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SOLAR SAIL EQUILIBRIA POINTS IN THE CIRCULAR
RESTRICTED THREE BODY PROBLEM WITH ALBEDO EFFECTS

Mariusz E. Grøtte∗, Marcus J. Holzinger†

The Circular Restricted Three Body Problem (CR3BP) is investigated together
with the effects of solar radiation pressure (SRP) and albedo radiation pressure
acting on a solar sail spacecraft in a Sun-Asteroid system. Due to the significant
albedo effects experienced close to an asteroid with highly reflective surfaces, the
solar sail dynamics change considerably as compared to models investigated in
previous work. For approximation purposes in establishing the albedo radiation,
the asteroid is treated as a Lambertian diffuse model with characteristics from bi-
directional reflectance distribution function (BRDF). As a result of both solar and
albedo radiation, a wide range of artificial equilibrium solutions are generated in
addition to the classical Lagrange points. Particular attention is given to the solu-
tions around L1 and L2 with varying solar sail lightness numbers and orientation
angles. The inclusion of albedo radiation effects indicates that the equilibrium
points shift considerably as opposed to the model with SRP only, an important
fact to address for any potential missions to bright objects such as asteroids and
comets. Stability and controllability are investigated at the equilibrium points of
interest, which are found to be unstable but controllable.

Keywords: Asteroids, Solar Sail, Circular Restricted Three Body Problem, Albedo Radiation,
Lambertian Diffuse Models

INTRODUCTION

Space agencies worldwide have over the past decade executed several missions to primitive bod-
ies such as asteroids and comets due to the rising interest from the scientific communities about un-
derstanding their environment, value as promising resource for mining and role as story-tellers about
the creation of our Solar System.1, 2 In 2005 the Hayabusa mission, governed by Japan Aerospace
Exploration Agency (JAXA), provided us more information about the dynamical environment of
Asteroid 25143 Itokawa as well as samples from its surface.3, 4 In March 2015 the Dawn spacecraft
is predicted to arrive at the dwarf planet Ceres for studying the relationship between the asteroid
belt and formation of the Solar System.5

The option of solar sail propulsion has identified a wide range of mission applications. Main at-
tributes of solar sails are more accessible long-term missions and controllable maneuvers at libra-
tion points naturally existing around primary masses in the Circular Restricted Three Body Prolem
(CR3BP) through configurations such as Halo orbits these points.6, 7, 8, 9 Solar radiation pressure
(SRP) and solar tide strength is claimed to alter the stability characteristics of the equilibrium points
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when in the vicinity of the Sun, inducing the orbits to be easily controlled as discussed by J.A.
Burns et al.10 The paper emphasizes the importance of the solar radiation exerted on small par-
ticles. Furthermore, S.V. Ershkov provides analysis of a photogravitational restricted three body
problem which can be linked to asteroids.11 Studies have also been made about the dynamics of
spacecraft orbits around comets, where it is claimed to be feasible that spacecraft may orbit the
comet at Sun-side equilibrium points during its perihelion passage.12

Control methods applicable for spacecraft hovering over Near-Earth Asteroids (NEAs) are discussed
by S.B. Broschart and D.J. Scheeres, which can ease the difficulty of orbiting small, irregularly sized
and low-gravity objects.13 The body-fixed hovering behavior maintains the spacecraft’s relative
position which can prove to be advantageous in acquiring high-resolution images of a particular
surface. In fact, solar sails primarily utilize this hovering concept combined with surfing along
equilibrium points induced by solar sail attitude or trimmed sail area. C.R. McInnes studies the
available libration points for solar sails in CR3BP that are unstable in the Lyapunov sense, but
establishes that they are controllable using feedback control to sail attitude alone.8 In a simplified
version of the solar sail, where it is modelled as a perfectly reflecting flat plate, these hovering
points depend on sail attitude, acceleration and asteroid gravitational acceleration. Morrow et al.
have investigated the solar sail CR3BP dynamics with the Hill approximation which applies well
to the motion of spacecraft around asteroids.14 The sail acceleration renders necessary restrictions
when hovering and orbiting smaller bodies, due to inevitable sensitivities to perturbations. However,
in general, it is claimed that the sailing capability offers potential low-cost missions and flexible
methods for exploring the solar system.15

In order to establish analytical framework for study of SRP incorporated into the equations of motion
(EoM), the initial steps are to investigate the CR3BP with SRP in a large mass-small mass system.
This would be applicable for an asteroid heading towards the Sun or any other planet-asteroid sys-
tem. In this paper, the formulation of the traditional three-body problem will be described together
with derivation of the EoM including all significant assumptions. In this work, both gravitational
and solar radiation force models for solar sail will be presented and defined in the Sun-Asteroid
system. Main emphasis will be made on the dynamics of the solar sail in CR3BP with SRP, the
effects of albedo exerted from the asteroid on the solar sail and how equilibrium solutions alter with
varying solar sail lightness number and solar sail attitude angles.

The contributions in this paper are listed as follows: (a) modified contours of solar sail light-
ness number in a Sun-asteroid CR3BP system with albedo effects, modelled with Lambertian bi-
directional reflectance distribution function (BRDF), are included; (b) extension to the solar sail
CR3BP model with the existence of new on-axis and off-axis artificial equilibrium points are found
with parametrized solar sail lightness number and solar sail orientation; (c) local stability analysis
with albedo effects is established through linearized EoM, which shows that active control of the
solar sail still is necessary at the unstable equilibrium points.

BACKGROUND

The dynamics of a solar sail in the CR3BP with SRP have previously established and serve as a
model that is to be extended in this paper.8, 16 Both the large and small objects are treated as point
masses moving around common center of mass denoted as m1 and m2, respectively. The detailed
physics of SRP acting on a perfectly reflecting flat plate are discussed by McInnes.16 The masses
revolve around a common center of mass which defines the rotating reference frame B: {x̂, ŷ, ẑ}
rotating with an angular velocity IωB with respect to the inertial frame I: {̂i1, î2, î3}. The di-
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mensions are normalized so that the distance between the primary masses r12, the sum of primary
massesm1+m2, angular velocity IωB, and the gravitational constantG, are all defined to be unity.
The mass ratio of the system is defined as µ = m2/(m1 +m2). Figure 1 shows geometry of the
CR3BP system.

Figure 1. Schematic Geometry of the Solar Sail Restricted Three-Body Problem in
the x̂− ŷ rotating frame.

The frame rotates once about the ẑ-axis in time 2π/ω. By definition, the angular velocity IωB

is equal to the mean motion and has a nondimensional magnitude equal to one. In this paper the
dynamics are referred to the rotating B frame and notation for the frames will be dropped. Thus
IωB can be expressed as,

ω = ẑ (1)

The position vectors for the solar sail with respect to m1 and m2 in the rotating frame, as seen in
Figure 1, are defined as,

r1 = [ (x+ µ) y z] T (2)

r2 = [ (x− (1− µ)) y z] T (3)

The solar sail is treated as massless and being only affected by gravity and radiative forces. The
solar sail performance may be parametrized by the total spacecraft mass per unit area m

A or sail
loading σ. The sail pitch angle α may be expressed as the angle between the normal vector or sail
attitude vector n and the incident radiation vector r1. Thus the acceleration due to radiation pressure
can be expressed as,

a1 = β
Gm1

r21
〈r̂1 · n〉2n (4)

where m1 is the mass of the large primary object (e.g. the Sun) and r1 is the scalar distance from
solar sail to m1. Knowing that r̂1 is directed along the Sun-line and since the SRP force can never
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be directed sunwards, the solar sail acceleration is constrained to be nonnegative.8 Furthermore,
with n being defined as the unit vector of the pseudo-potential ∇U , and since ‖n‖2 = 1 then,

n =
∇U

‖∇U‖2
(5)

∇U = [Ux Uy Uz]
T (6)

where

Ux = −(1− µ)(x+ µ)

r31
− µ(x− (1− µ))

r32
(7)

Uy = −
(1− µ)y

r31
− µy

r32
(8)

Uz = −
(1− µ)z

r31
− µz

r32
(9)

Therefore the 〈·〉 term is the nonnegative operator and can be defined as,

〈x〉 =
{
x if x ≥ 0
0 if x < 0

The dimensionless sail loading parameter β is the defined as the ratio of the radiation pressure force
to the solar gravitational force exerted on the sail, otherwise known as the lightness number of the
solar sail.8 This may be expressed as,

β =
σ∗

σ
(10)

where
σ∗ =

L1

2πGm1c
(11)

where L1 is the luminosity of the large primary object, where for the Sun it is taken to be approxi-
mately 3.846× 1026 W , and c is the speed of light. The vector form of EoM for a solar sail with r
being the vector from the center of mass to m3 can be defined in the rotating frame as,

d2r

dt2
+ 2ω × dr

dt
+∇U = a1 (12)

Stationary solutions require the first two terms on the left hand side to vanish. With ∇U = 0
the five classical equilibrium points at rLi

i = (1, ..., 5) can be found as the system is reduced to
the conventional CR3BP. However, when including solar sail acceleration a1 then new artificial
equilibrium solutions emerge.

The sail cone (pitch) angle, α and clock (precession) angle, γ, define the sail attitude with respect
to the coordinate system R: {r̂1, r̂1 × ẑ, (r̂1 × ẑ) × r̂1} centered on the solar sail. A schematic is
shown in Figure 2. The angles may be written as,
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Figure 2. Definition of Solar Sail angles

tanα =
‖r̂1 ×∇U‖2

r̂1 ·∇U
(13)

tan γ =
‖((r̂1 × ẑ)× r̂1)× (r̂1 ×∇U)‖2
((r̂1 × ẑ)× r̂1) · (r̂1 ×∇U)

(14)

The solar sail orientation can be expressed in terms of the components of n with respect to the
rotating frame.17 The scalar components of n corresponding to the directions x̂, ŷ, ẑ are,

nx =
cosα(x+ µ)

r1
− sinα cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2
+

sinα sin γy

‖r1 × ẑ‖2
(15)

ny =
cosαy

r1
− sinα cos γyz

‖(r1 × ẑ)× r1‖2
− sinα sin γ(x+ µ)

‖r1 × ẑ‖2
(16)

nz =
cosαz

r1
− sinα cos γ(y2 + (x+ µ)2)

‖(r1 × ẑ)× r1‖2
(17)

With the solar sail orientation defined, then the effects of a solar sail may be added to the scalar
EoM in the CR3BP. The solar sail acceleration may be expressed in scalar components with respect
to rotating coordinates as,

ax = β
(1− µ)
r21

cos2 αnx (18)

ay = β
(1− µ)
r21

cos2 αny (19)
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az = β
(1− µ)
r21

cos2 αnz (20)

Thus the compact form of EoM of the solar sail added with SRP are in the form,

ẍ− 2ẏ = Ux + ax (21)

ÿ + 2ẋ = Uy + ay (22)

z̈ = Uz + az (23)

Evaluating Eq. (12) and taking the scalar product of Eq. (6) with n, and requiring equilibrium
solutions, the solar lightness number may be expressed as,

β =
r21

(1− µ)
∇U · n
〈r̂1 · n〉2

(24)

The classical solutions without solar sail correspond to the subset β = 0. With β > 0 a particular
equilibrium solution on a given surface is defined by the sail cone and clock attitude angles in Eq.
(13) and Eq. (14).

In scalar form the three-body potential U may be written as,

U = −
(
1

2
(x2 + y2) +

1− µ
r1

+
µ

r2

)
(25)

Evaluating the gradient of the potential U for the condition r̂1 ·∇U = 0, a function S1(r1) = 0 is
obtained as,

S1(r1) = x(x+ µ) + y2 − 1− µ
r1
− µr1 · r2

r32
(26)

which defines regions where the solutions may exist and creates two topologically disconnected
surfaces which define the boundary. Not only do the five classical Lagrange points lie on these
surfaces since they are solutions to ∇U = 0 but, in general, the sail loading surfaces also approach
the boundary asymptotically with β → ∞ since r̂1 ·∇U → 0. It can easily be seen that S1(r1)
does not explicitly depend on SRP and that S1(r1) < 0 gives regions of x,y,z for which the EoM
are valid and that the solar sail is in tension.

THEORY

Based on the EoM in CR3BP with SRP effects presented, the model is now extended to include
the albedo effects exerted on the solar sail when close to a primitive body m2 such as an asteroid.
As an approximation, luminosity of the asteroid is firstly characterized by the BRDF and secondly
it is treated as an Lambertian diffuse model. It is known that for Lambertian BRDF, the reflecting
radiation can be expressed as a function of the angle between the sun-line vector r̂12 with respect to
the body m2 and the viewer line of sight r̂2. Therefore with the asteroid’s albedo radiation exerted
on the solar sail, the Lambertian BRDF may be expressed as in terms of a function of ρp(φ) where
ρ is albedo reflectance and p(φ) is the diffuse phase angle function.18 p(φ) may be defined as,
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p(φ) =
2

3π
(sinφ+ (π − φ) cosφ) (27)

Several techniques have been developed to estimate albedo values.19, 20 It has been common to
establish that a reasonable reflectance value for asteroids should be ρ = 0.1 − 0.221, 22 and that
they are treated as gray bodies, such that ρ is constant for all wavelengths, which is consistent with
previous studies.18 Furthemore the technique of optical signatures have frequently used the visual
magnitude system, adopted from the astronomers. This method will also be applied here and serves
as an approximation tool.

The optical signature magnitude of an asteroid M2, when approximated as a sphere, is given by

M2 =M1 − 2.5 log

(
d22
r22
ρp(φ)

)
(28)

where d2 is the diameter of the asteroid and r2 is the distance between the asteroid and the observing
spacecraft. M1 (optical signature magnitude of the Sun) has the visual magnitude of −26.73 from
the Earth.18 For a fixed diameter d2 and albedo ρ of the smaller primary m2, a function of φ and r2
is obtained from rearranging Eq. 28 and is of the form

F (φ, r2, ρ; d2) =
d22
r22
ρp(φ) (29)

In this paper the function F (φ, r2, ρ; d2) will from now and onwards be written as F . The apparent
luminosity of the asteroid can be defined in terms of the luminosity of the Sun m1 as

L2 = L1F (30)

Therefore the acceleration of the solar sail due albedo effects from the asteroid may be expressed as

a2 = β̃
Gm2

r22
〈r̂2 · n〉2n (31)

where

β̃ =
L2

2πGm2cσ
(32)

The relationship between β and β̃ is of the form

β̃

β
=
m1

m2

L2

L1

=
(1− µ)
µ

F

(33)

⇒ β̃ = β
(1− µ)
µ

F (34)

7



With the sail cone angle α and clock angle γ defined, the sail attitude with respect to r2 can be
defined as (ψ − α), and from using trigonometric identities then,

tan(ψ − α) =‖r̂2 ×∇U‖2
r̂2 ·∇U

=
(‖r̂1 × r̂2‖2)(r̂1 ·∇U)− (r̂1 · r̂2)(‖r̂1 ×∇U‖2)
(r̂1 · r̂2)(r̂1 ·∇U) + (‖r̂1 × r̂2‖2)(‖r̂1 ×∇U‖2)

(35)

Evaluating Eq. (12) with a2 instead of a1 and taking the scalar product of Eq. (6) with n, and
requiring equilibrium solutions, the solar lightness number may be expressed as

β =
∇U · n

(1− µ)
(

1
r21
〈r̂1 · n〉2 + F 1

r22
〈r̂2 · n〉2

) (36)

It is easy to see that with ρ = 0 or F = 0, the problem is identical to the solar sail CR3BP with
SRP.

Evaluating the gradient of the pseudo-potential U for the condition r̂2 · ∇U ≥ 0, a function
S2(r1) = 0 is obtained

S2(r1) = x(x+ µ− 1) + y2 − (1− µ)r2 · r1
r31

− µ

r2
(37)

which defines the boundary, affected by albedo radiation pressure. The surfaces are in this case also
disconnected which define the boundary to the regions of where equilibrium solutions exist. Both
radiation pressure accelerations a1 and a2 cause the solar sail to operate in tension. The equilibrium
solutions must exist in the intersection of the two functions S1(r1) = 0 and S2(r1) = 0 which is
an extension to the two boundaries defined in Eq.26 and Eq.37. As usual with ∇U = 0, the five
classical equilibrium points can be found as the equations are reduced to the classical CR3BP.

Now that the solar sail dynamics in CR3BP with SRP have been properly defined, it is worth looking
into the stability of these equilibrium solutions and how to control the spacecraft at these fixed
points. However, time-variant dynamics and control of solar sail along periodic trajectories are not
investigated in this paper and are left for future work.

Stability and Control at Libration Points

In reality, the motion of a spacecraft in CR3BP is highly nonlinear and complex. In order to investi-
gate stability and controllability, the behavior of the system is analyzed using local linear dynamics
about the chosen equilibrium points of interest (e.g. the Lagrangian points or artificial equilibrium
points).8

The equilibrium (libration) points have the coordinates (xLi , yLi , zLi) which are in the rotating ref-
erence frame and Li is the equilibrium point of interest. With perturbation the coordinates (ξ, η, ζ)
can be written as,

rLi
+ δr = [(xLi + ξ) (yLi + η) (zLi + ζ)]T (38)
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With only first order terms considered, then the local solar sail EoM with respect to the equilibrium
points at rLi

(denoted with ’∗’) can be expressed as,

ξ̈ − 2η̇ = (U∗xx + a∗1,xx)ξ + (U∗xy + a∗1,xy)η + (U∗xz + a∗1,xz)ζ (39)

η̈ + 2ξ̇ = (U∗yx + a∗1,yx)ξ + (U∗yy + a∗1,yy)η + (U∗yz + a∗1,yz)ζ (40)

ζ̈ = (U∗zx + a∗1,zx)ξ + (U∗zy + a∗1,zy)η + (U∗zz + a∗1,zz)ζ (41)

where Ujk = ∂U
∂j∂k and U∗jk = Ujk|Li where (j, k) ∈ (x, y, z). The second partials of the accel-

eration is defined as a1,jk = ∂a1
∂j∂k and is the kth derivative of the jth component, and furthermore

a∗1,jk = a1,jk|Li .

In state space form this can be written as,

˙̃x = Ax̃ (42)

where the state vector is defined as x̃ = [ ξ η ζ ξ̇ η̇ ζ̇] T and the state matrix is defined as

A =

[
03×3 I3×3
T N

]
(43)

where

T =

Uxx + a1,xx Uxy + a1,xy Uxz + a1,xz
Uyx + a1,yx Uyy + a1,yy Uyz + a1,yz
Uzx + a1,zx Uzy + a1,zy Uzz + a1,zz

 (44)

N =

 0 2 0
−2 0 0
0 0 0

 (45)

For a nontrivial solution, then taking det(A) = 0 gives the characteristic polynomial8

P(λ) =

6∑
j=0

qjλ
6−j (46)

From evaluating the characteristic polynomial, the solutions to the local linear dynamics about the
equilibrium point Li will have the following form,17

ξ(t) =
6∑
i=1

kie
λit (47)

η(t) =
6∑
i=1

lie
λit (48)
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ζ(t) =
6∑
i=1

mie
λit (49)

where λi=1,...,6 represent the eigenvalues of the A matrix. If the selected point is an equilibrium
point defined in the x̂− ŷ plane then,

U∗xz + a∗1,xz = U∗yz + a∗1,yz = U∗zx + a∗1,zx = U∗zy + a∗1,zy = 0 (50)

Likewise for x̂− ẑ plane then,

U∗xy + a∗1,xy = U∗yz + a∗1,yz = U∗yx + a∗1,yx = U∗zy + a∗1,zy = 0 (51)

This results in decoupling of the out-of-plane equations associated with ζ, thus the relationship
between ki and li in the x̂− ŷ plane can be written as,

li =
λ2i − (U∗xx + a∗1,xx)

2λi + (U∗xy + a∗1,xy)
ki (52)

Based on Lyapunov Stability Theory then the following statements are true,23

i) A is Lyapunov stable if spec(A) ⊂ CLHP and, if λi=1,...,6 ∈ spec(A) and Re (λi) = 0, then λi
is semisimple (algebraic multiplicity = geometric multiplicity).

ii) A is semistable if spec(A) ⊂ OLHP ∪ {0} and, if 0 ∈ spec(A) then 0 is semisimple.

iii) A is asymptotically stable if spec(A) ⊂ OLHP.

iv) A is unstable if A is not Lyapunov stable.

where spec(A) is the spectrum of A containing the its eigenvalues λi=1,...,6, CLHP is the closed
left half complex plane i.e. Re(λi) ≤ 0, OLHP is the open left half complex plane i.e. Re(λi) < 0.

It is known that in the system without SRP the collinear libration points, L1, L2, L3, are unstable
and the initial conditions can at best be chosen such that the eigenvalues are not excited, meaning
Lyapunov stability near the collinear points.24

The coefficients of the polynomial P(λ) are given by,8

q6 = T∗11(T
∗
22T

∗
33 −T∗23T

∗
32)−T∗12(T

∗
33T

∗
21 −T∗23T

∗
31)−T∗13(T

∗
22T

∗
31 −T∗21T

∗
32) (53a)

q5 = 2T∗33(T
∗
21T

∗
12) + 2(T∗32T

∗
13 −T∗23T

∗
31) (53b)

q4 = T∗11T
∗
22 + T∗11T

∗
33 + T∗23T

∗
32 −T∗13T

∗
31 −T∗12T

∗
21 + 4T∗33 (53c)

q3 = 2(T∗21 −T∗12) (53d)

q2 = T∗11 + T∗22 + T∗33 + 4 (53e)

q1 = 0 (53f)

q0 = 1 (53g)
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To check if the system is stable then according to the Routh-Hurwitz criterion, then for a nth-degree
polynomial P(λ), all coefficients qi must exist (qi 6= 0), be positive qi > 0 and if there is any sign
change in the Routh Array then it means that the system is unstable. Looking at the Eq.53a-53g
implies that at least one eigenvalue will not lie in CLHP since q1 = 0. Thus the system is naturally
unstable. Substituting for purely imaginary eigenvalues λ = ικ (ι =

√
−1), the characteristic

polynomial becomes,8

P(ικ) = −κ6 + q2κ
4 − ιq3κ3 − q4κ2 + ιq5κ+ q6 (54)

For the condition P(λ) = 0 then both real and purely imaginary parts are identically zero, thus,

κ6 + q2κ
4 − q4κ2 + q6 = 0 (55a)

ικ(q5 − κ2q3) = 0 (55b)

Six solutions appear from this set of equations with κ2i > 0, i = (1, ..., 6). With κ1 = 0 and
κ2,3 = ±

√
q5
q3

, the solution κ is not a consistent solution. The latter equation can be satisfied if
q3 = q5 = 0 and are then represented as conjugate pairs in the first equation which may or may not
have real solutions. In order to have Lyapunov stability then, by necessity, q3 = 0⇒ (B∗21−B∗12) =
0. Since potential is conservative Uyx − Uxy = 0, such that q3 = 0 ⇒ (a1,yx − a1,xy) = 0. With
q5 = 0 it is also required that (a1,zx − a1,xz) = 0 and (a1,yz − a1,zy) = 0. This implies that β = 0
or

∇× a1 = 0 (56)

Only for conservative systems is the curl of a vector zero. This implies that solar radiation pressure
must be conservative and must be derived from some scalar potential.8 A requirement for Lyapunov
stability is therefore that solar radiation pressure force is zero, i.e. β = 0, or the problem is conser-
vative, i.e. α = 0◦. Although the equilibrium solutions are in general unstable, they are controllable
using either feedback to the sail attitude or trims to the sail area. Enforcing local linear stability, i.e.
all Re(λi) < 0, can be done by pole placement method or optimal control.

In this paper the sail position and velocity controllability will be investigated using the solar sail
attitude as the control input, which is considered to be more practical than trimming area of the
solar sail by varying β as there is more flexibility in changing the attitude by two control variables
only. Nevertheless, in future work, it is worth to examine controllability with three control variables
as the thrust of the solar sail has three components.17 The sail orientation control variables are
defined such that the input is,

u∗ + δu = [αLi + δα γLi + δγ]T (57)

where αLi and γLi are the nominal sail angles corresponding to the libration point of interest. Thus
the state space form becomes,

˙̃x = Ax̃ + Bδu (58)
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where A is the same as before and B has the form,

B =



0 0
0 0
0 0

a∗1,xα a∗1,xγ
a∗1,yα a∗1,yγ
a∗1,zα a∗1,zγ


(59)

The controllability matrix Γ ∈ R6×12 can be written as,

Γ =
[
B AB A2B A3B A4B A5B

]
(60)

For the system to be completely controllable, then for A ∈ R6×6 and B ∈ R6×2 the following is a
necessary and sufficient condition,

rank(Γ) = 6 (61)

It is found that Γ has full rank if the solar sail is not oriented parallell to the SRP force (when
α = ±90◦).8 Since,

B 6= 06×2 (62)

if r̂1 · n 6= 0, then this implies that the columns of Γ are linearly independent, thus rank(Γ) = 6
and the system is completely controllable. If r̂1 · n = 0 or equivalently α = ±90◦, then the input
has no influence on the state dynamics and the system is uncontrollable.

Stability and Control at Libration Points with Albedo Radiation

With the asteroid reflecting radiative forces, then now the perturbations will be induced by additional
effects from the albedo radiation exerted on the solar sail. Thus the state matrix A will change and
referring to Eq. 44, the T matrix will have the form,

T =

Uxx + a1,xx + a2,xx Uxy + a1,xy + a2,xy Uxz + a1,xz + a2,xz
Uyx + a1,yx + a2,yx Uyy + a1,yy + a2,yy Uyz + a1,yz + a2,yz
Uzx + a1,zx + a2,zx Uzy + a1,zy + a2,zy Uzz + a1,zz + a2,zz

 (63)

With only first order terms considered, then the perturbation EoM with respect to the equilibrium
point can now be expressed as,

ξ̈ − 2η̇ = (U∗xx + a∗1,xxa
∗
2,xx)ξ + (U∗xy + a∗1,xy + a∗2,xy)η + (U∗xz + a∗1,xz + a∗2,xz)ζ (64)

η̈ + 2ξ̇ = (U∗yx + a∗1,yx + a∗2,yx)ξ + (U∗yy + a∗1,yy + a∗2,yy)η + (U∗yz + a∗1,yz + a∗2,yz)ζ (65)

ζ̈ = (U∗zx + a∗1,zx + a∗2,zx)ξ + (U∗zy + a∗1,zy + a∗2,zy)η + (U∗zz + a∗1,zz + a∗2,zz)ζ (66)
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where aj,kl =
∂aj
∂k∂l and is the lth derivative of the kth component of the radiation acceleration vector

aj with respect to body mj j ∈ (1, 2), and furthermore a∗j,kl = aj,kl|Li .

By applying the Routh-Hurwitz criterion in the same manner as previously, it is found that the
coefficients of the polynomial P(λ) are given by,

q6 = T∗11(T
∗
22T

∗
33 −T∗23T

∗
32)−T∗12(T

∗
33T

∗
21 −T∗23T

∗
31)−T∗13(T

∗
22T

∗
31 −T∗21T

∗
32) (67a)

q5 = 2T∗33(T
∗
21T

∗
12) + 2(T∗32T

∗
13 −T∗23T

∗
31) (67b)

q4 = T∗11T
∗
22 + T∗11T

∗
33 + T∗23T

∗
32 −T∗13T

∗
31 −T∗12T

∗
21 + 4T∗33 (67c)

q3 = 2(T∗21 −T∗12) (67d)

q2 = T∗11 + T∗22 + T∗33 + 4 (67e)

q1 = 0 (67f)

q0 = 1 (67g)

Looking at the Eq. 67a-67g implies that at least one eigenvalue will not lie in CLHP since q1 = 0.
Thus the system is naturally unstable. Substituting for purely imaginary eigenvalues, the character-
istic polynomial becomes,

P(ικ) = −κ6 + q2κ
4 − ιq3κ3 − q4κ2 + ιq5κ+ q6 (68)

For the condition P(λ) = 0 then both real and purely imaginary parts are identically zero, thus,

κ6 + q2κ
4 − q4κ2 + q6 = 0 (69a)

ικ(q5 − κ2q3) = 0 (69b)

Six solutions appear from this set of equations with κ2i > 0, i = (1, ..., 6). With κ1 = 0 and κ2,3 =

±
√

q5
q3

, the solution κ is not a consistent solution. The latter equation can be satisfied if q3 = q5 = 0

and are then represented as conjugate pairs in the first equation which may or may not have real
solutions. In order to have Lyapunov stability then, by necessity, q3 = 0⇒ (B∗21−B∗12) = 0. Since
potential is conservativeUyx−Uxy = 0, such that q3 = 0⇒ (a1,yx+a2,yx−a1,xy−a2,xy) = 0. With
q5 = 0 it is also required that (a1,zx+a2,zx−a1,xz−a2,xz) = 0 and (a1,yz+a2,yz−a1,zy−a2,zy) = 0.
This implies that β = 0 or,

∇× a1 +∇× a2 = 0 (70)

⇒∇× a1 = −∇× a2 (71)

Similar to the CR3BP with SRP acceleration a1 only, this implies that the solar radiation pressure
from both a1 and a2 must be either conservative or one of the accelerations must be balanced
by opposite curl. A requirement for Lyapunov stability is therefore that solar radiation pressure
force is zero, i.e. β = 0, or the problem is conservative, i.e. α = 0◦ and ψ = 90◦, or the
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radiation pressure accelerations are balanced, i.e. a1 = −a2. The modified stability characteristics
are part of contribution (c). Although the equilibrium solutions are in general still unstable, they are
controllable using either feedback to the sail attitude or trims to the sail area. Enforcing local linear
stability, i.e. all eigenvalues to be Re(λi) < 0, can be done by pole placement method or optimal
control.

With the same control variables as defined in Eq. 57 and referring to Eq. 59, the B matrix will now
have the form:

B =



0 0
0 0
0 0

a∗1,xα + a∗2,xα a∗1,xγ + a∗2,xγ
a∗1,yα + a∗2,yα a∗1,yγ + a∗2,yγ
a∗1,zα + a∗2,zα a∗1,zγ + a∗2,zγ


(72)

where aj,kl =
∂aj
∂k∂l and is the lth derivative of the kth component of the radiation acceleration vector

aj with respect to body mj , j ∈ (1, 2), and furthermore a∗j,kl = aj,kl|Li .

It is found that the modified controllability matrix Γ has full rank except when the solar sail is
not oriented parallell to the radiation forces from m1 and m2 having the properties r̂1 · n = 0
and r̂2 · n = 0 (when α = ±90◦ and ψ = 0◦), which is naturally similar to the CR3BP with
SRP acceleration a1 alone when the system is uncontrollable if r̂1 · n = 0. This is another part
of the contribution (c) in this paper. This implies that the columns of Γ are linearly independent
if r̂1 · n 6= 0 and r̂2 · n 6= 0 simultaneously, thus rank(Γ) = 6 and the system is completely
controllable.

If the system is completely controllable, then a feedback gain K may be constructed from pole
placement by arbitrarily placing eigenvalues such that Re(λi) < 0 or optimal control such that the
closed-loop system Acl = (A + BK) is asymptotically stable.

NUMERICAL RESULTS

Analyzing the planar CR3BP for two separate cases: y = 0 and z = 0 the solar sail in the
Sun-Asteroid system with varying β and orientations (α, γ), it is clear that the classical libration
points L1,...,5 are replaced by infinitely many artificial equilibrium points when including radiation
pressure from both the Sun and the asteroid.

For the results discussed here, the mass ratio is chosen to be µ ≈ 1.302543991786095 × 10−10,
ρ = 0.2, d2 = 525.4 km and r12 = 353.268 × 106 km which are geometrical and physical
parameters equivalent to an asteroid representing Vesta, which is a large asteroid residing in the
asteroid field. Previous studies have been made on how SRP generates artificial equilibrium points,
however, with albedo radiation these equilibrium points change considerably and solar lightness
number contours become altered due to Lambertian BRDF reflectance as a function of φ and r2.
The chosen region to investigate is in the vicinity of L1 and L2.

Figure 3 and 4 shows some of the equilibrium solutions or contours of solar sail lightness number β
in the CR3BP with SRP only in the x̂− ŷ plane and x̂− ẑ plane, respectively. Highlighted contours
are a : β = 0.0008, b : β = 0.008, c : β = 0.03, d : β = 0.3, similarly reproduced as in other
literature.8, 16, 17, 24 The dashed boundaries S1(r1) define the shaded areas where the β-contours
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Figure 3. Solar Sail Lightness Number β−Contours in x̂− ŷ and x̂− ŷ Plane

Figure 4. Solar Sail Lightness Number β−Contours in x̂− ẑ Plane

cannot exist as r1 ·n ≥ 0 and touch the mass m2 and the collinear points L1 and L2, corresponding
to the classical solutions with ∇U = 0 or α = 90◦.

The result clearly complies with the theory, however, since µ is very small then this renders more
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flexible solar sail surfing for small numbers of β than for large β, demonstrated to be on the order of
10 less than the Sun-Earth system.8 What this practically means is that the solar radiation pressure
force is smaller than the solar gravitational force or for a balance between the solar radiation pressure
force and the solar gravitational force, the area to mass ratio is smaller meaning a smaller solar sail
is required for a specific mass. When 0.03 ≤ β ≤ 1, the contours do not change considerably and
thus sail surfing is restricted. If 0 ≤ β ≤ 1 then the contour shows a 3D nested torus projected onto
the x̂ − ŷ or x̂ − ẑ plane. However for β > 1, then the inner radius of the torus disappears. As
β →∞, the libration surfaces approach the boundary S1(r1).

Figure 5. Solar Sail Lightness Number β−Contours in x̂− ŷ Plane with Albedo

Figure 5 and 6 shows some of the equilibrium solutions or contours of solar sail lightness number
β in the CR3BP with SRP and albedo effects in the x̂ − ŷ plane and x̂ − ẑ plane, respectively.
Highlighted contours are a : β = 0.0003, b : β = 0.0005, c : β = 0.005, d : β = 0.01. The dashed
boundaries S1(r1) define the shaded areas where the β-contours could not exist for the CR3BP
model with SRP only as r1 ·n ≥ 0. S1(r1) define the shaded areas due to the constraint r2 ·n ≥ 0.
This new boundary is obviously the important to investigate in future work. The mass m2 and the
collinear points L1 and L2, corresponding to the classical solutions with ∇U = 0 or α = 90◦ and
ψ = 0◦ lie on both of the boundaries.

These results differ from Figure 3 and 4, showing that β−contours in general have different shape
due to the Lambertian BRDF effects. Noteworthy is that closer Sun-side equilibrium points exist be-
tween L1 and m2 which shows that the albedo from the asteroid could potentially induce beneficial
effects on the solar sail. For flexible solar sail surfing then β has to be even smaller than shown in
Figure 1 and 2. This time it means the solar sail can move easily with smaller SRP force as it would
at some points balance out the gravity and reflected radiation from the asteroid, rendering existence
of new equilibrium solutions. When 0.005 ≤ β ≤ ∞, the contours do not change considerably and
surfing is restricted. As β → ∞, the libration points approach the boundaries S1(r1) and S2(r1).
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Figure 6. Solar Sail Lightness Number β−Contours in x̂− ẑ Plane with Albedo

Figure 7. Solar Sail Equilibrium Points for β = 0.005 with Albedo in x̂− ŷ Plane

Since F, thus the albedo effect, is a function of the distance r2, it would be interesting to see how
this would affect the equilibrium points outside of the region around L1 and L2.
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Figure 7 shows a section with the equilibrium points for a constant β = 0.005 with varying 0◦ ≤
α ≤ 90◦ for γ = ±90◦ for albedo ρ = 0.2. The lower half of the plot corresponds to γ = +90◦

while γ = −90◦. It can easily be seen that at α = 90◦, the equilibrium point exists at L1.

CONCLUSIONS & FUTURE WORK

It is clear that adding albedo radiation pressure has significant effects on solar sail dynamics with
SRP in CR3BP. The equilibrium points are considerably altered when including the albedo effects
in the SRP model for the Sun-Asteroid system. Artificial equilibrium points are found be existing
on the Sun-side of the asteroid, which motivates new mission possibilities around these interesting
points.

Stability and controllability at libration points, through analyzing local linear dynamics, has been
checked and it is found that the equilibrium points are still unstable with albedo effects due to the
additional perturbations. Since the libration points are controllable, the solar sail can induce attitude
changes as such to enforce asymptotic stability or Lyapunov stability at the points of interest.

For an asteroid or a comet with high albedo it is also important to investigate other dominant effects
around primitive bodies as opposed to those conventially expected for terrestrial planets. These find-
ings would be benificial for any type of spacecraft mission to distant planets, asteroids or comets.
From an astrodynamics perspective this work would provide a new way to look at long-term mis-
sions to bright objects as the albedo effect is especially important to consider for the sensitive sur-
faces of a solar sail. As an extension to this work, future work will involve analysis of periodic
orbits around the artificial on-axis and off-axis equilibrium points, transfers between equilibrium
points, oblateness effects, elliptical models for both the Sun-Asteroid and Earth-Asteroid system.
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