AAS 21-719

A LAGRANGIAN RELAXATION-BASED HEURISTIC APPROACH
TO REGIONAL CONSTELLATION RECONFIGURATION PROBLEM

Hang Woon Lee* and Koki Ho'

A group of satellites—with either heterogeneous or homogeneous orbital charac-
teristics and/or hardware specifications—can undertake a reconfiguration process
due to variations in operations pertaining to regional coverage missions. This pa-
per is concerned with the optimization of the specifications of the reconfiguration
process that maximizes (resp., minimizes) the utility (resp., the cost). The speci-
fications refer to the final design configuration and the transportation of satellites
from one configuration to another. The utility refers to the coverage performance
of the final configuration; the cost refers to the AV consumed or the time of flight
incurred due to the reconfiguration process. We present an integer linear program
formulation of the regional satellite constellation reconfiguration problem and two
heuristic solution methods based on Lagrangian relaxation.

INTRODUCTION

Satellite constellation reconfiguration is defined as a process of transforming an existing config-
uration into a new configuration to maintain the system in an optimal state.!:?> The potential factors
that require a satellite constellation reconfiguration include: change in the mission coverage area,
change in the number of satellites (addition® or loss*), and/or change in the coverage requirement.

The problem of reconfiguring satellite constellations generally consists of two independent prob-
lems—the constellation design problem and the constellation transfer problem.?>® The former is
concerned with the design optimization of a new configuration that meets the emerging mission op-
erational demand; the latter is concerned with the assignment of satellites from one configuration to
another.” While the constellation reconfiguration problem may be approached in a design-in-series
manner, i.e., design first and assignment last, the overall constellation reconfiguration process would
be suboptimal due to lack of practical considerations such as the fuel state of satellites. For a few
studies with concurrent consideration of these two aspects, the problems are often formulated as
mixed-integer nonlinear programs that adopt meta-heuristic algorithms (e.g., a genetic algorithm)
as optimization solvers.

The value of satellite constellation reconfiguration is amplified in the context of regional coverage
missions. For example, a constellation monitoring disasters could be reconfigured to maximize the
coverage over areas that are affected by natural disasters for increased bandwidth capacity. Prior
research focused on the design of global coverage constellations such as the Streets-of-Coverage®°
or Walker patterns.'%'> However, for regional coverage missions, the use of global coverage con-
stellation methods would yield suboptimal coverage performance.'?
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This work extends the prior work,'# which introduced the mathematical formulation of the re-
gional constellation reconfiguration problem (RCRP). Particularly, we improve the model of the
problem for computational efficiency and present heuristic methods for RCRP.

BASIC CONCEPTS AND BACKGROUND

This section overviews the basic definitions and key properties of the regional coverage satellite
constellation model by Lee et al.!3 For in-depth discussion on the theory and illustration of various
examples, readers are encouraged to refer to Reference 13.

Model Assumptions

Two assumptions are made about the constellation model considering the mission context of
interest: 1) the repeating ground track (RGT) orbits and 2) the common ground track constellation.

Assumption 1 (Repeating ground track orbit). A satellite is placed on a repeating ground track
orbit.

A ground track is the trace of satellite’s sub-satellite points on the surface of a planetary body. A
satellite on an RGT orbit makes Np number of revolutions in Np number of nodal periods. There
is a finite time horizon of period 7" (often called a period of repetition) for which a satellite repeats
its closed relative trajectory exactly and periodically. Expressing this condition:

T = NpTs = NpTg

where Np and Np are positive integers. T is the nodal period of a satellite due to both nominal
motion and perturbations and 7§ is the nodal period of Greenwich.

The rationale of the RGT orbit assumption for regional coverage is well supported in a study by
Hanson et al.,'> which has shown that RGT orbits yield better partial coverage performance than
non-RGT orbits.

Assumption 2 (Common ground track constellation). All satellites in a system follow a same rela-
tive trajectory.

All satellites in a common ground track constellation share identical semi-major axis a, eccentric-
ity e, inclination ¢, and argument of periapsis w but independently hold right ascension of ascending
node (RAAN) €2 and mean anomaly M pairs that satisfy the following relation:'®

Np€). + NpM;. = constant mod 27

Considering the high orbital maintenance costs to negate perturbation effects, it is logical to
assume only circular orbits or elliptic orbits with critical inclinations (i € {63.4°,116.6°}) for
regional coverage missions.

Regional Coverage Satellite Constellation Model

In this constellation model, the finite time horizon of period T is discretized with time step size
At. Let T := {0,1,...,m — 1} (where |T| = m = T/At) be the set of time step indices ¢ such
that the set {¢t(At) : t € T} is the discrete-time finite horizon. Let J be the set of orbital slot
indices j along the common relative trajectory and P be the set of target point indices p.



Definition 1 (Reference visibility profile). A reference satellite covers target point p if its elevation
angle ¢ as viewed locally from p is greater than or equal to the minimum elevation angle threshold
(min at time step ¢. The visibility indicator v; at time step ¢ is defined as follows:

1, if ¢ > pmin at time step ¢
Vt = .
0, otherwise

Then, a reference visibility profile v is simply an m-dimensional vector v = (v; € {0,1} : t € T).

To construct a reference visibility profile, the following parameters need to be specified: the or-
bital elements of a reference satellite ey = (a, €, 7, w, 2, M), the minimum elevation angle thresh-
old pmin that dictates the field-of-view of a satellite, the coordinates of a target point, and the epoch
at which the finite time horizon is referenced to. With these parameters, the reference satellite is
propagated under the governing equations of motion (e.g., Jo-perturbed Keplerian motion) for the
finite time horizon of period 7T'; at each time step ¢, the Boolean visibility mask (¢ > ¢nin) is
applied to construct an element of a reference visibility profile v;.

Definition 2 (Visibility circulant matrix). A visibility circulant matrix V' is the m X m matrix whose
columns are the cyclic permutations of v:

Vo Um—-1 -+ U1
U1 Vo cee Vo
Um—1 Um—-2 - 10

where the (¢, j) entry of V' is denoted with Vi; = v(;_j) mod m-

Note that the first column of V' is the reference visibility profile v; this directly follows that the
visibility circulant matrix is fully specified by a reference visibility profile.

Definition 3 (Constellation pattern vector). A constellation pattern vector = (z; € {0,1} : j €
J) specifies the relative positioning of satellites along the common relative trajectory with respect
to the reference satellite. Each element of « is defined as:

1, if a satellite occupies orbital slot j
xTj=
! 0, otherwise

where z denotes the reference satellite position.

Definition 4 (Coverage timeline). Let b; be the number of satellite(s) in view from target point p at
time step ¢. Then, we let b = (b; € Z4 : t € T) denote a coverage timeline (Z denote the set of
non-negative integers). Here, a visibility of a satellite from a target point follows from the Boolean
elevation angle masking.

Remark 1 (Cyclic property). Under the aforementioned assumptions, a common RGT constellation
system admits the cyclic property.> The cyclic property states that a visibility profile is simply a
cyclic shift of the reference visibility profile. This follows from the fundamental assumptions of
repeating ground track orbits and common ground track constellations.



Remark 2 (Circular convolution operation). Following from the cyclic property, we can relate ref-
erence visibility profile v, constellation pattern vector @, and coverage timeline b in the manner
prescribed by a circular convolution operation. Mathematically,

bi =Y V(t—j) mod m¥j o))
JjeJ

If T = J, then Eq. (1) can be written in terms of a reference visibility circulant matrix:

b= Vi, )
JjeT

which follows from the definition of the (¢, ) entry of V.

Example 1. We illustrate how all definitions of the model (so called the vectors of a system) come
into play in a simple example. Let ep = (12 758.5km, 0, 50°,0°,50°,0°) (J2000) be the orbital
elements of the reference satellite; this corresponds to the RGT ratio of Np/Np = 6/1, i.e., a
satellite makes six revolutions in one nodal day. Assume a single target of interest p with the
geodetic coordinate (40°N, 100°W). The minimum elevation angle threshold is set to @min =
10 deg. Define an arbitrary constellation pattern vector x with length m = 500:

1, ifj € {0,250}
T; =
! 0, otherwise

When transcribed, this constellation pattern vector represents a constellation configuration consist-
ing of two uniformly-distributed satellites along the common relative trajectory, each with its own
unique orbital elements:

@; =(12758.5km, 0,50°,0°,50°,07)

@y =(12758.5km, 0,50°,0°,230°,0°)

The vectors of the system—wv, «, and b—are portrayed in Fig. 1a. The top part shows the ref-
erence visibility profile v which is constructed by propagating a hypothetical satellite with ey for
the finite time horizon of period 7" and applying the Boolean visibility mask at each time step. The
constellation pattern vector x is shown in the middle. Note that in this example, ey = @; because
xg = 1; this indicates that satellite 1 is essentially identical to the reference hypothetical satellite.
The resulting coverage timeline b, which follows directly from Eq. (1) of the cyclic property, for this
two-satellite system is shown in the bottom part. The corresponding system is visualized in Fig. 1b
in both Earth-centered inertial (ECI) and Earth-centered, Earth-fixed (ECEF) frames. Notice that
there is a single closed trajectory in the ECEF frame (as opposed to two orbital planes in the ECI
frame); each dot along the dotted curve represents an orbital slot.

In Example 1, we demonstrated the analysis of a known system using the vocabularies of the
regional coverage satellite constellation model from Reference 13. In what follows next, we present
a direct application of the model by formulating an integer linear programming problem with its
decision variables being x; instead of pre-specifying it, the goal is to find the optimal «* that meets
the specified coverage requirement.
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Figure 1: Two-satellite system illustrated in Example 1

Model 1 (Regional constellation design problem). Let 7 = {0,...,m — 1} be the set of time
step indices and J = {0,...,m — 1} be the set of orbital slot indices. The regional constellation
design problem (RCDP) is concerned with the optimization of the placement of satellites such that
the number of satellites needed to satisfy the given coverage requirement r = (1, € Z4 : t € T)
imposed on a target point of interest p is minimized. The RCDP is formulated as an integer linear
program:'3

(RCDP) min Y
JjeT
S.t. Z le‘j > T, YVte T
JjET
zj €{0,1}, VjeJ

where the decision variable z; = 1 if a satellite occupies orbit slot j (z; = 0 otherwise).

The problem is an instance of the general class of set covering problems whose goal is to minimize
the cost (e.g., the number of sets) of covering all elements in the universe. Particularly, when the
0-1 integrality constraints are relaxed to the non-negative integrality constraints, the RCDP mimics
the cyclic personnel staffing problem. The cyclic staffing problem is of significant interest to RCDP
because it manifests that RCDP can be efficiently solved to optimality when the visibility profile
contains a block of consecutive ones'’ (which is usually observable in cases with high-altitude
orbits or low minimum elevation angle thresholds). When there are multiple blocks of consecutive
ones, a guaranteed-accuracy heuristic approach is available'® (e.g., a visibility profile depicted in
Example 1 consists of four blocks of consecutive ones). Let us demonstrate RCDP in action.

Example 2. Consider the case illustrated in Example 1. Suppose we now want to provide a single-
fold continuous coverage over the same target point p. This translates into » = 1 where 1 is a vector
of all ones. Solving the RCDP to optimality, we get the optimal constellation pattern vector * that
consists of eight satellites (see the middle part of Fig. 2a). The corresponding optimal constellation
configuration is pictured in Fig. 2b.
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Figure 2: RCDP solution for Example 2

Constellation Transfer Problem

A constellation reconfiguration process incurs costs. In this subsection, we introduce an ILP for-
mulation that models the constellation transfer aspect of the regional constellation reconfiguration
problem. Note that the notations of decision variables and sets used in this model are only valid in
the context of this problem.

Model 2 (Assignment problem). Let Z = {1,...,n} be the set of workers and 7 = {1,...,m}
be the set of projects. The cost of assigning worker 7 to project j is denoted with c;;. In the case
of the unbalanced (i.e., when n < m) assignment problem (AP), the goal is to find the minimum
cost assignment of n workers to m projects such that all workers are assigned to projects, but not
all projects are assigned with workers. The AP can be formulated as an integer linear program:

(AP) min > cjay

i€ jeJ

st Y my=1, Viel
v
Zﬂﬁij <1, VjeJ
icT

Ti; € {0, 1}, VieZIVjeTJ

where the decision variable x;; = 1 if worker ¢ is assigned to project j (x;; = 0 otherwise).

One special feature of AP is that the coefficient matrix of the constraints is totally unimodular and
the right-hand sides are integral; hence, the problem can be efficiently solved as a linear program
(e.g., the simplex algorithm) by relaxing the integrality constraints (i.e., the LP relaxation) and
yet obtain integral optimal solutions. Many other specialized polynomial-time algorithms are also
available such as the Hungarian algorithm'® or the auction algorithm.?’

The assignment problem received great attention in the field of satellite constellation reconfigu-
ration research as an optimization model for a constellation transfer problem. Introduced in a study
by de Weck et al.,” a constellation transfer problem may intuitively be modeled as AP using the



following analogy: the satellites as the workers and the orbital slots as the projects; the coefficient
c;j is the cost of (e.g., the AV required or the time of flight) transferring satellite 4 to orbital slot j.
The goal is to find the minimum AV assignment of n satellites to m orbital slots. In this paper, we
adopt this transcription of the AP formulation in the modeling of a constellation transfer problem.

Constellation Design Problem

In this subsection, we focus on an ILP formulation that models the constellation design aspect of
the regional constellation reconfiguration problem.

Model 3 (Maximum coverage problem). Let 7 = {0,...,m — 1} be the set of time step indices
and J = {0,...,m — 1} be the set of orbital slot indices. The goal of the maximum coverage
problem (MCP) is to locate n satellites along the common relative trajectory such that the coverage
over an area of interest is maximized. The MCP is formulated as an integer linear program:'*

(MCP) Z = max Zwtyt (3)
teT

st > Vigay > —M(1—w), VteT (4)
JjeT
Y zj=mn (5)
JjegJ
z;€{0,1}, VjeJ
y €40,1}, VteT

where M; are the big-M constants, and Z denote the optimal value of MCP. Constraint (5) is the
cardinality constraint that restricts the number of satellites to n. In the objective function (3), w;
is the weight factor for each y;. For simplicity, we let w; = 1,Vt € T hereafter indicating equal-
weight demand for coverage. The decision variable x; = 1 if a satellite occupies orbital slot j
(z; = 0 otherwise) and

(6)

1, if the target is covered at time step ¢ (by > 1)
Yt = .
0, otherwise

We first note the difference in the formulations of two constellation design problems—RCDP and
MCP. In the RCDP formulation, the number of satellites in a system is not restricted; hence, RCDP
captures the concept of design optimization of an initial constellation configuration for complex
regional coverage. The MCP formulation restricts the number of satellites in a system to a fixed
value as in Constraint (5); this aligns with the notion of satellite constellation reconfiguration with
a pre-specified number of active on-orbit satellites.

In the MCP formulation, the logical implications defined in Eq. (6) are linearized using the big-M
formulation as shown in Constraints (4). It is evident that if 3y = 0, then Constraint (4) is satisfied
provided that M; > sup{r; — Zjej Vijxj : t € T}. Because Zjej Vijxzj = by € Z4 by Eq. (2),
the condition simply becomes M; > r;.

The value of a big-M constant plays a critical role in an optimization process. To achieve the

tightest LP relaxation bound with respect to the big-M constants, the tightest big-M constants are
desirable for all constraints. The LP relaxation bound, which is the upper bound to the original



ILP, for MCP is Zip = > ey = 1+ {>_;c7(Vija;) — re}/My assuming wy, = 1,V¢ € T.
The last equality follows from the fact that MCP is a maximization problem—y; variables will take
their maximum values as bounded by Constraints (4). Expanding it further, we get the following
analytical expression for Zp p:

m m 1 m
ZLp:m—;&Jr;M;wjxj (Ta)
" v Vv Vv
—m—tlﬁt Z ﬂ—i—ij{Zﬁ—Z ﬂ} (7b)

Consider Eq. (7a). It is evident that M; needs to be minimized to tighten up the upper bound Zy p
and this occurs when M; = r;. Hence, we let M; = r,Vt € T hereafter for the formulation of
MCP such that the LP relaxation bound is the tightest; Constraints (4) then become:

> Vigwy = v, VEET ®)
JjeJ

Note that if r, = 1,Vt € T, the MCP with Constraints (8) reduces to the maximal covering
location problem (MCLP) that emerges in many problem contexts (e.g., facility location problem).
MCLP seeks to locate a number of facilities such that the coverage of demand nodes is maximized;
each facility is pre-specified with a radius to which it can provide coverage. We have the following
analogy: the satellites as the facilities and the time steps as the demand nodes. Unfortunately,
this reduction informs us that MCP is NP-hard because of the NP-hardness of MCLP.?! For more
information on the mathematical formulation and the applications of MCLP, readers are encouraged
to refer to the study by Church and ReVelle.??

Example 3. Consider the case illustrated in Example 1. Suppose we now want to maximize the
coverage over the same target point p with only five satellites. For the parameters, we let ¢ = 1 and
r = 1. Here, r represents the desired coverage state of target point p instead of the strict coverage
requirement as defined in RCDP. Letting w = 1 indicates that there is no preference on the time of
day for coverage. Solving the MCP to optimality, we get the optimum of Z* = 398, which translates
into 79.6% temporal coverage of target point p by the optimized five-satellite configuration during
the given repeat period 7'. The results are visualized in Fig. 3.

A constellation design problem can be modeled in any form possible with respect to many dif-
ferent coverage-related figures of merit (e.g., average revisit time, maximum revisit time) and not
necessarily be restricted to the present MCP formulation. However, many of these metrics including
the percent coverage share the notion of coverage maximization such that the minimization (or the
maximization) of such respective metrics would necessarily maximize (or increase) the percent cov-
erage metric. Therefore, considering the problem context herein, the percent coverage would suit
the purpose as the representative figure of merit for the constellation design problem. Consideration
of problem instances with different metrics is left for future work.

REGIONAL CONSTELLATION RECONFIGURATION PROBLEM
Problem Description

Suppose a group of satellites—with either heterogeneous or homogeneous orbital characteristics
and/or hardware specifications—undertakes a reconfiguration process from configuration A to con-
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Figure 3: MCP solution for Example 3

figuration B, of which the latter is undetermined. The problem is to find the specifications of the
reconfiguration process that maximizes (resp., minimizes) the utility (resp., the cost) subject to some
combination of variations in mission operations. Here, the specifications refer to both the design of
configuration B and the transportation of satellites from one configuration to another.

The following mission operational decisions and external perturbations that give rise to a satellite
constellation reconfiguration are captured in this paper. The subscripts A and B represent initial and
final configuration, respectively.

1. Change in the mission coverage requirement, 75 — 7'

* Example coverage types: continuous coverage (single-fold, double-fold, etc.), intermit-
tent (discontinuous) coverage, time-dependent coverage, etc.

* Change in minimum elevation angle threshold, @min A — @min,B
2. Change in the area of interest, Po — Pg

* Any target that can be represented as a set of discrete points (e.g., a point, a line, an area,
or the globe).

3. Change in the number of satellites, ny — ngp

* Addition of new satellites (e.g., capacity expansion)

* Loss or retirement of existing satellites (e.g., loss reduction)
The variables (i.e., the specifications) of a reconfiguration process are:

1. Orbital characteristics of configuration B, eeg g

2. Distribution of satellites in configuration B, xp
The figures of merit of a reconfiguration process are (including but not limited to):

1. Coverage timeline of configuration B, bg

2. Costs such as the AV consumption or the time of flight



Mathematical Formulation

In this subsection, we propose a mathematical formulation of the regional constellation reconfigu-
ration problem. The concept of subconstellation is applied.!> We define following sets, parameters,
and decision variables:

Sets and indices

T Set of time step indices (index t)

z Set of satellite indices (index %)

S Set of subconstellation indices (index s)

Ts Set of orbital slot indices of subconstellation s € S (index j)

P Set of target point indices (index p)

Parameters

cijs  Cost of assigning satellite 4 to orbital slot j of subconstellation s

y {1, if orbital slot j of subconstellation s is visible from target point p at time step ¢
tips

0, otherwise
Ttp Coverage requirement of target point p at time step ¢

The mathematical formulation of the RCRP is as follows:

(RCRP) min > > > " cijumijs (92)

s€S jeTs i€l

max Z Z Yip (9b)

peEP teT

st Y wye=1, VieI (9¢)
SES jEJS
Y wigs <1, VjeT,VseS (9d)
i€l
Z Z Z VtjpsTijs > TtpYtp, VteT,VpeP (%e)
SGS jejs €L
Tijs € {0, 1}, VieI,Vje J,VseS (91)
yp € {0,1}, VteT,VpeP 9g)

where the decision variables are

1, if satellite ¢ is allocated to orbital slot j of subconstellation s
Piin =
e 0, otherwise

{1, if target point p is covered at time step t (b, > 74)
Yip = .
0, otherwise

The RCRP is formulated as a bi-objective integer linear program. The objective function (9a)
minimizes the total cost (i.e., the total AV consumption or the total time of flight) of a constellation
reconfiguration process; the objective function (9b) maximizes the temporal coverage over a set
of target points. Constraints (9¢) and (9d) are the AP-related constraints; Constraints (9c) ensure
that every satellite is assigned to an orbital slot and Constraints (9d) restrict at most one satellite is
occupied per orbital slot. Constraints (9e) are the MCP-related constraints; these constraints ensure
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that the target point p is covered at time step ¢ only if there exists at least ry;, satellite(s) in view.
Note that the cardinality constraint [Constraint (5)] of MCP is omitted because it is implied by the
satellite indices set Z = {1,...,n} and the AP-related constraints. Constraints (9f) and (9g) define
the domains of decision variables.

Notice the decision variables of RCRP—they are in the form of the AP decision variables; the

reasoning behind this choice is explained. The decision variable x(JAP) of AP indicates an assign-

ment of satellite ¢ to orbital slot j of subconstellation s while the decision variable x%cp) of MCP
indicates whether a satellite occupies orbital slot j of subconstellation s. Therefore, it follows natu-

rally that x(AP) are the elemental decision variables (see Fig. 4) because :UEMCP) can be deduced from
(AP)

T These two different sets of decision variables are coupled through the following relationship

along with Constraints (9¢) and (9d):

p NP =3 "alD Vjeg VseS (10)
€T
where both x(AP) and x(MCP) are binary variables.

Satellite nodes Orbital slot nodes
(index i) (index j)
° o
([
o e o Subconstellation
. C e (index s)

(AP) (MCP)

Decision variables:  x;;g Xjs

Figure 4: Decision variables of AP and MCP and their relationship

This coupled relationship in Eq. (10) enables an integrated ILP formulation that simultaneously
considers both the constellation transfer problem and the constellation design problem; both the
regional coverage and the n-fixed formulation aspects are embedded in this relationship.

The initial configuration need not necessarily be a common RGT constellation but can be a group
of satellites in any orbit (e.g., non-RGT orbits, elliptic, circular, etc.) and/or with different sensor
specifications. This is because the model is concerned with the assignment of a satellite to an or-
bital slot, not the bipartite matching between the two sets of common RGT orbital slots. Hence, the
model is suitable for accounting both the regional-to-regional and non-regional-to-regional recon-
figurations.

Model Characteristics

Remark 3. The AP structure is preserved in RCRP with the decision variables being AP-based. In
this perspective, the RCRP is a bi-objective AP with complicating logical constraints. The logical
constraints are Constraints (9e).

11



Following the discussion from Remark 3, it is evident that whenever Constraints (9¢) are inactive,
the RCRP can be solved as a bi-objective AP. The RCRP is NP-hard whenever at least one of
Constraints (9¢) is active. This observation follows from the NP-hardness of MCLP,2! which is
shown to be a special case of MCP.

SOLUTION METHODS

This section discusses solution methods to the regional constellation reconfiguration problem.
We propose two solution methods, 1) a Lagrangian relaxation-based heuristic approach based on
the epsilon-constraint reformulation and 2) a Lagrangian relaxation-based heuristic solution ap-
proach based on the weighted-sum reformulation. Both methods employ the Lagrangian relaxation
method. However, the major difference between these methods exists in the heuristic algorithm to
find feasible solutions.

Lagrangian Heuristics based on Epsilon-constraint Reformulation

The goal of RCRP, as implied by its formulation, is to identify non-dominated solutions. The
problem is reformulated as a single-objective optimization problem via the epsilon-constraint method
such that the non-dominated solutions can be found by solving epsilon-constrained RCRP (¢-RCRP)
sequentially. Algorithm 1 discusses the overall procedure.

Given a parameter ¢, the epsilon-constrained single-objective model is formulated as:

(e-RCRP) Z(s)=min Y > ) cijemijs

SGS jejs €L

S.t. Zzytp > e (11)

peEP teT
Constraints (9¢)—(9g)

where Z(e) denote the optimal value of e-RCRP.

In e-RCRP, the objective function (9b) is transformed into a constraint that is bounded from below
by the parameter € as shown in Constraint (11).

Algorithm 1 Epsilon-constraint method

1: procedure EPSILON-CONSTRAINT METHOD
2 Initialize € < g
3 while ¢-RCRP is feasible do
4 Z(¢) + e-RCRP
5: € 4 €+ Estep
6 end while

7 return List of Z(¢) values
8: end procedure

Lower Bound: Lagrangian Relaxation The Lagrangian relaxation is a computational technique
to approach the difficult problem by dualizing complicating constraints in an original problem such
that the remaining structure is efficiently solved. The Lagrangian relaxation provides a lower (resp.,
upper) bound to the original minimization (resp., maximization) problem. Specifically, in our case,

12



the complicating constraints can be viewed as the MCP-related constraints [Constraints (9¢)] pri-
marily due to the intact AP structure in the relaxed problem (Remark 3).

To retrieve the Lagrangian problem (LR) of e-RCRP, we dualize Constraint (9¢):

(LR) Zp(e,A) = min Z Z Zcijsxijs - Z Z Aip Z Z thjpsﬂfz‘js — TtpYtp

seS jeJs i€l pEP LET s€S jeTs i€l
S.t. Z Z Tijs = 1, VieZl

seS jeTs

D s <1, VjeTus€S

i€

DD uwze

pEP teT

xijSG{O,l}, Viel,jeTJs,s€S

yp €{0,1}, VteT,peP

where A = (A, € Ry :t € T,p € P) is a vector of Lagrange multipliers, and Zp (e, A) denote the
optimal value of LR.

The optimal value of LR can be tightened by solving for the optimal A. Such a problem is called
the Lagrangian dual problem and is formulated as follows:

Zp(e) = max Zp(e, A\) (12)

To solve the Lagrangian dual problem, we use the subgradient optimization method, which has
been shown to be an effective method for various problem settings. For more information on the
implementation of the subgradient optimization method, readers are encouraged to refer to Refer-
ence 23.

Remark 4. The Lagrangian problem of e-RCRP can be decomposed into two subproblems.

(LR1) Zpi(A) = min Z Z Zcijsﬂfz‘js - Z Z Atp !Z Z thjpsxiﬁ]

seS jeTs €T peEP teT sES jeTs €T
S.t. Z Z Tijs = 1, Yiel

SESjEJs

injsgl, VjieJs,s €S

i€l

zijs € {0,1}, VieI,je Js,s€S

(LR2) Zpz(e,A) = min Z Z AtpTtpYtp

pEP teT

S.t. Z Zytp > €

pEP teT
yp €{0,1}, VteT,peP
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Remark 5. The Lagrangian problem of e-RCRP can be efficiently solved:

* The constraint coefficient matrix of LR1 is totally unimodular; solve LR1 via LP relaxation.

* Solve LR2 using conventional ILP.

Remark 6. The optimal value of the Lagrangian dual problem is a lower bound to the optimal value
of e-RCRP. Mathematically, the following relationship holds: Zp(g) < Z(e).

Upper Bound: Constructing Feasible Solutions By solving the Lagrangian dual problem, we
obtain a lower bound to e-RCRP although its optimal solution may be infeasible to e-RCRP. To
produce feasible solutions, we exploit the behavior of the subgradient optimization. We observe that
while solving the Lagrangian dual problem using the subgradient optimization, feasible solutions are
often produced, if not almost feasible solutions in many cases. The idea is to drive these solutions to
feasibility by employing a heuristic approach. Such an approach based on the Lagrangian relaxation
is called the Lagrangian heuristics in the literature.

To construct feasible solutions from the subgradient optimization, we employ the following algo-
rithm. First, we begin by initializing the parameters of the subgradient optimization method. These
initial values are adopted from Reference 23, which have been shown to be effective empirically.
Given A, ¢, and other subgradient optimization parameters, we solve the Lagrangian problem of e-
RCRP in a decomposed manner. The value Zp then would become a lower bound at that iteration.

To produce an upper bound at each iteration, the optimal solution & from LR1 is modified and
taken as a parameter to e-RCRP. The idea is to remove one or more non-zero elements from x and
solve the reduced dimension e-RCRP (Reduced e-RCRP). The desired coverage state r should also
be appropriately modified. If Reduced £-RCRP is feasible, then we have found an upper bound
feasible solution; otherwise, a different set of non-zero elements should be removed from x. The
algorithm re-iterates until a feasible solution is obtained.

The described process is an algorithm for a single iteration of the subgradient optimization
method. On a high level, the subgradient optimization is performed to solve the Lagrangian dual
problem. The Lagrange multipliers are updated according to the rule by Fisher.?3 The subgradient
optimization is terminated if the maximum number of iterations is achieved or the gap between the
lower bound and the upper bound satisfies the pre-defined gap tolerance. In this process, both the
lower bound and the upper bound get updated with their best values. The best upper bound would
then be the feasible solution to the e-RCRP given ¢ as the parameter. The process mentioned here
refers to Line 4 of Algorithm 1.

Lagrangian Heuristics based on Weighted Sum Reformulation

Another Lagrangian heuristic approach is developed based on the weighted sum reformulation of
RCRP. The weighted sum is a widely used method in approaching the multi-objective optimization
problem along with the epsilon-constraint method. As will be discussed later in this subsection,
there is a distinct feature associated with this approach when constructing feasible solutions.

The application of the Lagrangian relaxation is similar to that of the epsilon-constraint method.
We first apply the weighted sum scheme on RCRP (WS-RCRP):

(WS-RCRP) Z(p)=min £ Y > cijetijs— 1 =) > > yip

se€S jeTs i€T peEP teT
s.t. Constraints (9¢)—(9g)
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where 1 € [0, 1] is the relative weight factor, and Z () denote the optimal value of WS-RCRP.

To identify the Pareto efficient solutions using the weighted sum approach, one must enumer-
ate each WS-RCRP to optimality while varying p; this concept is similar to that of the epsilon-
constraint method.

Due to the complexity of the problem, the Lagrangian relaxation of the complicating constraints
is applied in each WS-RCRP. The Lagrangian problem is obtained by dualizing Constraints (9e):

(LR) Zp(u,A) = min “Z Z Zcijsﬂ%js + (u—1) Z Zytp

SES jETs 1€L peEP teT
S ID MDD D) BT
peEP teT seS jeJs €L

s.t. Constraints (9¢),(9d),(91),(9g)

where we denote Zp(u, A) the optimal value of LR.

Note that the application of the weighted sum scheme should occur after the application of the
Lagrangian relaxation. Dualizing Constraints (9¢) and applying the weighted sum scheme would
yield incorrect solutions.

Similarly as before, we have the Lagrangian dual problem formulated as follows:
Zp(p) = max Zp(p, A) (13)

Remark 7. The Lagrangian problem of WS-RCRP can be decomposed into two subproblems.

(LR1) Zpi(p, A) = min ,uz Z Zcijsxz‘js - Z Z)‘tp [Z Z thjpsxijS]

s€S jeTs €T peEP teT seS jeJs i€
s.t. Constraints (9¢),(9d),(9f)

(LR2) Zpo(u,A) =min  (1—1)3 > yip+ D> Apltpbiep

peEP teT peEP teT

s.t. Constraints (9g)

Remark 8. The Lagrangian problem of WS-RCRP can be efficiently solved:

* The constraint coefficient matrix of LR1 is totally unimodular; solve LR1 via LP relaxation.
» Solve LR2 trivially. If coefficient 7 is negative, then corresponding y; = 1 (y; = 0 otherwise).

Remark 9. The optimal value of the Lagrangian dual problem is a lower bound to the optimal value
of WS-RCRP. Mathematically, the following relationship holds: Zp(u) < Z(u).

Remark 10. The Lagrangian problem of WS-RCRP possesses the integrality property.”* That is,
Zip(p) = Zp(p).

Remark 10 simply states that the optimum obtained by solving the Lagrangian dual problem
would be equal to that of the LP relaxation problem. Although the lower bound cannot be tighter
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than the LP relaxation bound, the value of the heuristic approach lies in the application of the
subgradient optimization.

There is an apparent benefit associated with the weighted sum approach. The heuristic to find
feasible solutions is straightforward—the subgradient optimization always produces feasible upper
bound solutions. This is because there is no epsilon-constraint imposed on y that causes inconsis-
tency between x and y optimal solutions.

COMPUTATIONAL STUDY

For the purpose of demonstrating the solution methods, we adopt the case study introduced in
Reference 14.

Experimental Design

Let us suppose a constellation system consisting of five satellites. These satellites are categorized
into two unique subconstellations. We define reference satellite orbital elements for each subcon-
stellation: for subconstellation 1, let &y = (10527.4km, 0,70°,0°,0°,0°); for subconstellation 2,
let @y = (12758.4km, 0,47.92°,0°,0°,0°). Three satellites are members of subconstellation 1
whereas two satellites are members of subconstellation 2. In this example, we let m = 500 per
subconstellation. Following are the initial constellation pattern vectors:

1, forj = 67,155,285
Tj1 = .
0, otherwise

1, forj = 199,399
Tj2 = .
0, otherwise

The goal is to reconfigure the existing five-satellite system along with two new satellites (i.e.,
n = 7) so as to increase coverage over new target points of interest: p; = (34.1°N, 118.5°W)
and p2 = (12.9°N, 12.0°E). These new satellites are assumed to be deployed simultaneously by a
carrier vehicle at position xg;. For both target points, we let » = 1 and pn;, = 10deg. Note that
both target points have equal-weight demand for coverage.

Results and Discussion

The problem is approached in three ways. In order to gauge the performance of the heuristic
solution, we first use a conventional mixed integer programming (MIP) solver, Gurobi 9.0 solver, to
approximate the true Pareto frontier by solving multiple e-RCRP sequentially. During this process,
we relax the integrality constraints and obtain the LP relaxation lower bound. We used the developed
Lagrangian heuristic methods based on the epsilon-constraint reformulation and the weighted sum
reformulation.

The results are summarized and visualized in Figure 5 and Table 1. First, we focus on the leftmost
solution. The original five-satellite system with two additional satellites provide 62.4% and 56.8%
coverage over p; and po, respectively. The total AV consumed is 0.11 km/s. This is, in fact, the
minimal-fuel-consumption strategy, and the only consumption of the fuel is due to the fact that no
two satellites are allowed to occupy the same orbital slot [see Constraints (9¢)]; in this case, one of
the two new satellites performed the maneuver to satisfy this constraint. We refer to this solution as
the AP threshold because the same result can be obtained by solving the AP subproblem.
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Overall, both the epsilon-constraint Lagrangian heuristic and the weighted sum Lagrangian heuris-
tic performed well in low-percent coverage instances. The epsilon-constraint Lagrangian heuristic
becomes computationally intractable at high-percent coverage instances, primarily because multi-
ple Reduced e-RCRPs are solved sequentially using the conventional MIP solver and the dimen-

sion of Reduced e-RCRP becomes larger as more satellites are required to relocate to satisfy Con-
straint (11).

The weighted sum Lagrangian heuristic scored the least mean computation time as shown in
Table 1 because the subgradient optimization solutions are always feasible. However, the weighted
sum Lagrangian heuristic needed to call much more instances of WS-RCRP to improve the quality
of the approximated Pareto frontier; out of 1001 instances, 67 solutions are on the approximated
Pareto frontier. As shown in Figure 6, a larger number of WS-RCRP instances do lead to a better
Pareto frontier approximation; however, this comes at the cost of additional computational cost.

It is worth mentioning that the gap between the true Pareto efficient solutions and the LP re-
laxation solutions is significant at high-percent coverage instances. Hence, for the weighted sum
Lagrangian heuristic method, which possesses the integrality property, the metric such as the inte-
grality gap alone would not provide any meaningful implications.

25 \ \ \
= = True Pareto-frontier
=--=-LPLB
LB gap
20+ —&— Epsilon-constraint .
—%— Weighted sum
—_ —— AP threshold 4
E 1
1
&£ 16+ e
E
=
n ol
> /'
g10r 1
5]
[m]
5 L -
0

55 60 65 70 75 80 85 90 95 100
Percent coverage (%)

Figure 5: Approximated Pareto frontiers of the solution methods

CONCLUSION

In this paper, we extended the prior work on the regional constellation reconfiguration problem by
improving the MCP model and proposing the bi-objective formulation of RCRP. To solve the prob-
lem efficiently, we proposed two heuristic solution methods based on the Lagrangian relaxation
technique. The numerical analysis shows that the epsilon-constraint-based Lagrangian heuristic
method is computationally efficient for low-percent coverage cases primarily due to the fact that
Reduced e-RCRP is effective for small-dimension instances. In contrast, the weighted sum-based
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Table 1: Comparison of solution methods

Computation time (s)

Method No. of e,ps iter.  No. of Pareto sol.
Sum Mean Min. Max
MIP 76403.59 1863.50 2.44 20207.79 41 41
e-constraint LH 5894.61 173.37 0.73 1174.34 34 31
Weighted sum LH  11100.68 11.08 7.51 29.01 1001 67
23248.44 11.62 7.44 29.33 2001 78
25 \ I ‘
= = True Pareto-frontier
--—-LPLB
LB gap
o0 - —+— Weighted sum (1001) ,
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. —— AP threshold
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Figure 6: Comparison of weighted sum Lagrangian heuristics with different number of WS-RCRP
instances

Lagrangian heuristic method is computationally light at each iteration of the subgradient optimiza-
tion but requires a large number of WS-RCRP iterations to approximate the Pareto frontier. Overall,
the analysis of the results shows that both heuristic methods possess the potential to be faster alter-
natives to the conventional MIP solver at the cost of solution quality.

Several directions for future work are discussed. The weighted sum-based Lagrangian heuristic
method retains inherent disadvantages of the weighted sum method such as neglecting optimal solu-
tions in non-convex regions. Several advanced weighted sum techniques (e.g., the adaptive weighted
sum method?®) could potentially improve the overall process of approximating the Pareto front. The
current implementation of the epsilon-constraint-based Lagrangian heuristic method focuses on re-
ducing the dimension of the problem with respect to the number of satellites. Considering the fact
that for most instances of the problem, |Z| < | 7|, and in order to further reduce the dimension of
the problem, one could implement a pruning heuristic to eliminate orbital slots of less significance.
Such an approach could lead to faster overall computation time.
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