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INVARIANT THEORY AS A TOOL FOR SPACECRAFT
NAVIGATION

John A. Christian* and Harm Derksen’

Many spacecraft navigation algorithms are built upon models describing the geometric re-
lationships between the spacecraft state and the measurement produced by a sensor. This
is especially true for vision-based sensors. However, extracting the maximum amount of
independent state information from a measurement (or set of measurements) is not always
straightforward. This work investigates the utility of invariant theory as a tool to better uti-
lize the information content within sensor data for spacecraft navigation. Direct applications
include star pattern recognition, terrain relative navigation (TRN), and LIDAR point cloud
registration.

INTRODUCTION

A major part of spacecraft navigation and orbit determination (OD) is using sensor data to infer the state
of a spacecraft. In some cases, such as with Inertial Measurement Units (IMUs), this sensor data may be
collected and processed with only limited consideration of the outside world. In most cases, however, the
navigation sensors (e.g., cameras, LIDARs, RF transceivers) observe a phenomena whose value is function-
ally dependent on the relative geometry between the spacecraft and other objects. It is exactly this functional
dependence—the fact that a change in sensor reading informs us of a change in the spacecraft state—that
makes these observations useful for state estimation.

However, these changing measurement values sometimes make data association difficult when attempting
to establish correspondence between two data sets. For example, given a set of star observations in an image,
how do we establish correspondence (i.e., match) each observed star to a catalog of known stars? Moreover,
how do we know if any of the observations arise from objects (stars or otherwise) not existing within our
catalog (i.e., are any of the observations outliers)? These questions describe the so-called “lost-in-space star
identification” or “astrometric calibration” problem that has spawned 100s of proposed asterism matching
schemes over the past 50 years [1, 2, 3, 4]. Similar measurement-to-catalog matching problems exist for
crater identification [5], natural (arbitrary) landmark identification [6], spacecraft retroreflector identification
[7], and a variety of other spaceflight applications. As another example, we might collect a sequence of mea-
surements and wish to know if these are observations of the same object or of different objects—a problem
often arising in orbit determination [8]. Regardless of the application, correct correspondence is critical since
most state estimation frameworks used in practice (e.g., least squares, Kalman filters) do not provide a way of
accounting for this kind of misrepresentation in the measurement model. While some recent techniques may
help soften this dependence in certain situations [9], correct measurement correspondence (either explicit or
implicit) is ultimately necessary.

Many of the feature descriptors schemes in use today for visual recognition of objects are heuristic, ad hoc,
and/or brute force—but this need not be the case. They key to developing a rigorous framework is to first
recognize that much of what we seek in practical navigation is geometric in nature and then to exploit the
deep relationship between this geometry and the concept of invariants. Indeed, this relationship is described
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by the Klein-Weyl Thesis [10]: “The only important geometric relationships are defined by invariants and
conversely every invariant has a significant and interesting role in geometric analysis.”

Therefore, this work explores the fundamental role invariant theory plays in the geometry of spacecraft
navigation. Our approach utilizes concepts from algebraic geometry to consider functions of a particular al-
gebraic variety (e.g., points, planes, conics) whose result does not change (i.e., is invariant) under a particular
group action [e.g., SO(3), SE(3), PGL(3)]. Many popular navigation algorithms—especially in the areas of
star identification, terrain relative navigation (TRN), and relative navigation (RelNav)—rely on results from
invariant theory, even if this dependence is implicit and not often recognized. When we fail to deeply un-
derstand a problem’s geometry, the result is an algorithm that is incomplete, has a narrow applicability, or
is a duplication of an existing algorithm in disguise. This work illustrates the utility of invariant theory for
avoiding some of these common pitfalls. We also provide a survey of results (some known, some novel) for
a wide variety of generic problems, and hope this becomes a useful guide for future algorithm developers.

GEOMETRY AND INVARIANTS

In spacecraft navigation we seek to extract information from sensor measurements of the surrounding
environment to infer the vehicle’s state. Suppose, therefore, that we describe an object in the surrounding
environment by the model M. If we aim to recognize this object when observed from an arbitrary vantage
point, we are especially interested in attributes that are independent of the position and orientation (i.e., pose)
of the sensor. That is, we are interested in functions that depend on the model that remain unchanged when
the sensor moves relative to the model. More than that, we also seek functions describing attributes that
persist across the measurement generation process (e.g., attributes that may be constructed from the model or
from images of the model).

Equivalence Relations and Invariants on Models

Without loss of generality, we can take an observer-centric viewpoint, where we fix the sensor and move
the model relative to the sensor. Thus, the motion of the sensor relative to the world may be described by
action of the group G on the set of models. A group element g € G transforms a model M to another model
g - M. In the case of spacecraft navigation (and in many terrestrial robotic applications), the relative motion
between the sensor and the model is governed by the group G = SE(3) of isometries of R?® consisting of
rotations and translations (i.e., rigid relative motion). Thus, since we seek model attributes that do not change
under the action of group G, our interest lies in functions that satisfy f(g- M) = f(M) for every g € G and
every model M. Such a function is called an invariant (or G-invariant).

From an object recognition, we wish to make no distinction between a model M and a transformed (e.g.,
translated, rotated) version of this same model given by M’ = g - M. Thus, we call two models M and
M’ equivalent (notation: M ~ M) if there exists a group element g € G with M’ = g - M. Invariants
fi, fo,..., fs form a complete system of invariants if M ~ M’ if and only if f;(M) = f;(M’) fori =
1,2,...,8. If f1, fa,..., fs is a complete system of invariants, then to test whether M ~ M’ we only have
to evaluate f1, fo,..., fs on M and M’. The fact that the values of the invariants determine the model up to
equivalence is in harmony with the Klein-Weyl Thesis mentioned in the introduction.

The relation ~ is an equivalence relation, which means that:

1. ~ isreflexive: M ~ M (because M = 1- M where 1 € G is the identity);

2. ~ is symmetric; if M ~ M/, then M’ ~ M (because if M’ = g- M, then M = g~ - M’, where
g~ ! is the inverse of g);

3. ~is transitive: if M ~ M’ and M’ ~ M", then M ~ M" because if M’ = h-Mand M" = g- M’,
then M" = gh - M).

The equivalence class [M] of some model M is the set of all models M’ with M ~ M. From the definition
of ~ is clear that [M] is exactly the orbit {g - M | g € G} of M.



As an example, we consider models of the form M = (p,,p,,...,p;), Where p;,p,, ... ,p, are points in
R3. This model arises often in practice, such as a 3D object parameterized by the location of 3D keypoints
residing on its surface. Sometimes these keypoints are artifical (e.g., retroreflectors on the ISS [7, 11]) and
sometimes they are naturally occurring interest points (e.g., maplets on astroid surfaces [6] or 3D features on
LIDAR data [12, 13]). Other models—such as lines, conics, and planes—are also important, but we defer
their discussion to later sections. If we allow the model M to translate, rotate, and/or reflect according to the
symmetry group G = E(3), then the pairwise distances J; j(M) = [|p; — p,|| are invariants. To make this
explicit, we parameterize E(3) by the 3 x 3 orthogonal matrix A € O(3) and the translation r € R? such that
the sensor-relative location of model point p; is given by g,

q; =Ap; +r (D)

The transformed model is then M’ = (q,,45,...,q,). It is straightforward to show that the pairwise dis-
tances are invariant to the action of G = E(3),

0ij(M') = llg; — ;1| = (Ap; + 1) — (Ap; + 1)l = |A(p; —p))ll = llp; —p;l = 0:;(M) ()

Thus, for a d-tuple of 3D points under the symmetry of E(3), the invariants {¢; ; | 1 < i < j < d} form a
complete system of invariants, because the model M can be reconstructed up to isometry from the pairwise
distances ¢;_;(M). We note that the pairwise distances do not form a complete system of invaraints for rigid
transformations G = SE(3) since pairwise distances alone result in a reflection ambiguity not present in
SE(3). This reflection ambiguity may not matter in some applications if reflections are unimportant or rarely
encountered in practice.

Equivalence Relations, Invariants, and View Invariants on Measurements

Navigation systems work by using information collected by sensors that observe the model M. Thus, since
all we have is sensor measurements, practically useful invariants must survive the measurement generation
process and be reproducible from only the measured data. This is step is often trivial for 3D sensors (e.g.,
LIDARS) that directly measure the sensor-relative 3D location of model points [i.e., directly measures g, from
Eq. (1)]. More challenging is the situation when all the measurements are from cameras.

In vision-based spacecraft navigation, we typically have an image (or set of images) Z that is some kind of
projection image (M) of a model M. For example, 7 could be a stereographic, orthogonal, or perspective
projection. A central question is: given two images Z and 7', are they projections of two models M and M’
that are equivalent? We can define a relation = on the set of images, where Z = 7 if and only if there exist
models M and M’ withZ = 7(M),Z' = m(M’), and M ~ M'.

In some cases a model can be reconstructed from the image Z = 7(M), especially in the case where 7
consists of more than one image. If this is the case, then one can verify whether Z = 7’ by first reconstructing
the models M and M’ and then verifying whether M ~ M’ using a complete system of invariants. There
are many examples where models can be constructed from one or more images. In the case where models
can be reconstructed from images, = is an equivalence relation as well.

If we cannot reconstruct the model from the image, then the relation = may not be an equivalence relation
because it may not be transitive (but it will still be reflexive and symmetric). As an example, consider again
the models consisting of point clouds in R? with d points, and consider images that are orthogonal projections.
Suppose 7 = (uy,us, ... ,uq) and ' = (u',uh, ... ul) are two images, where u, ..., uq,uy, ..., u), are
the measured image points in R?. If Z = 7’ then there exists points p;,ps, . ..,p, € R3, 2 x 3 matrices 4,
A’ and vectors b,b" € R? such thatu; = Ap; +b and u), = A’p, + b’ for all i, so the rank of
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is at most 4, because the first matrix on the right-hand side has only 4 columns. For this example and for
d = 5, we can define a function r by

ul u2 ... u5
r(Z,7') = det |u} uh --- ul
11 - 1

Then r(Z,Z") # 0 implies that Z £ Z’. We call r a relational function. For example, the reader may verify
the 7(Z,Z') # 0, when

IZ([SL[})])[?LHL[%])’ Ilz([BL[%)L[?L[%]?[B]) 3)

Ideally, we have a complete system of relational functions 71,73, . .., 7 in the sense that Z = Z’ if and only
ifr(Z,77) =0fork =1,2,...,t. Although a system r1, 7o, ..., 7 is useful to compare two images, it not
as useful for matching an image Z’ to images within a large catalog {Z1,Z,,...,Zn}. One could evaluate
ri(Z',Zy) forj =1,2,...,tand k = 1,2,..., N but this could be too time consuming when N is large.

Invariants are more powerful than relations for object recognition. Suppose for example that models can
be reconstructed from the images. So then we could reconstruct models M’ M1, Ma, ..., My (up to
the action of the symmetry group G) from the images Z',Z7,Z}, ..., ). Now M’ ~ M, if and only if
7' = Tj. Suppose that f1, fa,..., fs is a complete system of invariants, and let f = (f1, f2,..., fs). To
match an image Z’ (and corresponding model M’) to an image in the database, we have to find a k such
that f(M’) = f(My) for some k. The values of the invariants f(M;), f(Ma),..., f(Mpy) can be pre-
computed and stored in a database. Given an image Z’, one can reconstruct a model M’ with w(M') = 7',
compute f(M’) and quickly match it in the database. A quick match is made possible (e.g., with a nearest
neighbor search) since f(M’) = f(My) and f(M’) # f(M;) for i # k. We find, however, that explicit
reconstruction of the model M is not always convenient or possible—and so we search for an even more
powerful technique for image-to-catalog matching.

View invariants (when they exist) are even more powerful than invariants since they permit direct image-to-
image, image-to-model, and/or image-to-catalog matching, without the need for model reconstruction. This
idea is now developed. If = is not an equivalence relation, then we can still construct a different equivalence
relation = from = by using transitive closure. We define Z = 7’ if and only if there is a finite sequence
of images Zg,Z1, -+ ,Zx such that Z = Zg = I; = --- = I, = Z'. We may not be able to use all
invariants, because the invariants have to be evaluated on models and the models cannot be reconstructed.
Some invariants, which we will call view invariants, can be computed from the an image. A function h
on images is a view invariant if there exist an invariant f of models such that f(M) = h(Z) whenever
T = 7(M) is an image of the model M. If Z = 7', say Z = w(M), Z' = 7(M’) and M ~ M’, then
hZ) = fM) = fM)=nT). UL =TI saysayZ =7y =71y = --- = I; = Z’, then we have
h(Z) = h(Zy) = h(Zy) = --- = h(Zx) = h(Z'). Such view invariants are very useful because we can
compute them from an image and they allow us to look up a model within a large database. =A quick match
is made possible (e.g., with a nearest neighbor search) since h(Z') = f(My,) and h(Z') # f(M,;) for i # k.
Moreover, view invariants are useful for determining if two images Z and Z’ are observations of the same
object by simply checking if h(Z) = h(Z’), which may be accomplished even if the specific underlying
model M, is never known (and, possibly, cannot be reconstructed). Unfortunately, despite their utility, such
view invariants may not always exist.

In the example of d-point clouds in R? with symmetry group E(3) and images that are orthogonal projec-
tions, there are no view invariants. To see this, Suppose that
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are two arbitrary images of d points. Let
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If 70 : R® — R? and ma3 : R® — R? are the projections onto the first 2 coordinates, and the last 2
coordinates respectively, then we have 1 2(M) = Z and 75 3(M) = Z”,s0Z = I”. Moreover, w1 2(M’) =
Z" and ma 3(M’) =T, s0 Z" = T. It follows that Z = 7’. This means that for every view invariant s, we
have h(Z) = h(Z’). In other words, there are only trivial view invariants. In the example (3) earlier, we had
two images Z, Z' with Z # I’ for d = 5. Since Z = 7’ we see that = is not an equivalence relation.

Another interesting example is where the models are d points in R? that are coplanar, and the projection 7 is
perspective projection. A model M cannot be reconstructed from an image Z = 7 (M) up to the group E(3)
of Euclidean symmetries. However, there are view invariants in this case. We embed R3 into 3-dimensional
projective space P* on which the group PGL(4) acts. Although the model M cannot be reconstructed up
to E(3)-symmetry, it can be reconstructed up to PGL(4) symmetry. In this case, we obtain view invariants
from invariants of models for the larger symmetry group PGL(4).

DIFFERENT TYPES OF INVARIANTS

There are an assortment of different types of invariants that one might construct, depending on the func-
tional form of the invariant function f. Historically, much of the focus of invariant theory has been on
polynomial invariants. We quickly discover, however, that such polynomial invariants are not appropriate for
all applications (including many computer vision and spacecraft navigation applications), and so we consider
rational invariants. Finally, we generalize further to consider the case of algebraic invariants.

Polynomial Invariants

To develop a complete understanding, we will begin by considering polynomial invariants. Typically one
starts with a group G acting on a vector space R?. We write R[x1, 2o, . . ., 4] for the ring of polynomials
in n variables with real coefficients. A polynomial f € R[zq,z2,...,z4] is invariant under G if f(M) =
f(g - M) for every vector M € R? and every g € G. The set of all invariant polynomials form a subring of
R[z1, T2, . .., zq] (called the invariant ring) that is denoted by R[x1, 3, . . ., 24]¢. If two points M and M’
are in the same G-orbit, then f(M) = f(M’) for every polynomial invariant. The converse is not always
true in general, but it is true when G is a compact group [14]. One goal in invariant theory is to find a system
of fundamental polynomial invariants, which is a set of polynomial invariants f1, fa, ..., f, such that every
polynomial invariant f can be expressed in the form h(f1, fa, ..., f) where h is a polynomial in r variables.
We also say that f1, f2, ..., f, are generators of the invariant ring R[zy, z, ..., 24]%. If f1, fo,..., frisa
system of fundamental polynomial invariants, and f;(M) = f;(M’) fori = 1,2,...,r then it is clear that
f(M) = f(M’) for all polynomial invariants. David Hilbert proved in 1890 [15] that there always exists a
finite system of fundamental polynomial invariants if G is compact. However, Nagata [16] showed that there
may not be such a finite system if G is not compact, which also gave a counterexample to the 14th problem
on Hilbert’s famous list of challenges for the 20th century. In the situations that arise in computer vision,
there usually is a finite system of fundamental polynomial invariants even in cases where the symmetry group
is not compact.

To illustrate this approach in invariant theory we return to our earlier example of the action of the Euclidean

group E(3) on models M = (py,ps,...,p,), Where

Zq
p;= |y | €R® i=1,2,....d
Z

We saw in Eq. (2) that some invariants are given by

8ij(M) = llp; —p;ll = \/(Iz' —zi)2+ (Y — )P+ (2 —2)? 1<i<j<d

Now §; ; is not a polynomial function because of the square root, but it is still an algebraic function. If we

take the squares we get polynomial invariants A; ; = 51-20-, 1 <4 < j < d. The set of all polynomial



functions in the coordinates with real coefficients form the polynomial ring R[z1,y1, 21, - - . , Zd, Yd, 2d)- For
this example, the polynomial invariants A, ; generate the invariant ring, i.e.,

R[AI,Qa Al,?)a ey Al,d7 A2,37 R Ad—l,d] = R[$17y17 Zly+--5TdsYd, Zd]E(g)'

We have (;l) fundamental polynomial invariants. For d > 8 the number of fundamental polynomial invariants
is greater than 3d, the number of parameters in the model. This suggests that some of the fundamental
polynomial invariants we have found are superfluous. However, if we remove one of these generators A; ;,
1 <7 < j < d, then they will no longer form a system of fundamental polynomial invariants. In other words,
none of the fundamental polynomial invariants can be expressed as a polynomial in the other fundamental
polynomial invariants. Nevertheless, it is still possible that one of the fundamental polynomial invariants is
determined or almost determined by the other fundamental polynomial invariants because there are algebraic
relations among the invariants. For example, if d = 5 then there is an algebraic relations among the A; ;. If
A is the 3 x 4 matrix

[Pl —Ps P2 —Ps P3—Ps P4 _I’5] )
then

24tA =2 [(Pl —Ds) - (I’j *P5)] 1<ij<4

A Ais+Dos—A1g Ais+Azs—A13 Ais+Au5—Ajy

A s+ Ay — A Ags Ags +Azs —Asz Ags+Ays— Aoy

Ais+Ass5—A1z3 Ass+Azs—Ags Ass Ass+Ays—Aszy
Ars+As5—D1a Aos+Ass—Aos Ags+Ass5—Asy Ay

The rank of A is < 3, so the rank of 2AT A is < 3 and the determinant of the matrix above is 0 which
gives a relation among the A; ;. The determinant is of the form CQA?L75 + 1Ay 5 + co, where ¢, c1, co are
polynomials in ALQ, Al,g, A1,4, A1,5, A2,3, A274, A2757 Ag747 A3’5. If Co (M) 7& 0 then there are at most 2
distinct possible values for Ay 5 if the values of the other fundamental polynomial invariants A; ; are fixed.
Geometrically, p,,p5,P3,p4 and py,ps,p5,Ps form two tetrahedra that are fixed up to translations, rotations
and reflections. Depending on the orientations of the two tetrahedra, there are 2 possible values for Ay 5.
If p,,py,p5 all lie on some line ¢ then rotating p, and p5 about this line will only change the distance d4 5.
In this case, there are infinitely many values for Ay 5 and co(M) = ¢1(M) = ¢o(M) = 0. This example
shows, that in some computer vision applications we may get too many fundamental polynomial invariants.

Rational Invariants

Sometimes there are no non-trivial polynomial invariants. However, there may still be rational functions
that are invariant under the group action. If a group G acts on R<, then the rational functions on R? form

a field R(z1, 22, ..., 2q) with an action of G on it. If f(x1,...,24) = a(zy,...,24)/b(2z1,...,24) With
a(xy,xa,...,24),b(x1,22,...,24) in the polynomial ring R[z1,xa,...,24] and M € R", then f(M)
is only defined when b(M) is nonzero. If f1, fa,..., fr € R(z1,22,...,24) are rational functions, then

R(f1, fo, ..., [r) is defined as the set of all a(f1, f2, ..., fr)/b(f1, f2, .., fr) where a and b are polynomi-
als in r variables such that b(f1, fo, ..., fr) #Z 0. Now R(f1, fa, ..., fr) is the subfield of R(z1, 2, ..., 2q)
generated by f1, fa, ..., fr. Arational function f € R(x1,zo,...,z4)is G-invariantif f(g- M) = f(M) for
all g € G and all M for which f(g - M) and f(M) are defined. The set of all G-invariant rational functions
form a subfield R(z1, 72, ..., 24)¢ of R(z1, 22, ..., 24). Wewill call f1, fa, ..., fr € R(z1,22,...,24)% a
system of fundamental rational invariants if every rational invariant is a rational expression in f1, fa,..., fr,
ie.,if fi, fo, ..., f. generate the field of rational invariants R(z1, x2, ..., x4)C. It is known that every sub-
field of R(z1, 2, . . ., 24) has finitely many field generators. So there always exist finitely many fundamental
rational invariants. Often one can choose fundamental rational invariants that do not have any algebraic
relations.

Instead of the action of E(3), consider the action of the non-compact group GL(3) on models M =
(P1:P3; - --,P4)- For this group action, let g(¢) = ¢-id. Then we have g(t)- M = t- M and lim;_,o g(¢)- M =



(0,0,...,0). If f is a polynomial invariant then f(M) = f(g(t) - M). Using the continuity of f, we get
fM) = limso f(g(t) - M) = f(limsog(t) - M) = f(0,0,...,0). This shows that f is a constant
polynomial. So there are no interesting polynomial invariants. However, there exist non-trivial rational
invariants. Suppose that d > 4 and let us consider models M = (py,ps,...,p ) for which p,,p,,p5 are
linearly independent. For j = 4,5,...,d we can write p; = \j1p; + Ajapy + Aj3ps. Up to the GL(3)-
action, the model M is completely determined by the 3(d — 3) = 3d — 9 parameters \; ; with 1 <4 < 3 and
4 < j < d. The A;; are rational invariants, namely

_ :det [I’j ) PS} _2:det [171 p; Pg} _Szdet [171 ) 2 Pj]
P17 et p1 Py ps3]’ 77 det|py py ps]’ 77 det|py py P3|

These 3d — 9 invariants form a system of fundamental rational invariants, and they are algebraically indepen-
dent.

Algebraic Invariants

A continuous function f(z1,xs,...,74) defined on some open connected subset U C R is called alge-
braic if there is a positive integer m and there exist rational functions hq, h1, ..., hyn_1 € R(z1, 22, ..., 24)
such that

S+ B f" 7+ B f + ho = 0. )

Suppose that G is an group acting on R". We say that f is an algebraic invariant if we can choose
ho,h1, ..., hm—1 to be rational invariants. If f € R(z1,x2,...,2q) is a rational function and an algebraic
invariant, and the group G is a connected Lie group, then f is actually a rational invariant.

COUNTING THE NUMBER OF INDEPENDENT INVARIANTS

In spacecraft navigation (and in computer vision) it is often important to know the maximum number of
functionally independent invariants. This task requires some care and is not always straightforward. However,
the ability to enumerate the number of functionally independent invariants is essential for the proper design of
an invariant-based object recognition pipeline. There are numerous examples of algorithms that unknowingly
use less than the number of independent invariants (and so there is useful information that is left unused)
or that use more than the number of independent invariants (and so some of the information is actually
redundant). Thus, establishing the existence of invariants and enumerating them are amongst the first steps
in the rigorous development of an any algorithm that uses invariants.

Transcendence Degree

We saw above that is often convenient to work with rational invariants (e.g., instead of polynomial in-
variants). Thus, if we consider rational invariants, then the number of independent invariants relates to the
notion of transcendence degree of a field extension. For more details on transcendence degree and field
extensions, see [17, Chapter VIII] and [18, Chapter VI]. Suppose that R C K C L are fields. We say that
f1, fo,. .., fr € L are algebraically dependent over K if there exists a nonzero polynomial h with coefficients
in K such that A(f1, fo,..., f) = 0. The transcendence degree of L over K, denoted by trdeg(L/K), is
the supremum over all nonnegative integers r for which there exists f1, fo, ..., f, € L that are algebraically
independent over K. Suppose that fi, fa,..., fr € L are algebraically independent over K and r is max-
imal, i.e., r = trdeg(L/K). Then we call f1, fa,..., f. a transcendence basis of L over K. The field
K(f1, fa,..., fr) is a subfield of L, but they may not be equal. However, every element of L is algebraic
over K(f1, f2,--., fr) and by the Primitive Element Theorem (see [17, Theorem V.4.6]), there exists an
fre1 € Lsuchthat L = K(f1, fa,..., fr+1). Moreover, if K C L C M is a chain of field extensions, then
we have (see [18, Theorem VI.1.11])

trdeg(M/K) = trdeg(M/L) + trdeg(L/K). (5)

The transcendence degree of the rational function field R(xz1, zo, ..., z4) over R is d. In particular, if
fisfase oo fr € R(xy,29,...,2q) and r > d, then fi, fo,..., f, must be algebraically dependent over R.



Suppose that fi, fa,..., fr € R(z1,22,...,24) are possibly algebraically dependent and consider the field
K = R(f1, fa,..., fr). There is a easy way to find the transcendence degree of K over R. Consider the
r x d Jacobian matrix

oz Oxo Oxq
ofa Of: .. Of2
J _ 83.01 81.02 a.T)d
Ofr  Ofr ... Ofr
oz Oxo Oxq

The rank of J, as a matrix with entries in the field R(z1, x2, ..., zq) (or K) is exactly equal to trdeg (K /R).
For example, suppose that f; = z1 + 22 + x3, fo = 27 + 23 + 22 and f3 = 23 + 23 + 23. Then we have

1 1 1
J = 21‘1 2.1‘2 2%‘3
3z 323 323

Evaluating at M = [—1 0 1] gives the matrix

11 1
JM)=|-2 0 2
3.0 3

whose has determinant is equal to 12. Consequently, we find that f, f5, f3 are algebraically independent
since the determinant of .J is nonzero.

Invariants and Transcendence Degree

Suppose that G is a group acting on R?. By the number of independent rational invariants we mean the
transcendence degree r = trdeg(R(z1, 22, . .., 24)¢ /R). We can choose a transcendence basis f1, fo, . .., fr
of R(z1,xa,...,14)¢ over R. Now every rational invariant R(x1, 2o, ..., 24)€ is an algebraic function in
fisforeoos fr IER(21, 29, . .., 24)C is not equal to R(fy, fo, ..., f») then we can choose a rational invariant
fri1 such that R(zy, xa,...,24)% = R(f1, f2, ..., fr+1). So the number of fundamental rational invariants
we choose is equal, or 1 more than the number of independent rational invariants.

Suppose that G is an algebraic group acting on R?. This means that G is isomorphic to a subgroup of
GL,,(R) for some n that is defined by polynomial equations. Let G - M be the orbit of M and Gy = {g €
G | g- M = M} be the stabilizer subgroup. Then we have (see e.g. [19, §1.4])

dimG = dim G - M + dim G . (6)

For a random M € R", if the dimension of G - M is maximal, then the dimension of the stabilizer G 54 is
minimal. It follows from [19, §2.4] and (5) that for this random M we have

dim G - M = trdeg(R(z1, . .., zq) /R(x1, . .., 24)¢) = d — trdeg(R(z1, . .., 24) /R). 7

We can use this formula to count the number of independent invariants. Consider again the example of the
group G = E(3) on models M = (p;,ps,...,py) € (R*)? = R3? consisting of d points. The group E(3)
has dimension 6. If d = 1, then the stabilizer of any M = (p,) is O(3) which has dimension 3. For d = 2,
and M = (p,,p,) is randomly chosen, then p; # p, and the stabilizer is isomorphic to O(1) (and consists
of rotations about the line through p; and p, and reflections in planes through this line). So the stabilizer has
dimension 1 in that case. For d = 3 and M = (p,,p,,p5) randomly chosen, p,p,,p5 are distinct and do
not lie on a line. The stabilizer in this case has only 2 elements (identity and reflection in the plane through
D1,P2,P3) and has dimension 0. For d > 4 the stabilizer of a random M is trivial and has dimension 0.

These results may now be used to find the number of independent invariants r = trdeg(R(z1,y1, 21, . . - , T4, Yd, 24) " ®) /R).
Specifically, from Eq. (7) we have that dim G - M = 3d — r. Moreover, since dim G = 6 for E(3), we may
rearrange Eq. (7) to find that

6 —dimGy =dimG —dimGy =dim G- M = 3d —r,



so we have r = 3d — 6 + dim G o4. This results in the following number of independent invariants r for
different numbers of d points

d || dimGuy | dimG- M| r |

1 3 3 0

2 1 5 1 ®
>3 0 6 3d—6

Derivations and Subfields

Before discussing counting view invariants, we need to understand derivations on function fields. See [17,
Chapter VIII] for more details on derivations and field extensions. Suppose that R C K C L are fields. A
derivation of L over K is a function D : L — L that satisfies the Leibniz’ rule: D(ab) = aD(b) + D(a)b
foralla,b € L, and D(a) = 0 for all a € K. One can verify that a derivation D € Der(L/K) is a K-linear
map L — L. We write Der(L/K) for all derivations of L over K. Now Der(L/K) is closed under addition.
Also, if A € L and D € Der(L/K) then AD again lies in Der(L/K). So Der(L/K) is an L-vector space.
One has (see [17, Proposition VIIL.5.5])

dim Der(L/K) = trdeg(L/K). )

Moreover, if D,E € Der(L/K) then [D,E] = DE — ED : L — L again lies in Der(L/K). This
makes Der (L/K) into a Lie algebra. For example, if L = R(x1,xa,...,24), then the partial derivatives
8901 , 812 ol 66 are derivations of L over R. In fact, they form a basis of Der(R(wl, Za,...,2q)/R) asan
R(xz1, 2z, .. a:d) vector space.

Suppose that G is an algebraic group acting on R?%. Let L = R(zy, xa, ..., 24). We can find Der(L/L%) as
follows. The algebraic group G is a Lie group with some Lie algebra g. To an element A € g we can associate

a derivation D = ¢(A) on L = R(z1, 22,...,x4) as follows. We can choose a curve g : (—e,&) — G such
that g(0) is the identity element and A = ¢'(0). Then we have
d f(g(t))
D(f)= ——== .
(f) it |

We have that Der(R(z1, ..., zq)/R(z1, 22, . ..,24)¢) is the L-vector space spanned by ¢(g). To illustrate
this, consider again the action of G = E(3) on models M = (py,p,,...,p,) consisting of d points. The
group G acts on L = R(z1,y1,21,...,%d,Yd, 24). Infinitesemal translations in the z-, y- and z-direction
correspond to the derivations

d 9 9
Dlzzaxi’ Dgzzgayi, Dgzz;az. (10)

i=1

Infinitesemal rotations about the x-, y- and z-axes correspond to the derivations

d
D4:22281 yzaz Zzz i_ ’L Zyz __ i ?Jl (11

l

Now Der(L/LG) is exactly the L-vector space spanned by D;, Ds, D3, D4, D5, Dg. The dimension of
Der(L/L%) is equal to dim G - M (see 7). In particular, Dy, Dy, D3, Dy, D5, Dg are linear independent if
and only if d > 3.

Suppose that K7, Ko are subfields of L containing R. If K; C Kj, then we have Der(L/K3) C
Der(L/K;). In general, we have that the L-vector spaces Der(L/K;) and Der(L/K5) are contained
in Der(L/(K1 N K3)). Let (Der(L/K7),Der(L/K>)) be the Lie algebra generated by Der(L/K;) and
Der(L/K3). Then we have

(Der(L/K1),Der(L/K>)) C Der(L/(K; N K3)) (12)



It was shown in [20] that we have equality if K, K5, L are algebraically closed fields. This also implies that
we have equality if K7 and K> are algebraically closed within L.

As an example, we compute K; N Ky where K1 = R(x,y + 22), Ko = R(y, z + 22) of L = R(x,, 2).
A derivation D € Der(L/R) is of the form a(z, y, z)a% + b(z, vy, z)a% + c(x,y, z)%. If D € Der(L/Ky),
then a(x,y,z) = D(z) = 0and D(y + 2°) = b(z,y, 2) + 2zc(x,y, 2). So D = c(z,y, z)(—2za% +2). So
Der(L/K}) is the L-vector space spanned by the derivation D; = —2z-2- 5y T o2 ()Z Similarly, Der(L/K3) is the
L-vector space spanned by Dy = a% —2z£ . We compute [Dy, Ds] as follows. From Dy Dy (z) = D1 (1) =
0 and D> D, (m) = DQ(O) = 0 follows that [Dl, DQ](,T) = 0. Similarly, [Dl, D2}(y) = Dng(y) —
DyD;(y) = 0 — 4x = —4x and [D1, D2](2) = 0. So we have D3 := [Dy,Ds] = —4x8%. It is clear
that 883:’ 35> 8 lie in the L-span of Dy, Dy, D3. So Der(L/(K; N K3)) is equal to Der(L/R) which has
dimension 3. So we have trdeg(L/(K; N K3)) = dim Der(L/(K; N K3) = 3 and

trdeg(K1 N K3/R) = trdeg(L/R) — trdeg(L/(K1 N K2)) =3—-3=0.
This implies that K N Ky = R.

Counting Independent View Invariants

If we consider view invariants rather than actual invariants, then we have to use different methods to find
the number of independent invariants. As it turns out, we can find the view invariants as an intersection of
fields.

We have already shown that there are no view invariants for orthogonal projections for point clouds in R3.
We will now show that there are no view invariants if we use a pinhole camera with a perspective projection.
While this fact has been known for some time [21, 22, 23], it is instructive to develop this familiar result with
the present theory as an illustrative example. Let 7 : R? \ {0} — P? be the perspective projection. If we use
projective coordinates [x : y : z] € P2, then the rational functions on P? form the field R(; ), which is a
subfield of the field R(z,y, z) of rational functions on R3. Now Der(R(z,y, z)/R(%, %)) is the R(z,y, z)
spanned by the Euler derivation £ = x% + yay + Zaz If we have a model M = (pl,p27 ..,py) € (R34
of d (nonzero) points, then the image Z = 7(M). The projection 7 gives an inclusion of fields

K= R(zl noo yd) CL=R(x1,Y1,21,---Td, Yd, 2d)-
2’z " 2a 24

The L-vector space Der(L/K) is spanned by the derivations E; = xia%i + yia%i + ziﬁ%i, 1=1,2,...,d.
We now consider the action of G = E(3) on these models. The view invariants are exactly those invariants
that lie in the field K. In other words, we want to find the intersection field K N L“. Now Der(L/(K N L%))
contains the Lie algebra generated by Dl, Ds,...,Dg € Der(L/LS) and Ey, Es, ..., E4 € Der(L/K).
We have [Dy, E;] = 8 , [D2, Ey] = 3 and [Dg,E] = da fori = 1,2,...,d. So Der(L/(K N L%))
contains the basis of Der(L/]R). We conclude that Der(L/R) = Der(L/(K N L)), trdeg(K N LE/R) =
0 and K N LY = R. This proves that there are no view invariants. Importantly, we have not used the
derivations Dy, D5, Dg. So the same argument shows that there are no view invariants for this perspective
projection if we use a smaller symmetry group G' =2 R? consisting of just translations. This means, that if
we use a perspective camera with fixed (known) orientation but arbitrary location, then there still are no view
invariants. Interestingly, however, if we constrain the observer motion to a known line then view invariants
are introduced—a fact which was proven using the approach shown here in Ref. [24].

The situation radically changes if we assume that the points p,,p,,...,p, are coplanar with d > 4. We
write p; = [z; y; z;]T. The coordinates of p,,p,, ...,p, form a field L = R(x1,y1, 21, - - - , Td, Yd, Zd), but
now there are relations among the coordinate functions x;,y;, z;, 1 < i < d. And trdeg(L/R) is strictly
smaller than d. Let us consider coplanar models M = (py,ps,...,p;) wWhere p;,p,,...,p, span R3 (but
are oplanar). Then the plane through these points is given by an equation ax + by + cz = 1. Now M is
parameterized by the variables a, b, c and u; = %7 v; = z— fori =1,2,...,d. These parameters form a field

L= R(aabacaulvvlau%UQv'"7ud»vd)«
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We can express x;, y;, 2; in these field generators:

Ujg Vi 1
i au; + bv; + ¢’ ¥i= au; + bv; + ¢’ s au; + bv; + ¢
Let us investigate the action of G on the field L. If we translate in the z-direction over ¢, we get z;(t) = x; +t,
yi(t) = y; and z;(t) = z;. The equation ax + by + cz = 1 of the plane changes to a(z+t) +by+cz = 1+at
or equivalently
a b c

G+ v+ ()=t

So we get a(t) = 1, b(t) = 1+m‘ and c(t) = 1. We also get

(T 4+t e
u,(t) _ mz( ) _ xz'." _ au1+bv1+c —u; + t(aui + by + C)
Zl(t) i au;+bv;+c

and v;(t) = Z—g 71 = v;. We get the infinitesemal action by differentiating ¢, and setting ¢ = 0. This

gives the following derivation:

d
0 0 0 0
D, = ;(aui + bu; + C)au, - a(aa— + b% +c 8—)

By symmetry, translation in the y-direction gives

d
0 0 0 )
DQ—;(aul"'bvl‘i_C)avz _b< 5+b%+ 87)

Infinitesemal translation in the z direction is slightly different, but similar computations show that we get the
derivation

D3=zd:(aui+bvi+c)(uiaam+vi;m) (a%+b%+ g)

i=1
Rotations in 3 directions give three more derivations Dy, D5, Dg, and Der(L/L%) is spanned by the deriva-
tions Dy, Ds, ..., Dg as an L-vector space.

The projection 7 : R3 \ {0} — P? corresponds to the inclusion of the field
K= R(Ul, VU1, U2,V2, .- -, ’U/d,’Ud)

into L. It is clear that Der(L/K) is the spanned by the derivations 2, & 2 The Lie algebra Der(L/(K N

L)) contains the derivations Dy, Ds, ..., D, %, %, %. In particular, it contains
D —Ed:(au-—i—bv-—i—c) 0 D —Ed:(au-—i—bv-—i—c)i D; —i(au-—l—bv-—}—c)(u-a—i—v-a)
1—i:1 ) i 8Ui7 Q—i:1 ) % 8112‘7 g—i:1 % 4 zaui 'Lavi .
So it also contains
0 9 0 S 0 ;)
b= g Dl = Luge B=[g 0 =Xugn B=m0) =g
b _[9 p]_N~, 0 O Ny @ o9 5 N0
4 {aa’ 2} ;“zavz’ 5 [ab 2};“6@/ 6*[%’ 2];801’
0 & 0 0 0 d 0 0
E7 = [%7Dé] :;iZI ul(ula—ul +vi871]i)’ Eg = [%7Dé} :;;vl(ulauz—kvz&h)
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For d > 4, the derivations %, %7 %, Fh, Es, ..., Eg are independent over L. To see this, it suffices to show
that F, Es, ..., Eg are independent. We consider the matrix A whose rows are

[E1 (Ul) Ez (UQ) Ez (U3) El (U4) E1 (’Ul) E1 (’Ug) E1 (’Ug) E1 (’U4)}

fort: =1,2,...8. We have

U7 U9 us Uy 0 0 0 0
V1 V2 V3 V4 0 0 0 0
1 1 1 1 0 0 0 0
A= 0 0 0 0 uy (%) us Uy
0 0 0 0 U1 Vg V3 V4
0 0 0 0 1 1 1 1
u% u% u% ui U1V1 UV  U3V3 U4V4
_ulvl U2V2 U3V3 U4V4 1]% ’U% 1}§ ”Uz i

This matrix has rank 8 which can be checked by plugging in random numbers for u;, us, us, uq, v1, V2, V3, V4
and verifying that the determinant is nonzero. This means that the rows of A are linearly independent
over L and therefore F1, Fs, ..., Eg are linearly independent over L. It follows now that the dimension
of Der(L/(K N LY)) is at least 3 + 8 = 11, so trdeg(L/(K N L%)) > 11. Now trdeg(K N LY)/R) =
trdeg(L/R) — trdeg(L/(K N LY)) < (2d + 3) — 11 = 2d — 8. So there are at most 2d — 8 independent
view invariants. As we will see later, there are exactly 2d — 8 view invariants. Note that GL(3) acts on R3
and therefore on the field R(x1,y1, 21, .- ., %4, Yd, 2z4)- This restricts to an action of GL(3) on the subfield
K. Because multiples of the identity act trivially on K, we have an action of PGL(3) on K. The action of
the Lie algebra on K is exactly given by the derivations E1, Fs, ..., Fs. So K N L% is contained in KFG%()
and they are infact equal.

INVARIANTS FOR 3D SENSORS

Consider here a 3D sensor (e.g., LIDAR [25]) that directly measures the sensor-relative location of 3D
points within the observed scene. Assuming the observed objects are rigid, the transformation of model
points to measurements is governed by the action of G = SE(3). When the model is described by a d-tuple
of points, the invariants are the pairwise point distances (as described in earlier examples). When the model
is described by a d-tuple of surfaces (e.g, planes) there are different invariants. These two situations are now
discussed.

Set of 3D Points in General Position

Suppose we have objects whose models take the form M = (p,,p,, ...,p,), where the points {p,}¢_, €
IR3 are in general position. Further suppose that we have a 3D sensor that measures the transformed location of
these points {g;}&_, € R® under the action of E(3) as described in Eq. (1). In this scenario, we have already
shown [as summarized in Eq. (8)] that a d-tuple of d > 3 points in general position has 3d — 6 independent
invariants. One choice for these invariants are the pairwise distances d; ; = [|p; —p, || = [|q; — ¢;||, but other
choices are also possible. For example, since the pairwise distances are all invariant, one can use the law of
cosines to show that the interior angles for every point triplet are also invariant. Thus, another choice for a set
of independent invariants would be one of the pairwise distances (for scale) and 3d — 5 interior angles (with
no more than two angles from any triplet). Other combinations of independent distances and angles would
also work. Moreover, any number of different invariant functions may be constructed (since any function of
invariants is also invariant) and some invariant choices may be numerically preferable to others, though there
will never be more than 3d — 6 independent invariants.

The explicit use of pairwise distances between model points to recognize objects in LIDAR data has been
used within the space community for some time, especially within the context of recognizing retroreflectors
on the ISS [11]. Similar ideas have also been proposed to recognize naturally occurring keypoints found with
3D feature descriptors [13]. Moreover, if one is designing the object to be recognized (e.g., choosing the
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locations to place retroreflectors, fiducials, or other keypoints), then these same ideas may be used to design
optimal patterns. For example, Ref. [7] describes how to choose patterns that maximize the difference in
the pairwise distances, which makes pattern recognition easier. This approach is the theoretical basis for the
perimeter reflector pattern chosen for the International Docking Adapter (IDA) standard [7].

Set of 3D Planes

Suppose we have objects whose models take the form M = (ry, s, . .., 74), where the planes {7}, €
IP3 are in general position. Due to the duality of points and planes in ?3, the number of invariants for a d-tuple
of planes is the same as for a d-tuple of points. Thus, there is one invariant for a pair of planes and there are
3d — 6 independent invariants for d > 3 planes.

We will now briefly develop one set of independent invariants. Begin by recalling that a homogeneous
point p € P3 lies on the plane 7; € P? when ! p = 0. Observe that the plane 7; may be described by
a 4 x 1 vector parameterized as m; o< [n],—p;], where n; € R? is the plane unit normal and p; is the
perpendicular distance from the plane to the origin. Following Eq. (1), we describe the action of E(3) with
the 4 x 4 matrix H

A r
H = 13
ths 1] (13)
such that the homogeneous point p is transformed according to p’ = Hp. Therefore, w? H™~ 15" = 0 and
the transformed plane is 7, = H™ T7;. Thus, in the transformed frame, we once again have T p T = 0.
Analytically inverting H,
_ AT ATr}
H'= 14
[01x3 1 (14

allows us to directly compute 7} as

, A 0351 n; | An; _ ";
i X [rTA 1 —pi| — |-rTAn; —pi| — |-pl (a5)

Thus, we see that the plane dihedral angles are invariants,
cosj ; =nj'n; =n]ATAn; = nn; = cosb; ; (16)

which makes use of the fact that A is an orthogonal matrix.

For d = 2 the only invariant is the single dihedral angle between the two planes. For d = 3, the three
independent invariants are the three dihedral angles between each pair of planes. However, there are only
2d — 3 independent dihedral angles—such that there are (3d — 6) — (2d — 3) = d — 3 other independent
invariants that we must find for d > 4 planes. There are a variety of ways to compute to compute these
additional invariants to form a complete set of independent invariants. For example, if we already have the
first three planes 71, s, 73, then each additional plane for d > 4 comes with two new dihedral invariants
(e.g., 01,%,02,) and a single new scaling invariant (e.g., s1,2,3,). Perhaps the easiest scaling invariant may
be computed by recognizing that det(H) = +1 since H describes the action of E(3). Therefore, one suitable
scaling metric is

Stz = Ildet ([m7 w5y mi]) | a7
=||det (H " [my my w3 mi])||
= ||det (H™ ") det ([ wy ws w)) ||
=||det ([my = s 7)) |l
= S51,2,3,k

which is clearly the same both before and after transformation by H. This invariant formulation assumes that
the entries 7r; and 7r; are scaled such that the first three elements have unity norm.
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Invariants for a d-tuple of planes occurs often when viewing human-made objects, which are often con-
structed of planar facets. For example, a typical house has planes for each side of the building and inclined
plans for each roof segment. Similar plane-based models are also useful for some spacecraft shapes.

VIEW INVARIANTS FOR CAMERAS

Consider here a perspective optical instrument (e.g., camera or telescope) that observes a 3D scene. In
our introduction to invariant theory above, we have already seen that view invariants are a powerful tool for
object recognition. However, we have also seen that view invariants do not always exist and that these are
somewhat harder to construct than the invariants for a 3D sensor.

In this section, we explicitly develop the usual perspective camera model (i.e., the pinhole model). This
model is then applied to a number of commonly encountered scenarios and view invariants are discussed. The
theoretical framework presented in this manuscript is used to unify results developed within the computer
vision and spaceflight communities over the past 50 years.

Camera Model

Assuming perspective projection, a calibrated camera measures the line-of-sight £; € P? describing the
apparent direction to the camera-relative location ¢g,. Thus, the pinhole camera model is given by

Ty
Yi| =% < £; < g, (18)
1

where the 2D coordinate [x;, y;] is where the LOS ray pierces the z = 1 plane (often called the image plane).
A pixel location [u;,v;] in a digital image are related to the image plane coordinate [z;,y;] by an affine
transformation K,

v; | = u; = Kx; (19)

where K is the so-called camera calibration matrix (see Ref. [26] for details). Therefore, the apparent pixel
location of a camera-relative point g, is given by

u; xKq, =K (Tp, +r) (20)
Or, writing entirely in homogoneous coordinates, let p? = [p?, 1] € P such that
i; x Pp, 1)

where
PxK[T 7] (22)

such that the camera model P has dimension describes the mapping 7 : P3 — P2,

Planar Scenes

Consider the scenario of a camera viewing a planar (or nearly planar) scene. Such a scenario may occur
when close to low-relief terrain or when viewing flat surfaces on many human-made objects. A number of
unique and useful invariants arise as a result of constraining the observed features to lie in a plane—such
that their projection into a digital image may be described by a homography. To see this, note that we may
describe any point in the scene as p? = [x;, y;, 0] without loss of generality. Or, equivalently,

T | i
= 2
p;i =S b} (23)
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where S = [I5x2,02x1]. Substituting into Eq. (22) yields the 3 x 3 homography matrix H with ambiguous
scale

HxK[TS" r|=K[t & 7] (24)

where T = [t1,#2,t3]. The homography H is always full rank in practice since we assume that the camera
location r does not lie in the same plane as the points (i.e., in the plane spanned by #; and £2). Thus, one has,

(17 ZT;
v | o H |y; (25)
1 1

It follows, therefore, that images of a planar scene are a mapping 7 : P2 — P2 described by the action of
G =PGL(3). Recognizing this allows for the straightforward development and enumeration of invariants.

Set of Coplanar Points

Suppose we have objects whose models take the form M = (py,ps,...,p,), where the points {p,}¢ | €
R? are constrained to lie in the plane 7. Such a d-tuple of coplanar points is known to possess 2d — 8
independent invariants for d > 5 points in general position on the plane (i.e., not colinear). This fact has
been known for some time within the context of computer vision [27]. These invariants may be constructed
through determinants, cross-ratios, transforming to a canonical pattern, or any number of other equivalent
representations. A detailed development of invaraints for PGL(3) may be found in Refs. [4] and [27]. For
example, in the case of d = 5, there are two independent invariants (corresponding to cross-ratios) that may
be constructed from determinants:

_ det([¥2 X3 X1]) det([¥s X5 X1])  det([d@s @13 @1]) det([is @5 1))

L= det([xg ¥4 ¥1]) det([x3 X5 %1])  det([uy #y &1]) det([iiz s i)

(26)

and

o det([j@ f3 X'QD det([)@; f5 XQD - det([fq ﬁg le]) det([fl4 ft5 flg])
 det([x; ¥4 Xo]) det([x3 X5 Xo])  det([iy @y o)) det([uz w5 o))

I 27)

where ¥; = [z;,v:,1]7 € P? is a homogeneous model point and &; = [u;, v;,1]7 € P? is a homogeneous
image point. These exact equations may also be interpreted as a cross-ratio [4]. The center terms in Egs. (26)
and (27) are constructed directly from the model (i.e., only a function of {fi}§:1) and so they are a constant
for any given model. Likewise, the right-hand terms are constructed from only measurements (i.e., only a
function of {&;}2_,) and are always the same no matter the transformation H from Eq. (25). Finally, as dis-
cussed in Ref. [4], there are 5! = 120 possible permutations of these five points leading to 30 distinct invariant
values—only two of which are algebraically independent. In many cases (this one included) invariants may
also be made permutation independent, as discussed in Refs. [5] and [28].

One of the critical observations is that there are no invariants for d < 4 coplanar points under the action
of PGL(3). Consequently, the commonly pursued quest for invariants describing triplets of points (which are
coplanar by construction) is critically flawed from the beginning. Indeed, various attributes of point triplets
have been proposed for point pattern recognition—but many of these quantities clearly change when the
triplet is viewed from different vantage points. For example, attributes like triangle interior angles or ratios of
pairwise distances are only invariant under the action of the 2D similarity group G =S(2) that describes 2D
translation, rotation, reflection, and scaling—which is sometimes a good approximation for a narrow field-
of-view (such that projection is approximately orthographic instead of perspective) and when the camera
boresight is perpendicular to the plane of the point triad (e.g., nadar pointing camera).

Sets of approximately coplanar points occur often in practice. For example, during terrain relative naviga-
tion (TRN) in scenarios where the terrain relief is small compared to the image footprint (as often happens
at high altitude). Another common example is vision-based rendezvous with artificial satellites, where it is
common for human-built structures to have flat surfaces containing keypoints suitable for navigation.
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Set of Coplanar Conics
To develop the invariants for a set of coplanar conics, suppose there exists a homogeneous point on the plane
X = [z,y, 1] lying on the conic locus. In this case, one may describe the conic locus by the 3 x 3 symmetric
matrix C of arbitrary scale that satisfies the equation

=0 (28)

When viewed from an arbitrary vantage point, substitution of Eq. (25) shows that the action of PGL(3) on
this conic locus is described by [5]
BxH TCH™! (29)

where B describes the apparent conic locus in the image and H is the homography from Eq. (24).

Therefore, suppose we have objects whose models take the form M = (Cy,Cs, . ..,Cy). Such a d-tuple of
coplanar conics is known to possess 5d — 8 independent invariants for d > 2 conics in general position on the
plane. The existence of invariants in this situation, as well as the most common derivation approach, has been
known since at least the 1950s [29]. It received extensive study within the context of computer vision in the
1990s [27, 30, 31, 32], and has been more recently adapted to crater-based spacecraft navigation [5, 33, 34].

The invariants for a set (sometimes called a net) of d conics may be found by looking at the intersection
points of the conics—noting that conics that do not physically intersect over the real numbers still intersect
over the complex numbers. Details of the derivation are provided in Section 6.2 of Ref. [5], which is an
extension of the approach put forward by Semple and Kneebone [29]. For a pair of conics, one finds the
well-known and widely used result

I =Tr[C;'C;] = Tr [B; 'B] (30)

Iji =Tr [C;'C;] = Tr B} 'B;] 31)

Note here that the middle term is built directly from the model [e.g., f(M)] and right-hand term is built
directly form the image measurements [e.g., h(Z)] and that these are numerically equivalent for any homog-
raphy H that maps C to B. For a d-tuple of conics, we obtain 5d — 8 independent invariants, consisting of all
possible conic pairwise invariants from above—plus new invariants involving larger combinations of conics.
For example, a crater triplet has 7 invariants: I;;, I, Iik, Irs, Ik, Ixj, Iij. The new invariant I; 5, is [5]

Liji, = Te {[(Cj + Ck)* — (Cj — Cy)*] C;} = Tr {[(B; + Bx)" — (B; — Bi)*] Bi} (32)

where C* is the adjugate matrix of C. The procedure of Ref. [5] may be followed for any number of conics,
though there does not seem to be much practical need for more than three. Nevertheless, invaraints for larger
sets of conics are discussed in Ref. [31].

Since impact craters on planetary bodies are known to elliptical in shape [5], a set of coplanar conics is
a good approximation for patterns of craters that are close to one another (i.e., where the curvature of the
celestial body is small compared to the extent of the crater pattern).

Combinations of Coplanar Points, Lines, and Conics
Invariants also exist for various combinations of coplanar points, lines, and conics under the action of PGL(3).
A few of the most common examples are discussed in Ref [27]. Of particular note is the invariant for a
conic and two lines, which most often takes the form of a Cayley-Klein metric (and is of importance for
the recognition of non-coplanar conics [5]). The existence of view invariants for mixed geometric shapes
provides some flexibility in applying invariant theory to the varied situations that arise in practice.

Star Trackers

Stars are very far away and so they usually appear as unresolved objects (point sources) in digital images.
Moreover, because the distances are so great, it is often possible to ignore parallax and so the star directions
at any given epoch are fixed points on the celestial sphere—and are therefore fixed points in P2. Since the
stars’ apparent location in an image are also points in P2, we are interested in the mapping 7 : P2 — P2
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Thus, when the star tracker is uncalibrated (or very poorly calibrated), the projection of stars into the image
is described by PGL(3) and the problem is identical to point matching for a planar scene. This observation
was made in Ref. [4] and we note that an asterism for a generic uncalibrated camera has 2d — 8 invariants.

In the case of star trackers, various assumptions about the camera lead to different group actions and allow
for the construction of different invaraints. There are three special cases to consider beyond the generic case
mentioned above, and these special cases are sometimes very helpful when trying to recognize star patterns—
especially when solving the so-called “lost-in-space” star identification problem (which is sometimes called
“blind astrometric calibration”). Each of these cases are now briefly discussed and a more detailed treatment
may be found in Ref. [4].

First, in the case of a well-calibrated camera (i.e., when the camera calibraiton matrix K is known), points
on the image plane may be unambiguously converted into directions in the sensor frame. Thus, the star
directions from the catalog are related to the observed star directions by the action of SO(3). In this case,
there are 2d — 3 invariants. The most common invariant is inter-star angle, but it is straightforward to conceive
of other invaraints that are algebraic functions of the inter-star angles (e.g., dihedral angle).

Second, in the case that a well-calibrated camera is also known to have a very small FOV, the projection
is nearly orthographic and catalog star patterns are related to observed star patterns by the action of E(2). In
this case there are also 2d — 3 invariants, so the narrow FOV assumption offers little practical advantage over
the wide FOV case. Thus, it is usually recommended to avoid this simplification.

Third, in the case of an uncalibrated camera with a narrow FOV, we may approximate the catalog-to-image
mapping by the action of S(2). This situation is commonly encountered with telescopes (rather than cameras)
and forms the unstated underpinning of popular pipelines like Astrometry.net [3].

Nearly every class of existing star identification algorithm falls into one of the above four categories,
with invariants based on PGL(3), SO(3), E(2), or S(2) [4]. A rereading of the star identification literature
[1, 2] with this in mind will reveal that many purportedly different algorithms are actually geometrically
equivalent—and differ mainly in the choice of data structure used to query the catalog. Moreover, since
efficient means of performing nearest neighbor queries and range queries are now quite mature [35, 36, 37],
it is often advantageous to use these algorithms rather than some of the ad hoc techniques existing only in
the star identification literature. This is especially true as the size of the star catalog becomes very large (e.g.,
using the Gaia database [38, 39]).

3D Scenes

The most challenging of the scenarios considered in this work are view invariants that can be constructed
from camera images of truly 3D objects. Indeed, we find these to not always exist—which is often a very
inconvenient truth that places substantial limitation on what is achievable with images alone. Despite this,
when view invariants do exist, we find them to be a powerful tool for object recognition.

Set of 3D Points in General Position

Suppose we have objects whose models take the form M = (py,p,, .. .,p,), where the points {p,}¢_, € R?
are in general position. It has been known for some time that, if the camera is also in general position, then
view invariants do not exist [21, 22, 23]. This is true even if the camera orientation is known (as discussed
in one the earlier examples, and as implied by the discussion of [23]). However, if we constrain the camera
to lie along a known line, a d-tuple of points has d invariants corresponding to the orientation of the plane
formed by camera’s path and the observed point. The existence of such invariants were discussed in Ref. [23]
and it was proven in Ref. [24] that a linear path is the only camera path along which invariants exist for a
d-tuple of arbitrarily placed points.

Set of Non-Coplanar Conics on a Quadric Surface
Since celestial bodies are not flat plates, the conics describing crater patterns are only nearly planar if the
craters are very close to one another. When looking at large patterns of craters, the global shape of the
celestial body must be considered. It was shown in Ref. [5] that no view invariants exist for a d-tuple of
3D conics in general position. Fortunately, since large celestial bodies have an ellipsoidal shape due to self-
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gravitation and rotational dynamics [40], we have a much more structured problem. Indeed, it was proven
in Ref. [5] that constraining a d-tuple of conics to lie on the surface of a non-degenerate quadric (e.g., an
ellipsoid) introduces invariants. Specifically, a d-tuple of conics lying on a non-degenerate quadric possess
3d — 6 independent invariants which ultimately take the form of a Cayley-Klein metric. The development is
somewhat involved, though the final implementation is simple to code. Specifically, if A;,A ;, A}, describe the
conic locus of three apparent crater rims in an image, then one of the three (3 X 3 — 6 = 3) view invariants is

(rAxe,
J; = acosh [€,A7 8] (33)

\/ (zfjAjeij) (z;Ajeik)

where £;; is one of the lines joining two of the (possibly complex valued) intersection points of the image
conics A; and A;. Details of finding £;; and £;;, are found in Ref. [5]. Two more independent invariants
(J; and Ji) may be computed in a similar fashion. The invariants J;, J;, J; will remain the same for this
triplet of elliptical craters, regardless of the vantage point (i.e. pose) from which the pinhole camera views
the crater pattern. Thus, these invariants to be used to easily recognize a pattern of craters for orbital TRN,
where the curvature of the observed body is important. Some practical details about crater catalog curation
and structuring are also discussed in Ref. [5].

CONCLUSIONS

It is often necessary to associate sensor measurements with a corresponding model for the purposes of
spacecraft navigation, orbit determination, and other space exploration applications. This can be a challenging
task, especially when the pose (i.e., relative position and attitude) between the sensor and observed object
is unknown. One algorithmically efficient and theoretically rigorous means of accomplishing this task is
with invariants. Therefore, this work reviews some of the key aspects of invariant theory and how it may
be used within the context of spacecraft navigation and orbit determination. In particular, concepts related
to invariants and view invariants (and their types: e.g., polynomial, rational) are developed. Techniques
for enumerating the number of independent invariants are also presented. Finally, a brief summary of the
most important known invariants is presented—along with an extensive set of references to more detailed
developments.
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