
Incorporating Uncertainty in Admissible Regions for
Uncorrelated Detections

Johnny L. Worthy III∗, Marcus J. Holzinger†

Georgia Institute of Technology, Atlanta, GA, 30332

Admissible region methods for initial orbit determination are generally implemented without consid-
ering uncertainty in observations or observer state. In this paper a generalization of the admissible
region approach is introduced that more accurately accounts for uncertainty in the constraint hy-
pothesis parameters used to generate the admissible region. Considering the uncertainty to have
Gaussian distributions, the proposed relationship between provided information uncertainty and ad-
missible region uncertainty results directly in an analytical approximate probability density function.
The methodology is extended to account for admissible regions with multiple overlapping constraint
hypothesis. The proposed approach is applied to an example optical detection to demonstrate the
quality of the approximation and the sensitivity of the resulting distribution to typical errors.

I. Introduction
For initial detections in dynamical systems there often exist many states that are consistent with the observation,
admitting a continuum of candidate state hypotheses. This problem is directly relevant to Space Situational Awareness
(SSA) activities as the sensors used to track objects cannot fully measure the state of the object with a single detection.
The primary motivation for improving SSA capabilities is to ensure the safety of assets in space, and also to maintain
accurate knowledge of the objects orbiting Earth [1]. Over 17,000 objects greater than 10 cm are tracked of which
approximately 16,000 are classified as debris from the breakup of known space objects [2]. The Space Surveillance
Network (SSN) is the main contributor to maintaining information on detected objects, with a network of optical and
radar sensors on both space-based and ground-based observation platforms [3]. Beyond low Earth orbit (LEO), radar
observations can be infeasible due to high altitudes, requiring the use of optical sensors. However, altitudes above
LEO are very important to SSA as they are valuable for communication and navigation [4].

Optical sensors measure state information as either a series of angle measurements over time or from streaks
formed during a single observation. These angular measurements form a tracklet, but the range to the object and the
rate at which the range is changing are not directly observable. Thus, the space object state is underdetermined and
for a given tracklet a continuum of range and range-rate solutions are possible. However, using Gauss’ or Lambert’s
method an initial orbit determination is possible from three or more angle measurements [5]. The curvature of the
orbit appears as a divisor in this approach, thus, the greater the time between observations, the better the estimate. As
the time between observations shortens, the quality of the orbit determination degrades greatly. When tracking space
objects, telescopes are typically capable of detecting objects for durations on the order of minutes (at most tens of
minutes for LEO objects) [6]. At these time scales, traditional initial orbit determination methods (such as Gauss’s)
fail. Similarly, both radar and magnetometer based observations are susceptible to this problem [7] [8].

This lack of conclusive information at the moment of detection is the motivation of the Too Short Arc (TSA)
problem in initial orbit determination of optical tracklets [7] [9]. Because given a TSA the initial orbit determination is
poorly posed, a continuum of solutions exist for a particular TSA. However, possible solutions can be bounded under
the hypothesis that specified conditions are satisfied. The Admissible Region method first proposed by Milani et. al.
accomplishes this and is applied to the problem of constraining the infinite solution space by the dynamics of orbiting
bodies [7] [10] [11] [12]. The admissible region method functions by forming hypotheses that the object satisfies a
set of physical constraints (e.g., Earth orbiting). Under the assumption that these hypotheses are true, the admissible
region may be represented by a uniform probability density function (PDF) in the undetermined state space over the
closed, compact set [13]. The resulting PDF is necessarily uniform because there is no additional information available
regarding the space object state.

Bayesian estimation requires an a − priori probability distribution of the initial state, necessitating that the ad-
missible region be expressed in a probabilistic manner. Generally, existing admissible region methods discretize the
admissible region and consider the solutions at discrete points [14] [15]. A multiple hypothesis filter or particle filter
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approach can also be initialized from a discretized admissible region approach and ingest new correlated measurements
as they become available [16]. A Gaussian mixture model may be used to approximate the admissible region resulting
in a PDF without a discontinuity at the constraint [17]. This Gaussian mixture approach is a convenient method to
express the admissible region enabling the use of Gaussian mixture ensemble filters. The main limitation of current
initial PDF approximation approaches is that they do not account for the measurement uncertainty of the observer or
uncertainty in assumed parameters. Neither the fully uniform distribution nor the Gaussian mixture approaches cor-
rectly incorporate the uncertainty inherent to the system. Uncertainties arise from sensor accuracy, timing accuracy,
and observer state (i.e. position and velocity) knowledge. Each of these sources of uncertainty are unaccounted for in
current methods, making them vulnerable to missing data associations, incorrectly associating data, incorrectly esti-
mating space object orbits, or slower estimation convergence. Weisman et. al. addresses the problem of uncertainty by
using a transformation of variables technique to map measurement uncertainties to state uncertainties [18]. However,
the transformation of variables technique does not account for uncertainty directly in the admissible region, but rather
the uncertainty about a specific point solution.

The admissible region method may also be applied to the association of measurements. It is a fact that, in general,
two admissible regions generated from observations that represent different objects do not intersect based on the
Theory of Superposition [19]. Thus, multiple admissible regions can be propagated to a common epoch and, if the
observations are associated, there will be one point where this intersection occurs [11]. Fujimoto’s work shows that
the intersection of two associated measurements is an ideal reference orbit for statistical orbit determination methods,
but does not offer a true initial PDF; rather, it generates a point solution. If the true PDF for each observation can be
approximated, then it follows that if the observations are correlated then using Bayes rule the resulting intersection is
no longer a single point, but an approximate PDF which can then be used in statistical orbit determination methods.

To address these issues, this paper introduces a generalization of the Admissible Region method that accounts for
measurement and assumed parameter uncertainties. The specific contributions are 1) A generalized definition of the
admissible region of the undetermined state space for a given measurement model based on hypothesized constraints,
2) A derivation of the relationship between the uncertainty in the admissible region and the measurement errors and
parameter uncertainties based on a Taylor series expansion of hypothesized constraints, 3) An analytical approach to
generate the initial PDF in the undetermined state space based solely on the measurement errors and parameter uncer-
tainties, enabling statistically rigorous filter initiation from a single observation sequence, 4) An approach to combine
PDFs from multiple constraint hypotheses, 5) A probabilistic method based on Fujimoto’s approach to compute the
joint PDF using two admissible regions from different epochs.

This paper is organized as follows. The theory supporting the method is introduced in Section II and an application
of the method in initial orbit determination is presented in Section III. Within Section III, parts A & B introduce angles-
only initial orbit determination, part C demonstrates the approach as applied to an optical observation, part D validates
the approach, and part E demonstrates the computation of a joint PDF.

II. Theory
A. Admissible States

Admissible states approaches are useful in a variety of applications, and thus a general measurement model is used to
derive the approach. A general nonlinear measurement model is assumed,

y = h(x; k, t) (1)

where y ∈ Rm is the measurement vector, x ∈ Rn is the state, k ∈ Rl is a parameter vector, and t ∈ R is the time. In the
case of an underdetermined system the number of states that can be observed, or measured, is less than the number of
states in the system, giving m < n. This is significant because it implies there is no unique solution for x given y in
Eqn. (1). This signifies that the undetermined states play no role in determining y. This enables a partitioning of the
state vector into the observable and undetermined states.

xT
u =

[
xT

d xT
u

]
(2)

Eqn. (1) becomes
y = h(xd, xu; k, t) (3)

where xd ∈ Rm are the determined states, xu ∈ Ru are the undetermined states, and u + m = n. Since it has already
been stated that the undetermined states have no impact on y, it follows that Eqn. (3) can be written simply as

y = h(xd; k, t) (4)
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This implies that there exists a unique relationship between xd and y given the observation parameters k and time t.
Equivalently, there is a one-to-one and onto mapping from xd to y, which means that the inverse mapping is guaranteed
provide one-to-one and onto mappings from y to xd. Thus,

xd = h−1(y; k, t) (5)

To bound the undetermined state solution space, admissible region methods impose a set of state constraint hy-
pothesesH = {H1, · · · ,Hc}. Then an admissible region can be constructed from a given constraintHi ∈ H under the
assumption that a given hypothesis Hi is true. These constraints may result from the dynamics of the system or from
physical limitations and can be represented in the following form

gi(xd, xu; k, t) ≤ 0 (6)

Combining with Eqn. (5) yields
gi(h−1(y; k, t), xu; k, t) ≤ 0 (7)

This constraint is significant because a given observation will result in a continuum of possible solutions for xu, but
Eqn. (7) defines an n −m dimensional continuum of admissible solutions that all generate the observed measurement.
This definition requires that the constraint reduces the set of solutions from an infinite continuum to a compact set
with an integrable area. In order to formalize this set,Ai ∈ Ru is defined.

Ai := {xu ∈ Ru | gi(h−1(y; k, t), xu; k, t) ≤ 0} (8)

The set of solutions inAi is also known as the admissible region for hypothesisHi in the literature [7] [20] [10]. The
combined admissible region for all hypothesesH is then given by

A =A1 ∩ · · · ∩Ai ∩ · · · ∩Ac (9)

The boundary ofAi can be defined by setting the inequality in the set definition to an equality. This represents the
constraint as a surface Bi ∈ Ru−1.

Bi := {xu ∈ Ru−1 | gi(h−1(y; k, t), xu; k, t) = 0} (10)

Notationally, the constraint of set Bi can be simply defined as a constraint function

gi(h−1(y; k, t), xu; k, t) ≡ κi(xu, y,k, t) = 0 (11)

which implies that given y,k and t, satisfying this equation gives the undetermined states xu in the set Bi, which is the
boundary ofAi.

In the absence of uncertainty, the volume enclosed by Bi, or equivalently the admissible regionAi, is represented
as a uniform distribution [7]. This admissible region state membership in the notation proposed in this paper is formally
stated as

P[(xu ∈Ai)] = P[(κi(xu, y,k, t) ≤ 0)] (12)

which, without the effects of uncertainty, gives a uniform value for each state satisfying the constraint. Using Eqn.
(12) and the following standard definition, the PDF can be determined.

fi[xu] =
P[xu ∈Ai]∫

Ai
P[xu ∈Ai]dxu

(13)

Because satisfaction of the constraint is binary, P[xu ∈Ai] takes on values of 0 or 1, yielding uniform distributions.

B. Uncertainties in the Admissible States

With an expression for the boundary of the admissible region method Bi defined, the effects of uncertainty can be
investigated. The uncertainty is generated by error in the measurement devices as well as uncertainties in the observer’s
parameters, such as the observer’s position or velocity, and timing inaccuracies. A Taylor series expansion of Eqn.
(11) allows for the analysis of the effects of uncertainty on the undetermined states. The Taylor series expansion of
Eqn. (11) is given by

κi(xu + δxu, y + δy,k + δk, t + δt) = κi(xu, y,k, t) +
∂κi

∂xu
δxu +

∂κi

∂y
δy +

∂κi

∂k
δk +

∂κi

∂t
δt + · · · + H.O.T (14)
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Given any variation in the measurement or parameter vectors, the constraint defines the perturbed location of the
admissible region boundary and must necessarily be satisfied, requiring

κi(xu + δxu, y + δy,k + δk, t + δt) = 0 (15)

Using Eqn. (15) and assuming that the variations in δy, δk, and δt are sufficiently small, the higher order terms are
negligible. The Taylor series simplifies to

−
∂κi

∂xu
δxu =

∂κi

∂y
δy +

∂κi

∂k
δk +

∂κi

∂t
δt (16)

Eqn. (16) only relates a constant variation in y, k, and t to xu. It does not give information on how random uncertainties
and errors in y, k, and t (δy, δk, δt) contribute to a resulting distribution of the undetermined states. The first order
sensitivity of the undetermined states in Eqn. (16) can be rewritten as a similar equation in terms of random variables
δY, δK, and δT with each random variable belonging to a Gaussian distribution. Thus, combining the errors δY, δK,
and δT into a single variable δZ ∈ Rm+l+1, Eqn. (16) can be rewritten as

−
∂κi

∂xu
δXu =

∂κi

∂z
δZ (17)

where δXu is now a random variable, and the uncertainty distributions in δZ =
[
δYT δKT δT

]T
can be written as

δZ ∼ N(0,Pz) (18)

where Pz is the known covariance matrix of δZ. Eqn. (17) as written is a scalar equation, preventing a direct solution
for δXu without the addition of other constraints.

a) 3σ Uncertainty bounds for κi(xu, z)
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b) Example Gaussian distribution in the δx̂u direction

Figure 1. Determining the constraints for δXu

Considering the constraint κi(xu, y; k, t), the derivative with respect to xu will be perpendicular to Bi at the point
xu. This perpendicular vector is defined as the p vector

p =
∂κi

∂xu

∣∣∣∣∣∣
xu

(19)

With this definition, Eqn. (17) can be rewritten as

pTδXu = −
∂κi

∂z
δZ (20)

Consider the uncertainty δxu at different locations xu along the constraint κi as shown in Figure 1. The variational
location of the boundary can be described by a curve locally parallel to κi, and so at the point xu, can be fully described
by the projection of δxu in the direction of p. Thus, the solution δxu should have no component in any tangential
directions, enabling the remaining additional constraints to be defined. For an m dimensional measurement, n−m−1 =
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u − 1 tangential directions exist. The first tangential direction t1 is obtained by solving for any vector perpendicular to
p. Each subsequent tangential vector in Ru can be obtained recursively by taking the cross product.

t j = p × t j−1 for j = 2, ..., u − 1 (21)

Thus the matrix of tangential directions is formed by

T =


tT
1
...

tT
u−1

 (22)

where T ∈ Ru−1×u. To ensure a particular solution of δxu has no tangential component, the following is defined.

tT
i δXu = 0 (23)

Combined, the constraints on the solution for δxu can be written as
pT

tT
1
...

tT
u−1

 δXu =

[
pT

T

]
δXu =

[
−
∂κi
∂zk

0

]
δZ (24)

Because each row and column of the matrix on the left hand side are mutually orthogonal, it is by definition full rank
and always invertible, yielding

δXu =

[
pT

T

]−1 [
−
∂κi
∂zk

0

]
δZ (25)

This equation expresses the relationship between uncertainties in z and xu such that δXu is orthogonal to the constraint
boundary Bi. Let

Mi =

[
pT

T

]−1 [
−
∂κi
∂zk

0

]
Then, to first order, the random variable δXu orthogonal to the constraint surface is linearly related to the parameter
random variable δz.

δXu = MδZ (26)

Now, the statistics of the uncertain boundary location δXu must be determined. Since δZ belongs to a Gaussian
distribution, the expected value of δXu can be taken as

E[δXu] = E[MδZ]
= ME[δZ]
= 0 (27)

indicating δXu has 0 mean, which is as expected since the uncertainties in δZ are assumed to belong to Gaussian
distributions with 0 mean. The covariance of δXu is derived as follows

Pxu = E [(E[δXu] − δXu)(E[δXu] − δXu)]T

= E[(δXu)(δXu)T ]

= E[MδZδZT MT ]

= ME[δZδZT ]MT

By definition E[δZδZT ] = Pz is the variance of δZ which allows

Pxu = MPT
z MT (28)
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Where Pxu ∈ Ru×u is the covariance matrix for δXu at a given point in Bi. Because the relationship between δxu is
linear, if δz is assumed Gaussian then δXu has no higher moments. Thus, with Equation (28), the distribution of the
undetermined states in the direction of p can be directly analytically approximated from knowledge of the distribution
of the uncertainties in δZ at each point on the setBi of the admissible regionAi. Furthermore, the Gaussian cumulative
distribution function giving P[(x ≤ X)] is fully defined by mean and variance, so the probability that a given xu is in
the admissible regionAi can be defined analytically as

P[(xu ∈Ai)] =
1
2

1 + erf

 ‖xu − xu,B⊥‖√
2trPxu,B⊥

 (29)

where xu,B⊥ is the point on the set Bi that is perpendicular to xu and Pxu,B⊥
is the covariance matrix computed for that

point. The approximate analytical PDF can be fully obtained using Eqn. (29). This particular formulation gives an
analytical approach to determine the probability that a given solution xu is in the set Ai. Also, note that xd is by
construction Gaussian (xd ∼ N(xd,Pd)), so a complete distribution for x is found. This fundamental result allows for
full state uncertainty initialization for an underdetermined detection.

C. Joint PDF for Multiple Constraints

Given the set of constraintsH , it is likely that the PDF of each individual constraint hypothesisHi overlaps with those
of the other constraints in Ru. The interaction of these PDFs is of interest since the combined PDF provides a full joint
distribution under the assumption that all constraint hypotheses are true. To characterize the joint probability, the PDF
for a single constraint can be written as

f (xu ∈Ai) =
P[κi(xu) ≤ 0]∫

Ai
P[κi(xu) ≤ 0]dxu

(30)

which can otherwise be written as

p(xu ∈Ai) =
P[κi(xu) < 0]∫

Ai
P[κi(xu) < 0]dxu

∪
P[κi(xu) = 0]∫

Ai
P[κi(xu) = 0]dxu

(31)

Furthermore, since P[κi(xu) < 0] and P[κi(xu) = 0] are mutually exclusive events

p(xu ∈Ai) =
P[κi(xu) < 0]∫

Ai
P[κi(xu) < 0]dxu

+
P[κi(xu) = 0]∫

Ai
P[κi(xu) = 0]dxu

(32)

Define P[xu ∈A] as the joint probability that κi(xu) ≤ 0 for i = 1, ..., c such that

P[xu ∈A] = P[κ1(xu) ≤ 0] ∩ · · · ∩ P[κi(xu) ≤ 0] ∩ · · · ∩ P[κc(xu) ≤ 0] (33)

Substituting Eqn. (32)

P[xu ∈A] = {P[κ1(xu) < 0] + P[κ1(xu) = 0]} ∩ · · ·
∩ {P[κi(xu) < 0] + P[κi(xu) = 0]} ∩ · · ·
∩ {P[κc(xu) < 0] + P[κc(xu) = 0]}

This equation simplifies after distributing such that

P[xu ∈A] = {P[κ1(xu) < 0] ∩ · · · ∩ P[κi(xu) < 0] ∩ · · · ∩ P[κc(xu) < 0]} + · · ·
+ {P[(κ1(xu) < 0] ∩ · · · ∩ P[κi(xu) = 0] ∩ · · · ∩ P[κc(xu) < 0]} + · · ·
+ {P[κ1(xu) = 0] ∩ · · · ∩ P[κi(xu) = 0] ∩ · · · ∩ P[κc(xu) = 0]} (34)

However, since the distribution of δXu along the p direction is a continuous Gaussian distribution, by definition

P[κi(xu) = 0] = 0 (35)

This is further demonstrated by examining the rule P[A ∩ B] = P[A] + P[B] − P[A ∪ B] and applying it to the ith

constraint.

P[(κi(xu) < 0 ∩ (κi(xu) = 0))] = P[κi(xu) < 0] + P[κi(xu) = 0] − P[(κ1(xu) < 0) ∪ (κi(xu) = 0)]
= P[κi(xu) < 0] + 0 − P[(κi(xu) < 0)]
= 0
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All of the cross terms in Eqn. (34) vanish leaving

P[xu ∈A] = P[κ1(xu) < 0] ∩ · · · ∩ P[κi(xu) < 0] ∩ · · · ∩ P[κc(xu) < 0] (36)

For independent events A and B, Bayes’ Theorem simplifies as follows

P(A ∩ B) = P(A)P(B)

Under the assumption that the constraints are independent, the probability that xu is in the set joint setA.

P[xu] = P[κ1(xu) < 0] × · · · × P[κi(xu) < 0] × · · · × P[κc(xu) < 0] (37)

were the multiplication is the pointwise multiplication of the probabilities computed for each constraint. Thus, using
Eqn. (13), Eqn. (37) and Eqn. (29) the joint PDF for an arbitrary number of constraints can be defined analytically.

Traditional approaches require a discretization of the undetermined state space to generate a joint admissible region
probability through Monte Carlo methods. The discretized grid generates a sampling of the state space. For every point
in the grid, randomly generated uncertainties are calculated and the constraint function evaluated. Each point in the
grid acts as a bin recording the number of times the constraint is met. The probabilities are obtained by dividing the
resulting bin values by the total number of trials. The Monte Carlo approach is limited by both the dimensionality of
the problem and the resolution of the discretization in addition to long computation times. The analytical approach
presented is not limited by dimensionality and doesn’t require discretization to generate the joint PDF. Furthermore, the
computational requirements for the analytical approach presented are much less than those of Monte Carlo methods.

D. Track Correlation

The last section presents a method by which several constraints can be combined to generate a joint probability
distribution. Similarly, this method can be used to joint probability distributions from different epochs. Fujimoto’s
work shows that observations can be associated by applying Bayes’ rule to an admissible region generated from two
epochs [11]. A non-zero result indicates the observations are associated. Specifically, if the objects are associated then
there is exactly one solution with non-zero probability.

However, due to observation errors and uncertainties, this particular solution does not fully capture the probability
that the measurements are associated. It is possible to, through the inclusion of uncertainty, instead obtain a distribution
around this point. Consider two admissible region PDFs f (x(t2); κi(xu, z1, t1)) and f (x(t2); κ j(xu, z2, t2)), where x(t2)
denotes that the admissible region generated from κi(xu, zk, tk) is propagated to a common time t2. Assuming that each
observation is statistically independent, then applying Bayes’ rule as before

f (x(t2); κi(xu, z1, t1)) ∩ f (x(t2); κ j(xu, z2, t2)) = f (x(t2); κi(xu, z1, t1)) × f (x(t2); κ j(xu, z2, t2)) (38)

Eqn. (38) gives the joint probability that a particular state xu is in the admissible region at both times. Using Eqn. (13)
the joint probability density can then be computed. Importantly, it is not necessary that each measurement result from
the same sensor phenomenology, nor is it required that t1 ≤ t2.

E. Summary

The presented approach is valid for any measurement sensor with undetermined states, such as optical, radar, or mag-
netometer sensors. Furthermore, any constraint hypothesis that is valid for the system observed may be used with this
approach. For SSA, this may include minimum or maximum orbit energy constraints, illumination constraints, inclina-
tion constraints, etc. This approach provides a methodology to approximate uncertainty in the admissible states based
on the observer and assumed parameter uncertainty. Then, assuming a known Gaussian distribution for the observer’s
uncertainty δZ, the distribution of the admissible region is analytically approximated. This enables a probability
distribution function in the admissible region Ai to be analytically generated simply by knowing the uncertainties
associated with the measurement sensors and observer. This analytical method can generate an approximate distribu-
tion several orders of magnitude faster than Monte Carlo numerical analyses, improving computational tractability for
practical use. The analytical method is also extended to multiple constraints to generate a combined admissible region
A and the resulting combined joint PDF associated withA. The proposed method can also be used for associating
admissible regions at different epochs by computing the joint probability distribution formed by each observation.
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III. Application
A. Angles-Only Initial Orbit Determination

The proposed methodology in the Theory section is applied in this section to the problem of initial orbit determination
for space objects using optical measurements. This section begins with a review of the relevant results originally devel-
oped by Milani et. al. [7] [20], then applies the theoretical contributions of this paper. Optical measurements generate
angle and angle rates of the objects tracked using a streak or sequence of angle measurements in right ascension α
and declination β. The parameters associated with optical measurements include the observer position, o and velocity,
ȯ, and the times at which the observations are made (or the start/stop times of a streak). Using this information, the
position r and velocity v of the object are given by

r = o + ρl̂

v = ȯ + ρ̇l̂ + ρα̇l̂α + ρβ̇l̂β

where α is the right ascension, β is the declination, ρ is the range to the target, ρ̇ is the range-rate, and l̂, l̂α, and l̂β are
given by

l̂ =

cosα cos β
sinα cos β

sin β



l̂α =

− sinα cos β
cosα cos β

0



l̂β =

 cosα sin β
− sinα sin β

cos β


For this system the states x, observations y, and parameters k are defined as follows.

xT =
[
α α̇ β β̇ ρ ρ̇

]
yT =

[
α1 · · · αq β1 · · · βq

]
kT =

[
oT ȯT

]
where q is the number of observations made and α̇ and β̇ are the angle rates.

For an observation with two measurements, the combined measurement and parameter vector z ∈ R12 is simply
given by

zT =
[
α1 α2 β1 β2 t1 t2 oT ȯT

]
(39)

To generate the angle rate data from angle pairs in z, a Lagrange Interpolation shown in Eqn. (40) is used. Using this
interpolation, the effects of time uncertainty can be accounted for.

α̇ = α(t1)
(t − t2) + (t − t3) + · · · + (t − tn)

(t1 − t2)(t1 − t3) · · · (t1 − tq)
+ α(t2)

(t − t2) + (t − t3) + · · · + (t − tq)
(t2 − t1)(t2 − t3) · · · (t2 − tq)

+ · · · + α(tl)
(t − t1) + (t − t2) + · · · + (t − tq−1)

(tq − t1)(tq − t2) · · · (tl − tq−1)
(40)

From Eqn. (40) and y, 4 of the 6 states of x can be observed or determined and the undetermined states for this system
are given by

xu =

[
ρ
ρ̇

]
2×1

(41)
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B. Constraints for Initial Orbit Determination

With the undetermined states xu defined, constraint hypotheses on those states must be imposed. Many constraints
exist for orbiting bodies based on the assumptions made. A primary assumption for simple analyses is that of 2-body
motion, allowing for the specific orbital energy equation to be used. The constraint κ1 is generated by enforcing the
energy equation such that the space object orbits about the Earth. To constrain the solutions to only objects in orbit
about Earth, the admissible region set A can be defined as {xu ∈ R2|ε(r, ṙ) ≤ 0}. The set B1 is then defined as
{xu ∈ R2|ε(r, ṙ) = 0}, which is given as the solution to the following equation.

κ1(xu, yp) = 2ε(r, ṙ) = ρ̇2 + w1ρ̇ + w2ρ
2 + w3ρ + w4 −

2µ√
ρ2 + w5ρ + w0

= 0 (42)

with w0 through w5 defined as in [10].

w0 = ‖o‖2 w3 = 2α̇
〈
ȯ · l̂α

〉
+ 2β̇

〈
ȯ · l̂β

〉
w1 = 2

〈
ȯ · l̂

〉
w4 = ‖ȯ‖2

w2 = α̇2 cos2 β + β̇2 w5 = 2
〈
o · l̂

〉
From Eqn. (42) the solution continuum xu satisfying the constraint can be determined given z. Also from Eqn. (42) t
and p directions are defined at each point on B1 simply as

p(xu)T =
[
∂κ1
∂ρ

∂κ1
∂ρ̇

]
xu

t(xu)T =
[
−
∂κ1
∂ρ̇

∂κ1
∂ρ

]
xu

With κ1 defined, an example deterministic admissible region is computed based on the measurements given in Table
1 and the observer parameters given in Table 2. The admissible region computed from this observation is shown
in Figure 2. As can be seen in Figure 2a, without inclusion of measurement uncertainty, the approach generates an
uniform distribution with a discontinuous probability density at the boundary.

Table 1. Optical Observation Measurements

Time (UTC) α (rad) δ (rad)
02:01:36 0.7666 -0.5988
02:01:37 0.7685 -0.5995
02:01:38 0.7704 -0.6001

Table 2. Observer Parameters (Atlanta, GA)

Location (Lat, Lon, Alt) 33.77◦N, 84.39◦W, 340m
Cartesian Position (km)

[
−1359.0 5128.8 3527.9

]

C. Accounting for Uncertainty

Recall the standard admissible region (shown in Figure 2) has a uniform probability distribution within the constraint.
To approximate the true PDF, the uncertainties must be taken into account while computing the admissible region.
The measurements and parameters are assumed to have normal distributions with µ = 0 and σ defined by the error
associated with each quantity. The errors are given below and are consistent with or better than the performance of
Raven-class telescopes used for SSA.

As stated, the analytical approach does not require discretization of the state space. However, in order to both
visualize and compare the results with a numerical Monte Carlo approach a discretization of the state space is utilized.
Since the approach is analytical, the accuracy of the PDF generated is only dependent upon the approximation of
the linearization and the resolution of the discretization. For this observation ρ is discretized to 0.0014 Re resolution
and ρ̇ is discretized to 0.003 Re/TU giving 250,000 total points. Equation (29) is then evaluated at each point in the
grid to generate P[xu ∈ A1], which can then be normalized to compare the approximate PDF. This enables a direct
comparison between the numerical and analytical approaches as the discretization grid used by each is identical. Figure
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a) Probability over the undetermined state space for the en-
ergy constraint for this observation with no uncertainty effects

b) The true state (denoted with the marker) shown along with
the boundary B1 of the admissible region.

Figure 2. Admissible region for the example observation

Table 3. Measurement Error and Parameter Uncertainty

Right Ascension uncertainty, σα 10 arcseconds
Declination uncertainty, σβ 10 arcseconds

Timing error, σt 0.0001 s
Position error (each axis), σo 1 m
Velocity error (each axis), σȯ 1 m/s

4 shows the resulting analytically generated PDF. To visualize the results, Figure 4b shows the ±3σ bounds of the
approximate PDF as well as the nominal constraint curve. This plot shows how significant an effect the measurement
uncertainties have on the admissible region. Parts of the state space are unaccounted for without the inclusion of
uncertainty, and that, to appropriately use admissible regions, observation uncertainty must be accounted for.

D. Validation of the Approximation

The analytical approach presented is based on a first order approximation using a Taylor series expansion. Since it
is an approximation, error between analytically and numerically obtained results are expected. The purpose of this
section is to quantify this error.

1. True PDF

Figure 3 shows the full PDF with uncertainty calculated from the analytical approximation, but the true PDF can also
be computed numerically. Since δZ is given by Eqn. (18) and the measurement and parameter errors are given in Table
3, a Monte Carlo simulation can provide the true distribution in δxu. Since δZ ∈ R12 for this example application,
the Monte Carlo simulation requires a large sample size to sufficiently capture the distribution of the data. A Monte
Carlo simulation with one million samples is generated for an identical discretized state space grid as the analytical
approximation and each point in the grid is evaluated one million times. To expedite this process, the algorithm was
programmed to utilize a Tesla C2050 GPU through the GPU programming functionality in MATLAB. The results
from the analysis are shown in Figure 4. Even with the calculations being performed on the GPU, the run time for the
Monte Carlo algorithm is approximately 2 hours. In contrast, the analytical PDF is generated in 2 minutes on the same
machine (specs listed in Table 4) without GPU processing.

Table 4. Computer Specs

GPU Tesla C2050
OS RHEL 5
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a) Analytical probability including uncertainties over the un-
determined state space
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b) The ±3σ bounds for the approximate analytical PDF
shown in addition to the nominal boundary. The true state
is denoted with the marker

Figure 3. PDF for the example observation including measurement uncertainty

In order to further assess how well the analytical probabilities agrees with the Monte Carlo probabilities, an addi-
tional metric is defined in the following section.

a) ’True’ Monte Carlo numerical probabilities over the unde-
termined state space

b) Error in approximate probabilities relative to Monte Carlo
PDF.

Figure 4. Monte Carlo simulation results

2. Kullback-Leibler divergence

The comparison of the analytical and numerical results is fundamentally a comparison of two distributions. Thus, a
measure of the similarity of the distributions can be used as a metric of the quality of the analytical approximation.
Eqn. (29) defines the probability distribution along the lines normal to the constraint curve, in the expected value case,
and both the numerical and analytical solutions should have identical curves for σ = 0. Equivalently, the analytical and
numerical curves (i.e. σ = 0) without considering uncertainty should be identical. This implies that for this specific
case the distribution in the p direction at identical points on the should also be identical, enabling a comparison of the
accuracy of the analytical solution. To define these points a line integral is defined for the σ = 0 curve such that for
each point on the line, the distribution in the p direction is obtained for both approaches. The line integral along a
given constraint curve κi parameterized by s ∈ [0, 1] is defined as follows. Defining the jth point in the set of n states
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comprising Bi as x j,Bi , the total length, L, of κi for xu ∈ R2 can be defined by

L =

n−1∑
j=1

‖x j+1,Bi − x j,Bi‖2 (43)

Figure 5 illustrates this for an example admissible region. As shown,
∑

∆L gives the total length of the admissible

Figure 5. Two points along L used to calculate ∆L j

region curve enabling the line integral s to be defined such that ∆s, along the line si can be computed as

∆s j =
∆L j

L

=
‖x j+1,Bi − x j,Bi‖2

L

This procedure normalizes the constraint curve to the domain s ∈ [0, 1] allowing for the analytically and numerically
computed uncertainties to be conveniently compared. For the numerically generated PDF the −3σ through 3σ contours
are extracted and by generating a line integral for each contour. Then an interpolation through the extracted points
can be used to generate the numerical distribution corresponding to each point along s. The analytical distributions
are fully defined at each point along s with zero mean and variance given by Eqn (28). With both the analytically and
numerically computed distributions in the p direction along s defined, the Kullback-Leibler divergence is utilized to
numerically compare the distributions.

The Kullback-Leibler (KL) divergence metric, DKL, also known as the information divergence, is a measure of the
difference between two probability distributions P and Q [21]. It is a measure of information lost when Q is used to
approximate P. It should be noted that the KL divergence is not symmetric, implying DKL from P to Q is not the same
as from Q to P.

Dkl(P||Q) =
∑

i

ln
(

P(i))
Q(i))

)
P(i) (44)

The equation given above is the form of the KL divergence for discrete probability distributions, where i is an index of
the discrete probabilities being compared. Though the probability distributions approximated for the uncertainties are
continuous, only discrete points from that distribution are known and thus the approximation of the KL divergence for
the numerically and analytically computed distributions as discrete is appropriate.

Because both distributions necessarily have zero mean, quantifying error in the analytical approximation can be
accomplished by examining error in the standard deviation. To asses how the values determined for DKL relate to the
quality of the approximation, two standard Normal distributions are generated as follows

P ∼ N(0, σP)
Q ∼ N(0, σP(1 + %err))
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where σ%errr is the percent error difference from σP. By varying the % error up to 100%, Figure 6 shows how DKL

changes for standard normal distributions. Using this plot, an interpolation can be defined to approximate the % error
that corresponds to a given DKL. The resulting interpolation is then used along with Eqn. (44) such that both % error

Figure 6. DKL as a function of % error for a standard Normal distribution

and DKL can be evaluated. The numerically computed distributions are defined as Q and the analytically computed
distributions are defined as P. Thus at each point along si both P and Q are used to compute DKL and, using the inverse
of the relationship shown in Figure 6, the corresponding percent error between the numerical and analytical cases is
computed.

a) Near the ends of s, DKL behaves poorly due to the effects of
discretization of the state space.

b) Utilizing s ∈ 0.25, 0.75 avoids the effects of discretization

Figure 7. Plots of DKL comparing the analytical and Monte Carlo simulation

Figure 7a shows DKL for the full length of s. However, at the ends of the distribution DKL increases substantially.
This increase is due to the effects of the discretization as well as the effects of uncertainty. Recalling Figure 4a, as
the constraint approaches ρ = 0, the distribution narrows. This can be explained probabilistically as the variances
computed by Eqn (28) decrease as ρ → 0. As the distribution narrows with a constant, predefined discretization, the
width of the distribution becomes too small for the discretization to adequately sample from the distribution. This
can be avoided by selecting a discretization size based on the smallest distribution width, however such an approach
would be computationally infeasible. Alternatively, a discretization could be selected such that a significant portion
of s provides adequate sampling of the probability distribution in that region. Thus, 7b shows DKL for the region
of s ∈ [0.25, 0.75]. Over this range, the values of DKL behave as expected implying that over this range of s the
discretization is sufficient.
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Figure 8. DKL over the well behaved region of the line s plotted along with % Error. The largest value of DKL occurs at s = 0.4276 with
7.15% error.

Analyzing the results of Figure 8, the greatest Kullback-Leibler divergence is found to be at s = 0.4276. This
matches with expectation since this problem is derived using a Taylor series approach, thus the largest errors are
expected in the high curvature regions of the approximation. The analytically and numerically obtained distribution
functions are shown in Figure 9 for s = 0.4276. Note that the numerical distributions are fit to the points from the
Monte Carlo simulation. It is evident in Figure 9a that the means of the two approaches are well in agreement. This is
as expected as the uncertainties belong to a distribution with zero mean. Further, it is shown in Eqn. (27) that the mean
of the distribution in the undetermined states should be zero. At this point, the location of the highest error between
the approaches, the main difference between the numerical and analytical approaches is the apparent overestimation
of the standard deviation from the analytical approach. This is evident due to the narrower peak of the numerical
distribution, indicating the true distribution has a lower standard deviation than what is approximated analytically.

Using the inverse of the relationship between DKL and % error shown in Figure 6, Figure 8 plots both DKL and %
error on a single axis. The location of the maximum DKL is marked with a circle on the plot and at this point the highest
% error of the approach is 7.148%. Overall, the approach shows to be in good agreement with the numerical results. It
should be noted that several effects contribute to the accuracy of the analytical approach. The first order approximation
used to derive the approach contributes to the errors presented. A numerical method is capable of capturing the higher
order effects whereas in the presented analytical approach they are assumed negligible, so a certain amount of error is
to be expected. However, it is shown that this error is relatively small and additional factors can contribute to lowering
the error. Lower uncertainties will improve the analytical approximation. Additionally, having larger time steps
between observations will improve the agreement of the analytical and numerical PDFs reducing error. Uncertainty
increases as the time between observations decreases. Larger uncertainties contribute more to the higher order effects
neglected in the approach. With longer time steps, uncertainty decreases overall and the error between the numerical
and analytical results will decrease as well.

E. Joint PDF with Two Constraints

Since many underdetermined systems can be subject to several constraint hypotheses, the joint PDF is of much interest.
The approach presented in Section II.C for generating a joint PDF is applied to the same observation information z by
considering both an energy constraint as well as a constraint on the periapse radius of the object. For ground observers
the periapse radius of the object can be constrained using the following approach [7]. The apparent angular rate of the
object with respect to the observer is given by the proper motion η where

η =
√

w2 (45)
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a) Comparison of the analytical probability distribution with
a fit of the Monte Carlo

b) Comparison of the cumulative distribution with a fit of the
Monte Carlo

Figure 9. Validation of the probability and cumulative distribution functions for the numerical and analytical cases at s = 0.5 (peak DKL
error)

Thus the range-rate can be equivalently written as ρ̇ = ρη and thus it is required that

|ρ̇τ| ≥ Re

|ρητ| ≥ Re

where Re is the radius of the Earth. Additionally, τ = ρ/|ρ̇| which, after simplification, leaves

ρ2η

|ρ̇|
≥ Re

which can be written as a quadratic in ρ.

Re|ρ̇|

η
− ρ2 ≤ 0 (46)

Eqn. (46) represents the second constraint κ2(xu). Following the same procedure as with the energy constraint, the
approximate and true Monte Carlo PDFs for κ1(xu) and κ2(xu) are generated and the joint PDF is computed from
the element-wise multiplication of the two distributions. Figure 10 shows the PDF generated for the energy constraint
alone. The joint approximate analytic PDF is computed using Eqn. (29) and shown in Figure 11 from the multiplication
of the PDF shown in Figure 10 with the PDF from Figure 4. A numerical Monte Carlo joint PDF is generated as well
and the results are shown in Figure 12. Figure 13 shows the error between the numerical and analytical joint PDFs
by subtracting the two. To generate an additional metric of comparison for the joint PDF, a % error calculation
was performed assuming the numerical distribution as the true distribution. Figure 14 shows the computed % error
between the analytical PDF shown in Figure 11 and that of Figure 12. Overall, the joint PDF approximated from
the analytical approach agrees well with the numerical case. For solutions not in the vicinity of the intersection, the
analytical approach almost exactly matches, with less than 5% error in these regions. At the intersections, however, the
approximation has up 25% error. For reference, the two admissible region curves are plotted in Figure 13 highlighting
the location of the intersection. It is stated previously that one of the contributions to the error in the analytical
approach is the first order approximation. Since the product of the individual admissible regions yields the joint PDF,
it is expected that the errors of each compounds to give areas of high % error. This is indeed the case for the example
observation.
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Figure 10. The probability generated for the periapse constraint alone

Figure 11. The joint probability as obtained analytically for the energy and periapse constraints

Figure 12. The joint probabilitiy as obtained from the Monte Carlo simulation for the energy and periapse constraints
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Figure 13. The difference between the numerically computed joint PDF and the analytically computed joint PDF.
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Figure 14. The percent error between the numerically computed joint PDF and the analytically computed joint PDF.
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IV. Conclusions & Future Work
This work generalizes the admissible region method for initial orbit determination and presents a method by which
measurement and observer uncertainties can be rigorously included in the admissible region. From a general mea-
surement model, the admissible region method is generalized to define the PDF associated with a given admissible
region. Using a Taylor series expansion, an analytical expression is derived which enables the generation of an ap-
proximate analytical model of the true PDF. This approximation is shown to be in good agreement with a numerically
computed ‘true’ PDF. The methodology is extended to include multiple constraint hypotheses enabling a closed-form
approximation of joint admissible region PDFs. The approach can also be applied to data association by computing the
joint PDF from two statistically independent observations. The method presented improves initial orbit determination
initialization with a single observation sequence by generating an initial PDF that correctly incorporates observation
and assumed parameter uncertainties.
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