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ABSTRACT

Future space transportation vehicles may well
rely on high speed airbreathing propulsion (ramjets
and scramjets) to supply much of their motive power.
Because of the tradeoff relationship between engine
thrust and vehicle airframe weight, ascent trajectories
are typically simulated using a constant dynamic
pressure phase during airbreathing acceleration. That
is, dynamic pressure is increased to benefit vehicle
thrust up to some fixed limit imposed by the vehicle
structure. The constant dynamic pressure portion of
the trajectory typically begins around Mach 2 or 3 and
continues to the maximum airbreathing Mach number
or until some convective aeroheating limit is reached.

This paper summarizes comparative research on
three candidate guidance methods suitable for
simulating constant dynamic pressure trajectories.
These are generalized acceleration steering, linear
feedback control, and cubic polynomial control. All
methods were implemented in POST (Program to
Optimize Simulated Trajectories) — an industry
standard trajectory simulation code. Both quantitative
and qualitative comparisons of these methods (i.e. in
terms of computer processing time, number of
required iterations for convergence, sensitivity to
quality of initial values, accuracy and program
robustness) are presented. Of the three methods, the
linear feedback control approach is found to be the
most efficient and robust, with good accuracy.

NOMENCLATURE

cmax upper limit for an inequality constraint
Ci additional trajectory constraints
Cθ optimization indicator
CPU central processing unit
GAS generalized acceleration steering
Isp specific impulse (sec.)
Kdg displacement gain in linear feedback guidance

  equation
Krg rate gain in linear feedback guidance equation
q dynamic pressure (psf)
q̇ time derivative of dynamic pressure (psf/s)
LFC linear feedback control steering
LH2 liquid hydrogen
LOX liquid oxygen
P2 weighted constraint error from POST
POST Program to Optimize Simulated Trajectories
RBCC rocket-based combined-cycle propulsion
Sref reference surface area (ft2)
T/W vehicle thrust-to-weight ratio
tf final time, constant dynamic pressure phase
ti initial time, constant dynamic pressure phase
α angle of attack (deg.)
βn angle of attack polynomial coefficients

  (n = 0, 1, 2, 3)

INTRODUCTION

Background

Advanced hypersonic airbreathing propulsion is
of significant interest for possible application to
future, low cost, reusable space transportation
vehicles. As first proposed by Goddard in 1932,
airbreathing engines can be used to accelerate the
vehicle through the atmosphere on its ascent to orbit
[1]. The main advantage over conventional rocket
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engines is high fuel efficiency; airbreathing engines
can provide up to ten times the effective specific
impulse of rockets at the lower altitudes mainly
because of their utilization of atmospheric oxygen.
The disadvantages of airbreathing engines include the
added complexity and heavy flowpath requirement —
resulting in low thrust-to-engine weight ratios.
Furthermore, they can operate only in the atmosphere
and must be supplemented by rocket propulsion for
in-space applications.

Rocket-based combined-cycle (RBCC)
propulsion tries to combine the “best of both
worlds.” Elements of rocket and airbreathing
propulsion are integrated into one engine, eliminating
redundant components (i.e., pumps, etc.) that would
be found in combination propulsion or rocket +
airbreathing propulsion systems. RBCC engines are
capable of multi-mode operation (i.e. ejector, ramjet,
scramjet, and pure rocket modes) resulting in a high
trajectory-averaged fuel efficiency [2].

Motivation

Trajectory simulation and analysis is a key
element in conceptual launch vehicle design studies.
Performance characteristics are obtained from the
analysis to determine the feasibility and viability of a
design concept for a particular mission. Trajectory
problems are ordinarily formulated in terms of
optimizing a performance function (e.g. maximum
payload or minimum fuel) with a given set of
constraints to be satisfied (e.g. target orbit, limits on
angle of attack, etc.).

Dynamic pressure plays a particularly important
role in the ascent trajectory of airbreathing vehicles.
High dynamic pressure environments can cause
excessive structural loading and unacceptable
aerodynamic heating. A limit on the maximum
dynamic pressure allowable must therefore be
imposed for this type of vehicles. On the other hand,
ramjet/scramjet thrust performance is directly related
to dynamic pressure — that is, higher dynamic
pressure yields higher thrust. As a result of this trade-
off, it is quite common to simulate the
ramjet/scramjet segments of an airbreathing vehicle’s
ascent trajectory as a constant dynamic pressure path.

The thrust produced by RBCC engines is not
constant but varies with altitude, Mach number and
dynamic pressure. Coupled with changing vehicle
aerodynamics and weight, the vehicle’s progress along
this constant dynamic pressure boundary path can be
complex and difficult to determine.

Problem Formulation

Computer-based trajectory optimization codes
are typically employed to determine acceleration,
ascent time, propellant consumption, angle of attack,
etc. The Program to Optimize Simulated Trajectories
(POST) is a widely available tool created by NASA
and Lockheed-Martin and has been commonly used to
solve various trajectory optimization problems for
both atmospheric and orbital vehicles [3]. It is a
generalized event-oriented trajectory simulation
program capable of optimizing a user-specified
performance function subject to certain constraints
(dependent variables) by determining the values of the
control (independent) variables. The user structures
the trajectory by a logical sequence of events and
enters the model of the vehicle and the necessary
constraints. The user is also required to specify the
parameters and control variables.

Employing three-degree-of-freedom POST for
the ascent trajectory analysis of an airbreathing
vehicle requires some modification to the basic
program to simulate a constant dynamic pressure (q)
path. Three guidance methods are studied and applied
to three different representative vehicle models with
varied mission profiles. Furthermore, since control
variable initial guesses play an important role in any
numerical computations, their influence on the
effectiveness of these guidance methods is studied as
well. The results of these investigations and their
computational requirements are compared.

DESCRIPTION OF TEST CASES

Maglifter

As part of the NASA Highly Reusable Space
Transportation (HRST) program, an early feasibility
study was conducted for an advanced reusable launch
vehicle using RBCC propulsion (LOX/LH2
supercharged ejector ramjet) and a single LOX/LH2
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tail rocket. A magnetically-levitated sled and track
system (the Maglifter) provides an initial velocity of
800 fps. Note that in this paper, this entire sled,
track, and orbital vehicle concept will be referred to as
the Maglifter concept. The orbital vehicle leaves the
track horizontally and operates in ejector mode to
Mach 2 where it begins to transition to fan-ramjet
mode. It intercepts a 2000 psf dynamic pressure
boundary at Mach 3 and flies along this constant q
path until Mach 6. The vehicle then transitions to
rocket mode for final acceleration into low earth orbit.

The trajectory simulation problem involves
maximizing the vehicle burnout weight. The mission
of the Maglifter is to deliver 20 klb of payload to 100
nmi circular orbit at 28.5° inclination angle from
Cape Canaveral, Florida. The independent variables
consist of several relative pitch angles to control
vehicle attitude before and after the constant q phase.
During the constant q phase, the vehicle is
commanded by angle of attack. The vehicle
parameters summarized in Table 1 are obtained from
previous work conducted by the author [4].

RBCC engines

64 ft

OMS engines

227 ft

payload bay
rocket engine

LH2 tank

LOX tank

Maglifter accelerator

Figure 1. Maglifter configuration.

Cerberus I

The Cerberus project involves the conceptual
design of a low-cost, two-stage-to-orbit (TSTO),
horizontal-take-off-and-landing launch vehicle, which
utilizes LOX/LH2 RBCC engines as the booster
propulsion and liquid rockets to accelerate the
waverider upper stage from the point of separation to
its final orbit. Graduate students at the Georgia
Institute of Technology, School of Aerospace

Engineering, undertook the project as an exercise in
employing multidisciplinary design methodology in a
‘design for cost’ environment.

Maximum booster airbreathing Mach number,
staging Mach number, and payload delivery mass
were identified through Quality Function Deployment
[5] to be system-level variables that can significantly
affect how the overall vehicle design meets the
customer requirements outlined in a fictitious request
for proposal. Using Design of Experiments methods,
ten different design variable combinations were
investigated, resulting in ten different vehicle designs.

Figure 2. Cerberus vehicle at separation.

The vehicle referred herein as Cerberus I is one
of the cases studied. Listed in Table 1 are its sized
characteristics. Cerberus I airbreathes up to Mach 6
with a supercharged ejector ramjet and stages at Mach
8 to deliver 10 klb of payload to Space Station orbit
(220 x 220 nmi. x 51.6° inclination). The mated
vehicle takes off horizontally and intercepts a 1500
psf dynamic pressure boundary at Mach 3. It
continues along this dynamic pressure constraint in
ramjet mode to Mach 6, gaining both velocity and
altitude. The vehicle then performs a pull-up
maneuver and briefly transitions to rocket mode.
Separation of the two stages occurs at Mach 8. The
trajectory simulation continues to follow the upper
stage on its ascent to reach 50 x 220 nmi x 51.6°
insertion orbit. The booster returns to the launch site
in ramjet mode.

Unlike the Maglifter case, no optimization
variable is specified. The trajectory problem thus only
involves meeting trajectory constraints. Pitch angles
and angle of attack are the control variables involved
in this trajectory problem.
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Cerberus II

Another case studied in the Cerberus project is a
vehicle with maximum airbreathing speed of Mach
9.75. This design uses supercharged ejector scramjet
engines (transition from ramjet to scramjet mode of
operation occurs around Mach 6). The mated vehicles
flies a constant q boundary to Mach 9.75. It then
performs a pull-up maneuver as it briefly transitions
to rocket-mode to accelerate to a Mach 10.25 staging
condition. The upper stage continues its flight to
deliver a payload of 10 klb to the International Space
Station orbit. This vehicle is referred here as Cerberus
II . The maximum dynamic pressure constraint (1500
psf), target conditions and control variables are
identical to those of Cerberus I. Furthermore, the
booster external configuration (aerodynamic
coefficients) of the two Cerberus vehicles are the
same. However, this vehicle has been
photographically resized to meet the new propellant
requirements. The Cerberus II waverider upper stage
was reconfigured for staging at Mach 10.25.

Figure 3. Cerberus booster configuration.

Table 1:  Summary of test vehicle parameters

Vehicle
Parameters

Maglifter Cerberus
I

Cerberus
II

Upper Stage:
  Gross Wt (lbs)
  Initial T/W
  Ispvac (s)
  Sref (ft2)

----
----
----
----

136,740
1.1
467
1471

107,400
1.1
467
1616

Overall:
  Gross Wt (lbs)
  Initial T/W
  Rocket Mode

Ispvac (s)
  Sref (ft2)

997,640
0.55

455
3606

498,900
0.60

463
3440

451,800
0.60

463
4150

CANDIDATE GUIDANCE METHODS

Generalized Acceleration Steering (GAS)

An instantaneous rootfinding iterative method
was implemented in attempt to hold the dynamic
pressure to the specified value by changing angle of
attack along the constant q path. A new subroutine
was added to be called by the guidance routine in
POST to determine the angle of attack, α, that results
in the specified &q  (time derivative of dynamic
pressure) at each increment of time. For a constant q
path, &q  was specified to be zero. That is, at each
time step, an α was numerically determined to ensure
˙ .q = 0

Brent’s algorithm (bisection) was used to solve
the rootfinding problem within the given α  interval.
This interval also acts as the allowable range for the
angle of attack in the constant q phase. A root
tolerance of 10-6 was used for all trajectories. A
rootfinding method, as with any other numerical
method, doesn’t always guarantee convergence. It
often fails and finds no solution. In these cases, the
angle of attack is incremented by a fixed ∆α  if the q
value is too high or decremented if q is too low. The
routine can also create noise when multiple solutions
are encountered, causing a relatively large
discontinuity in α between time steps.

The rootfinding subroutine further requires a
separate function to evaluate the resulting &q  for
different trial values of α  within the bisection
routine. This function is utilizing existing POST
subroutines in its computation of atmospheric

Figure 4. Cerberus waverider upper stage.
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parameters, vehicle aerodynamics, equations of
motion, etc.

With this option, the only constraints involving
the constant q phase are placed at the beginning of
this segment to ensure that the vehicle enters it at the
desired q and &q :

C q t qi D1 0= − =( )  (1)

C q t qi D2 0= − =˙( ) ˙ . (2)

qD  is the dynamic pressure limit and &qD  is specified
to be zero in this study. ti is the initial time at the
beginning of the constant q phase.

A significant drawback of the GAS scheme is
that the cost in terms of execution time is expected to
be expensive. In this case, the rootfinding problem
must be solved at each time step during the constant q
phase, requiring a high amount of central processor
time.

Linear Feedback Control (LFC)

The second guidance method investigated uses
an updating approach. At each integration step, the
angle of attack is adjusted according to the errors in q
and &q . A new subroutine was created, containing the
following set of linear feedback steering equations:

α αnew old D DKdg q q Krg q q= + − + −( ) ( ˙ ˙ ) (3)

α αnew old Dq q= + × −0 5. ( ) (4)

α αnew old= ×08.  (5)

Kdg and Krg are displacement and rate feedback
control gains, respectively. Equation 3 is used for
small errors, equation 4 is used when q is well above
qD, and equation 5 is used when q is well below qD.
Several cases have been observed to be solvable by
steering equation 3 alone. Without the equations for
conditions 4 and 5, greater gains are needed and the
method is observed to reach convergence faster.
However, the use of three separate formulations for
the different possibly encountered conditions increases
program robustness and can avoid large swings in α .

The desired dynamic pressure and its derivative
are qD  and &qD , respectively. To obtain a constant q

trajectory, &qD  is set to zero. αold is always set to the
angle of attack at the last time step. For users with
prior experience with a particular trajectory, the linear
feedback gains Kdg and Krg can be specified in the
input file as constants. In this study, however, these
constant gains are treated as independent variables,
giving POST the control to determine their values.  

Since the solution during the constant q
segment is non-unique (i.e. several values for Kdg and
Krg are feasible but variations about the desired q may
be unacceptably large in some cases), an additional
constraint to C1 and C2 is needed. A reasonable choice
is an inequality constraint C3 limiting the square error
of dynamic pressure, integrated over the entire
constant q phase:

C q q dt cD

t

t

i

f

3
2 0= − − ≤∫ ( ) max  (6)

The duration of the constant q phase and the value of
qD  are taken into account in determining a
reasonable value for cmax. A vehicle flying a higher q
boundary for a longer length of time will typically
necessitate a greater cmax value. Upper and lower side
constraints for α are also imposed in the subroutine:

α α αmin max .≤ ≤new (7)

As with the GAS method, α  remains constant
over each time interval dt. Therefore, the linear
feedback control (LFC) approach requires small
integration interval with small gains to allow the
necessary updates in α  to hold the vehicle along the
constant q boundary. This increases CPU time.
However, the execution time requirement per iteration
is expected to be significantly less expensive than the
GAS method.

Cubic Alpha Polynomial (cubic α)

Several steering options to control the vehicle
attitude during the trajectory simulation are already
built into POST. One of these commands the
aerodynamic angles as a third-order polynomial and
allows the user to specify both the coefficient values
and the independent argument variables. The cubic
alpha polynomial results in a smooth function of α
that allows the user to increase the time step during
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the constant q segment and thus reduce execution time
(CPU time).

Several different possible arguments for the
cubic alpha polynomial were investigated. α  as a
polynomial function of variables such as altitude,
velocity, weight, time, Mach number, and their
delta’s and derivatives were tried and found to be
ineffective in flying this trajectory. In each case, the
length of the constant q segment made it impossible
to determine a single set of coefficients that would
result in small steering errors. However, one variable
that has been found to work well is the error of
dynamic pressure with respect to the desired value.
This error is not a regular POST variable and its
computation was programmed in the special
calculation subroutine.

The resulting cubic alpha polynomial is the
following:

α β β β β= + − + − + −0 1 2
2

3
3( ) ( ) ( )q q q q q qD D D  (8)

with β0 set to the value of α(ti), or angle of attack at
the beginning of the phase, which does not change
during the constant q segment (unlike the α old in the
LFC method above). In this formulation, β1 is
similar to a displacement feedback gain (Kdg), and β2

and β3 represent feedbacks based on higher order
terms. In this study, the coefficients β1, β2, and β3 are
declared to be independent variables whose values are
to be determined by POST. As in the linear feedback
approach, an inequality constraint of the integrated
square error of dynamic pressure must be added to the
trajectory problem (equation 6).

There is one possible objection to the utility of
this α  equation. If the error is zero throughout, that
is, if the vehicle flies a trajectory that follows the
constant q boundary perfectly, then according to this
formula, the solution is a constant angle of attack
given by the initial  angle of attack constant, β0.
Since this solution is unlikely for a vehicle with
changing thrust, mass, altitude, velocity, etc., the
method must work by forcing a slight error to be
generated in order to modify β0 and  obtain the required
α  profile. As a result, it cannot be expected to
produce extremely small values of the integrated
square of the dynamic pressure error.

RESULTS AND DISCUSSION

Fair ‘apples-to-apples’ comparisons of the
results proves difficult since the application of these
guidance methods to the three test vehicle trajectories
requires different numbers of constraints and involve
different numbers of independent variables. Therefore,
within each test case, consistencies are maintained as
much as possible. The same integration time step, for
example, is used by all three methods. All of the
computations are executed on a Silicon Graphics
UNIX workstation with operating system IRIX 5.3
running on an R5000/150 MHz IP22 CPU board.

For each vehicle case, the guidance methods are
tested using two different sets of starting conditions
for the independent variable values. The first set
consisted of ‘good’ initial guesses, that, in particular,
produce q close to qD  and &q  close to zero at the start
of the constant q segment. This implies good pitch
angle control leading up to the constant q phase. The
trajectory simulations were observed to be extremely
sensitive to these entry conditions at time = ti.

The second set of independent variables
contained ‘bad’ initial values that were rather
inaccurate, requiring more iterations to the solution,
or even leading to nonconvergence. A good measure
of robustness for any of these methods is how well it
can recover from a poor entry conditions into the
constant q  phase caused by ‘bad’ initial guesses on
early pitch control values. Note that any extra
controls (Kdg and Krg for LFC and β1, β2, and β3 for
cubic α) were still given ‘good’ guesses for initial
values for fair comparisons.

Each of the three sample vehicle trajectories was
tested against each of the three candidate guidance
methods and both ‘good’ and ‘bad’ entry conditions
into the constant q segment of their trajectories (for a
total of 18 cases). The results of these tests are
summarized in Table 2 and Table 3.

The constraint errors listed in the tables are the
P2 values computed by POST from the weighted
errors in the dependent variables. A P2 value of less
than one indicates that all constraints are satisfied to
within their specified tolerances and the trajectory is
said  to be targeted.  The optimization indicator is the
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Table 2:  Summary of results with ‘good’ initial values.

Maglif ter Cerberus I Cerberus II

G A S LFC Cubic α G A S LFC Cubic α G A S LFC Cubic α

No. of Controls, u
No. of Constraints
Total CPU Time (s)
No. of Iterations
Constraint Error, P2
Constant q Error :

C 3 (lbs2-s/ f t 4)
Optimization 

Indicator, C θ

Optimal Value:
W burnout  (lbs)

Initial Values for
Extra Control 
Var iab les

Final Values for
Extra Control 
Var iab les

7
6

714.889
3

0.39913

18.228

89.958°

162,890

----
----
----

----
----
----

9
7

293.168
3

0.50096

20.312

89.954°

162,887

0.001573 (Kdg)
0.733400 (Krg)

----

0.001583 (Kdg)
 0.764399 (Krg)

----

10
7

337.572
3

0.40071

18.429

89.952°

162,890

3.613994 (β1)
0.293002 (β2)
0.329083 (β3)

3.570396 (β1)
0.292934 (β2)
0.329061 (β3)

9
7

609.100
2

0.01457

2.927

----

----

----
----
----

----
----
----

11
8

482.516
3

0.41523

10.045

----

----

0.008350 (Kdg)
0.200000 (Krg)

----

0.008311(Kdg)
0.200598 (Krg)

----

12
8

317.286
2

0.06006

10.229

----

----

3.688301 (β1)
-0.043143 (β2)
0.020121 (β3)

4.006297 (β1)
-0.043130 (β2)
0.020121 (β3)

9
7

386.154
1

0.51915

195.788

----

----

----
----
----

----
----
----

11
8

151.629
1

0.48761

18.338

----

----

0.005000 (Kdg)
0.150000 (Krg)

----

0.005000 (Kdg)
0.149999 (Krg)

----

12
8

248.461
1

0.49673

76.646

----

----

3.200000 (β1)
0.025000 (β2)
0.003000 (β3)

3.200207 (β1)
0.025000 (β2)
0.003000 (β3)
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Table 3:  Summary of results with ‘bad’ initial values.

Maglif ter Cerberus I Cerberus II

G A S LFC Cubic α G A S LFC Cubic α G A S LFC Cubic α

No. of Controls [u]
No. of Constraints
Total CPU Time (s)
No. of Iterations
Constraint Error, P2
Constant q Error :

C 3 (lbs2-s/ f t 4)
Opt im iza t ion

Indicator, C θ

Optimal Value:
W burnout  (lbs)

Initial Values for
Extra Control
Var iab les

Final Values for
Extra Control
Var iab les

7
6

1034.617
4

0.01961

19.636

8 9 . 8 0 0°

162,803

----
----
----

----
----
----

9
7

845.654
9

0.19278

34.819

89.958°

162,862

0.001073 (Kdg)
0.733400 (Krg)

----

-0.000911 (Kdg)
0.787696 (Krg)

----

10
7

1609.752
19

0.29832

35.005

90.000°

163,017

0.068302 (β1)
0.000535 (β2)
0.000006 (β3)

2.695586 (β1)
0.001411 (β2)
0.000010 (β3)

9
7

683.451
2

0.12319

8.434

----

----

----
----
----

----
----
----

11
8

755.813
5

0.02079

4.519

----

----

0.008350 (Kdg)
0.200000 (Krg)

----

0.008007 (Kdg)
0.213421 (Krg)

----

12
8

6 5 9 2 . 1 2 5
3 6

4 8 . 4 0 8

16.957

----

----

0.377923 (β1)
-0.000243 (β2)
0.000002 (β3)

5.514056 (β1)
-0.000241 (β2)
0.000002 (β3)

9
7

2106.195
3

0.34194

78.124

----

----

----
----
----

----
----
----

11
8

420.745
2

0.22485

106.911

----

----

0.005000 (Kdg)
0.150000 (Krg)

----

0.005011 (Kdg)
0.150041 (Krg)

----

12
8

3774.704
18

0.00305

100.276

----

----

0.005779 (β1)
-0.000055 (β2)
0.000001 (β3)

3.599330 (β1)
-0.001067 (β2)
0.000003 (β3)
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Cθ angle in POST and is the angle between the
gradient of the objective function vector and the plane
tangent to the intersection of the linearized active
constraints. If Cθ is greater than or equal to 89.9°, the
objective variable is considered optimized at the
current values for the independent variables. The
objective function (maximum burnout weight) is
given in the tables for the Maglifter case. Recall that
neither of the Cerberus vehicles involve optimization
of the trajectory, just targeting of all constraints.

Results for ‘Good’ (Near-Solution) Initial Guesses

Good initial guesses on the control variable
values allow POST to reach convergence rapidly. All
three methods perform well and give similar solutions
for each vehicle case (i.e. P2 always less than one,
very few POST iterations required, similar optimum
burnout weights for the Maglifter trajectory). As
shown in Table 2, the linear feedback method

generally requires the least runtime per iteration. As
expected, the GAS method was found to be the most
time consuming.

Samples of the resulting dynamic pressure and
altitude profiles along with the angle of attack and
relative pitch angle histories are shown in Figure 5
through 10 for the three test cases. The particular
cases from which the graphs are taken are identified in
the figure caption.

The integrated square error C3 measures how
well the methods can maintain the constant dynamic
pressure. The error was constrained to be less than 20
lb2-s/ft4 for the Cerberus I case, and less than 100 lb2-
s/ft4 for the Cerberus II case. C3 was calculated, but
not used as a constraint in the Maglifter case. LFC
produces comparable, if not smaller errors in all three
vehicle cases. In the Maglifter case, all three
approaches produce a good optimal value and P2
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condition. The cubic polynomial control is the fastest
among the three methods to converge to the solution
for Cerberus I case, requiring fewer iterations than
LFC and less CPU time per iteration in comparison
to GAS. However, in the computation of the
Cerberus II trajectory, this method requires
significantly longer execution time than the linear
feedback approach. This may be as a result of the
longer duration of the constant q phase.

Results for ‘Bad’ (Off-Solution) Initial Guesses

As previously discussed, constant dynamic
pressure trajectory simulations in POST are highly
sensitive to the flight conditions entering the constant
q segment. ‘Bad’ initial guesses for the pitch angle
control variables were used to test the robustness of
the three candidate guidance methods — that is, their
ability to recover from a poor starting point.

As shown in Table 3 for the Maglifter case, an
optimal solution is obtained by both the linear
feedback and cubic α  methods with comparable
accuracies. LFC requires significantly fewer iterations
and thus less total CPU time than the cubic α
method. To obtain a successful nominal trajectory
using the cubic α  control, the initial values for the
polynomial coefficients must be very small to
compensate for the large errors. The GAS method, on
the other hand, satisfied all the constraints but
slightly failed to meet the (somewhat arbitrary) Cθ
‘optimized’ criteria of 89.9°. Manually restarting the
optimization from the previous solution may result
in an optimum solution, but the total CPU time for
the GAS method is expected to remain high.

Convergence to the solution for Cerberus I was
not reached using the cubic α  scheme. This is
indicated by a P2 constraint error greater than one.
The GAS method takes slightly less total CPU time
than LFC, but the runtime per iteration of GAS is
still higher than that of LFC. GAS requires fewer
iterations to the solution perhaps because of the fewer
number of constraints involved. The trajectory
problem for Cerberus II was found to be solvable by
all three methods, but LFC was found to require the
least amount of CPU time.

Figure 11 to Figure 13 plot the angle of attack
and dynamic pressure profiles, illustrating the
nominal or iteration 1 trajectories obtained by
implementing the guidance methods to the Cerberus
II  test case. Iteration 1 results are initial trajectories
derived from the ‘bad’ initial guesses before the
independent variable values are optimized to bring the
trajectory into convergence. These figures illustrate
the different ways the three methods work to solve the
trajectory problem. In each one, the vehicle enters the
constant q phase at approximately 1300 psf. The
generalized acceleration steering method maintains
this q value by finding the angle of attack that results
in zero &q . Subsequent iterations will raise the “entry”
q to 1500 psf to satisfy the constraints in equations 1
and 2.

The linear feedback control approach, on the
other hand, slowly steers the vehicle up to the target q
path of 1500 psf (even for the iteration 1 trajectory)
in order to eliminate the displacement errors in
equation 3.
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The cubic α nominal path is shown to oscillate
up to the desired q boundary. It has been observed
from these test cases that with large errors in entry q,
small cubic polynomial coefficients are required to
obtain usable nominal trajectory. For both Maglifter

and Cerberus II, the coefficients β1 and β2 change
values quite significantly between the first guess and
the final solution as shown in Table 3. However, it
was apparent that the trajectory problem is not
sensitive to changes in the cubic term. In fact, β3 need
not be defined as a control variable and its value can
simply be set to a small constant, even zero.

Based on these examples, the linear feedback
control approach proves to be the most robust of the
three methods investigated. LFC was also found to be
the most efficient, typically requiring fewer iterations
than the cubic polynomial approach and less
execution time per iteration than the generalized
acceleration steering. Its accuracy in maintaining the
constant q path is comparable to those of the other
methods.

CONCLUSION

Summary

This paper presents the study of different
guidance methods implemented in POST to simulate
constant dynamic pressure ascent trajectories for
airbreathing vehicles. Among the three methods
investigated, the linear feedback control (LFC)
approach gives the best overall performance in terms
of execution time, robustness, and accuracy.

The results of both ‘good’ and ‘bad’ sets of
initial guesses show LFC to be quite robust, solving
to convergence efficiently and with good accuracy.
Presented are a few cases where generalized
acceleration and cubic α  steering methods failed,
while LFC succeeded in reaching the solution.
Furthermore, in all the trajectory problems studied,
the required computer processing time per iteration for
LFC is consistently the lowest among the three
methods.

Future Considerations

In this study, the only guidance control variable
investigated for the constant q phase was angle of
attack. Another possible guidance scheme that can be
implemented in POST to achieve the desired
trajectory is the ‘stick and throttle’ command [6].
This involves applying thrust control by throttling
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the engine, in addition to commanding α . The GAS
or LFC methods might be applied to this guidance
scheme with the necessary modifications.

An option for the GAS approach that may
improve its effectiveness in solving the constant q
trajectory problems is to input a table of desired &qD
versus current q values. &qD  would be selected to be
negative or positive depending on q to influence the
dynamic pressure toward the desired target and prevent
numerical drift associated with simply requiring &qD
to be zero starting at an initial q. This ‘scheduling’
can be used to achieve the same effect observed with
LFC in Figure 12, such that if the vehicle is initially
on the wrong q boundary, it is steered toward the
desired value, instead of maintaining the current path.

Only horizontal take-off vehicles have been
considered in this study. No vertical take-off cases
have been included. To better understand the
effectiveness and efficiencies of the three guidance
methods, they should be tested on this type of
vehicles as well.
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