and Venus are explored using the p-iteration algorithm. Subsequently another 200 arrival dates
that connect the trajectory to the third planet, which may be either Earth, Mars, or Venus, 0.2 to 2 years after
arrival to the second planet are explored. With a three-planet trajectory established, the spacecraft ∆~ve is
calculated and stored along with the state at the final planet. At this point the minimum solution for the sum
of launch v∞ and ∆~ve for each three-planet tour is selected to explore branching solutions for subsequent
legs. Ideally, minimization is held until the end of the tour, but available computing resources and the limited
scalability requires consolidation of the solution space to one solution for each of the 100 initial launch dates
and combination of planets after every three encounters.

For the next leg of the tour, ∆~ve are calculated for the third and fourth planets and optimized at the arrival
at the fifth and so on with optimizations every three planets. Since each encounter increases the number of
branches, minimized solutions with high velocity requirements and a small number of legs connecting Earth
and Mars are culled to allow computation of up to nine planetary encounters. Finally, the cheapest tour for
each planet combination of the 100 initial launch dates is stored for study.

Approach Comparisons

Chen et al. (2005) In a search for three-synodic period Earth-Mars cyclers, Chen et al.13 apply a method
to stitching together semi-cyclers to generate longer tours. By using the GALLOP algorithm which is driven
by the Sparse Nonlinear Optimizer (SNOPT) package,15 five-planet cyclers calculated from co-player circular
orbits and are optimized using realistic planetary ephemeris. The method of piecewise optimization of five
planets is conceptually similar to the base case explored in this work and results in ∆v > 12 km/s for eight
Earth-Mars legs without including Earth departure hyperbolic excess velocity. By discretizing trajectories
into locally-linearized segments to create a low thrust solution, five-planet segments are directly optimized for
low thrust solutions where this work uses low thrust solutions as a post-processing treatment of an optimized
impulse trajectory. Chen et. al note that optimizing a low thrust solution for the entire tour is computationally
infeasible, requiring thousands of optimization variables for even a course discretization.

Russell and Ocampo (2006) Russell and Ocamapo14 use a gradient descent method to optimize the ∆v of
template cyclers using SNOPT. Like this work, they calculate the required ∆v by taking advantage of gravity
assists at Earth and Mars. Analytic gradients are calculated for the position and time constraints with respect
to the unknown time, hyperbolic excess velocities, and final positions, and are minimized until convergence.
A cost function that adds the trip ∆v and miss distances is employed if the constraints cannot be satisfied.
Several ballistic or low cost tours are calculated, but the solution set is restricted to a predetermined set of
Earth-Mars cyclers of various synodic periods.

Russell and Ocampo’s approach differs from this work in that instead of analytically determining partial
derivatives of the unknowns with respect to physical constraints, numerical partial derivatives of the cost
with respect to encounter time are calculated directly. Furthermore, the addition of randomization leverages
more of the benefits of a genetic algorithm, allowing solutions to migrate between minima when ballistic
trajectories cannot be found. Furthermore, since no cycler templates are used in this work, several previously
unexplored solutions sets are discovered. A disadvantage of this approach with respect to those of Russell
and Ocampo is difficulty optimizing specific trajectories and reproduction due to randomization.

McConaghy (2006) McConaghy12 uses SNOPT to optimize two-synodic period cycler trajectories. Using
template cyclers calculated from co-planar circular orbits, orbital elements are varied until they serve as
appropriate initial guesses for an ephemeris model. Because there are two more unknowns than the number
of constraint equations, the solutions are not unique and generate a two dimensional space of feasible initial
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Encounter Planet Encounter Date ∆vreq,impulse ∆vreq,low−thrust

1 Earth June 20, 2018 5.38 km/s 5.38 km/s
2 Mars September 23, 2018 0.06 km/s 0.09 km/s
3 Earth July 3, 2020 0.04 km/s 0.06 km/s
4 Mars March 19, 2021 3.62 km/s 4.59 km/s
5 Earth September 30, 2022 0.12 km/s 0 .15 km/s
6 Mars March 3, 2023 0.00 km/s 0.00 km/s
7 Earth October 13, 2024 N/A N/A

Total 9.23 km/s 10.26 km/s

Table 1. Seven planet Earth-Mars cycler used as a basis for comparison with the expanded parameter
space. The initial Earth departure ∆v is the required velocity in excess of the orbital velocity of the
Earth about the sun to attain the optimized trajectory to the next planet. Each subsequent ∆v are
maneuvers performed during encounters to remain on the cycler.

launch and final arrival dates. However the encounter dates for bodies in the middle of the tour are found
to vary little in the sample and it is reasoned that these dates represent the encounter times that would be
consistent with an ”ideal” cycler. Thus the arrival and launch dates can be varied to minimize other parameters
such as launch hyperbolic excess velocity. Arrival and departure hyperbolic excess velocities constrained to
be equivalent and any required ∆v comes from an impulse maneuvers between planets.

Trip ∆v for the first nine planets are comparable to this work, but generally exhibit longer times of flight.
To minimize times of flight McConaghy applies their approach to initial guess with ten-day increments of
time of flight to search for low ∆v solutions. This work optimizes time of flight in the cost function and
offers a more extensive and flexible solutions space while McCanghy offers solutions that can be optimized
for planet-to-cycler rendezvous ∆v independently.

RESULTS

Since 2018 is a Mars-Earth Hohmann Transfer launch window year and examples of cycler trajectories
with launch dates in 2018 exist in the literature, this year is chosen for an exhaustive analysis on the family
of feasible tours. The basic seven-planet cycler (E-M-E-M-E-M-E) is calculated and used as a basis for
comparison with more complex cyclers and tours that include Venusian encounters. Table 1 shows the best
combination when optimized for ∆v including Earth departure v∞. The 3.62 km/s maneuver at the second
encounter with Mars is the result of a trade off between minimizing the Earth departure velocity and total trip
∆v. For comparison, if Earth departure is removed from the cost and a new minima is calculated, the total
trip ∆v reduces to 1.25 km/s for the gravity assist maneuvers alone at the expense of a much larger hyperbolic
excess velocity at departure.

For the lowest cost trajectories studied, the largest expense is usually a series of plane change maneuvers
to compensate for inclination differences between the planets. When viewing the trajectory from a direction
perpendicular to the ecliptic (Figure 5 left), trajectory changes are barely noticeable and well within the
possible turn angle in each planetary encounter. Viewing the trajectory isometrically with thrust vectors for
the low-thrust optimization (Figure 5 right) indeed shows that most of the thrust and gravity maneuvers are
perpendicular to the ecliptic. This sensitivity implies that fortuitous alignments of inclination are nearly as
important as each planet’s true anomaly and reinforces the hypothesis that the addition of Venus may offer
opportunities to enact or avoid a plane change and thus reduce the ∆v cost of a tour.

When trajectories for an intermediate eighth or ninth planet with the same number of Earth-Mars and
Mars-Earth transfers are calculated, the cost falls considerably. The lowest ∆v cost trajectory found in 2018
is a nine-planet (E-M-E-E-M-E-V-M-E) tour (Figure 6, Table 2) that requires 6.172 km/s including Earth
departure for the impulse version of the trajectory and 7.262 km/s for the low-thrust counterpart. The ∼ 17%
increase in ∆v cost is typical for low-thrust impulse pairs in both the even-sampling and multi-objective
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Figure 5. Two dimensional view of the seven-planet baseline cycler trajectory de-
scribed in Table 1 as viewed from the positive z direction in ecliptic coordinates (left)
and in three dimensions with low thrust vectors (right) with an exaggerated scale to
emphasize inclination. The orbits of Venus, Earth, and Mars are represented by thick
solid ellipses. The impulse trajectory is represented by dashed lines and the low thrust
trajectory is shown as a dotted line. The origin for each plot is the location of the sun.

studies which is analytically demonstrable with the Cauchy-Schwartz inequality.20 For tours with low cost,
this difference is usually so small that the linearized estimate of the trajectory used in the low-thrust modeling
is almost identical to the final solution after convergence. The slight difference in the low thrust trajectory
(dashed line) and the impulse trajectory (dotted line) is again only visually significant in the z direction of
ecliptic due to the necessity of a plane change maneuver. The minimum cost nine-planet solution therefore
endures relatively small thrusted plane changes as shown in the isometric view (right). Compared to the base
seven-planet tour, this nine-planet tour achieves a much lower earth departure v∞ as a trade against a larger
maneuver at the first Mars encounter which highlights how the solution space might expand when algorithms
are allowed to attempt to minimize Earth departure. Also unlike a traditional cycler trajectory, the first E-M-E
cycle has an apoapsis nearly coincident with the encounter at Mars and a periapsis slightly inside the orbit
of Venus which acts to reduce the TOF between the two planets. The second consecutive Earth encounter
acts to shift the trajectory back to a more traditional cycler before a Venusian encounter is used to enact a
ballistic plane change for the final Mars-Earth leg. One disadvantage of this solution is that the hyperbolic
excess velocity grows with each encounter from 3.38 km/s at departure to as much as 18.73 km/s at final Earth
arrival whereas a traditional cycle maintains consistent excess velocities due to the nearly exact repetition of
parameters after a set of synodic periods.

Table 3 shows the application of the both the even-sampling and the optimization loop approach to the
specified trajectories and the minimum ∆v cost in 2018. Even sampling generated results with inappropri-
ately high ∆v for all combinations of encounters at the limit of the computational resources available. The
optimization loop offered improvements that averaged over 50% with the smaller improvements mostly due
to coincidental alignments.

To cull results, tours with a ∆v greater than 15 km/s using the optimization loop approach are excluded
from analysis. Though not all combinations of planets that allow for the required three Earth-Mars and Mars-
Earth transfers are represented, several dozen met this criteria. Additionally, alternate launch dates with
similar ∆v costs are available for most tours.
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Figure 6. The nine-planet tour described in Table 2 plotted in the same manner as Figure 5.

Encounter Planet Encounter Date ∆vreq,impulse ∆vreq,low−thrust

1 Earth June 22, 2018 3.38 km/s 3.38 km/s
2 Mars November 14, 2018 2.07 km/s 2.95 km/s
3 Earth August 13, 2019 0.16 km/s 0.21 km/s
4 Earth April 10, 2021 0.00 km/s 0.00 km/s
5 Mars March 18, 2023 0.54 km/s 0.70 km/s
6 Earth September 21, 2023 0.01 km/s 0.02 km/s
7 Venus June 30, 2025 0.00 km/s 0.00 km/s
8 Mars January 12, 2027 0.00 km/s 0.00 km/s
9 Earth March 28, 2027 N/A N/A

Total 6.17 km/s 7.27 km/s

Table 2. Lowest ∆v tour found for 2018 tabulated in the same manner as Table 1.
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Planets Even-Sampling [km/s] Optimization Loop [km/s] Difference

E-V-E-M-E-M-E-M-E 17.425 7.485 -57.0%
E-V-M-E-M-E-M-E-E 26.937 12.395 -54.0%
E-V-M-E-M-E-M-V-E 21.721 12.977 -40.3%
E-V-M-E-M-V-E-M-E 23.923 13.624 -43.1%
E-V-M-V-E-M-E-M-E 35.165 9.684 -72.5%
E-M-E-M-E-E-M-E-E 20.653 10.247 -50.4%
E-M-E-M-E-E-M-V-E 21.739 10.615 -51.2%
E-M-E-M-E-M-E-E-E 34.463 9.593 -72.2%
E-M-E-M-E-M-E-M-E 27.972 13.599 -51.4%
E-M-E-M-E-M-E-V-E 26.736 9.785 -63.4%
E-M-E-M-E-M-M-E-E 24.751 14.990 -39.4%
E-M-E-M-E-M-V-M-E 25.455 12.658 -50.3%
E-M-E-M-E-M-V-V-E 23.869 10.120 -57.6%
E-M-E-M-E-V-E-M-E 23.092 9.000 -61.0%
E-M-E-M-E-V-M-E-E 15.574 12.061 -22.6%
E-M-E-M-E-V-M-V-E 15.018 11.016 -26.6%
E-M-E-M-E-V-V-M-E 16.529 8.453 -48.9%
E-M-E-M-V-E-M-E-E 21.667 7.651 -64.7%
E-M-E-M-V-E-M-V-E 20.166 8.293 -58.9%
E-M-E-M-V-E-V-M-E 27.83 13.196 -52.6%
E-M-E-M-V-M-E-M-E 15.152 9.155 -39.61%
E-M-E-M-V-V-E-M-E 23.781 8.124 -65.8%
E-M-E-V-E-M-E-M-E 21.851 9.581 -56.2%
E-M-E-V-M-E-V-M-E 24.474 11.184 -54.3%
E-M-E-V-M-V-E-M-E 21.737 11.378 -47.7%
E-M-E-V-V-M-E-M-E 20.147 10.196 -49.4%
E-M-M-E-M-E-M-V-E 27.716 12.121 -56.3%
E-M-M-E-M-V-E-M-E 23.122 11.555 -50.0%
E-M-M-M-E-M-E-M-E 34.127 12.685 -62.8%
E-M-M-V-E-M-E-M-E 31.609 12.031 -61.9%
E-M-V-E-M-E-M-E-E 24.425 7.788 -68.1%
E-M-V-E-M-E-M-V-E 18.233 7.613 -58.2%
E-M-V-E-M-E-V-M-E 34.335 7.166 -79.1%
E-M-V-E-M-V-E-M-E 15.126 7.462 -50.7%
E-M-V-V-E-M-E-M-E 17.563 7.526 -57.2 %

Table 3. Lowest ∆v tour found for 2018 for both the even sampling and optimization loop approach
The optimization loop method resulted in lower ∆v requirements for all tours examined.
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Figure 7. Plot of ∆v versus launch date for the multi-objective optimization loop
approach. Circle, cross and star markers are used for zero, one or two planets inserted
into the one-synodic period cycler respectively (left). For the plot on the right, cross
markers are used if the tour includes an encounter with Venus and a circle if not.

Multi-objective Results

Analysis of the full multi-objective function is restricted to the optimization loop approach. By varying w0

and w1 in Equation 6 to explore the full range of possible solutions and applying the ∆v cut off of 15 km/s,
several hundred launch date solutions are generated that are not strictly coincident with an optimization of
solely the ∆v cost. When plotted (Figure 7), a significant grouping of solutions from late May to late July
2018 is observed including the minima described in Table 2. Due to the flexibility of the algorithm, the initial
even spacing of launch dates simulated tends to group towards the nearest low-cost alignment and vacates
most of the latter half of the year.

Markers in the left panel of Figure 7 are distinguished by the number of planets inserted into the one-
synodic period cycler. The best solutions throughout the year required at least one intermediate planet with
the exception of two one-synodic period cycler solutions in the beginning of January. Several solutions better
than the base case are observed around its June 20 launch date. When distinguished by the presence of a
Venusian encounter (right), the lowest ∆v tour alternates between Venus-inclusive or Venus non-inclusive
throughout the year with the notable exception of a few Venus-inclusive tours well outside the traditional
2018 Mars-Earth window. With respect to ∆v, this demonstrates an opportunity to add launch dates during
fortuitous alignments of Venus.

A comprehensive depiction of all three objectives is presented in Figure 8. When plotting ∆v versus the
average E-M and M-E times of flight (Figure 9 left), the majority of solutions bifurcate into a group around
340 days, which are consistent with the base case solution as well as most of the tours with similar launch
dates and a group around 450 days, which are consistent with the longer period cycles with periapsis near the
orbit of Venus like the second half of the nine-planet tour in Table 2.

As discussed, the hyperbolic excess velocity is not independently optimized as even small values of w3

resulted in unacceptably high values of ∆v. However, a broad range different average v∞ at Earth and Mars
appear in the existing solution space (Figure 9 right). An inverse relationship is observed between average
v∞ and the best ∆v and the bulk of the tours studied have an average v∞ above 9 km/s.
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Figure 8. Plot of ∆v versus average Earth-Mars and Mars-Earth time of flight versus
average hyperbolic excess velocity and Mars and Earth. Marker usage is the same as
Figure 7 left.
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Figure 9. Plot of ∆v versus average Earth-Mars and Mars-Earth time of flight (left)
and average hyperbolic excess velocity at Mars and Earth (right). Markers are the
same as Figure 7 left.

In contrast to the seminal work of Russell and Ocampo, which gradually changes the eccentricity and in-
clination of established cyclers, his work allows a more flexible exploration of the parameter space at the
expense of additional computational complexity. In exchange for the increased computational complexity,
adding Venus to the analysis is found to contribute opportunities to reduce all three objectives of the cost
function as well as provide a larger range of feasible launch dates. Solution types of this nature should there-
fore be included in considerations of practical applications for continuous transportation between Earth and
Mars. Furthermore, whether or not Venusian encounters are included, the recursive optimization approach
more readily allows trades to be made between v∞, ∆v, and time of flight than an analysis confined to cycler
templates.

CONCLUSION

A new loop optimization approach to n-body planetary tours in the solar system is studied against solutions
methods for the classic Mars-Earth cycler. From the initial set of three planets, the cost of a tour is optimized
incrementally allowing solutions to migrate towards and between local minimum costs. The benefit of this
approach is that it scales well to many planets, but it does not guarantee that the solutions found are absolute
cost minima. Sampling the entire space of possible launch and encounter dates is computationally infeasible
and offers poorly optimized costs. Restricting solutions for repeated Earth-Mars transfers to cyclers con-
strains the selection of launch dates and the TOF cost of the tour, but may result in well-optimized ∆v for an
individual solution. Allowing encounters with Venus offers the opportunity to enact or avoid a plane change
and may reduce the cost of an otherwise infeasible tour.

Furthermore, the flexibility of piecewise optimization within an open parameter space allows solutions to
adaptively migrate between classes or cyclers or non-cycler arrangements whenever a fortuitous alignment
exists. Solutions that behave in this manner such as the tour described in Figure 6 and Table 2 offer a new line
of inquiry into solutions classes for Earth-Mars transport. Importantly, the method of recursive optimization
easily extends to any n-body multi-planetary trajectory and can be used to ease the computational load of
studies with respect to a brute-force multiple shooting method approach.
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