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Abstract

Significant researchhas beerconductedinto the
developmentand deployment of analysis integration
techniques. This paper discusseghese research
activities in the context of collaborativieameworks
for conceptual spacsystems design. It begins by
discussing thecurrent state of aerospacesystems
design processeghen recommends gpath toward
higher efficiency in design. It continues dgscribing
various computational technologies tlgve been or
are being developed to achieve th@al, and concludes
by presenting several demonstratipmoblems that
make use of these technologies.

Introduction

ResearctContext

The Space Systems Desifjaboratory(SSDL) at
Georgia Tech is one of three branches of the Center for
AerospaceSystems Analysis (CASA). SSDL is
focused primarily on developing conceptualesign
strategiesand tools for advancedlaunch vehicles,
satellites,andinterplanetary spacecraftThe material
discussed inthis paper is based on researcmto
integrated computational frameworks for complex
system design. Theesign framework igntended to
link together disciplinary analyses in a distributed,
heterogeneousomputing environmentand automate
dataexchangédor the purpose of collaborativéesign.
The research is performedvithin the SSDL, and
therefore tends to have amphasis orspacesystems
design. The demonstration problems involeeth
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launch vehiclesand interplanetary spacecraft, so the
analysis tools deal with space-related disciplines.

One good reasomvhy spacesystemsdesign is
well suited to anintegrated design framework is its
inherent complexity. Figure 1 shows a typical Design
Structure Matrix (DSM) for a launch vehiclgesign
processperformed inthe SSDL. The first thing to
notice is the relativelyarge number of disciplines
involved when developing such a vehicl&éhis DSM
does not even show some other disciplines that may be
involved in more detailed designs, such as “Stability &
Control,” “Avionics,” and “Operations & Facilities.”
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Figure 1. Typical Design Structure Matrix for an
advanced launch vehicle.

The second thing to notice about the DSM is the
high level of coupling between the various disciplines.
Decisions thatare madeearly in the process(for
example, in “Layout & Packagingiyill undoubtedly
need to bemodified when the results of latanalyses
are generatedTypically, the process isterated until
convergence ofhe design variables iseached. This
means that the entirdesign processay take many
iterations, each involving numerous complex
analyses An integrated design framework can help
organize the transfer of data between different
disciplines.

The largeamount ofresourcesspent performing
various analyses alsencourageshe application of
design frameworks taerospace-relatgqutoblems. The
space desigecommunity makesvide use of industry-
standardegacy codes These codes, whethdrey are
command-linebasedFORTRAN programs,graphical
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CAD programs, or PC-based spreadsheetssing
industry standardformulas, typically require a great
deal ofhuman interaction to execute. The user may
need to hand-edit text input files, sit in front of a CAD
terminal drawing a modeindanalyzingit, or edit and
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automatically executes eachcontributing analysis
whenneededreturning a high-fidelity result that can
be easily passed to the next analysis.

Thrust Areas

retrieve cell values of a spreadsheet using a mouse at a

PC. If acomputer-based integrated desigamework
can reduce the tedium ofusing legacy codes by
performing repetitive tasks automatically, it has
instantly enhanced the design process.

ConceptuaDesignStrategies

In today’s industry, the method ofdesigning
complex engineering systems usually takes one of two
forms.  The Monolithic Design Code integrates
contributing analyses as subroutines of laage
synthesis “executive.”  Intended for single user
execution, usually in theonceptual desigphase, a
monolithic code uses response surfacdew-fidelity
codes,and other methods to approximate thégher
fidelity results thatwould be obtainedusing legacy
codes.

At the oppositeextremelies the methodology of
Loosely-Integratedhnalyses This impliesheavy use
of standardlegacy codesbut provides for verylittle
electronic integration of contributing analyses.
Experts in each discipline manually perform each
analysis, and data is exchangduketween disciplines
along written or verbdines, or possibly througlfitp
of datafiles. This method isusually seen inlarge
organizations, working on large, complesystems,
often at the preliminary or detailed design phase.

With current methodologies, it is difficult to bring
high-fidelity analyses into the conceptual design phase.
Correspondingly, when the engineering system is
transitionedinto preliminaryanddetail design phases,
the convenience of easgtata exchangeand fast cycle
time is lost. Currentesearch isdirected towards
developing collaborative design framewotkat bridge
the gapbetweenthe existing design strategies, and
thereby sharghe benefits of each. Amptimum
design scheme is one that reduces cycle timekegats
the fidelity and accuracy oflegacy codes and
disciplinary experts.

These resultsare accomplished by transforming
the complex disciplinary analysesnto “design-
oriented” analyses, whictare then “plugged into” a
larger system executive. These Tightly-Integrated
Analyseswill not be approximations, butather true
legacy tools set up by experts. Theodes are
"wrapped” using shell-scripts, remotecomputer
control, and other methods. The systemxecutive
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While the goals and benefits of a tightly-integrated
design frameworkare obvious, the mechanisms by
which to achieve it may not be. The primary problem
is how to integrateand automate legacyodes and
resources that were designed to be executddibyans.
Issues that will be encountered include

e Designing and developing a computational
architecture that will support integration and
design process deployment through a system-level
executive

- Difficulty in automating sometimescomplex
interfaces to legacy analyses

e Dealing with dissimilar computer platforms for
analyses

« Extending the framework to access geographically
distributed computer systems

< Demonstrating the effectiveness of integration and
automation techniques on relevant sample
problems

The research discussed in this paper addresses these
issuesand examines methods to resolve them in a
tightly-integrated collaborative design framework.
Four demonstration problemsiere constructed to
showcasethe integration technologiesand act as
“proofs of concept” for the design framework.

This is agood time to differentiate between a
design frameworknd acomputationalarchitecture A
design framework isdefined as amethodology for
connecting disciplinary analyses.  THeamework
refers not to a particular piece of software, but rather to
the idea of how codes should be tied togetHeat all)
in a design environment. A computatio@athitecture
is defined aghe enablingsoftware environment that
supports a particular framework. Thechitecture may
be bestrepresented bythe system-levelexecutive
described above.

It is important to note that thisesearch is not
intended to develop particular computearchitecture
for engineering designbut rather to examine the
techniques necessary for integrating analy@ids into
such an architecture, and compare existing
architectures. Much work has beelone in both
academia andindustry to construct computational
architectures that supparttegrateddesign. However,
what manydesign architectures leavaut is a clear
description of how to integrate a wide varietyoofies.
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Admittedly, the architecture designer canpatdict the
completearray of analyses that a user may wish to
integrate,and thereforecannotdefine every technique
for wrapping such analyses.
“ports” for the architecture,into which the engineer
“plugs” his wrapped analysis codes.

When discussing a future design framework, one
must first look at thevay design isdone in industry
now. Decades oEngineeringexperienceand tradition
cannot just be wiped away, requiring a completely new
way of designing spacecraft, aircraft, any other
engineering system. Thatwould mean telling
engineers to changbe way they make decisions and
perform design. There ardoo manylegacycodes and
legacy knowledgdhat must betapped. Rather, one
should look at the wagesign isdonenow, then look

at how the design process can be improved upon in the

future, estimate whafficiencies can be obtained, and
develop ways to bridge the gap.

Architectures for the System Executive

The structureandimplementation of the system-
level executive is a criticalssue in designing the
environment. Thexecutivedefinesthe usetinterface
to thedesign proceswhile it is running, as well as
possibly during problem setup. Thexecutive also
determinegshe method ofdata storage,dataretrieval,
and data exchan§ie The effectiveness of a particular
executivemay bemeasured byts ease ofuse during
both setup and execution, robustness to both ersar
and design instability, expandability to include
additional analyses, and level of automation.

Two system executive implementations were
investigated, including a pre-existingJnix-based
single-user architecture that provides sophisticated
integration and databaseools, and a Web-based
architecture that allows distributed, multi-platform
information access and analysis execution.

Unix Interface

The architecture chosen ithis categorywas the
Intelligent Multi-disciplinary Aircraft Generation
Environment (IMAGE). Developed by Dr. MarkKale
as part of hisPh.D. dissertation at Georgia Tech,
IMAGE is a modularcomputingarchitecturebased on
a Form, Model, Procesdesign theory In its current

" The name IMAGE is a bit of a misnomer since the
architecture really contains nothing that makes it
inherently appropriate for aircraft design versus anlyer
sort of system design.
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form, IMAGE consists of ayraphical useiinterface,
based onthe Tk/tcl scripting languageabove an
object-orientedmodeling system(See Figure2). It

Rather, he supplies the contains astructured scheme fdantegrating analyses,

supports communication via PVMand can be
compiled for a variety of Unix platforms.
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Figure 2. The IMAGE integrated design
architecture.

It is useful todescribethe primary elements of
IMAGE in order to develop acontext within which
one may later discusfis effectiveness forcertain
problems. IMAGE isbased onthe notion ofdesign
schemas. A schema is a collection of various objects
that all have acommon basis. A Fornschemawill
likely contain a collection ofvariablesrelated to a
particular subsystem. An example from #mrospace
field would bethe collection of variablegselated to a
propulsion system. AModel schemawill contain
objects which define a model of a particular
phenomenon. This phenomenon may be the
aerodynamicbehavior of a vehicle in atmospheric
flight. In order to model this behavior, it @mulated
via a computer code. Thdodel schemawill describe
the computecode anchow it is executed. A Process
schemawill contain objects which linkparticular
models to particular design variables. It is gand to
have an aerodynamianalysis if it is applied to
propulsion design variables. The Processhema
provides the coordination mechanism.

Onceall schemasand processesare defined, the
designproblem can be executed.During execution,
interpreters are started agentsare called byIMAGE.
When the problem iscompleted (or evenduring
execution), variable valuesithin the Formschemas
may be examined. A very usefigature ofIMAGE is
its ability to retain past values efch desigvariable.
Instead of keeping only the mostrecent number,
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output file, or picture IMAGE stores past versions,
and recordeachwith the date,user, and project with
which it is associated. For numerical values, the
progression of design variables may be plotted to help
in visualizing the convergence(or divergence) of a
design.

Web Interface

The World Wide Wel{WWW or Web) provides a
natural architecture orwhich to build distributed
computational frameworks. The combination of its
Internet heritagesimple and consistentdata request
formats, and customizable levels of security makes the
Web appealing tosomeone planning to ruwidely
distributed codes.

The Web uses theHyperText TransporProtocol
(HTTP) and Uniform Resource Locators (URLS) to
pass information between various locations. The way
URLs areformatted, any page dfformation, or any
Web-accessible computer program mayabeessed via
a simple one-line text string. Theage or program
may return content ranging frosimple textdata to
graphicalimages, plots,and soundfiles. This rich
content is passed directly back téthe user via the
HTTP protocol, and displayed in his or her Web
browser.  Another benefit of thdistributed Web
environment is that noreal distinction is made
between a Web server locategstairsand one located
across the country. Contributing analyses may be
easily ported from one location to another.

Web serversmay be run from a multitude of
platforms, including Unix machines, Macintoshes, and
Windows-basedPCs. Thismakes the problem of
handling different computing environmentgasier to
deal with. If the system executive is web-accessible, it
is easy for design team members to monitordbsign
process bysimply loading up a page in their web
browsers.

The research presented ihis paperinvestigates
the use of theWeb architecture tosupport remote
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the user to actually interastith that information.
Only recently, with theadvent of the Java and
JavaScript programming languages, have ubeen

able to manipulate the information thege in their
browsers. Even these languages, however, have a long
way to gobeforethey can competewnith the highly
developedgraphical interfacegprovided in the Unix,
Macintosh, and Windows development environments.

For mostWeb serversthe only databasexisting
behind the interface isthe Unix or PC filesystem
containing theWeb pages. It is certainly possible to
connect say aobject-oriented databadsehind a Web
server, with Javaand C++ helping to provide the
requiredhooks. However, an exercissuch asthis
would require asmuch expertise as connecting the
same type ofdatabasebehind a graphical Unix/X-
Windows interface.

Another major problem for aVeb-based design
environment is the inability tadefine anautomatable
process model. Th&/eb was designedfor human
interaction, so it usually involves manually clicking
buttons and selecting hyperlinks to mdeeward in a
process. Unlike the Unixarchitecture, which can
spawn processes when preceding processes are finished,
a Web servewill typically just show you the results
page, and wait.

Integrating Legacy Codes

Legacy resourceswhile providing high-fidelity
results,are often notdesign-oriented. Design-oriented
resources must be suitable futomatedand repetitive
use, provide consistent resultgcept wide variance in
input parametersandoften allow for visualization of
output. Many legacy tools, such as CAD systems and
spreadsheets at@ard to automate. Manycompanies
are designing into their software capabilities that allow
for automating some processesd this is a step in
the right direction. What about those programs that
are not receiving that sort of attention? Should
designersrestrict themselves to thoseodesthat are

execution and automation of several legacy codes. The alreadyautomatable at thexpense ofloosing fidelity

Web architecture provides &amiliar and attractive
interface between the desigrardthe knowledge-base.
As the world's computer users become increasingly
interested in using Web-basedservices, it seems
natural to extend engineering designinto this
environment. However, thefield of Web-
programming is a relatively new onandtherefore is
still developing. Even withits obvious benefits, the
Web architecturdalls short in someareas. The Web
was originally designedsimply as away to display
information, andtherefore providedimited means for

4

or learning a new program?Probably not. So
techniqguesmust be developed toautomate awider
variety of tools.

Even for a relatively simplecommand-line
program, automation takes sorskill. For example,
the space desigaommunity often uses theajectory
analysiscodePOST (Program to Optimiz8imulated
Trajectories) to analyzethe ascentand reentry
performance of conceptudhunch vehicles The
output of thiscodeincludes asingle large text file
containing the numerical trajectory results for the.
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The numbers that theesigner is interested in are
locatedwithin the file, or derivablefrom numbers in
the file, but extraction of the numbers usuatbguires
loading the file in aext editor and manually picking
out therequiredvalues. When POST is automated,
this tedious task isperformed completely by the
computer.

WrappingUnix-basedtodes

POST serves as a good example of a typical

command-linebasedUnix legacytool. The program
remains today as it was originally writtelecadesgo,
a FORTRAN program run from a Unbommand-line,
taking a single namelist-formattedtext input file
(commonly referred to asthe input decR, and
generating severatext output files.  An expert
carefully sets up the inputleckfor a nominalvehicle
design.

Whenthe trajectoryportion of the vehicledesign
is to be convergedwith other analyses, or the
converged vehicle is to be optimizedfeav key design
parameters in the input deck are changed. Sissign
variables maynot be just a single number, brather
tables of values. In thigase, the entire table is
substituted into the input deck via a C-stifiinclude”
statement.

After execution, thedesigner extracts certain key
values from the output files that help hipdge the
trajectory performance. Datatput from POST that
is in tabular form may be plotted to gain visual
insight into the vehicle’s performance.

standard input

design ﬁnput file
P template

arameters
file

inpu

|standard output |

Figure 3. Execution process for an automated Unix
command-line analysis.

An “agentwrapper” was designedfor the POST
program that automatesnost of the procedures
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since it makes use of Unisommandsandsyntax that
most usersare alreadyfamiliar with.  Drawbacks
include limited capabilities, especially with math
functions and code reuse. Figure 3 shovestematic
of the execution process. An inpdeck template is
populatedwith the input variables provided on the
command-line (initial weight, referencearea, etc.).
The resulting file is given a “.inp” extension and
submitted to POST on an SGI machin®@ncePOST
has finished, the output file iparsedfor the last
instances of certain key variables. These values are
used to calculatéhe desiredoutput quantities(mass
ratio, mixture ratio, etc.), whichre then sent to the
user terminal or piped to an external file.

This sameproceduremay beusedfor a variety of
input/output file analysiscodes. For example, the
Georgia Tech-developed RBCC propulsion code
SCCREAM is wrapped in amanner similar to
POST. In SCCREAM’'scase, however, the script is
written in Perl, and the input fileare generated ifull
by the script instead of by a template.

One problem that arises when automating a
program such aBOST is thaterrors duringruntime
are difficult to catch. POST is notoriousfor its
ambiguous run failures. If a vehialwesnot achieve
orbit, theuser is givenlittle indication of whynot,
and the calculatedmass and mixture ratio may be
meaningless. The wrapping script itself has
essentially no intelligence on how tdeal with
problems that arise Researctthat is beingconducted
on expert systems at SSDL may helpateviatethis
problem in the future.

Dissimilar Computer Platforms

Legacy resources may exist orramge ofdifferent
computer platforms, thereby complicating the issue of
integration and dataexchange. POST is typically
executed orUnix platforms, including SGISun, and
HP workstations. Propulsioand aerodynamicgodes
arealso typically run in the Unix environment. The
SSDL also usespreadsheet baseols, including
Weights & Sizing, and Economics & Cost. These run
as Microsoft Excel files on a Macintospersonal
computer.

It is important to respect the freedom that
engineers have to developnalysis toolsfor their
platform of choice. Whateverplatform works best for
their particular applications should be the amed,
and integrators must accepis fact andwork with it.

described above. The wrapper takes the form of a UniX the mostefficient route (albeitafter the integration

Korn Shell (ksh) scriptexecuted athe commandine
with severalarguments. The ksh script nvenient

5

hurdles have been surmounted) is to retain the analysis
tools in their native environment. It hdkerefore
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been a majorthrust of this research to develop
techniques foremotely executingools thatreside on
PC platforms, from within a Unix environment.

WrappingPC-basedodes

Many of the mechanisms for communicating
betweenUnix codeshave been established over the
years. However, the problem of integratingeasonal
computer, whether aMacintosh or Windows-based
machine, presents a muclarger challenge. An
example of a Macintosh-basexhalysis tool is the
Cost And Business AnalysisModule (CABAM),
developed inthe SSDL. This MicrosoftExcel
spreadsheediakes a description of a particul@aunch
system, along with assumptions about taench
market, cash handlingand productionand operations
systems. It provides estimates for vehicle
development costs, recurrimgsts, cash-flowand rate
of return on investment, among other data

standard
l input
design config.
parameters I file

r» Expect

Telnet
AppleScript
standard
MS Excel output

Figure 4. Execution process for anautomated

Macintosh-based analysis.

A wrapping script was developed to automate, and
ultimately integrate the CABAMspreadsheeinto a
design environment. In order to provide the
communications linkbetweenthe Unix environment

and the Macintosh operating system, two key pieces of

pre-existing softwarewvere used. Peter’sScripting
Daemon (a “free-wareprogram available on the wgb
provides asimple Telnet protocoterver to allow a
user to connect to the Macintosh. Omomnected, the
user may issueommandsthat execute AppleScript
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The procedure describedbove is fine when aser
is sitting at the Unix terminal issuing the AppleScript
commands, but what about automating frecess.
Telnet is a prograndesignedor user interaction, so a
scripting languagecalled “Expect” was utilized to
automate the Telnet session. Expect simulates
interaction by “expecting” certaicharacters to bsent
back to the terminal, therfsending” other characters
back. It can be used to automate “fggssionsand a
host of other Unix programs that rely ounser
keystrokes.

The general process for automatingEatel-based
tool on a Macintosh is shown in Figure 4.

Widely Distributed Resources

In many cases legacy resourcegay not all be
accessibldocally. A particularcodemay reside on a
system in one part of the country, while tHesign
team is situated in another. This exposes the
possibility of adistributed designeam If the design
framework doesnot allow for distributed access to
resourcesetupandanalysis results, then the users are
back to the problems of a loosely-integrated
environment.

As discussed irthe sectionregardingWeb-based
architectures, th&Veb provides a naturdhcility for
accessing remotelpcated dateand programs. There
must also be a mechanisms in the Uaiwvironment
that allow for such remoteaccess. This is
demonstrated Inthe RBCC IMAGE problem to be
discussedlater, where one analysis tool(an Excel
spreadsheetyastransported tdche demonstration site
and installed on a computer there. Thiix-based
system executive, IMAGE, westill running off of a
Sun workstation back at Georgia Teskyeralhundred
miles away. However, aftersimple changes to the
wrapping script, IMAGE was able to make agent
call to the remote spreadsheet.

Developingweb-basedhterfaces

The Web interfacesddeveloped as aart of this
researchessentially build on top of the scripting
techniquesdescribed inthe previous two sections.

procedures. The AppleScript scripts are pre-written, so Thesescripting techniques wereriginally designed to

a user can sit at a Unix terminahdinteractwith any
number of programs on the Macintosh. this
example, AppleScript is used to open Microdekcel
with the CABAM spreadsheet, change 15 -cells
corresponding to vehicleomponent weightsiead the
resulting estimate of internal rate of return (IREgn
close the spreadsheet.

6

be usedfrom the command-linebut now it makes
sense tocreate aweb interface tothe tools so that
other users from the launch vehicle desigmmunity
can make use of them.

An example of an analysi®ol that has a Web
front-end applied to it is th8SDL Weights & Sizing
Excel spreadsheetpol. This spreadsheet is used to
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The user may select which
Macintosh to connect to along
with the name of the folder to
be accessed.

The name of the spreadsheet to
be openedis also user |

selectable.

Input variables assume a
default value when the page is
loaded, but the user is free to
change any of them o suit his
or her particular design.

When the formis completed,
the user clicks this button to
submit the analysis for

execution.

AIAA-98-4942

Results are displayed in a convenient
and attractive HT ML frame. The
content need not contain only textual
data, but also image data.

Figure 5. Web-interface to the Weights & Sizing analysis.

calculate the various component weights of a
conceptual launch vehicle. It uses a combination of
physics-basednd empirically-basedcalculations, and
relies on information from a variety oflifferent
disciplines including Trajectory,Propulsion, and
Configuration & Layout. Since the weights
spreadsheet resides onMacintosh computer, it was
wrapped in amannersimilar to CABAM, using the
Expect and AppleScript languages.

In order totransition such avrapper to aWeb-
basedinterface, anHTML input form was generated
(See Figure 5). This form provides the user with pull-
down menus and input boxes toenter the required
inputs for the analysis. The user may select which of
severalMacintosh machines to conndot as well as
the name of the file to bladed. Behindhe input
form lies some relatively simple JavaScriude that
sets certain default valuesid performs range checking
on the user inputs. When the user submitsHfi#ML
form by clicking the “Submit” button, a Perl CGI
script parses through theariable string generated by
the HTML form, picking out therelevant input
values. The Perl script writes out tla@propriate
AppleScriptcommands to temporafiles. Perlthen
executes a modifiedersion of the Expect Weights &
Sizing wrapper, which in turn spawns a Telpeicess
to the Macintosh to perform the AppleScript
commands. Whethe Expect script closes tHelnet
connectionand sendsoutput results to the user, it
sendsthem embedded inHTML codedirectly to the
right frame of the browser window. Inthe case of

7

weights & sizing, the output is simply series of
numbers defining the weight-breakdown of the vehicle,
but this by no meankmits the types of outputhat
may bedisplayed. Some analyses magutput such
items as image files containing plotand these are
easily displayed in a Web browser window.

| executive |

|Web server

egacy code,

Figure 6. User interaction and framework
integration of a Web-based analysis.

interaction

gl

browser

I

The HTML form/JavaScripinterface method was
used to wrapgfour important analyses in th8SDL.
These include the trajectory code POST, the
propulsion code SCCREAM, theeconomics & cost
spreadsheetCABAM, and the weights & sizing
spreadsheet.Figure 6 shows thgeneral scheme in
which a stand-alone codeay bewrappedinto a Web-
based resource for use bysiagle user or &Veb-based
system executive.
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Demonstration Problems

Of course, the researthat hasbeenperformed in
automationand integrationtechniqueswill be of no
good unless it's proven that theyd in the process of

AIAA-98-4942

SSTO visionvehicle currently beingstudied in the
SSDL namedHyperion The four disciplinesnvolved
are shown in the DSM in Figure 8. The
corresponding analysis toolsincluded SCCREAM
(Propulsion), POST (Trajectory/Performance),

engineering design. To that end, several demonstration CABAM (Economics & Cost), and SSDL'’s Hyperion

problems were set up that make use oftdohniques
described above. Table 1 summarizes thieur
problems, and each is described in more detail below.

Simple SSTODemonstratiofUnix)

In order to show the capability of IMAGE to
automate a design processsimple all rocket SSTO
design was implemented ithe architecture. The
problem consisted ofhree contributing analyses as
shown in the DSM in Figure 7Because of the
absence of feedback links in this particular process, the
codes were executed in sequengih no iteration
betweenthem. The purpose of thisxercisewas not
to show wrapping capabilities, butather the
integration abilities of IMAGE. Therefore, the
disciplines were represented bysimple algebraic
equations rathethan bylegacycodes or spreadsheets.
This simple exercisewas the stepping-stone for the
much more complicated demonstrations that follow.

Propulsion

Trajectory/
Performance

Weights and
Sizing

Figure 7. Design Structure Matrix for the simple
all rocket SSTO demonstration.

RBCC DemonstratiorfUnix)

The IMAGE architecturewas the basis of &ur-
code demonstration of the design process frrugable
launch vehiclebased on a Rocket-Basé&tbmbined-
Cycle (RBCC) engine. The vehicle chosen was an

Weights & Sizing spreadsheet. The Layout/Packaging
and Aerodynamics analysewere performedoff-line,

and the resultsusedvia photographic scaling in the
other tools. The purpose of the demonstration was to
show how agentgan be integrated irthe IMAGE
environment, automaticallgxecuted according to a
specified desigrprocess,and iterated to convergence
without any user interaction.

Layout &
Packaging
Aerodynamics Y

Propulsion —
Trajectory/
Performance
Weights and
Sizing
Economics
and Cost

Figure 8. Design Structure Matrix for the Unix-
and Web-based RBCC SSTO
demonstrations.

This exercise was conducted aspart of a
cooperative study between Georgia Tech and
International Space Systems Incorporated (ISSI),
located in Huntsville, Alabama. The study wasded
through NASA’s Marshall Space Flight Center.

RBCC Demonstratiorf\Web)

The Hyperion RBCC demonstration described
above waslso transitionednto a Web-basedormat.
The user ispresentedvith a main selectiopage that
allows the user tgerform each othe four analyses.
When the user clicks on one of the images, the
correspondinganalysis is spawned as aNeb-based
HTML form interface to the code.

Table 1. Summary of design framework demonstration problems.

Name Executive Disciplines Notes
IMAGE | Web
All rocket SSTO J 3 (I?ropulsion, Trajectory, | Used simlple analysis approximations to
Weights) show basic operation of IMAGE
RBCC SSTO J 4 (Propulsion, Trajectory, Sho_vved automatic iteration in fully-featured
Weights, Cost) environment
RBCC SSTO J 4 (Eropulsion, Trajectory, _Demonstrgted code interaction, and yielded]
Weights, Cost) improved interfaces
Planetary Entry J LaRC 3 (Geometry, . Dlre(;tly compared IMAGE anql Web .
Aerodynamics, Trajectory)| architectures for reentry-vehicle design

8

American Institute of Aeronautics and Astronautics



It would appearthat thisdemonstration isimply
a collection of the previouslydeveloped Web
interfaces,but the key difference here is the true
interaction betweethe analyses.When each HTML
form is generated, théefaultinput variable values are
read from an externaldatabasefile.  When each
analysis is completed, theutput variable values are
written to this samelatabasdile, so thatsubsequent
analyses may use thgdatednumbers. In thisway,
all four analyses may biterated consecutivelyuntil
convergence is reached.

The major drawback to this interface is the
requirementthat the user be present to initiatach

analysis. So in a sense, one of the major goals for a

design framework has been attained, namely
information exchange, but complete process autonomy
has yet to be achieved.

In this RBCC Web demonstration, thdMAGE
architecturewas essentiallyeplaced by asingle main
selection page. Of course, theeb-interface should
not becompareddirectly with IMAGE at this stage,
since it contains veryew of the characteristicsthat
would qualify it as atrue architecture. After all,
IMAGE is not only a mechanisnfor executing
analyses, but rather an environment in whichehtre
designproblem is set up. FornModel, andProcess
schemas, as well as thiiesign processare set up
within IMAGE itself. For the Web demonstration, the
input forms,design variablesand dataexchangewere
all set up byhand in the basic Unix filesystem
environment.  With futureresearchinto Web-based
system executives, however, a more meaningful
comparison could be made.

Design Specification

Geometry

AIAA-98-4942

PlanetaryDemonstratiofUnix vs. Web)

Aerodynamics

The third demonstrationthat was conducted
comparedthe IMAGE architectureitself with a pre-
existing Web-baseddesign environmentleveloped at
NASA Langley Research Center (LaRC). The
IntegratedDesign Systen(IDS) originated by NASA
provides for the conceptual design of a planetary entry
vehicle using HTML form interfaces, Perl scripting
behindthe scenesand SGI executables foits three
primary disciplines, GeometryAerodynamics, and
Trajectory. The DSM for this demonstration is
shown in Figure 9. The IDS systemdasite similar
to SSDL’s own RBCC Web demonstration problem in
how it is executed. The userpsesentedvith a series
of pages, where he selects appropriateinput
parameters.Perl CGI scripteexecutethe Unix codes
andpresent theoutput data tothe screen. This data
consists of 2-Dand 3-D geometry descriptions,
aerodynamic  coefficient plots, and trajectory
performanceplots. The IDS system is &nce-
through” design procesand doesiot currently allow
for any sort of iteration.

?

Aerodynamics

Geometry

Trajectory/
Performance

Figure 9. Design Structure Matrix for planetary
entry vehicle demonstration.

As a part of SSDL'gesearchthe IDS executable
codes andCGl scripts were obtained from NASA
LaRC and modified to performwithin the IMAGE

Analysis Process

Trajectory

Figure 10. Planetay entry vehicle desin process implemented in IMAGE.
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architecture. Thé&orm, Model, and Processschemas
were constructed for the planetary erprpblem,and a
sequential execution process wdefined (See Figure
10). The intention was to show how theact same
process could beduplicated within an alternate
architecture, and compare the two approaches.

Architecture Comparisons

IMAGE and the Web-baseddesign architectures
were compared on the following basis:

» Ease-of-setup - how quickly and efficiently can one
set up an engineering design problem in each
architecture?

» Ease-of-use - once the problem is set up, which is
more convenient to actually execute?

* Robustness of environment - how stable is the
architecture when codes go awry?

» Expandability - how easy is it to change the
problem once you've set it up, and how easy is it
to add new agents?

» Automatability - once the problem is set up, does
the user still need to be present for process
execution?

IMAGE certainly outperforms th&Veb interface
during problem setup. Its built-iobject-orientecdata
model, while sometimes cumbersome to warikh,
allows the user todefine variablesand set up the
design processising graphicaltools. This ismuch
easierthan IDS’ method ofsetting up and linking
individual scripts at the Unix level.

Regarding ease-of-use, IMAGEequires little
supervision if set up properly, and allows for relatively
easy visualization of pasesults. However, the IDS
and Web-base®BCC interface feelsmore friendly to
the designer since he can actually see what is
happening with his analyses. The learnowgve of
the IMAGE environment igjuite steep,even for tasks
as simple as visualizing analysis results. It is
thereforenot well suited to a large design teamiere
many peoplerequire access tthe design process and
design data.

As a research architecture, IMAGE is not thest
robustpiece of softwareand it requires a decelavel
of Unix knowledgesimply to get a problem running.
During execution itselfhowever, the system iquite
reliable. Presumably, the IDS system tookgaod
deal of time to set up properly, so most if not all bugs
are workedout. Therefore the system runsuite
smoothly.
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When the discussion comes to expandability, both
the IMAGE and IDS architecturedall short. In the
currentversion of IMAGE, if you want to make a
simple change tothe design process, aadd another
analysis, you must completeledefine the process
from the beginning. Future versions should allow
easiermodification. The IDS system was really not
intended to becompletely expandable, as itwould
require deep editing of Perl scripts and HTML forms to
generate anew analysisinterface or restructure the
design process. Th&Veb-basedRBCC problem,
however, provides for reasonable expandability. The
input/output plugs to the flat filedatabase are
completely generaknd adding difth analysis would
only require simple modifications of thaprogram’s
integration script, and the main HTML selection page.

The IMAGE architecture provides complete
automatability of thedesign process. Once the
problem is set up, thasersimply clicks “Execute”
and IMAGE begins running the contributing analyses,
taking into account any iteration orconvergence
criteria. Thecurrent Web-basedsolutions, including
the IDS demonstratiomgquire auser to step through
the design process. Neithesolution is obviously
superior. There may be times that user inputesded
during asystem design, sinagecisionsmust bemade
based oranalysis results. Thigould imply that the
process shouldot be completehautomated. At the
same time however, automation capability should be
available for those processesthat do not require
significant userinput. Remember that one of the
major benefits of an integrated design framework is the
ability to executemany iterations of aesignwithout
the requirement of constant human participation.

Conclusions and Future Research

The IMAGE architecture provides a convenient
and accessible architecturvithin which to deploy
integration technologies such as thadeveloped in
this research. The detailedprocess model should also
allow for more complicated design structure matrices
to be implemented,and possibly the use of
Multidisciplinary  Design  Optimization (MDO)
techniques. Applied to a vehictch asHyperion
such a systentould savecountless hours ofedious
codeexecution,and may ultimately arrive at a more
optimal design.

From thefeedback receivetegardingthe SSDL’s
Web-basednterfaces,and the results of the IDS vs.
IMAGE comparison, it appears obvious that
significant researchshould befocused oncontinuing
the development of design architecturdsployed on
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the Web. The familiaandcontent-rich Welinterface
will appeal to many engineersusing the design
framework. It is evident, however, that problem setup
is often easier in dedicatedool such as IMAGE. In
fact, there is nothing wrong with using two
environments, one for problem setignd one for
design proces®xecution. Developing the problem
off-line in an IMAGE sort of environment allows the
use of strong graphical interface tools, wtebeecuting

AIAA-98-4942

Symposium on Multidisciplinary Analysis and
Optimization, Bellevue, WA, September 4-6, 1996.

3 Hale, M.A., “An Open Computing Infrastructure
that Facilitates Integrated Product and Process
Development from aDecision-Based Perspective,”
Doctoral Thesis, School ofAerospaceEngineering,
Georgialnstitute of Technology, Atlanta, GA. July
1996.

the process and interacting with the design on the Web # Olds, J. R.andBudianto, I. A."ConstantDynamic

provides easy access to distributptatforms, and
enables distributed design teams.

Additional technologies should beeveloped to
build the library of toolsaccessible in atightly-
integrated design framework. Currently, the SSDL can
automate and integrate Unix-based command-line
codes,and Macintosh-basedanalysis tools. Further
study should beperformed tolook at communicating
with Windows-based PCs, as well as complicated Unix
tools such asfinite-element analysesand CAD
environments. As the design methodologiegeloped
here for conceptual design begin to take hold, thidly
inevitably trickledown into the preliminaryand detail
designphases. In these phasdisere will be many
analyses and tools that require special wrapping
techniques that have not yet been developed.
Obviously, the area of computational framework
research is one that has a strong future ahead of it.
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