
For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191

7th AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and

Optimization

Sept. 2-4, 1998 / St. Louis, MO

AIAA 98-4942
Computational Frameworks for
Collaborative Multidisciplinary Design of
Complex Systems

D. E. Acton
J. R. Olds
Space Systems Design Lab
Georgia Institute of Technology
Atlanta, GA

AIAA-98-4942

1

American Institute of Aeronautics and Astronautics

Computational Frameworks for Collaborative Multidisciplinary
Design of Complex Systems

David E. Acton *

Dr. John R. Olds †

Space Systems Design Laboratory
School of Aerospace Engineering

Georgia Institute of Technology, Atlanta, GA 30332-0150

Abstract

Significant research has been conducted into the
development and deployment of analysis integration
techniques. This paper discusses these research
activities in the context of collaborative frameworks
for conceptual space systems design. It begins by
discussing the current state of aerospace systems
design processes, then recommends a path toward
higher efficiency in design. It continues by describing
various computational technologies that have been or
are being developed to achieve this goal, and concludes
by presenting several demonstration problems that
make use of these technologies.

Introduction

Research Context

The Space Systems Design Laboratory (SSDL) at
Georgia Tech is one of three branches of the Center for
Aerospace Systems Analysis (CASA). SSDL is
focused primarily on developing conceptual design
strategies and tools for advanced launch vehicles,
satellites, and interplanetary spacecraft. The material
discussed in this paper is based on research into
integrated computational frameworks for complex
system design. The design framework is intended to
link together disciplinary analyses in a distributed,
heterogeneous computing environment, and automate
data exchange for the purpose of collaborative design.
The research is performed within the SSDL, and
therefore tends to have an emphasis on space systems
design. The demonstration problems involve both

launch vehicles and interplanetary spacecraft, so the
analysis tools deal with space-related disciplines.

One good reason why space systems design is
well suited to an integrated design framework is its
inherent complexity. Figure 1 shows a typical Design
Structure Matrix (DSM) for a launch vehicle design
process performed in the SSDL. The first thing to
notice is the relatively large number of disciplines
involved when developing such a vehicle. This DSM
does not even show some other disciplines that may be
involved in more detailed designs, such as “Stability &
Control,” “Avionics,” and “Operations & Facilities.”

Layout &
Packaging

Aerodynamics

Propulsion

Trajectory/
Performance

Aeroheating

Weights and
Sizing

Economics
and Cost

Figure 1. Typical Design Structure Matrix for an
advanced launch vehicle.

The second thing to notice about the DSM is the
high level of coupling between the various disciplines.
Decisions that are made early in the process (for
example, in “Layout & Packaging”) will undoubtedly
need to be modified when the results of later analyses
are generated. Typically, the process is iterated until
convergence of the design variables is reached. This
means that the entire design process may take many
iterations, each involving numerous complex
analyses1. An integrated design framework can help
organize the transfer of data between different
disciplines.

The large amount of resources spent performing
various analyses also encourages the application of
design frameworks to aerospace-related problems. The
space design community makes wide use of industry-
standard legacy codes. These codes, whether they are
command-line based FORTRAN programs, graphical

* Graduate Research Assistant, School of Aerospace
Engineering, Student member AIAA.

† Assistant Professor, School of Aerospace
Engineering, Senior member AIAA.

Copyright © 1998 by David E. Acton and John R. Olds.
Published by the American Institute of Aeronautics and
Astronautics, Inc. with permission.

AIAA-98-4942

2

American Institute of Aeronautics and Astronautics

CAD programs, or PC-based spreadsheets using
industry standard formulas, typically require a great
deal of human interaction to execute. The user may
need to hand-edit text input files, sit in front of a CAD
terminal drawing a model and analyzing it, or edit and
retrieve cell values of a spreadsheet using a mouse at a
PC. If a computer-based integrated design framework
can reduce the tedium of using legacy codes by
performing repetitive tasks automatically, it has
instantly enhanced the design process.

Conceptual Design St rategies

In today’s industry, the method of designing
complex engineering systems usually takes one of two
forms. The Monolithic Design Code integrates
contributing analyses as subroutines of a large
synthesis “executive.” Intended for single user
execution, usually in the conceptual design phase, a
monolithic code uses response surfaces, low-fidelity
codes, and other methods to approximate the higher
fidelity results that would be obtained using legacy
codes.

At the opposite extreme lies the methodology of
Loosely-Integrated Analyses. This implies heavy use
of standard legacy codes, but provides for very little
electronic integration of contributing analyses.
Experts in each discipline manually perform each
analysis, and data is exchanged between disciplines
along written or verbal lines, or possibly through ftp
of data files. This method is usually seen in large
organizations, working on large, complex systems,
often at the preliminary or detailed design phase.

With current methodologies, it is difficult to bring
high-fidelity analyses into the conceptual design phase.
Correspondingly, when the engineering system is
transitioned into preliminary and detail design phases,
the convenience of easy data exchange and fast cycle
time is lost. Current research is directed towards
developing collaborative design frameworks that bridge
the gap between the existing design strategies, and
thereby share the benefits of each. An optimum
design scheme is one that reduces cycle time, yet keeps
the fidelity and accuracy of legacy codes and
disciplinary experts.

These results are accomplished by transforming
the complex disciplinary analyses into “design-
oriented” analyses, which are then “plugged into” a
larger system executive. These Tightly-Integrated
Analyses will not be approximations, but rather true
legacy tools set up by experts. The codes are
”wrapped” using shell-scripts, remote computer
control, and other methods. The system executive

automatically executes each contributing analysis
when needed, returning a high-fidelity result that can
be easily passed to the next analysis.

Thrust Areas

While the goals and benefits of a tightly-integrated
design framework are obvious, the mechanisms by
which to achieve it may not be. The primary problem
is how to integrate and automate legacy codes and
resources that were designed to be executed by humans.
Issues that will be encountered include

• Designing and developing a computational
architecture that will support integration and
design process deployment through a system-level
executive

• Difficulty in automating sometimes complex
interfaces to legacy analyses

• Dealing with dissimilar computer platforms for
analyses

• Extending the framework to access geographically
distributed computer systems

• Demonstrating the effectiveness of integration and
automation techniques on relevant sample
problems

The research discussed in this paper addresses these
issues and examines methods to resolve them in a
tightly-integrated collaborative design framework.
Four demonstration problems were constructed to
showcase the integration technologies and act as
“proofs of concept” for the design framework.

This is a good time to differentiate between a
design framework and a computational architecture. A
design framework is defined as a methodology for
connecting disciplinary analyses. The framework
refers not to a particular piece of software, but rather to
the idea of how codes should be tied together (if at all)
in a design environment. A computational architecture
is defined as the enabling software environment that
supports a particular framework. The architecture may
be best represented by the system-level executive
described above.

It is important to note that this research is not
intended to develop a particular computer architecture
for engineering design, but rather to examine the
techniques necessary for integrating analysis tools into
such an architecture, and compare existing
architectures. Much work has been done in both
academia and industry to construct computational
architectures that support integrated design. However,
what many design architectures leave out is a clear
description of how to integrate a wide variety of codes.

AIAA-98-4942

3

American Institute of Aeronautics and Astronautics

Admittedly, the architecture designer cannot predict the
complete array of analyses that a user may wish to
integrate, and therefore cannot define every technique
for wrapping such analyses. Rather, he supplies the
“ports” for the architecture, into which the engineer
“plugs” his wrapped analysis codes.

When discussing a future design framework, one
must first look at the way design is done in industry
now. Decades of engineering experience and tradition
cannot just be wiped away, requiring a completely new
way of designing spacecraft, aircraft, or any other
engineering system. That would mean telling
engineers to change the way they make decisions and
perform design. There are too many legacy codes and
legacy knowledge that must be tapped. Rather, one
should look at the way design is done now, then look
at how the design process can be improved upon in the
future, estimate what efficiencies can be obtained, and
develop ways to bridge the gap.

Architectures for the System Executive

The structure and implementation of the system-
level executive is a critical issue in designing the
environment. The executive defines the user interface
to the design process while it is running, as well as
possibly during problem setup. The executive also
determines the method of data storage, data retrieval,
and data exchange2. The effectiveness of a particular
executive may be measured by its ease of use during
both setup and execution, robustness to both user error
and design instability, expandability to include
additional analyses, and level of automation.

Two system executive implementations were
investigated, including a pre-existing Unix-based
single-user architecture that provides sophisticated
integration and database tools, and a Web-based
architecture that allows distributed, multi-platform
information access and analysis execution.

Unix Interface

The architecture chosen in this category was the
Intelligent Multi-disciplinary Aircraft Generation
Environment (IMAGE)*. Developed by Dr. Mark Hale
as part of his Ph.D. dissertation at Georgia Tech,
IMAGE is a modular computing architecture based on
a Form, Model, Process design theory3. In its current

form, IMAGE consists of a graphical user interface,
based on the Tk/tcl scripting language, above an
object-oriented modeling system (See Figure 2). It
contains a structured scheme for integrating analyses,
supports communication via PVM, and can be
compiled for a variety of Unix platforms.

Figure 2. The IMAGE integrated design
architecture.

It is useful to describe the primary elements of
IMAGE in order to develop a context within which
one may later discuss its effectiveness for certain
problems. IMAGE is based on the notion of design
schemas. A schema is a collection of various objects
that all have a common basis. A Form schema will
likely contain a collection of variables related to a
particular subsystem. An example from the aerospace
field would be the collection of variables related to a
propulsion system. A Model schema will contain
objects which define a model of a particular
phenomenon. This phenomenon may be the
aerodynamic behavior of a vehicle in atmospheric
flight. In order to model this behavior, it is simulated
via a computer code. The Model schema will describe
the computer code and how it is executed. A Process
schema will contain objects which link particular
models to particular design variables. It is no good to
have an aerodynamic analysis if it is applied to
propulsion design variables. The Process schema
provides the coordination mechanism.

Once all schemas and processes are defined, the
design problem can be executed. During execution,
interpreters are started as agents are called by IMAGE.
When the problem is completed (or even during
execution), variable values within the Form schemas
may be examined. A very useful feature of IMAGE is
its ability to retain past values of each design variable.
Instead of keeping only the most recent number,

* The name IMAGE is a bit of a misnomer since the
architecture really contains nothing that makes i t
inherently appropriate for aircraft design versus any other
sort of system design.

AIAA-98-4942

4

American Institute of Aeronautics and Astronautics

output file, or picture, IMAGE stores past versions,
and records each with the date, user, and project with
which it is associated. For numerical values, the
progression of design variables may be plotted to help
in visualizing the convergence (or divergence) of a
design.

Web Interface

The World Wide Web (WWW or Web) provides a
natural architecture on which to build distributed
computational frameworks. The combination of its
Internet heritage, simple and consistent data request
formats, and customizable levels of security makes the
Web appealing to someone planning to run widely
distributed codes.

The Web uses the HyperText Transport Protocol
(HTTP) and Uniform Resource Locators (URLs) to
pass information between various locations. The way
URLs are formatted, any page of information, or any
Web-accessible computer program may be accessed via
a simple one-line text string. The page or program
may return content ranging from simple text data to
graphical images, plots, and sound files. This rich
content is passed directly back to the user via the
HTTP protocol, and displayed in his or her Web
browser. Another benefit of the distributed Web
environment is that no real distinction is made
between a Web server located upstairs and one located
across the country. Contributing analyses may be
easily ported from one location to another.

Web servers may be run from a multitude of
platforms, including Unix machines, Macintoshes, and
Windows-based PCs. This makes the problem of
handling different computing environments easier to
deal with. If the system executive is web-accessible, it
is easy for design team members to monitor the design
process by simply loading up a page in their web
browsers.

The research presented in this paper investigates
the use of the Web architecture to support remote
execution and automation of several legacy codes. The
Web architecture provides a familiar and attractive
interface between the designer and the knowledge-base.
As the world’s computer users become increasingly
interested in using Web-based services, it seems
natural to extend engineering design into this
environment. However, the field of Web-
programming is a relatively new one, and therefore is
still developing. Even with its obvious benefits, the
Web architecture falls short in some areas. The Web
was originally designed simply as a way to display
information, and therefore provides limited means for

the user to actually interact with that information.
Only recently, with the advent of the Java and
JavaScript programming languages, have users been
able to manipulate the information they see in their
browsers. Even these languages, however, have a long
way to go before they can compete with the highly
developed graphical interfaces provided in the Unix,
Macintosh, and Windows development environments.

For most Web servers, the only database existing
behind the interface is the Unix or PC filesystem
containing the Web pages. It is certainly possible to
connect say an object-oriented database behind a Web
server, with Java and C++ helping to provide the
required hooks. However, an exercise such as this
would require as much expertise as connecting the
same type of database behind a graphical Unix/X-
Windows interface.

Another major problem for a Web-based design
environment is the inability to define an automatable
process model. The Web was designed for human
interaction, so it usually involves manually clicking
buttons and selecting hyperlinks to move forward in a
process. Unlike the Unix architecture, which can
spawn processes when preceding processes are finished,
a Web server will typically just show you the results
page, and wait.

Integrating Legacy Codes

Legacy resources, while providing high-fidelity
results, are often not design-oriented. Design-oriented
resources must be suitable for automated and repetitive
use, provide consistent results, accept wide variance in
input parameters, and often allow for visualization of
output. Many legacy tools, such as CAD systems and
spreadsheets are hard to automate. Many companies
are designing into their software capabilities that allow
for automating some processes, and this is a step in
the right direction. What about those programs that
are not receiving that sort of attention? Should
designers restrict themselves to those codes that are
already automatable at the expense of loosing fidelity
or learning a new program? Probably not. So
techniques must be developed to automate a wider
variety of tools.

Even for a relatively simple command-line
program, automation takes some skill. For example,
the space design community often uses the trajectory
analysis code POST (Program to Optimize Simulated
Trajectories) to analyze the ascent and reentry
performance of conceptual launch vehicles4. The
output of this code includes a single large text file
containing the numerical trajectory results for the run.

AIAA-98-4942

5

American Institute of Aeronautics and Astronautics

The numbers that the designer is interested in are
located within the file, or derivable from numbers in
the file, but extraction of the numbers usually requires
loading the file in a text editor and manually picking
out the required values. When POST is automated,
this tedious task is performed completely by the
computer.

Wrapping Unix-based codes

POST serves as a good example of a typical
command-line based Unix legacy tool. The program
remains today as it was originally written decades ago,
a FORTRAN program run from a Unix command-line,
taking a single namelist-formatted text input file
(commonly referred to as the input deck), and
generating several text output files. An expert
carefully sets up the input deck for a nominal vehicle
design.

When the trajectory portion of the vehicle design
is to be converged with other analyses, or the
converged vehicle is to be optimized, a few key design
parameters in the input deck are changed. Some design
variables may not be just a single number, but rather
tables of values. In this case, the entire table is
substituted into the input deck via a C-style “#include”
statement.

After execution, the designer extracts certain key
values from the output files that help him judge the
trajectory performance. Data output from POST that
is in tabular form may be plotted to gain visual
insight into the vehicle’s performance.

input file
template

POST

standard input

standard output

design
parameters

input file

output file

awk Perl

Figure 3. Execution process for an automated Unix
command-line analysis.

An “agent wrapper” was designed for the POST
program that automates most of the procedures
described above. The wrapper takes the form of a Unix
Korn Shell (ksh) script, executed at the command line
with several arguments. The ksh script is convenient

since it makes use of Unix commands and syntax that
most users are already familiar with. Drawbacks
include limited capabilities, especially with math
functions and code reuse. Figure 3 shows a schematic
of the execution process. An input deck template is
populated with the input variables provided on the
command-line (initial weight, reference area, etc.).
The resulting file is given a “.inp” extension and
submitted to POST on an SGI machine. Once POST
has finished, the output file is parsed for the last
instances of certain key variables. These values are
used to calculate the desired output quantities (mass
ratio, mixture ratio, etc.), which are then sent to the
user terminal or piped to an external file.

This same procedure may be used for a variety of
input/output file analysis codes. For example, the
Georgia Tech-developed RBCC propulsion code
SCCREAM5 is wrapped in a manner similar to
POST. In SCCREAM’s case, however, the script is
written in Perl, and the input files are generated in full
by the script instead of by a template.

One problem that arises when automating a
program such as POST is that errors during runtime
are difficult to catch. POST is notorious for its
ambiguous run failures. If a vehicle does not achieve
orbit, the user is given little indication of why not,
and the calculated mass and mixture ratio may be
meaningless. The wrapping script itself has
essentially no intelligence on how to deal with
problems that arise. Research that is being conducted
on expert systems at SSDL may help to alleviate this
problem in the future.

Dissimilar Computer Platforms

Legacy resources may exist on a range of different
computer platforms, thereby complicating the issue of
integration and data exchange. POST is typically
executed on Unix platforms, including SGI, Sun, and
HP workstations. Propulsion and aerodynamics codes
are also typically run in the Unix environment. The
SSDL also uses spreadsheet based tools, including
Weights & Sizing, and Economics & Cost. These run
as Microsoft Excel files on a Macintosh personal
computer.

It is important to respect the freedom that
engineers have to develop analysis tools for their
platform of choice. Whatever platform works best for
their particular applications should be the one used,
and integrators must accept this fact and work with it.
The most efficient route (albeit after the integration
hurdles have been surmounted) is to retain the analysis
tools in their native environment. It has therefore

AIAA-98-4942

6

American Institute of Aeronautics and Astronautics

been a major thrust of this research to develop
techniques for remotely executing tools that reside on
PC platforms, from within a Unix environment.

Wrapping PC-based codes

Many of the mechanisms for communicating
between Unix codes have been established over the
years. However, the problem of integrating a personal
computer, whether a Macintosh or Windows-based
machine, presents a much larger challenge. An
example of a Macintosh-based analysis tool is the
Cost And Business Analysis Module (CABAM),
developed in the SSDL. This Microsoft Excel
spreadsheet takes a description of a particular launch
system, along with assumptions about the launch
market, cash handling, and production and operations
systems. It provides estimates for vehicle
development costs, recurring costs, cash-flow, and rate
of return on investment, among other data6.

config.
file

standard
input

standard
 output

design
parameters

AppleScript

Expect

MS Excel

Telnet

Figure 4. Execution process for an automated
Macintosh-based analysis.

A wrapping script was developed to automate, and
ultimately integrate the CABAM spreadsheet into a
design environment. In order to provide the
communications link between the Unix environment
and the Macintosh operating system, two key pieces of
pre-existing software were used. Peter’s Scripting
Daemon (a “free-ware” program available on the web7)
provides a simple Telnet protocol server to allow a
user to connect to the Macintosh. Once connected, the
user may issue commands that execute AppleScript
procedures. The AppleScript scripts are pre-written, so
a user can sit at a Unix terminal and interact with any
number of programs on the Macintosh. In this
example, AppleScript is used to open Microsoft Excel
with the CABAM spreadsheet, change 15 cells
corresponding to vehicle component weights, read the
resulting estimate of internal rate of return (IRR), then
close the spreadsheet.

The procedure described above is fine when a user
is sitting at the Unix terminal issuing the AppleScript
commands, but what about automating the process.
Telnet is a program designed for user interaction, so a
scripting language called “Expect” was utilized to
automate the Telnet session. Expect simulates user
interaction by “expecting” certain characters to be sent
back to the terminal, then “sending” other characters
back. It can be used to automate “ftp” sessions, and a
host of other Unix programs that rely on user
keystrokes.

The general process for automating an Excel-based
tool on a Macintosh is shown in Figure 4.

Widely Distributed Resources

In many cases legacy resources may not all be
accessible locally. A particular code may reside on a
system in one part of the country, while the design
team is situated in another. This exposes the
possibility of a distributed design team. If the design
framework does not allow for distributed access to
resource setup and analysis results, then the users are
back to the problems of a loosely-integrated
environment.

As discussed in the section regarding Web-based
architectures, the Web provides a natural facility for
accessing remotely located data and programs. There
must also be a mechanisms in the Unix environment
that allow for such remote access. This is
demonstrated In the RBCC IMAGE problem to be
discussed later, where one analysis tool (an Excel
spreadsheet) was transported to the demonstration site
and installed on a computer there. The Unix-based
system executive, IMAGE, was still running off of a
Sun workstation back at Georgia Tech, several hundred
miles away. However, after simple changes to the
wrapping script, IMAGE was able to make an agent
call to the remote spreadsheet.

Developing web-based interfaces

The Web interfaces developed as a part of this
research essentially build on top of the scripting
techniques described in the previous two sections.
These scripting techniques were originally designed to
be used from the command-line, but now it makes
sense to create a web interface to the tools so that
other users from the launch vehicle design community
can make use of them.

An example of an analysis tool that has a Web
front-end applied to it is the SSDL Weights & Sizing
Excel spreadsheet tool. This spreadsheet is used to

AIAA-98-4942

7

American Institute of Aeronautics and Astronautics

calculate the various component weights of a
conceptual launch vehicle. It uses a combination of
physics-based and empirically-based calculations, and
relies on information from a variety of different
disciplines including Trajectory, Propulsion, and
Configuration & Layout. Since the weights
spreadsheet resides on a Macintosh computer, it was
wrapped in a manner similar to CABAM, using the
Expect and AppleScript languages.

In order to transition such a wrapper to a Web-
based interface, an HTML input form was generated
(See Figure 5). This form provides the user with pull-
down menus and input boxes to enter the required
inputs for the analysis. The user may select which of
several Macintosh machines to connect to, as well as
the name of the file to be loaded. Behind the input
form lies some relatively simple JavaScript code that
sets certain default values and performs range checking
on the user inputs. When the user submits the HTML
form by clicking the “Submit” button, a Perl CGI
script parses through the variable string generated by
the HTML form, picking out the relevant input
values. The Perl script writes out the appropriate
AppleScript commands to temporary files. Perl then
executes a modified version of the Expect Weights &
Sizing wrapper, which in turn spawns a Telnet process
to the Macintosh to perform the AppleScript
commands. When the Expect script closes the Telnet
connection and sends output results to the user, it
sends them embedded in HTML code directly to the
right frame of the browser window. In the case of

weights & sizing, the output is simply a series of
numbers defining the weight-breakdown of the vehicle,
but this by no means limits the types of output that
may be displayed. Some analyses may output such
items as image files containing plots, and these are
easily displayed in a Web browser window.

Web
browser

user
interaction

Telnet to
Web server

Web server

legacy code

Perl CGI script

framework
executive

Figure 6. User interaction and framework
integration of a Web-based analysis.

The HTML form/JavaScript interface method was
used to wrap four important analyses in the SSDL.
These include the trajectory code POST, the
propulsion code SCCREAM, the economics & cost
spreadsheet CABAM, and the weights & sizing
spreadsheet. Figure 6 shows the general scheme in
which a stand-alone code may be wrapped into a Web-
based resource for use by a single user or a Web-based
system executive.

When the form is completed,
the user clicks this button to
submit the analysis for
execution.

Input variables assume a
default value when the page is
loaded, but the user is free to
change any of them to suit his
or her particular design.

The name of the spreadsheet to
be opened is also user
selectable.

The user may select which
Macintosh to connect to along
with the name of the folder to
be accessed.

Results are displayed in a convenient
and attractive HTML frame. The
content need not contain only textual
data, but also image data.

Figure 5. Web-interface to the Weights & Sizing analysis.

AIAA-98-4942

8

American Institute of Aeronautics and Astronautics

Demonstration Problems

Of course, the research that has been performed in
automation and integration techniques will be of no
good unless it’s proven that they aid in the process of
engineering design. To that end, several demonstration
problems were set up that make use of the techniques
described above. Table 1 summarizes the four
problems, and each is described in more detail below.

Simple SSTO Demonstration (Unix)

In order to show the capability of IMAGE to
automate a design process, a simple all rocket SSTO
design was implemented in the architecture. The
problem consisted of three contributing analyses as
shown in the DSM in Figure 7. Because of the
absence of feedback links in this particular process, the
codes were executed in sequence with no iteration
between them. The purpose of this exercise was not
to show wrapping capabilities, but rather the
integration abilities of IMAGE. Therefore, the
disciplines were represented by simple algebraic
equations rather than by legacy codes or spreadsheets.
This simple exercise was the stepping-stone for the
much more complicated demonstrations that follow.

Propulsion

Weights and
Sizing

Trajectory/
Performance

Figure 7. Design Structure Matrix for the simple
all rocket SSTO demonstration.

RBCC Demonstration (Unix)

The IMAGE architecture was the basis of a four-
code demonstration of the design process for a reusable
launch vehicle based on a Rocket-Based Combined-
Cycle (RBCC) engine. The vehicle chosen was an

SSTO vision vehicle currently being studied in the
SSDL named Hyperion. The four disciplines involved
are shown in the DSM in Figure 8. The
corresponding analysis tools included SCCREAM
(Propulsion), POST (Trajectory/Performance),
CABAM (Economics & Cost), and SSDL’s Hyperion
Weights & Sizing spreadsheet. The Layout/Packaging
and Aerodynamics analyses were performed off-line,
and the results used via photographic scaling in the
other tools. The purpose of the demonstration was to
show how agents can be integrated in the IMAGE
environment, automatically executed according to a
specified design process, and iterated to convergence
without any user interaction.

Layout &
Packaging

Aerodynamics

Propulsion

Trajectory/
Performance

W eights and
Sizing

Economics
and Cost

Figure 8. Design Structure Matrix for the Unix-
and Web-based RBCC SSTO
demonstrations.

This exercise was conducted as part of a
cooperative study between Georgia Tech and
International Space Systems Incorporated (ISSI),
located in Huntsville, Alabama. The study was funded
through NASA’s Marshall Space Flight Center.

RBCC Demonstration (Web)

The Hyperion RBCC demonstration described
above was also transitioned into a Web-based format.
The user is presented with a main selection page that
allows the user to perform each of the four analyses.
When the user clicks on one of the images, the
corresponding analysis is spawned as a Web-based
HTML form interface to the code.

Table 1. Summary of design framework demonstration problems.

Name Execut ive D i s c i p l i n e s N o t e s
IMAGE Web

All rocket SSTO √
3 (Propulsion, Trajectory,
Weights)

Used simple analysis approximations to
show basic operation of IMAGE

RBCC SSTO √
4 (Propulsion, Trajectory,
Weights, Cost)

Showed automatic iteration in fully-featured
environment

RBCC SSTO √
4 (Propulsion, Trajectory,
Weights, Cost)

Demonstrated code interaction, and yielded
improved interfaces

Planetary Entry √ LaRC
3 (Geometry,
Aerodynamics, Trajectory)

Directly compared IMAGE and Web
architectures for reentry-vehicle design

AIAA-98-4942

9

American Institute of Aeronautics and Astronautics

It would appear that this demonstration is simply
a collection of the previously developed Web
interfaces, but the key difference here is the true
interaction between the analyses. When each HTML
form is generated, the default input variable values are
read from an external database file. When each
analysis is completed, the output variable values are
written to this same database file, so that subsequent
analyses may use the updated numbers. In this way,
all four analyses may be iterated consecutively until
convergence is reached.

The major drawback to this interface is the
requirement that the user be present to initiate each
analysis. So in a sense, one of the major goals for a
design framework has been attained, namely
information exchange, but complete process autonomy
has yet to be achieved.

In this RBCC Web demonstration, the IMAGE
architecture was essentially replaced by a single main
selection page. Of course, the Web-interface should
not be compared directly with IMAGE at this stage,
since it contains very few of the characteristics that
would qualify it as a true architecture. After all,
IMAGE is not only a mechanism for executing
analyses, but rather an environment in which the entire
design problem is set up. Form, Model, and Process
schemas, as well as the design process, are set up
within IMAGE itself. For the Web demonstration, the
input forms, design variables, and data exchange were
all set up by hand in the basic Unix filesystem
environment. With future research into Web-based
system executives, however, a more meaningful
comparison could be made.

Planetary Demonstration (Unix vs. Web)

The third demonstration that was conducted
compared the IMAGE architecture itself with a pre-
existing Web-based design environment developed at
NASA Langley Research Center (LaRC). The
Integrated Design System (IDS) originated by NASA
provides for the conceptual design of a planetary entry
vehicle using HTML form interfaces, Perl scripting
behind the scenes, and SGI executables for its three
primary disciplines, Geometry, Aerodynamics, and
Trajectory8. The DSM for this demonstration is
shown in Figure 9. The IDS system is quite similar
to SSDL’s own RBCC Web demonstration problem in
how it is executed. The user is presented with a series
of pages, where he selects appropriate input
parameters. Perl CGI scripts execute the Unix codes
and present the output data to the screen. This data
consists of 2-D and 3-D geometry descriptions,
aerodynamic coefficient plots, and trajectory
performance plots. The IDS system is a “once-
through” design process, and does not currently allow
for any sort of iteration.

Geometry

Trajectory/
Performance

Aerodynamics

Figure 9. Design Structure Matrix for planetary
entry vehicle demonstration.

As a part of SSDL’s research, the IDS executable
codes and CGI scripts were obtained from NASA
LaRC and modified to perform within the IMAGE

Design Specification

Geometry Aerodynamics Trajectory

Analysis Process

Figure 10. Planetary entry vehicle design process implemented in IMAGE.

AIAA-98-4942

10

American Institute of Aeronautics and Astronautics

architecture. The Form, Model, and Process schemas
were constructed for the planetary entry problem, and a
sequential execution process was defined (See Figure
10). The intention was to show how the exact same
process could be duplicated within an alternate
architecture, and compare the two approaches.

Architecture Comparisons

IMAGE and the Web-based design architectures
were compared on the following basis:

• Ease-of-setup - how quickly and efficiently can one
set up an engineering design problem in each
architecture?

• Ease-of-use - once the problem is set up, which is
more convenient to actually execute?

• Robustness of environment - how stable is the
architecture when codes go awry?

• Expandability - how easy is it to change the
problem once you’ve set it up, and how easy is it
to add new agents?

• Automatability - once the problem is set up, does
the user still need to be present for process
execution?

IMAGE certainly outperforms the Web interface
during problem setup. Its built-in object-oriented data
model, while sometimes cumbersome to work with,
allows the user to define variables and set up the
design process using graphical tools. This is much
easier than IDS’ method of setting up and linking
individual scripts at the Unix level.

Regarding ease-of-use, IMAGE requires little
supervision if set up properly, and allows for relatively
easy visualization of past results. However, the IDS
and Web-based RBCC interface feels more friendly to
the designer since he can actually see what is
happening with his analyses. The learning curve of
the IMAGE environment is quite steep, even for tasks
as simple as visualizing analysis results. It is
therefore not well suited to a large design team where
many people require access to the design process and
design data.

As a research architecture, IMAGE is not the most
robust piece of software, and it requires a decent level
of Unix knowledge simply to get a problem running.
During execution itself, however, the system is quite
reliable. Presumably, the IDS system took a good
deal of time to set up properly, so most if not all bugs
are worked out. Therefore the system runs quite
smoothly.

When the discussion comes to expandability, both
the IMAGE and IDS architectures fall short. In the
current version of IMAGE, if you want to make a
simple change to the design process, or add another
analysis, you must completely redefine the process
from the beginning. Future versions should allow
easier modification. The IDS system was really not
intended to be completely expandable, as it would
require deep editing of Perl scripts and HTML forms to
generate a new analysis interface or restructure the
design process. The Web-based RBCC problem,
however, provides for reasonable expandability. The
input/output plugs to the flat file database are
completely general, and adding a fifth analysis would
only require simple modifications of that program’s
integration script, and the main HTML selection page.

The IMAGE architecture provides complete
automatability of the design process. Once the
problem is set up, the user simply clicks “Execute”
and IMAGE begins running the contributing analyses,
taking into account any iteration or convergence
criteria. The current Web-based solutions, including
the IDS demonstration, require a user to step through
the design process. Neither solution is obviously
superior. There may be times that user input is needed
during a system design, since decisions must be made
based on analysis results. This would imply that the
process should not be completely automated. At the
same time, however, automation capability should be
available for those processes that do not require
significant user input. Remember that one of the
major benefits of an integrated design framework is the
ability to execute many iterations of a design without
the requirement of constant human participation.

Conclusions and Future Research

The IMAGE architecture provides a convenient
and accessible architecture within which to deploy
integration technologies such as those developed in
this research. The detailed process model should also
allow for more complicated design structure matrices
to be implemented, and possibly the use of
Multidisciplinary Design Optimization (MDO)
techniques. Applied to a vehicle such as Hyperion,
such a system could save countless hours of tedious
code execution, and may ultimately arrive at a more
optimal design.

From the feedback received regarding the SSDL’s
Web-based interfaces, and the results of the IDS vs.
IMAGE comparison, it appears obvious that
significant research should be focused on continuing
the development of design architectures deployed on

AIAA-98-4942

11

American Institute of Aeronautics and Astronautics

the Web. The familiar and content-rich Web interface
will appeal to many engineers using the design
framework. It is evident, however, that problem setup
is often easier in a dedicated tool such as IMAGE. In
fact, there is nothing wrong with using two
environments, one for problem setup and one for
design process execution. Developing the problem
off-line in an IMAGE sort of environment allows the
use of strong graphical interface tools, while executing
the process and interacting with the design on the Web
provides easy access to distributed platforms, and
enables distributed design teams.

Additional technologies should be developed to
build the library of tools accessible in a tightly-
integrated design framework. Currently, the SSDL can
automate and integrate Unix-based command-line
codes, and Macintosh-based analysis tools. Further
study should be performed to look at communicating
with Windows-based PCs, as well as complicated Unix
tools such as finite-element analyses and CAD
environments. As the design methodologies developed
here for conceptual design begin to take hold, they will
inevitably trickle down into the preliminary and detail
design phases. In these phases, there will be many
analyses and tools that require special wrapping
techniques that have not yet been developed.
Obviously, the area of computational framework
research is one that has a strong future ahead of it.

Acknowledgments

This research is supported through NASA Langley
Research Center contract number NCC1-229, and
through a NASA Marshall Space Flight Center Phase
1 STTR in cooperation with International Space
Systems, Inc.

Appreciation goes to Kimberly Steadman of the
Georgia Tech Space Systems Design Laboratory for
her assistance in this work.

References

1 Olds, J. R. “System Sensitivity Analysis Applied to
the Conceptual Design of a Dual-Fuel Rocket SSTO,”
AIAA 94-4339, 5th AIAA / NASA / USAF /
USSMO Symposium on Multidisciplinary Analysis
and Optimization, Panama City, FL, September 1994.

2 Hale, M.A., Craig, J.I., “Techniques for Integrating
Computer Programs into Design Architectures,” AIAA
98-4166, Sixth AIAA / NASA / USAF / USSMO

Symposium on Multidisciplinary Analysis and
Optimization, Bellevue, WA, September 4-6, 1996.

3 Hale, M.A., “An Open Computing Infrastructure
that Facilitates Integrated Product and Process
Development from a Decision-Based Perspective,”
Doctoral Thesis, School of Aerospace Engineering,
Georgia Institute of Technology, Atlanta, GA. July
1996.

4 Olds, J. R. and Budianto, I. A. "Constant Dynamic
Pressure Trajectory Simulation in POST," AIAA 98-
0302, 36th Aerospace Sciences Meeting and Exhibit,
Reno, NV, January 1998.

5 Olds, J. R. and J. Bradford. "SCCREAM (Simulated
Combined-Cycle Rocket Engine Analysis Module): A
Conceptual RBCC Engine Design Tool," AIAA 97-
2760, 33rd AIAA/ASME/SAE/ASEE Joint
Propulsion Conference and Exhibit, Seattle, WA, July
1997.

6 Lee, H. and J. R. Olds. "Integration of Cost and
Business Simulation into Conceptual Launch Vehicle
Design," AIAA 97-3911, 1997 Defense and Space
Programs Conference and Exhibit, Huntsville, AL,
September 1997.

7 Script Daemon v1.0.2 © 1993-98 Peter Lewis.
URL: “http://www.share.com/peterlewis/scriptdaemon/
index.html”

8 NASA Langley Vehicle Analysis Branch IDS
System, URL: “http://vab02.larc.nasa.gov/IDS/”

