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IMPROVED MODELS FOR ATTITUDE ESTIMATION OF AGILE
SPACE OBJECTS

Ryan D. Coder˚, Richard Linares:, and Marcus J. Holzinger;

Several innovations are introduced to ameliorate error in space object attitude esti-
mation. A radiometric measurement noise model is developed to define the obser-
vation uncertainty in terms of optical, environmental, and sensor parameters. This
reduces biases in the space objects’ posterior state distributions. Additionally, a
correlated angular rate dynamics model is adopted to decouple the effects of iner-
tia and body torques for agile space objects. This novel dynamics model requires
the adoption of marginalized particle filters to preserve computational tractabil-
ity. The software framework is outlined, and simulated results are presented to
demonstrate resultant reductions in agile space object attitude estimation error.

INTRODUCTION

Improvements in Space Situational Awareness (SSA) were identified by the Rumsfeld Commis-
sion Report as a top priority to protect the US and its allies as well as maintain its economic and
diplomatic objectives.1 The high level activities of SSA include the detection, tracking, charac-
terization, and analysis of space objects (SOs), as defined in Joint Publication 3-14, “Space Oper-
ations.”.2 Space objects are typically defined as active and inactive satellites, rocket bodies, and
orbital debris.3 To fully characterize space objects, it is necessary to obtain knowledge about both
SO shape and attitude, which can inform SO payload capability or mission purpose.4 For SO in low
earth orbit, shape and attitude estimation is performed extensively using radar-based methods devel-
oped in the early 1980’s.5 The shape and attitude of large SO can also be estimated from resolved
imagery taken by ground based optical sensors. However, when SO are too distant to be imaged by
radar facilities or too small to be adequately resolved by ground based optical sensors, the only data
currently available is unresolved images.4

Each unresolved image can be analyzed to determine the total amount of radiant flux reflected by
the SO. A typical observation campaign of several images can then be used to create a light curve,
a temporally resolved sequence of radiant flux measurements over a specified bandwidth. Because
the total amount of flux reflected by the SO is dependent on the SO shape and attitude, estimating
either the attitude or shape of the SO is possible using the observed light curve.6 This process is
referred to as light curve inversion, and was initially developed to characterize asteroids.7

Past efforts to characterize asteroids have used batch estimation methods, where attitude, an-
gular rates, moments of inertia and shape model are all simultaneously estimated.8, 9, 10, 11 Batch
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estimation requires that available light curves represent the asteroid in a variety of solar phase an-
gles and attitudes relative to the observer. Batch estimation methods can also be applied to SOs.
However, real time updates of SO activities are sometimes desired and sequential filtering schemes
such as unscented Kalman filters (UKF) or particle filters (PF) are necessary.12 The measurements
ingested into such filters are frequently assumed to be corrupted by time-invariant, zero mean Gaus-
sian white noise13 whose covariance is represented in the visual magnitude scale based on historical
observations.14 These arbitrarily selected covariances introduce unnecessary biases in the posterior
SO state distributions, and previous work concluded that more accurate measurement noise models
could alleviate discrepancies between observational and simulated data.15

Assuming a time-invariant measurement in the visual magnitude scale, such as σ “ 0.1mv, leads
to erroneous results in two ways. The first is due to the fact that any measurement error specified in
the visual magnitude scale uses the scale’s zero point, the flux of the star Vega. Thus, the difference
between an assumed error and the actual photon noise, commonly referred to as shot noise, increases
logarithmically as the SO visual magnitude moves away from 0 mv. The second way these visual
magnitude, time-invariant measurement variances introduce error is that the largest noise present
in modern EO systems, the photon noise, is time dependent. Consequently, even if one were to
correctly define an measurement variance in the visual magnitude scale that is equivalent to the true
shot noise at one instant in time, that variance would be incorrect at other instances along the light
curve. To mitigate these issues, recent work by the author can be leveraged to calculate photon
counts from the SO and environment, which can be summed to determine contributions to the
overall measurement noise. Therefore, the first contribution of this work is to define a measurement
noise model, based on SO and environmental parameters, which reduces these SO state distribution
biases.

The first application of light curve inversion to SO attitude estimation was performed by Hall
et al. in 2005.6 While the light curve inversion process is similar, there are several important
differences between asteroids and man-made SOs. The first significant difference is that unlike
asteroids, many SO have highly angular facets composed of several materials, each having different
reflectance properties. This has led some researchers to separate the SO attitude from materials and
shape properties, which are collectively referred to as the SO “shape model.”4 More recent work
has proposed using multiple-model adaptive estimation to simultaneously estimate SO attitude and
shape model.16 Whether the shape model is estimated independently or simultaneously with the SO
attitude, additional complexity is added in the case of non-convex shape models. In much of the
asteroid literature, a host of restrictions are placed on the shape model, such as assuming a triaxial
ellipsoid,8, 17 in additional to assuming the asteroid is purely convex.18, 19 Due to the fact that local
minima exist when inverting light curves of non-convex shapes, estimation of globally optimal non-
convex shape models remain an open area of research. Consequently, the results presented in this
work assume that the true shape model of the SO is both known and convex.

Another difference is that the motion of SO is generally non-homogeneous compared to that of an
asteroid. SO which are not actively controlled, are typically subject to many perturbative forces such
as atmospheric drag, solar radiation pressure, and earth oblateness effects.20 SO that can actively
maneuver, typically referred to as “agile” SO, introduce new modeling complications. Nonzero
torques, introduced by SO actuators, are difficult to discern from the normalized mass properties
of the SO. Past work has assumed that SO angular rates can be modeled as white noise processes,
such as constant velocity models.14 Aircraft tracking methods, however, have solved this problem
by assuming simply that the unknown acceleration can be modeled as a Markov process, where the
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acceleration is correlated exponentially over short periods of time.29 The second contribution of
this work is to adapt this idea, such that angular velocities are correlated exponentially over short
periods of time, and apply it to the SO light curve inversion problem.

Unfortunately, it has been shown that the measurement function for SO light curve inversion
is typically non-linear.14 The resultant posterior distributions of SO states are potentially non-
Gaussian, a situation where the Kalman filter and its derivatives are inappropriate.12 This has led to
the adoption of particle filters.14 As particle filters are computationally expensive, estimating a large
number of states becomes computational intractable. Assuming that velocities are exponentially
correlated, a 3 DOF problem requires estimating a minimum of 6 states. Including bias terms for
shape uncertainty increases the dimensionality. However, marginalized particle filters (MPFs) have
recently introduced whereby a standard Kalman Filter (KF) is utilized for linear subsets of the state
space.21 Since the angular rate dynamics are necessarily described by a linear set of equations,
MPFs reduce the number of nonlinear states to 3, preserving the computational efficacy of state of
the art PFs.

This work is organized as follows. The first contribution of this work, the radiometric measure-
ment noise model, is presented in the Measurement Noise Model subsection. The second contri-
bution, the exponentially correlated angular rate dynamics model, is presented in the Exponentially
Correlated Angular Velocity Model subsection. The third contribution is presented in the Marginal-
ized Particle Filter subsection. A simulation framework, results, and discussion are presented in the
Simulated Results section.

BACKGROUND

Noise Sources in EO Sensors

To develop a radiometric measurement noise model, it is important to first understand the various
sources of noise in an SO image taken by a typical EO sensor. An excellent discussion on EO
sensor noise sources is presented by Merline and Howell,22 and this work extracts the largest noise
sources and presents them here along with a radiometric model in complementary notation. Noise
in a typical image obtained with an EO sensor are due to the observed scene and the sensor itself.
The largest types of noise inherent in images of SO captured with telescopes are Poisson or “shot”
noise from the SO and background noise due to radiant sky intensity, i.e. light pollution. Other noise
contributors deriving from sensor construction and operation are dark current noise, read noise, and
variance in digitization offset. To quantify these noise sources, let the total signal of the SO in the
sensor be defined in analog-to-digital units (ADU), which are commonly referred to as “counts,” as
shown in Eq. (1).22

S “
m
ÿ

i“1

Ci ´mn̄´md̄ (1)

In Eq. (1), the SO signal , S, is calculated from the total counts, Ci, the number of pixels occupied
by the SO, m, and the average background level, n̄, and the digitization offset, d̄. The subscript i
is used to denote a pixel which lies in the array of pixels containing the SO, m. The digitization
offset is an extremely small contributor to overall noise, such that it is neglected in the derivation
presented here. Thus, to find the variance of the total, integrated signal a Taylor Series expansion is
taken about the mean integrated signal, S̄, as shown in Eq. (2).22

σ2
S “

m
ÿ

i“1

ˆ

BS

BCi

˙2

σ2
Ci
`

ˆ

BS

Bn̄

˙2

σ2
n̄ (2)
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It is emphasized that beginning with Eq. (2), the following equations are written in units of electrons
and not ADU. So, the variance of the source signal, σ2

S , the variance of the total signal, σ2
Ci

, and the
variance of the background noise, σ2

n̄, are defined in units of electrons. Because all of the coefficients
in Eq. (1) are constant, no terms higher than first order appear in Eq. (2). Additionally, the variance
of the total signal and background are assumed to be uncorrelated and zero mean, therefore no
covariance terms appear in Eq. (2). This Taylor series can also be equivalently rewritten as shown
in Eq. (3).22

σ2
S “

m
ÿ

i“1

σ2
Ci
`mσ2

n̄ (3)

In this study, the major contributors to background noise are assumed to be the shot noise from the
SO and the radiant intensity of the background sky, CS . This neglects counts from the dark current
of the CCD, CD, and read noise of the CCD, σ2

r . Thus, the variance in the total signal in each i
pixel is defined as shown in Eq. (4).22

σ2
Ci
“ pCi,SO ` Ci,SqG (4)

The shot noise and background sky noise have been converted from ADU to electrons via the CCD
gain, G. The CCD gain defines the efficiency of a CCD sensor in converting electrons to ADU. The
variance in the noise is defined as shown in Eq. (9).22

σ2
n̄ “

1

z2

z
ÿ

j“1

´

σ2
Cj,S

` σ2
Cj,˝

¯

(5)

The final new superscript, ˝, indicates that these counts are due to direct current (DC) bias. To
quantity the signal reflected by the SO, one must also determine the average background noise and
subtract it from the total signal. Because it is not possible with traditional CCDs to determine the
source of individual electrons, the background noise level must be estimated. The simplest method
for determining the background is to find the mean background noise from a random sample of z,
“SO-free” pixels.23 The subscript “j” is used to denote that these z pixels are a separate array from
the m pixels occupied by the SO. Substituting Eqs. (4 - 9) into Eq. (3) yields a final expression for
the variance in the integrated signal, as shown in Eq. (6).22

σ2
S “

m
ÿ

i“1

rpCi ´ C
˝
i qGs `

m2

z2

z
ÿ

j“1

“`

Cj ´ C
˝
j

˘

G
‰

(6)

In Eq. (6), the first term is shot noise in the source integration while the second term is due to the
radiant sky intensity. These terms can be simplified as shown in Eqs. (7 and 8).22

m
ÿ

i“1

rpCi ´ C
˝
i qGs » qSOt`m

`

qp,sky
˘

(7)

z
ÿ

j“1

“`

Cj ´ C
˝
j

˘

G
‰

» z
`

qp,sky
˘

(8)

In Eqs. (7 - 8), qSO is the photon flux reflected by the SO and qp,sky is the photon flux per pixel from
the background sky irradiance. Additionally, t is the integration time, i.e. exposure time, of the
observation. The arrival process of photons incident on the CCD plane can be accurately modeled
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by a Poisson process. Since the mean and variance of a Poisson distribution are equal, the mean
and variance of electrons generated in a CCD from a SO observation can be defined by Eq. (9), by
combining Eqs. (7 and 8).24

µn “ σ2
n « qSOt`m

´

1`
m

z

¯

“`

qp,sky
˘

t
‰

(9)

Eq. (9) shows that the noise present in images containing SO can be defined if one determines
the photon flux due to the SO and background sky irradiance. Doing so first requires some basic
radiometric definitions, which describe how photons originating from solar excitance reflect from
SO through the atmosphere and optics to become incident on the EO sensor focal plane.

Radiometric Model

By convention, SO brightness is quantified using the apparent visual magnitude system, first
developed by early astronomers. The system is unitless, logarithmic, and references the brightness
of Vega as the scale’s zero point. The resulting SO signature represented in the apparent visual
magnitude system, mv,SO, is found using Eq. (10).25

mv,SO “ mv,@ ´ 2.5 log10 pMSOq (10)

The visual magnitude of the Sun is typically given as -26.73 and MSO is the total radiant excitance
of the SO, which is given by Eq. (11).

MSO “
1

R2

ż λUL

λLL

MC pλqFr

´

θBI , ŝ, R̂, λ
¯

dλ (11)

In this equation, R is the distance from the SO to the observer, MC pλq is the spectral excitance of
the Sun at the Earth integrated over wavelength λ, and Fr is the reflectance function from the SO
towards the observer, from direction ŝ, the unit vector from the Sun to the SO. The rotation from the
inertial frame to the body frame of the SO necessary to calculate these unit vectors is denoted by θBI .
The spectral excitance of the Sun can be modeled using a black-body radiator assumption.25 The
solar spectral excitance is then converted to a photon flux density, ΦSO, in photons/s/m2, assuming a
weighted average for the wavelengths of light reflected. The light gathering capabilities of a ground-
based sensing application can then be calculated as the photon flux captured by the optical system,
qSO, measured in e´/s, is given by Eq. (12).26

qSO “ ΦSOτatmτopt

ˆ

πD2

4

˙

QE (12)

In Eq. (12), the aperture diameter of the telescope is D, while τatm and τopt are the transmittance
of the atmosphere and optics assembly respectively. The quantum efficiency of the EO sensor is
defined as QE. The value of these two transmittances and the QE are wavelength dependent. In lieu
of more detailed modeling, these three variables are defined to have values ranging from τ P p0, 1s
and QE P p0, 1s using a weighted average value for the wavelength of incident light. If higher
fidelity models of these values are desired, the convolution of any combination of these three values
could be utilized.

To accurately characterize noise due to background light, the local background radiant intensity,
Isky, whose major sources are moonlight and local light pollution, must be determined. In relatively
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light polluted areas, it is suggested that a sky sensor is utilized to directly measure this quantity. Oth-
erwise, an assumed value for radiant intensity can be utilized, varying from Isky P r15, 22s for urban
to rural skies. Because Isky is measured in units of mv{arcsec2, conversion to radiometric units
is necessary. The total photon radiance at the telescope aperture due to background sky pollution,
Lsky, in photons{s{m2{sr, is given by Eq. (13).26

Lsky “ Φ010´0.4Isky

ˆ

180

π

˙2

36002 (13)

A final expression for the photon flux per pixel resulting from background radiant intensity, qp,sky, is
expressed in e´/s/pixel as shown in Eq. (14). The total incidence on the focal plane transmitted from
the radiance at the telescope aperture is found using the “camera equation.” Using the simplified
form of the camera equation, valid for all focal lengths of a singlet lens, the photon flux incident on
the EO sensor is given by Eq. (14).

qp,sky “
Lskyτoptτsπ pQEq p2

1` 4N2
(14)

In Eq. (14), the EO sensor is assumed to have square pixels. For non-square pixels, p2 can be
replaced by the appropriate unit of area. As in Eq. (12), QE is the quantum efficiency, and τ
denotes optical system transmittances. Specifically, τopt is the transmittance of the optics assembly
and the new term τs denotes the obscuration of the secondary assembly, which is present in most
Cassegrainian-type optics. If the optical system under consideration is not a Cassegrainian-type
telescope, this term is equal to unity.

The radiometric model presented here is a summary of previous work, and additional details are
available to the interested reader.27 The model defines the photon flux of SOs, in Eq. (12), and the
background sky brightness, in Eq. (14), as a function of various environmental variables and SSA
asset design parameters. Using these two quantities, it is then possible to define both the mean
signal and variance from important noise sources in terms of electrons as defined by Eq. (9). These
equations are valid for EO sensors capturing unresolved images of SOs.

Singer Dynamics Model

For agile SO, the true inertia and torques acting on a SO are typically unknown. The resultant
time varying accelerations of maneuvering objects are thus modeled as a random process. Random
processes described in the literature can be classified in 3 general groups: white noise models,
Markov process models, and semi-Markov jump process models.28 White noise models have been
previously applied to the SO attitude estimation problem by Holzinger et. al.14 This work adapts
a Markov process model, first proposed in the 1970’s to track maneuvering aircraft. Known by its
inventor, the “Singer model” utilizes the correlation function given by Eq. (15) motivated by the
observation that target accelerations are correlated in time during a maneuver.29

rpτq “ E raptqapt` τqs “ σ2
me
´α|τ | (15)

In Eq. (15), σm is the variance of the maneuvering target acceleration and α is the inverse of the
maneuver acceleration time constant. The variance of target acceleration is derived from the vari-
ance of a uniform distribution, having a maximum acceleration amplitude, αmax, and associated
probabilities of successfully maneuvering as defined by Eq. (16).

σ2
α “

α2
max

3
p1` 4Pmax ´ P0q (16)

6



The Singer model utilizes all a priori knowledge about target motion, and does not utilize informa-
tion that may be available in real-time about the target maneuver. A primary contribution of this
work adapts the Singer model to define an exponentially correlated angular velocity dynamics.

METHODOLOGY

Exponentially Correlated Angular Velocity Model

The test cases presented in this work utilize either a simplified 1-DOF dynamics model, where
only the attitude and attitude rate about the z-axis is considered, or a full 3-DOF dynamics model.
The 1-DOF test cases are used only to maintain the computational efficacy of the code, as expansion
to a full 3-DOF is implemented similarly but simply takes longer run time. The general dynamics
and measurement model for the SO light curve inversion problem are given by Eq. (17).

xk`1 “ Fkxk `Gwk

yk “ Hk pxkq ` vk
(17)

For test cases utilizing kinematic dynamics, the process noise wk is assumed to be additive, zero
mean Gaussian white noise. For test cases using the exponentially correlated velocity (ECV) model,
the Singer model is adapted. While subject matter knowledge could be leveraged to determine a
maximum acceleration amplitude for a SO, doing so requires assumptions about both the inertia
matrix and SO actuators. However, assuming the angular velocity of the agile SO can be modeled
as a zero-mean first-order stationary Markov process replaces both of these assumptions with a
single assumption about maximum angular velocity amplitude. Additionally, SO angular velocity
can sometimes be inferred by inspection of SO light curves, aiding subject matter expertise when
tuning the filter. This leads to the following state transition matrix for the 1 DOF case defined in
Eq. (18).

F “

„

1 1
α

`

1´ e´αT
˘

0 e´αT



,G “

„

0
1



(18)

This assumption has the additional benefit of reducing the states required to model the agile SO from
3 states per DOF to 2 states per DOF. Assuming the angular velocity is exponentially correlated,
leads to an expression for the power spectral density of the angular velocity, as given by Eq. (19).

Qωpτq “ 2ασ2
mδτ (19)

Similar to the Singer model, the angular velocity distribution is represented using the ternary-
uniform mixture, whose variance is defined by Eq. (20).

σ2
m “

ω2
max

3
p1` 4Pmax ´ P0q (20)

The term ω2
max denotes the maximum angular rate, where Pmax is the probability the SO maneuvers,

and P0 is the probability of having zero velocity during a maneuver. This spectral density matrix
can be related to the exponentially correlated process noise using either the derivations in Singer
or Crassidis and Junkins.29, 30 The resultant discrete process noise for the 1 DOF case is given by
Eq. (21).

Qk “

ż tk`1

tk

Φptk`1, τ, αqGpτqQpτqG
T pτqΦT ptk`1, τ, αq dτ. (21)
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Where the state transition matrix, Φ, and G matrices are

Φptk`1, τ, αq “

»

—

—

—

—

—

—

—

–

1 0 0 1
α

`

1´ e´αT
˘

0 0

0 1 0 0 1
α

`

1´ e´αT
˘

0

0 0 1 0 0 1
α

`

1´ e´αT
˘

0 0 0 e´αT 0 0

0 0 0 0 e´αT 0

0 0 0 0 0 e´αT

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(22)

Gpτq “

„

03x3 03x3

03x3 I3x3



(23)

Here, T is the time step of the discretization of the system dynamics. The spectral density matrix
could be constructed such that a different σm is utilized for each axis to differentiate acceleration
capability, but for this work the following expression is assumed.

Qpτq “ 2ασ2
m

„

03x3 03x3

03x3 I3x3



(24)

Evaluating the integral yields the discrete time process noise given by 25, where the following
shorthand notation is adopted for readability.

Qk “ 2ασ2
m

„

q11I3x3 q12I3x3

q12I3x3 q22I3x3



(25)

q11 “
1

2α3
r4 exp p´αT q ´ 3´ exp p´2αT q ` 2αT s (26)

q12 “
1

2α2
rexp p´2αT q ` 1´ 2 exp p´αT qs (27)

q22 “
1

2α
r1´ exp p´2αT qs (28)

Measurement Noise Model

As described in Eq. (29), this work will utilize the photon flux incident on the CCD for the light
curve measurements and measurement variance. The radiometric measurement function captures
the noise present in an image as a function of optical and environmental parameters, as shown in
Eq. (29). This stands in contrast to much of the literature in the field, which uses visual magnitudes
and a time invariant measurement variance.

yk “ qSO

´

θBI ptkq, ŝptkq, R̂ptkq, D, τ,QE
¯

` vk (29)

In Section , the mean and variance of the combination of shot and background noise was developed.
Therefore, one can define a time dependent zero mean Gaussian white noise as defined by Eq. (30).

vk „ N p0, Rkq , Rk “ qSOt`m
´

1`
m

z

¯

“`

qp,sky
˘

t
‰

(30)

This radiometric noise model correctly captures the behavior of the two most important noise
sources found in images captured by SSA assets. This stands in contrast to visual magnitudes
which are only accurate for 0 mv SO. The extent of measurement error when using assumed time
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invariant measurement noise is demonstrated in Fig. 1, where 5000 observations of the same SO
are compared using the photon count for a 6 inch telescope. The black histogram contains the mea-
surements of the SO corrupted by time invariant white noise, while the white histogram contains the
measurements of the SO corrupted by the true shot noise of an EO sensor. The gray regions are the
region of overlap between the two histograms. As seen in Fig. 1(a), the two variances are equivalent

(a) Variances Equal (b) Large Variance Error

Figure 1: Variance Errors of Time-Invariant Limiting Magnitude Measurements

for the 0 mv, since the zero point of the visual magnitude scale is the same as the SO. However,
moving only 3 mv away produces a large increase the variance error, since the time-invariant 0.1σ
error is the same as in Fig. 1(a), but the actual shot noise has decreased commensurate to the SO
visual magnitude.

By modeling the stochastic process of photon arrival on the EO sensor image plane, the measure-
ment variance is consistently determined for all SO signatures. Additionally, by correctly defining
the photon noise, the photon radiance model developed here is also time varying. Thus, the mea-
surement variance is accurate for measurements constituting the SO light curve. Finally, it should
be noted that alternative measurement models using radiance as defined in the SI system, i.e. W

m2sr
,

would also afford these benefits. However, if one wishes to include additional sources of noise, such
as dark current or read noise, a photon radiance model is easier to implement as these quantities are
defined in manufactures data sheets in terms of photons.

Marginalized Particle Filter

While the state appears linearly in the dynamics equations, the state appears non-linearly in the
measurement function as defined by Eq. (29). This linear structure can be exploited to reduce the
computational burden of a traditional PF, by marginalizing out the linear state variables. These linear
states can then be estimated using a Kalman filter, which improves state estimates as it is the optimal
estimator of these linear states. This concept is sometimes referred to as Rao-Blackwellization, and
also as a marginalized particle filter (MPF).21

A general outline of the MPF utilized in this work is given by Algorithm 1. This algorithm is the
same as a traditional PF, except for the final step, which is the KF time update of the linear states.
For the 1-DOF case, the state matrix is separated as given by Eq. (31), leading to the dynamics
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Algorithm 1: Marginalized Particle Filter

xik`1 “MPF
`

xik, zk
˘

1) Initialize Particles, Eq. (33)
2) PF Time Update
3) PF Measurement Update, Eq. (??)
4) Evaluate PF Weights, Eq. (36)
5) PF Resampling
6) KF Time Update, Eq. (37)

described by Eq. (32).

xk “

„

ψ
9ψ



“

„

xnk
x`k



(31)

xnk`1 “ Fn
n,kx

n
k `Fn

l,kx
n
k `Gn

kw
n
k

x`k`1 “ F`
l,kx

`
k `G`

kw
`
k

yk “ Hn
k px

n
kq ` vk

(32)

Please note that the F matrix in Eq. (32) is simply a separated form of the state transition matrix
found in Eq. (??). The MPF algorithm begins by drawing random samples from an assumed distri-
bution. For this work, no a priori information is assumed, such that the initial state distribution is
given by Eq. (33).

xnk „ U p0, 2πq (33)

The state distribution is then propagating through time using a 4th order Runge-Kutta integrator,
and the corresponding measurement of each particle is found using the Cook-Torrance BRDF. The
PF update equation, defined in Eq. (35), is used to calculate the likelihood of each particle compared
to the true measurement, yk.

zi1,k “ yk ´H
n
k

´

xi,nk

¯

(34)

w̃ik “ p pz1,k|xkq “
1

2π
n
2 |Rk|

1
2

„

exp´
1

2

`

zi1,kR
´1
k zi1,k

˘



(35)

These likelihoods are often referred to as the “importance weights” of each particle, and are used
in the PF resampling algorithm after normalizing the weights according to Eq. (36). Resampling
solves the much discussed shortcoming of the PF, which is sample impoverishment. This approach
utilizes residual resampling, although other methods such as residual and stratified resampling have
been offered as equally effective alternatives.31

wik “
w̃ik
n
ř

i“1
w̃ik

(36)

Examining Eq. (32) reveals that the state equations are linear, while only the measurement equa-
tion is non-linear. As a result, photometric measurements of SO can not be used to refine an initial
estimate of the angular velocity using the MPF approach outlined here. Rather, the “measurement”
used in the KF time update is given by Eq. (32).

zi2,k “ xi,nk`1 ´ Fn
n,kx

i,n
k (37)
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This second measurement is the only means for information from the light curve measurement to
be used to update the linear states and linear state covariance as shown in Schon et. al.21

x`k`1 “ F̄`
kx

`
k `G`

k

´

Q`n
k

¯T
pGn

kQ
n
kq
´1 zi2,k ` Lk

´

zi2,k ´ Fn
kx

`
k

¯

(38)

P`
k`1 “ F̄`

kP
`
k

´

F̄`
k

¯T
`G`

kQ̄
`
k

´

G`
k

¯T
´ LkNkL

T
k (39)

The equations necessary for these computations are given by21
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SIMULATION RESULTS

Data Flow

The emphasis of this work is to present novel models for reducing systematic error present in
current attitude estimation algorithms when applied to agile SO. To demonstrate the ability of these
novel methods to accomplish this goal, the simulated data must match observational data as closely
as possible. Accordingly, the development of a physics based “light curve simulator” is presented.
The first component of this simulator is the Simplified General Perturbations Propagator (SGP4).

SGP4% VSOP%

BRDF%

Filter%

Figure 2: Lightcurve Simulator Flowchart

This software calculates the position and velocity of a SO by propagating the information from a two
line element (TLE) file. A MATLAB implementation is available from Vallado et. al.32 The next
piece of software critical to the simulator is the 1987 implementation of Variations Séculaires des
Orbites Planétaires (VSOP87).33 The adaptation of VSOP87 by Bretagnon and Francou34 combined
with the coordinate transformations provided by Meeus35 enables the position of the Sun to be
calculated with less than 1” error until 6000 A.D. The geometry necessary to define the reflectance
of light can be defined using the the position of the Sun, observer, and SO. This geometry is used in
the final part of the simulator, a bidirectional reflectance distribution function (BRDF) model. This
particular work utilizes the Cook-Torrance BRDF model to calculate the total radiant flux of actual
SO at various attitudes and positions in their orbit. These results are then passed to Particle Filter.
To resolve any sample impoverishment issues, Systematic Resampling, also referred to as Sample
Importance Resampling (SIR), is implemented.
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Table 1: Assumed Shape Model Parameters

Facet A (m) ξ a m

+X 2 0.5 0.1 0.3
+Y 2 0.5 0.2 0.3
+Z 2 0.5 0.3 0.3
-X 2 0.5 0.4 0.3
-Y 2 0.5 0.5 0.3
-Z 2 0.5 0.6 0.3

Test Cases

These results were obtained from a TLE for the Galaxy 15 satellite along with the shape model
parameters presented in Table 1. The simulation represents measurements collected on June 6th
2014 from 10:19:21 to 10:23:19 UTC from the Fenton Hill Observatory. The telescope parameters
utilized are those of the 0.5 m f/8 GT-SORT telescope, and are representative of a typical Raven-
class telescope.36 To simulate an agile SO, the SO was modeled with an initial state of x0 = [45
deg, 0.97 deg/s, 0 deg/s2] and the acceleration depicted in Fig. 3 is imparted to the SO.

Figure 3: Agile SO Acceleration

Several test cases (TC) are implemented to demonstrate the incremental improvements of each
proposed model. TC1 is the simplest test case, representing the current “state-of-the-art,” using a
time invariant measurement noise covariance, and a white noise process for the unknown angular
velocities. The time invariance measurement covariance is set to Rk “ 0.3 mv based on historical
data.37 TC2 implements the time-varying radiometric noise model, where the total photon count is
given using Eq. (29). TC3 keeps the radiometric nose model, and adds the exponentially correlated
velocity (ECV) model for the unknown torques acting on the agile SO. TC1-3 all use a standard PF
with 5000 particles per state, whereas the MPF is implemented in TC4.

Fig. 4 illustrates the estimate for the posterior state distributions of TC1. It appears that the time-
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Table 2: Test Case Descriptions

Test Case L / NL States Measurement Model Motion Filter

#1 0/2 Time Invariant Kinematic PF
#2 0/2 Radiometric Kinematic PF
#3 1/1 Radiometric ECV PF
#4 1/1 Radiometric ECV MPF

invariant measurement covariance that is traditionally assumed yields large 3σ state variances. It is
hypothesized this is a consequence of the fact that large changes in attitude are necessary to produce
brightness variances larger than the measurement noise.

(a) Yaw Error (b) Yaw Rate Error

Figure 4: State Error and 3σ variance bounds for TC1

Fig. 5 provides snapshots of the posterior state distribution at four instances in time. The first
subfigure, in the top left of the figure, is after the first measurement. The next two are at evenly space
intervals between the first and the final time step, shown at the bottom right subfigure. Clearly, the
state distribution is occasionally multi-modal, supporting our use of PFs and MPFs. It also implies
the previous method of displaying the estimate is sometimes unsuitable.

Fig. 6 illustrates the estimate for the posterior state distributions of TC2. It is demonstrated by
comparing Fig. 5 to Fig. 7 that the proposed radiometric noise model reduces the magnitude of
the state estimate error and 3σ state variances. Consequently, the RMSD of the state estimates are
smaller in TC2 compared to TC1. The actual measurements utilized by the PF in TC 1 and TC2
are shown in Fig. 8 below. As expected, the covariance of the novel, physics-based measurement
model is much smaller than the time-invariance covariance assumed from historical data.

TC3 incorporates the ECV model, in addition to the radiometric measurement model. The ECV
model further reduces the posterior state distribution variances. It also eliminates some candidate
states as seen by comparing the upper left subfigure of Fig. 7 and Fig. 10. However, in its current
form the ECV introduces a slight bias into the angular velocity state due to the fact that the correlated
process tends to zero. Future work seeks to ameliorate this by implementing alternative maneuver
models, such as a mean adaptive model.28
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(a) First Measurement (b) 1/3 tf

(c) 2/3 tf (d) Final Time Step

Figure 5: Posterior State Distributions for TC1

(a) Yaw Error (b) Yaw Rate Error

Figure 6: State Error and 3σ variance bounds for TC2
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(a) First Measurement (b) 1/3 tf

(c) 2/3 tf (d) Final Time Step

Figure 7: Posterior State Distributions for TC2

(a) Time Invariant Model (b) Radiometric Model

Figure 8: True, Measured, and Estimated SO Signature
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(a) True, Measured, and Estimated Signature (b) Measurement Noise Components

Figure 9: State Error and 3σ variance bounds for TC3

(a) First Measurement (b) 1/3 tf

(c) 2/3 tf (d) Final Time Step

Figure 10: Posterior State Distributions for TC3
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TC4 utilizes all the improved models proposed by this work, in addition to the MPF. The results
for TC4 are shown below in Fig. 11 and Fig. 12. While the variance reduction of the posterior states
is the smallest of the adopted models, the MPF enables the use of fewer particles. As a result of
reducing the volume the particles must fill, only 1000 particles per state were utilized as compared
to 5000 particles per state for the standard PF. Consequently, the “wall time” necessary to run the
MPF for the 4 minute simulation in TC4 is only 45 seconds on a Mid 2012 model MAcBook
Pro. The laptop is equipped with a 2.3 GHz Intel Core i7 and 4 GB of 1600 MHz DDR3 memory.
Therefore, it is anticipated that a full 3 DOF estimator may be able to run in real-time, depending
on the complexity of the SO shape model.

(a) True, Measured, and Estimated Signature (b) Measurement Noise Components

Figure 11: State Error and 3σ variance bounds for TC4
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(a) First Measurement (b) 1/3 tf

(c) 2/3 tf (d) Final Time Step

Figure 12: Posterior State Distributions for TC4
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CONCLUSION

Physics based measurement models can be utilized to remove biases inherent in traditional mea-
surement noise models. The implementation of a correlated angular rate dynamics model, adapted
from the Singer Markov process model, provided a framework for defining a SO maneuver model.
Finally, marginalized particle filters afforded a substantial reduction in computational power neces-
sary to perform recursive Bayesian filtering, enabling real time SO attitude estimation using light
curves for simple cubes under going motion in 1 degree of freedom. These three contributions en-
hance the quality of information gleaned from scarce observation assets and further improve the
state estimation of agile SO. By improving the quality of SSA, this work directly supports the U.S.
responsibility to promote the peaceful use of space and support its domestic, economic, diplomatic
and national security objectives.
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