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Electric propulsion has recently become a viable option for robotic missions, 
enabling shorter flight times, fewer required planetary gravity assists, smaller 
launch vehicles, and/or larger payloads.  Trajectory design of these missions 
often relies on local optimization of the low-thrust trajectories using starting 
points for departure and arrival dates and selection of gravitational swing-bys 
based on previous experience.  Global optimization of a low-thrust trajectory 
with multiple targets and gravity assists, however, is a difficult problem, due to 
the multi-modality and large size of the design space.  In choosing analysis 
techniques, there exists an important tradeoff between the accuracy of the results 
and computing time required.  This paper presents the difficulty of solving this 
global optimization problem, using the design of a multiple asteroid tour mission 
as an example.  Furthermore, this paper presents an overview of the methods 
available for both low-thrust trajectory optimization and global optimization, 
along with recent improvements made, and assesses their efficacy and 
applicability to solving a multiple target/multiple gravity assist problem. 

 
INTRODUCTION 
 
 With the recent successful launches of the Deep Space 11, SMART-12, and Hayabusa3 missions, and 
with the upcoming launch of Dawn4, electric propulsion has become a viable option for robotic solar 
system exploration.  Previous studies have shown that the use of electric propulsion has the potential to 
result in shorter flight times, fewer required planetary gravity assists, and/or smaller launch vehicles5.  One 
major challenge of low-thrust missions is in the area of trajectory design and optimization.  Trajectory 
design often relies on local optimization of the low-thrust trajectories using expert-based starting points for 
departure and arrival dates and selection of gravitational swing-bys.  These choices are generally based on 
known configurations that have worked well in previous analyses or simply on trial and error.  Global 
optimization, however, is a more difficult problem, especially when multiple target bodies and gravitational 
assists are added.  In choosing an analysis technique, there exists an important tradeoff between the 
accuracy of the results and computing time required.  Over the past several years, numerous improvements 
have been made in the area of both low-thrust trajectory optimization and the application of global 
optimization methods to the low-thrust problem. 
 

Of particular interest is the application of these optimization methods to a multiple asteroid tour 
mission.  With the exception of SMART-1, all of the aforementioned missions either intercepted or flew-by 
asteroids and/or comets.  There is significant interest in studying Near-Earth Asteroids (NEAs) in 
particular, because of the possibility of an Earth impact and because of their connection to the formation of 
the solar system and life on Earth.  The NEAR mission, for example, which orbited the asteroid 433 Eros, 
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was interested in answering questions related to the nature and origin of near Earth objects, for several 
reasons6.  First, they are the primary source of large body collisions with Earth, thereby influencing 
evolution of the atmosphere and life.  Second, asteroids provide clues to the nature of the early solar system 
processes and conditions, as these are often preserved on small bodies such as asteroids, comets, or 
meteorites.  The NEAs are especially believed to contain clues to the nature of the building blocks from 
which the inner planets were formed.  Finally, the NEAR mission was interested in measuring the 
properties of 433 Eros, in order to establish a connection between meteorites and the history of asteroids, to 
better quantify the nature of their impact hazard to Earth.   

 
To date, over four thousand NEAs have been identified, 841 of which have been identified as 

Potentially Hazardous Asteroids (PHA)7.  Figure 1 plots all of the NEAs, as a function of their semi-major 
axis and eccentricity, with the PHAs marked in red.  An asteroid is defined as potentially hazardous if the 
minimum distance between its orbit and the Earth’s orbit is less than 0.05 AU, and if its absolute magnitude 
(H), which is used to estimate the diameter of an asteroid, is less than 22.  This value of H corresponds to a 
diameter of 110m – 240m or greater.  Furthermore, missions to multiple asteroids are of particular interest 
in order to maximize the science return for a single spacecraft, as opposed to visiting just a single asteroid.  
Additionally, designing a mission to rendezvous with or flyby multiple asteroids is a more challenging 
trajectory optimization problem, which is why it has been chosen as the topic of this paper. 

 

 
Figure 1  Plot of currently known near Earth asteroids.  

 
PROBLEM OVERVIEW 
 
 The problem of interest is to determine the global optimum of a low-thrust, multiple asteroid tour 
mission.  This will involve searching over a wide range of parameters, including Earth departure date, 
selection of the appropriate combination of asteroids, arrival dates at each of the asteroids, and so on.  
Additionally, local optimization will be required, in order to determine the thrust direction and magnitude 
along the spacecraft trajectory for a given set of global parameters.  Figure 2 (left) plots the optimal low-
thrust trajectory from Earth to the asteroid Apophis, departing Earth on 1 December 2012 with a 210-day 
time of flight.  In this paper, optimal will be understood to mean minimum-fuel.  Keep in mind that other 
optimality conditions could be chosen, such as minimum time of flight, but in general, the trajectory 
optimization problem is formulated as minimizing propellant consumption possibly with some constraint 
on maximum time of flight.  While the trajectory shown in Figure 2 may be optimal for that particular 
launch date and time of flight, that does not guarantee a globally optimal solution over a range of departure 
dates and flight times.  In fact, the final mass at Apophis was calculated to be 925kg for this particular 
trajectory, based on an initial mass of 1500kg.  The global optimum over a two-year span from 2012-2013, 
with a maximum time of flight of 210 days, was found to be 990 kg.  If a poor guess for departure date was 
chosen, however, also for the 210-day time of flight, the resulting arrival mass was as low as 54kg.  This is 
due to improper phasing between Earth and Apophis for that particular departure date and time of flight. 
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Figure 2  Trajectory to the asteroid Apophis (left) departing Earth on 1 December 2012 with a 210-
day time of flight; arrival spacecraft mass (right) for a range of departure dates and times of flight, 

based on an initial mass of 1500 kg. 
 
 Figure 2 (right) plots the fuel-optimal trajectories for a sweep of departure dates and times of flight.  
Both the single trajectory and the surface plot results were generated using Chebytop, a low-fidelity 
program that uses Chebychev polynomials to represent state variables.  The polynomials are then 
differentiated and integrated in closed form to solve a variable-thrust trajectory, which can be used to 
approximate the constant thrust trajectory8.  As can be seen from the plot, the final mass at Apophis arrival 
is multi-modal with respect to departure date.  Therefore, if a gradient-based optimizer were used to 
determine the Earth departure date along with the optimal control parameters, only a local optimum would 
be found, close to the initial guess given for departure date.  If a wider range of departure dates were of 
interest – more than a year span for this particular trajectory, due to the phasing – either a similar sweep of 
departure dates would be required or an optimizer capable of handling multi-modal design spaces could be 
utilized.  For such a simple problem, doing a parametric study over a single variable is a simple process, 
and not particularly time intensive, particularly with the low-fidelity and fast-running approach used in 
Chebytop.  When more variables are added, however, the problem quickly increases in size and 
complexity. 

 
 As aforementioned, the full global optimization problem of a multiple asteroid tour mission includes 
many more free variables.  Globally, the following are free variables: Earth departure date, asteroid 1 
(chosen from some set of NEAs of interest), time of flight to asteroid 1, asteroid 1 stay time,…, asteroid n, 
time of flight to asteroid n, asteroid n stay time, and Earth arrival date (if desired).  For a specific set of 
global variables, the optimal control history for the spacecraft must also be determined.  The constraints 
chosen at each asteroid arrival will depend on whether a flyby or rendezvous is desired.  For a flyby, of 
course, the stay time will be predetermined at a value of zero.  Figure 3 illustrates a schematic of the 
asteroid tour problem for a set of three predetermined asteroids, including an Earth return segment.  Only 
the projection onto the X-Y plane is shown.  
 
 With the increased number of design variables, the increasing dimensionality of the problem causes a 
parametric study to become prohibitive due to computational requirements.  The parametric study plotted in 
Figure 2 discretized the departure dates in two-day increments and the time of flight in 30-day increments, 
resulting in a total of 2160 cases, where each of those cases includes a local trajectory optimization for the 
optimal control history.  Table 1 illustrates a sample discretization for a subset of the design variables 
included in the full global optimization problem, where a sequence of three asteroids is predetermined and 
an Earth return is not included.  Even for this subset, with a fairly course discretization, a grid search would 
require almost 30 million cases!  If the choice and sequence of asteroids were not predetermined, but 
instead included in the optimization problem, this number would grow even larger.  Additionally, gravity 
assists could also be included in the trajectory in an attempt to further reduce the required propellant mass.  
Keep in mind again that each of these cases requires an optimization of the spacecraft controls, which can 
be time intensive in and of itself.  Therefore, a domain-spanning global optimization method should be 
chosen to avoid running all possible combinations of the discretized global variables. 
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Table 1 
SAMPLE GRID SEARCH DISCRETIZATION FOR MULTIPLE ASTEROID TOUR PROBLEM. 

 
Variable Range Increment # Grid Point 

Earth departure date 2 years 15 days 50 
TOF to Asteroid 1 200-400 days 10 days 21 
Stay time at Asteroid 1 30-60 days 10 days 4 
TOF to Asteroid 2 200-400 days 10 days 21 
Stay time at Asteroid 2 30-60 days 10 days 4 
TOF to Asteroid 3 200-400 days 10 days 21 
Stay time at Asteroid 2 30-60 days 10 days 4 

TOTAL # OF CASES: 29,635,200 
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Figure 3  Illustration of asteroid tour optimization problem, for a predetermined asteroid sequence. 

  
 The multiple asteroid tour mission outlined above is analogous to multiple gravity assist trajectories to 
the outer planets, on which much work has already been done.  In general, however, the trajectory 
optimization is based on a predetermined sequence of gravitational assist bodies, which would be 
comparable to an asteroid tour trajectory optimization with a predetermined sequence of asteroids.  
Furthermore, the solutions are often based on trial and error or on previously known configurations that 
yield a feasible solution, since an exploration of the full design space has been computationally prohibitive 
up to this point.  Several sequences of gravitational assists are examined, with a range of departure dates 
and times of flight, until a good solution is found.  This of course does not guarantee that the globally 
optimal solution has been found, and significant improvement in the objective function could be realized if 
an automated global optimization method were successfully applied to this problem.  It is also important to 
note that while a planar assumption can often be made when considering trajectories to the outer planets 
(with the exception of Pluto), particularly during the conceptual design phase, many NEAs are highly 
inclined and this assumption is not valid.  In fact, about 92% of all NEAs have inclinations greater than any 
of the outer planets, again with the exception of Pluto, and more than 50% have inclinations greater than 
10°. 
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Overview of Desired Optimization Characteristics 
 
 Exploring a large design space is most important during the conceptual design phase of mission 
planning, which is also when accuracy is the least important.  In order to quickly examine a large number 
of potential trajectories, a low-fidelity approach may be appropriate.  The accuracy must be sufficient 
enough so that the location of the optimal solution is close to the actual optimal when a more accurate 
method is employed.  However, errors of a few percent are acceptable at this phase.  The purpose of 
conceptual design is to determine candidate trajectories that will best meet the mission constraints and 
objectives.  More accurate trajectory optimization techniques can be used later in the design process on a 
handful of promising trajectories. 
 

Because of the nature of the problem, two optimization methods will likely be required.  The 
global optimization method must be domain spanning, in order to account for the multi-modality of the 
problem, and must be able to handle discrete variables.  This global optimization method will handle the 
variables referred to as “global variables” above (Earth departure date, sequence of asteroids, times of 
flight, etc.).  Another optimization method will have to be employed to optimize the physical trajectory, 
which includes the control parameters of the spacecraft (thrust magnitude and direction, and possibly 
power).  This paper will refer to this optimization as local optimization.  While many trajectory 
optimization programs include both optimization of the thrust and certain global parameters such as time of 
flight or departure date, this will result in only a locally optimal solution based on the initial guess for the 
global variables.  For this reason, the global and local optimization methods will be differentiated in this 
paper. 
 
TRAJECTORY OPTIMIZATION METHODS AND TOOLS 
 
 The basic optimal control problem involves determining the control vectors and parameters to 
minimize some performance index9.  As mentioned earlier, the performance index to be minimized in this 
case is the propellant consumption.  The control vector, specified in Eq. (1) as u c , consists of the thrust-
direction unit vector, the thrust magnitude (T) and the power (P), which is required for variable specific 
impulse engines.  The general trajectory equations of motion are also given by Eq. (1).   
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Additionally, for each leg of the trajectory, the spacecraft’s initial conditions must match the position and 
velocity of the point of origin.  For a flyby trajectory, the spacecraft’s final conditions must match the 
target’s position, and for a rendezvous trajectory, the spacecraft must match the target’s position and 
velocity.  For a rendezvous mission leg, these physical state constraints are given by Eq. (2).    
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 Additionally, there are constraints on maximum thrust and power, dependent on the engine parameters 
chosen for the spacecraft. 
 
 In general, there are two types of methods for solving the local trajectory optimization problem – direct 
and indirect10,11,12,13.  Indirect methods, based on calculus of variations, formulate the optimal control 
problem as a two-point boundary value problem, which is solved by satisfying terminal conditions and 
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targeting constraints.  If a solution to the TPBVP is obtained, the resulting trajectory is the optimal solution 
for those particular initial conditions and targeting constraints.  Finding a solution, however, is often 
difficult because the convergence domain for such problems tends to be small, and is very sensitive to the 
initial guesses of the costate variables, which are generally not physically intuitive.  Adding intermediate 
gravity assists further increases the sensitivity to the initial guesses and further decreases the convergence 
domain.  In order to solve these problems, a homotopy chain is often used, where the solution to a similar 
problem is known, and that problem is changed slightly and solved with the initial guesses of the known 
problem in order to step closer to the problem of interest14.  Therefore, typical indirect methods are difficult 
to implement within an automated, global optimization program due to the long execution times, small 
region of convergence, and required user oversight.  Additionally, the level of accuracy achieved by 
indirect methods is not required during the conceptual mission design phase.   

 
 Direct methods, on the other hand, parameterize the optimal control problem and use nonlinear 
programming (NLP) techniques to directly optimize the performance index.  A variety of different direct 
method exists, including collocation, direct transcription, and differential inclusion9,15,16,17,18.  The number 
of design variables for direct methods can become very large, and therefore these problems are limited by 
current NLP techniques.  Additionally, because direct methods require discretization of a continuous 
problem, the solution is considered sub-optimal, although the accuracy is generally sufficient for 
conceptual design.  The main advantages of direct method techniques are their increased computational 
efficiency and their more robust convergence.  The solution is less sensitive to the initial guesses and those 
initial guesses are more physically intuitive, which make direct methods preferable for implementing 
within an automated global optimization scheme. 

 
 Finally, there also exist hybrid methods12,19, which numerically integrate the Euler-Lagrange equations 
and control the spacecraft based on the primer vector.  As in the direct method, the hybrid methods solve a 
nonlinear programming problem, but with the Lagrange multipliers making up part of the parameter vector 
while maximizing or minimizing some cost function.  Hybrid methods search numerically for the set of 
parameters that extremize the cost function, while explicitly satisfying only the kinematic boundary 
constraints. 
 
Low-Thrust Trajectory Optimization Tools 
 
 There are a wide variety of available tools for low-thrust trajectory optimization, many based on the 
methods described above.  In 2002, NASA established the Low-Thrust Trajectory Tools Team (LTTT) to 
improve the agency’s low-thrust trajectory analysis capability and to create a common set of low-thrust 
trajectory tools8,20.  Under the effort, five new tools were developed, and 32 reference missions were 
identified that would be relevant to future NASA missions and would test the capabilities of these new 
tools.  The reference missions include numerous missions with multiple gravity assists as well as flybys of 
and rendezvous with comets and asteroids.  In general, the new tools are of higher fidelity, easier to learn 
and use, and can analyze a broader range of missions than the previously existing set of tools. 
 
 Prior to the LTTT effort, the primary low-thrust trajectory analysis tools for most of NASA’s 
preliminary design studies were CHEBYTOP, VARITOP, SEPTOP, and SAIL8.  CHEBYTOP uses 
Chebychev polynomials to represent state variables, which are then differentiated and integrated in closed 
form to solve a variable-thrust trajectory.  This solution can then be used to approximate a constant thrust 
trajectory.  While it is considered a low-fidelity program, it is highly valued for its ability to rapidly assess 
large trade spaces.  It cannot, however, analyze multi-leg missions and is limited to the heliocentric sphere 
of influence.  VARITOP, SEPTOP, and SAIL all use calculus of variations in the formulation of the state 
and co-state equations, which are integrated numerically to solve the two-point boundary value problem.  
The programs differ in their solar electric propulsion, nuclear electric propulsion, and solar sail models.  In 
general, these tools can also only handle heliocentric trajectories, and are considered to be medium-fidelity. 
  
 The tools developed under the LTTT effort are all considered to be medium- to high-fidelity trajectory 
tools8.  MALTO was developed at JPL based on a method by Sims and Flanagan, which will be explained 



 7

later in the paper.  Basically, this tool implements a direct method, simulating a continuous burn trajectory 
with a number of impulsive burns, around a single gravitational body.  It is considered to be medium 
fidelity.  This tool has been used for numerous trajectory design studies, including the design of the Jupiter 
Icy Moons Orbiter.  The remaining LTTT tools are all considered to be high-fidelity.  Copernicus, 
developed at the University of Texas at Austin, is an n-body tool with a high degree of flexibility.  The user 
can model a number of different missions, with varying gravitational bodies, objective functions, 
optimization variables, constraint options, and levels of fidelity.  Additionally, it can model multiple 
spacecraft, as well as optimize for both constant and variable specific impulse trajectories.  COPERNICUS 
employs multiple shooting and direct integration for targeting and state propagation21.  Mystic was 
developed by Greg Whiffen at JPL, and implements Static/Dynamic Optimal Control (SDC), which was 
developed by the author.  SDC is a nonlinear optimal control method designed to optimize both static 
variables and dynamic variables (functions of time) simultaneously22.  One of the main strengths of this 
tool is its ability to automatically find and use gravity assists if beneficial to the trajectory.  Mystic is being 
used to design the Dawn trajectory, and after being flight qualified, is expected to be used to validate the 
other tools.  OTIS 4.0 is an upgraded version of the program originally developed by NASA Glenn 
Research Center and Boeing for launch vehicle trajectory analysis23,24.  This tool employs a direct method 
for low-thrust trajectory optimization, using nonlinear programming techniques to solve the implicit 
integration problem.  SNAP, developed at NASA Glenn Research Center, is the final tool developed under 
the LTTT effort.  SNAP’s distinguishing feature is its ability to propagate planet-centered trajectories, 
including aspects such as atmospheric drag, shadowing, and higher-order gravity models.  It does not, 
however, contain an optimizer. 
 
 With the exception of SNAP, the various tools described above were compared for a number of 
different low-thrust mission scenarios.  Ref. 8 provides an overview of five of the 32 reference missions 
examined, and compares in detail the results of the various tools.  In general, however, it was found that the 
low, medium, and high fidelity tools arrived at very similar answers when their input assumptions were 
consistent.  The high fidelity tools do not necessarily provide significant improvements in accuracy, but are 
able to model more complex missions.  Low fidelity tools, on the other hand, have the advantage of faster 
execution times, rapid trade study analysis, and are often much easier to learn and implement.  Therefore, 
for application to the global optimization of a multiple asteroid tour mission, a low fidelity tool may be the 
most appropriate, if it can be extended to model such a complicated mission. 
 
 In addition to the LTTT tools, several recent university-developed tools have been created for low-
thrust trajectory optimization.  Petropoulos at Purdue University incorporated a low-thrust gravity assist 
capability to STOUR (Satellite Tour Design Program) to create STOUR-LTGA, which automatically 
searches for gravity-assist trajectories25.  In this program, the user specifies a sequence of gravity-assist 
bodies, a range of launch dates, a range of V∞s, and constraints on various parameters, such as time of 
flight and propellant consumption.  STOUR-LTGA employs a shape-based method to approximate the 
shape of the trajectory and analytically solve the equations of motion.  This method will be described in 
more detail later in the paper.  Also developed at Purdue University, GALLOP implements the direct 
method formulated by Sims and Flanagan, which is also found in MALTO26,27.  More detail on both 
methods as well as results generating using these tools will be presented in subsequent sections. 
 
Recent Improvements to Indirect Methods 
 
 In general, tools using indirect methods for trajectory optimization are considered high-fidelity tools 
because they numerically integrate the equations of motion and determine the continuous control history of 
the spacecraft.  As a result, however, they generally require long run times are not suited for conceptual 
design, when a broad exploration of the trade space is required.  Additionally, as aforementioned, another 
obstacle to their use during conceptual design is the need for user oversight, because of the small 
convergence domain and the need for non-intuitive initial guesses.  The problem of non-intuitive initial 
guesses has been recently addressed by Ranieri at the University of Texas at Austin, who employs an 
adjoint control transformation to give physical meaning to the initial estimates of the costate vector12,28.  
Ranieri applies this technique to solving a roundtrip, time-constrained trajectory with Isp constraints and 
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mass discontinuities, which has many similarities to an asteroid rendezvous sample return problem.  In fact, 
this method can be directly applied to a roundtrip trajectory to a single asteroid, but would need to be 
modified to include multiple asteroid rendezvous.  Figure 4 presents a schematic of the mission of interest. 
 

 
Figure 4  Schematic of a roundtrip, time-constrained trajectory. 

 
 In solving the optimal control problem as an indirect optimization problem, the Euler-Lagrange 
equations are integrated numerically, with the thrust direction and constrained engine parameters 
comprising the controls.  The optimization problem is to minimize propellant consumption and is 
formulated as either a maximization of the final mass for a given initial mass or a minimization of the 
initial mass for a given final mass.  The start and end times of the trajectory are free search variables, 
although the solution will be a local minimum based on the initial guesses.  The resulting multipoint 
boundary value problem is then solved using the controls based on the Pontryagin maximum principle.  
Instead of requiring initial guesses for the costates, however, the adjoint control transformation allows the 
velocity costates to be replaced with angles that describe the direction of the thrust.  These new unknowns 
have actual physical significance; therefore intelligent estimates of their initial guesses can be made. 
 

        
Figure 5  VSI roundtrip to Mars departing 20 May 2018 (left); CSI roundtrip to Mars departing 24 

May 2018 (right). 
 
 Ranieri applies this methodology to roundtrip trajectories to both Mars and Jupiter, for variable 
specific impulse (VSI) and constant specific impulse (CSI) engines.  Two cases for roundtrip trajectories to 
Mars are presented in Figure 5.  For the CSI case, a coast-thrust-coast sequence is assumed for each leg of 
the trajectory.  As can be seen, the CSI trajectory closely approximates the VSI solution. 
 
Recent Improvements to Direct Methods 
 
 MALTO, the tool mentioned above that was created under the recent LTTT effort, is based on a direct 
method by Sims and Flanagan10,11.  This tool is intended to be used primarily for preliminary design of low-
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thrust interplanetary trajectories including those with multiple gravity assists.  Figure 6 illustrates the 
structure of the trajectory used in this method.  As shown, the trajectory is divided into legs that begin and 
end at control nodes.  Typically, these control nodes represent planets or other bodies, but could also 
represent free points in space.  On each leg is a match point, and the trajectory is propagated forwards from 
the previous control node and backwards from the subsequent control node to the match point.  The 
purpose of employing this multiple shooting technique is to reduce the sensitivity of the propagation to 
intermediate flybys.  Each leg is also subdivided into numerous segments containing an impulsive ∆V at 
the middle of each segment, in order to approximate a continuous thrust problem.  The magnitude of this 
∆V is limited by the total amount of ∆V that could be accumulated over the entire segment for the 
continuous thrusting case.  The propagation of the trajectory assumes the two-body problem, and gravity 
assists are assumed to cause an instantaneous change in the direction of the V∞ vector. 
 

 
Figure 6  Trajectory structure of the Sims and Flanagan direct method. 

 
 This trajectory structure leads to a constrained, nonlinear optimization problem, which is solved using 
the program SNOPT developed at the University of California San Diego.  MALTO uses analytic 
derivatives (instead of finite differencing), which contribute largely to the fast execution and robust 
convergence of the tool.  The problem formulation, however, leads to a large number of independent 
variables.  At the beginning and ending control nodes, the independent variables include the velocity of the 
spacecraft relative to the body, the mass of the spacecraft, and the corresponding epoch.  At an intermediate 
body, there are two sets of variables – one at arrival and one at departure – to account, for example, for 
changes in velocity for a flyby, changes in mass, or changes in time for a rendezvous.  The majority of the 
independent variables are comprised of the components of the thrust vector on each segment.  Additional 
independent variables can include the reference power of the spacecraft and the specific impulse for a 
variable specific impulse trajectory.  All of these independent variables have associated upper and lower 
bounds.  The primary optimization constraints are that the position, velocity, and mass of the spacecraft 
must be continuous at the match points.  Additionally, the magnitude of the thrust on each segment is 
constrained by the power available for thrusting.  Other constraints can include the mass at the initial 
control node, the V∞ vector at departure, at an intermediate body, or at arrival, the time of flight and 
propellant mass between any two control nodes, and the minimum allowable distance from the Sun.  In 
implementing this method in MALTO, the following optimizations were enabled: maximize final 
spacecraft mass, minimize initial spacecraft mass, minimize total trip time, optimize a weighted 
combination of final mass and trip time, and maximize the Earth miss distance of a small body after impact. 
 
 In the original paper by Sims and Flanagan, the authors applied their direct method to several different 
trajectories, verifying their results by comparison to SEPTOP: a flyby of the asteroid Vesta with a Mars 
gravity assist, a rendezvous with the comet Tempel 1, and a flyby of Pluto with two Venus gravity assists 
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and one Jupiter gravity assist.  With their direct method, even simple initial guesses for thrust direction and 
magnitude worked well in arriving at the solution.  For the initial guess, they assume that the thrust varies 
linearly between nodes, with the direction at the nodes being perpendicular to the radius vector at that 
point.  The solutions for the three reference missions compared very well to those obtained using SEPTOP.  
For the Vesta and Tempel 1 trajectories, SEPTOP actually had difficulty converging for some of the cases, 
while the Sims and Flanagan method converged readily.  Furthermore, SEPTOP could only handle at most 
two intermediate flybys, so the Earth-Venus-Venus-Jupiter-Pluto trajectory had to be broken into two 
trajectories in SEPTOP.  Using the Sims and Flanagan method, any number of intermediate bodies can be 
analyzed.  They do note that for more complicated trajectories, however, the optimization does not always 
converge with the initial starting conditions, so a fair amount of user manipulation is still required to arrive 
at a converged solution.   
 
 In addition to the reference missions analyzed by Sims and Flanagan, several papers out of Purdue 
University include additional results using GALLOP, an in-house trajectory optimization tool based on the 
Sims and Flanagan direct method29,30.  These additional trajectories include a rendezvous with Ceres via 
Mars, an Earth-Venus-Earth-Mars-Jupiter trajectory, an Earth-Venus-Jupiter trajectory, an Earth-Mars-
Jupiter trajectory, and an Earth-Earth-Mars-Jupiter trajectory.  This helped to further validate the method as 
well as demonstrate its ability to handle a number of different flyby problems with numerous intermediate 
bodies.  For the Purdue studies, however, the initial guesses were generated by a shape-based analytic 
method (described later in the paper). 
 
 Building on the Sims and Flanagan method, Yam at Purdue University explored different formulations 
for parameterizing the ∆V in an effort to decrease run time26,27.  The formulations examined are as follows: 
 
1. N-Vector Formulation (original method used in Sims and Flanagan model) – The optimization 

variables consist of the ∆V coordinates on each segment (∆V, θ, ψ) or (∆Vx, ∆Vy, ∆Vz), with the 
maximum allowable ∆V constraint explained above.  For n segments, this results in 3n variables and n 
nonlinear constraints. 

 
2. Node (On/Off-Node) Formulation – This formulation replaces the n ∆V magnitudes with a set of 

On/Off nodes.  Here, an off-node defines the switching point from maximum-thrust (MT) to null-thrust 
(NT) and an on-node defines the switching point from null-thrust to maximum-thrust.  Constraints can 
be placed so that the order of the nodes can be pre-specified (e.g., thrust-coast-thrust).  There are eight 
optimization variables for each on/off-node: position, velocity, mass, and time, resulting in a total of 
8kN + 2n optimization variables for kN nodes. 

 
3. Chebyshev Formulation – For each leg, the ∆V angles (θ and ψ) are modeled as a Chebyshev series: 
 

c0T0 u( )+ c1T1 u( )+ ⋅ ⋅ ⋅ + ckTk u( )                      (3) 
 

The parameters associated with the ∆V angles are the coefficients on the Chebyshev series, {c0, 
c1,…,ck}.  The number of variables for this formulation is n + kθ + kψ + 2, where kθ and kψ are the 
degree of the Chebyshev series on θ and ψ. 

 
4. Node + Chebyshev Formulation – This combines the Node formulation and the Chebyshev 

formulation.  The on/off-nodes are used to parameterize the ∆V magnitude, while the ∆V angles are 
modeled by a Chebyshev series.  Therefore, for this formulation, the number of variables required to 
parameterize the ∆V is 8kN + kθ + kψ + 2. 

 
In Ref. 27, four different case studies are examined to determine the performance of each of the four 

∆V parameterizations.  For a simple Earth-Jupiter rendezvous mission, the Node + Chebyshev formulation 
had a significantly faster run time than the other formulations.  The Chebyshev formulation had 
convergence difficulties for certain starting times of flight, in that the solution would converge to a 
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suboptimal solution (local minimum).  The second mission examined is a flyby of the asteroid Vesta, with a 
Mars gravity assist.  Several different cases were run, with the following parameters beginning as fixed and 
then all set as free variables: V∞, Earth launch date, Mars flyby date, and Vesta arrival date.  When the four 
parameters were free search variables, the Chebyshev formulation had the fastest run times.  The worst 
performing formulation in this case was the Node + Chebyshev formulation, which is almost ten times 
slower.  For the other three variations on fixed and free parameters, however, while the Chebyshev 
formulation performed well, the Node + Chebyshev actually had the fastest run times.  The third mission 
considered was an Earth-Mars cycler, which transfers back and forth between Earth and Mars once every 
synodic period for 15 years.  This is a very large optimization problem that includes 15 planetary 
encounters and 371 segments in total.  For the original N-Vector formulation, this resulted in over 1000 
variables and almost 500 nonlinear constraints.  The Chebyshev and Node + Chebyshev had problems with 
convergence using the default tolerances of 10-6.  If this tolerance were relaxed to 10-4, the Node + 
Chebyshev formulation had significantly faster run times than the other formulations, and the final 
feasibility is actually on the order of 10-10.  The N-Vector and Node formulations took 15 and 20 hours, 
respectively, to arrive at the solution.  The final mission examined was an Earth-Mercury rendezvous 
mission, which requires many revolutions around the sun.  As a result, this problem also involved a large 
number of design variables and constraints.  In this case, the N-Vector had the fastest run times, although 
the Chebyshev formulation also performed well.  The Node + Chebyshev also had good performance but 
again only if the tolerances were relaxed slightly. 

 
From these results, it is clear that the best formulation to use is very problem dependent, although time 

savings can be realized over the original N-Vector formulation developed by Sims and Flanagan.  The 
Node + Chebyshev formulation tended to have the fastest run times for the largest range of problems, 
however, it did have problems with convergence.  For large problems, the tolerances had to be relaxed in 
order for the Node + Chebyshev formulation to arrive at a solution.  This method is the most beneficial for 
searching broad areas of the design space.  On the other hand, the N-Vector formulation is the most stable, 
although it was not always the fastest approach, and in some cases, it was significantly slower.  It is a good 
standard method when only a small number of cases need to be performed. 
 
Shape-Based Analytic Methods 
 
 Indirect and direct methods tend to be computationally intensive because the trajectory must be 
propagated or numerically integrated.  An analytic method, on the other hand, has the potential to 
significantly reduce run times by eliminating the need for numerical integration and instead solving for an 
analytic solution to the equations of motion.  Petropoulos, at Purdue University, developed a shape-based 
method intended for quickly searching a broad design space and generating initial guesses to then be used 
in a more accurate trajectory optimization program25,31,32.  This method is implemented within STOUR-
LTGA, which is meant for the design of low-thrust gravity assist trajectories.   
 
 This method assumes that the spacecraft trajectory follows a predetermined shape, from which the 
thrust profile can be determined.  With the correct choice of shape, there exists an analytic solution to the 
equations of motion.  The motion of the spacecraft between planets can either be purely conic (coasting) or 
involve thrusting.  Each leg can be characterized as thrust, thrust-coast, or coast-thrust.  For the thrusting 
segments, the in-plane motion of the spacecraft is assumed to follow an exponential sinusoid shape, given 
by Eq. 4, where k0, k1, k2, and φ are all constants. 
 
     r = k0e

k1 sin k2θ +φ( )                               (4) 
 
Gravity assists are modeled as instantaneous changes in the heliocentric spacecraft velocity with no change 
in position. The out-of-plane motion is based on an analysis of the orbital angular momentum vector, where 
the out-of-plane angle and speed are approximated by the in-plane angular momentum and velocity 
components. 
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 This method has been applied to a number of different trajectories25,29,30,32.  One is a rendezvous with 
the asteroid Ceres with an intermediate flyby of Mars, assuming thrust-only legs.  A search was done for 
departure dates ranging from 1990 to 2049 with launch V∞s between 0.75 km/s and 2 km/s.  Figure 7 (left) 
plots the resulting arrival V∞ for each of the cases analyzed.  This broad search allows mission designers to 
choose the best points to examine further with higher-fidelity trajectory optimization methods.  In this 
study, the best point from the shape-based analysis was then used as an initial guess for GALLOP, a 
trajectory optimization code based on the direct method by Sims and Flanagan.  The result has good 
agreement with an optimal solution presented by Sauer in an earlier study.  Another trajectory analyzed by 
Petropoulos is Earth-Venus-Earth-Mars-Jupiter (EVEMJ).  One of the strengths of STOUR-LTGA is its 
ability to model trajectories with many legs.  A sweep of departure dates from 1975 to 2049 was analyzed, 
with an increment of 10 days (over 2700 different launch dates!).  Additionally, launch V∞s between 0.5 
km/s and 2 km/s were considered, with a maximum time of flight of 2500 days and maximum times of 
flight set for each leg.  Mars-Jupiter is assumed to be a thrust-coast leg, while the other three legs are 
thrust-only.  For this case, the in-plane propellant mass fraction is the parameter of interest, which is plotted 
in Figure 7 (right).  As before, the best trajectory from this broad design space exploration was used as an 
initial guess in GALLOP in order to optimize the solution. 
 

  
 

Figure 7  Results of STOUR-LTGA design space exploration; arrival V∞ for a range of launch dates 
for Earth-Mars-Ceres (left); in-plane propellant mass fraction for a range of launch dates for 

EVEMJ (right). 
 
 This method was also applied by the winning team, a team from NASA’s Jet Propulsion Laboratory 
(JPL), at the 2006 1ST Advanced Concepts Team Global Trajectory Optimisation Competition, sponsored 
by the European Space Agency33.  The objective of the optimization problem was to maximize the change 
in the semi-major axis of asteroid 2001 TW229 after impacting it with an electric-propelled spacecraft.  
The initial mass of the spacecraft was given, along with the thruster’s Isp and maximum thrust level.  
Additionally, a span in launch date of 20 years was given, with a maximum time of flight of 30 years34.  In 
approaching this problem, the team from JPL took a two-step approach35.  First, they searched over a large 
range of the solution space, then honed in on the most promising portion with a local optimization method.  
The JPL team considered 15 different gravity assist combinations, and then conducted a grid search for 
each combination over launch date and launch V∞ values using STOUR-LTGA.  The best solutions from 
the grid search (high values of arrival V∞) were then passed on to MALTO to examine in more detail.  The 
optimal trajectory departed Earth on 8/20/2024, following a VEEEJSJ sequence, before impacting the 
asteroid with an arrival V∞ of 52.662 km/s and an impact mass of 1442.91 kg (the only thrust leg was the 
first Earth-Venus leg). 
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GLOBAL OPTIMIZATION METHODS AND APPLICATIONS 
 
 Many of the tools described above not only implement a trajectory optimization method for finding the 
optimal control history of the spacecraft (thrust magnitude and direction), but also include some ability to 
optimize for other parameters such as launch date or arrival date.  As explained earlier, however, if a 
gradient-based optimizer is used, the resulting solution will likely be a local optimum and not the global 
optimum.  Because the design space is multi-modal, the solution will be highly dependent on the initial 
guess of your parameters.  If a broad search space is desired, such as in the case of the STOUR-LTGA 
examples, a domain-spanning, global optimization method is required.  This section of the paper will 
survey the most common global optimization methods and their application to low-thrust trajectory 
optimization problems. 
 
Common Global Optimization Methods 
 
 One of the most well known types of global optimization methods are called evolutionary algorithms, 
which are domain spanning, probabilistic optimization algorithms based on the Darwinian theory of 
evolution36.  One of the more well known of these evolutionary algorithms is the genetic algorithm 
(GA)37,38.  Although there are numerous variations, the general genetic algorithm begins with a random 
initial population, which is made up of multiple sets of values for each of the design variables.  Each 
member of the population represents a single value for each of the design variables.  This generally results 
in a random scatter of points over the entire design space.  Each set of design variables is referred to as a 
chromosome and is typically encoded as a binary string, which must be mapped to the real values of the 
variables, although there are a number of different approaches to the encoding process.  The design 
variables are discretized between their lower and upper bounds.  In each generation, the population 
undergoes certain genetic operators such that the population will “evolve” and improve its fitness 
(objective function).  The typical genetic operators are reproduction, crossover, and mutation.  The purpose 
of reproduction is to weed out the members of the population with low fitness, and to keep those with high 
fitness.  Crossover combines two “parents” by switching parts of their chromosome strings with each other, 
while mutation is responsible for switching individual bits in a chromosome string.  Figure 8 illustrates a 
schematic of the GA process.  Because there is no necessary condition for optimality, the convergence 
criteria is usually chosen either as a maximum number of generations (iterations) or a certain number of 
generations with no change in the objective function.  As the generations progress, there should be a steady 
improvement in the both the average fitness of the population as well as the fitness of the best member.  In 
general, at the termination of the GA, all of the members of the population will be clustered around the 
global optimum. 
 

Random Initial
Population

REPRODUCTION

CROSSOVERMUTATION

 
 

Figure 8  Schematic of a genetic algorithm. 
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 One of the main advantages of genetic algorithms is their ability to find a global optimum in a multi-
modal design space.  They can also handle a large number of variables, and require no initial guesses for 
the design variables.  They do, however, have some downfalls.  Because of the probabilistic nature of the 
algorithm, there is no guarantee that the optimal solution will be arrived at.  Therefore, the GA must 
generally be run more than once to ensure optimality.  Genetic algorithms also require a large number of 
iterations, and therefore function calls, in comparison to a gradient-based method.  Finally, because the 
design space is being discretized, the solution will generally not correspond to the global optimum of a 
continuous problem.  A common practice is to then run a gradient-based optimizer using the solution found 
by the GA. 
 
 Another global optimization technique, which has just recently been applied to trajectory optimization 
problems, is the Evolutionary Neurocontroller (ENC)39,40,41, which combines artificial neural networks 
(ANNs) with evolutionary algorithms. Artificial neural networks are inspired by information processing in 
animal nervous systems, in that they will learn from experience, generalize previous examples to new ones, 
extract essential information from noisy input data, etc.  ANNs are composed of processing elements called 
neurons that are organized into neuron layers.  Figure 9 illustrates an example of a feedforward ANN, with 
a layered topology and three layers.   
 

 
 

Figure 9  Example of a layered, feedforward neural network. 
 
Depending on the function used for the neurons, a neural network can be regarded as a continuous 
parameterized function, called a network function, which simply maps a set of inputs to a set of outputs.  If 
a training set exists – the correct output for a set of given inputs – then the network error can be measured 
and used to learn the optimal network function.  If a training set does not exist, then it is a reinforcement 
learning problem, where the optimal behavior must be learned through interaction with the environment.  
For an evolutionary neurocontroller, the evolutionary algorithm is instead used to find the neurocontroller’s 
optimal network function. 
 
Application of Global Optimization Methods to Low-Thrust Trajectory Optimization Problem 
 
 Genetic algorithms have long been applied to a number of different problems, including trajectory 
optimization problems, beginning with their application to ballistic (high thrust) gravity assist 
problems42,43,44,45.  For the high-thrust case, solving for a single trajectory is much less time-consuming and 
is generally done using a Lambert Solver.  Therefore, a genetic algorithm, even with a large number of 
required function calls, is appropriate for global optimization.  Several studies have also attempted to apply 
genetic algorithms to solve for the optimal control parameters in the low-thrust problem46,47.  This 
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approach, however, has not shown any benefits over direct or indirect methods for trajectory optimization, 
again because of the large number of function calls required by the GA.  More recently, several authors 
have attempted to apply the genetic algorithm to selecting the global parameters of the optimization 
problem, combined with a direct or indirect method for solving for the control history of the 
spacecraft48,49,50. 
 
 De Pascale proposes a method for combining a genetic algorithm with an analytic shape-based method 
to optimize low-thrust gravity assist trajectories48.  The trajectory is divided into sub-arcs, which are chosen 
to be either coast arcs or low-thrust arcs.  The two-point boundary value problem for the coast arcs is 
solved simply with a Lambert solver, while the low-thrust arcs are solved using a shape-based method 
based on the work by Petropoulos.  For this work, an exponential trigonometric shape is used to 
analytically solve the equations of motion.  Gravity assists are modeled as instantaneous changes in the 
heliocentric velocity.  The genetic algorithm is used in conjunction with a static penalty function, in order 
to handle constraints.  The full set of design variables is given by Eq. 5, and includes the departure V∞, the 
right ascension and declination at launch, the velocities at each of the encounter bodies, the sequence of 
encounter bodies, the pericenter-radius for each flyby, and the number of revolutions around the Sun for 
each phase. 
 

    y = v∞
E ,ψ,ϑ ,vin

1 ,...,vin
N p −1,t1,...,tNP

, p 1( ),..., p N p −1( ), ˜ r p
1( ),..., ˜ r p

N p −1( ),n 1( ),...,n N p −1( )[ ]T          (5) 

 
 The method proposed by De Pascale was applied to several different trajectories.  First, a simple low-
thrust transfer to Mars was examined.  The solutions obtained matched very closely to existing optimal 
solutions for this problem.  Ballistic (high-thrust) missions to Jupiter were then examined, using the full set 
of design variables, so that the gravity assist sequence was not predetermined.  Several promising trajectory 
paths resulted: EVEEJ, EMMJ, and EVVEJ.  When low-thrust trajectories to Jupiter were considered, 
however, the author did not use the full set of design variables, but instead optimized the trajectory for 
predetermined sequences of gravity assists (EVJ, EVVJ, and EMMJ).  It was not clear if the method had 
failed for the full set of design variables in the low-thrust case or if it simply had not been attempted. 
 
 Woo, Coverstone, and Cupples proposed a method combining a genetic algorithm with SEPTOP, 
which uses an indirect method for solving the optimal control problem49.  One of the key features of this 
work is the procedure for reducing the size of the parameter space before applying the GA/SEPTOP hybrid 
method.  Trajectories previously generated by SEPTOP are used to limit the size of the design space 
through a number of different methods: R-ratio analysis, delivered mass estimation, thruster modeling, 
ballistic approximation, and phase calculation.  More detail on each of these methods can be found in Ref. 
49.  The genetic algorithm is then used to search the reduced parameter space, which generates inputs to 
run SEPTOP.  SEPTOP returns the convergence error to the genetic algorithm as a measure of the fitness of 
the initial input.  Results are generated for a series of outer-planet missions with a single Venus gravity 
assist.  In previous work, this hybrid procedure was also successfully applied to the design of a trajectory 
for a sample return to the comet Tempel 151.  The reduction of the parameter space, however, could not be 
applied because there were no previously generated trajectories. 
 
 Finally, the Japan Aerospace Exploration Agency proposed a multiple asteroid sample return mission 
as a possible follow-on mission to MUSES-C50.  For this trajectory design, twenty asteroids were selected 
as potential targets, from a deliverable mass point of view.  Three possible trajectory sequences were 
analyzed: Earth->Asteroid 1->Asteroid 2-> Earth, Earth->Asteroid 1->Earth swing-by (n-times)->Asteroid 
2->Earth, and Earth->Earth swing-by->Asteroid 1/Asteroid 2->Earth (multiple spacecraft).  In Ref. 50, the 
authors claim that a genetic algorithm was used to select the target asteroids, and dates of departure and 
arrival, as shown in Figure 10, but no details of the method are given. 
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Figure 10  Parameters for genetic algorithm optimization in JAXA study. 

 
 Evolutionary neurocontrol has also been recently applied to the low-thrust trajectory optimization 
problem 39,40. Bernd Dachwald, with the Institute of Space Simulation in Germany, originally applied the 
evolutionary neurocontrol method to solar sail trajectories, which have thrust magnitudes much smaller 
than a typical electric propulsion spacecraft, thereby exhibiting very different solutions with many 
revolutions around the Sun.  Furthermore, the objective function is generally minimizing time of flight 
since there is no propulsion required for a solar sail.  More recently, however, Dachwald applied his 
method to solar electric propulsion (SEP) spacecraft.  In his formulation, a trajectory is the result of a 
spacecraft steering strategy that controls the spacecraft’s thrust vector according to the current state of the 
spacecraft relative to the target.  An artificial neural network is then used to implement the spacecraft 
steering strategy, with the evolutionary algorithm used to optimize the neurocontroller parameters.  Figure 
11 illustrates how such a formulation works for the SEP trajectory. The neural network pictured below 
illustrates how the inputs for a SEP trajectory are mapped to outputs, as per Dachwald’s formulation.  Here, 
the inputs represent the difference in the spacecraft’s state and its target at any point along the trajectory.  
The output then corresponds to the control parameters that will result in the spacecraft meeting its target 
constraints at the specified final time. 
 

  
 

Figure 11  Converting an evolutionary algorithm chromosome into a spacecraft trajectory (left); 
example neurcontroller that implements a spacecraft trajectory (right). 

 
 Dachwald utilizes the evolutionary neurocontroller to optimize the launch date for his example cases, 
in addition to the spacecraft steering strategy.  He does not, however, consider problems with multiple legs 
or encounter bodies.  The evolutionary neurocontroller was applied to a Mercury rendezvous and a near-
Earth asteroid rendezvous, and compared to similar problems in the literature.  Dachwald’s method was 
able to locate solutions better than those presented in the literature, due to its ability to exhaustively search 
the design space. 
 
 Carnelli later extended Dachwald’s method to include low-thrust trajectories with gravity assists41.  An 
evolutionary neurocontroller is combined with a steepest descent method used to optimize the gravity assist 
maneuvers.  As before, the ENC searches for the optimal parameter set (steering strategy) that forces the 
spacecraft’s state from its initial state to the target body’s final state, along a trajectory that obeys the 
dynamic constraints and terminal constraints, while maximizing some cost function and potentially 
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crossing the sphere of influence (SOI) of an assisting body.  Instead of choosing some sequence of 
gravitational assists a priori, the ENC is freely allowed to choose the spacecraft controls, and a gravity 
assist is performed only if that steering strategy takes the trajectory through the SOI of some intermediate 
planet.  Because the relative size of the SOIs is very small in comparison to the scale of the overall 
trajectory, their size had to be inflated.  Otherwise, the ENC would be very unlikely to ever find a gravity 
assist trajectory.  When the chosen steering strategy does take the spacecraft within a planet’s SOI, a 
steepest-descent algorithm is used to determine the optimal pointing distance for the gravity assist 
maneuver.  Making these modifications allowed Carnelli to successfully apply this method to a Pluto flyby 
trajectory via Jupiter and a Mercury rendezvous via Venus. 
 
CONCLUSIONS 
 
 This paper posed a challenging trajectory optimization problem: the global optimization of a low-
thrust, multiple asteroid tour mission, which requires both global, domain-spanning optimization, and local 
trajectory optimization of the spacecraft control history.  Full design space exploration is desired during the 
conceptual design phase, when some degree of accuracy can be sacrificed to achieve faster execution times.  
For each function call of the global optimizer – for a set of values for launch date, times of flight, sequence 
and timing of intermediate body encounters, Earth return date, etc. – the local trajectory optimization must 
also be run.  A number of different trajectory optimization methods are available, many of which were 
addressed in this paper, including direct, indirect, hybrid, and analytic methods.  Although advances have 
been made to indirect methods to reduce the degree of required user manipulation, these techniques are 
generally still too computationally intensive to be implemented within an automated global optimization 
context.  Additionally, the resulting accuracy of the results is not required, particularly when lower fidelity 
approaches yield similar results.  Direct methods are more promising because of their more robust 
convergence and faster run times, particularly with the findings of Yam and Longuski on methods for 
further decreasing run times through different parameterizations of the ∆V.  Shape-based methods, 
however, appear to be the most promising for application to such a large global optimization problem.  
Because they result in an analytic solution to the equations of motion, a local optimization does not need to 
be conducted for each step of the global optimizer.  The method developed by Petropoulos has been 
successfully applied to numerous different case studies, to provide a handful of initial guesses for a higher 
fidelity trajectory optimization code. 
 
 Many problems similar to the multiple asteroid tour, generally involving trajectories with multiple 
gravity assists, have been tackled using a variety of the above methods.  In most cases, however, the choice 
of gravity assist planets or sequence of asteroid encounters is predetermined and then the trajectory is 
optimized for that particular sequence over a large range of launch opportunities, values of V∞, times of 
flight, and so forth. The 1st ACT Global Trajectory Optimisation Competition challenged teams to find the 
global optimum to intercept an asteroid, but without a predetermined sequence of gravitational assists for a 
large range of launch dates.  Even the winning JPL team did not fully automate this process, but instead 
determined fifteen different sequences to further examine using STOUR-LTGA.  An exhaustive search was 
then done individually for each of the fifteen cases.  Therefore, it is still possible that a better solution was 
missed because the corresponding gravity assist sequence was not one of those considered.  Future work 
could integrate STOUR-LTGA, or a similar method, with an evolutionary algorithm, where the sequence of 
intermediate bodies is included as a free search variable in order to more fully explore the design space.  
Carnelli’s approach to using evolutionary neurocontrollers to tackle a low-thrust, gravity assist problem is 
also promising.  The results presented, however, only included a single gravity assist, and more work 
would be required to determine how the method would extend to finding multiple gravity assist trajectories.   
 
 Therefore, numerous aspects of the multiple asteroid tour global optimization problem have been 
tackled in a number of ways by various authors, but a fully integrated, systematic approach has yet to be 
developed.  Further advances in trajectory optimization methods and in computing power should soon 
enable the full global optimization problem to be solved. 
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