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ABSTRACT

Initial results are reported from an ongoing investi-
gation into optimization techniques applicable to
multidisciplinary reusable launch vehicle (RLV) design.
The test problem chosen for investigation is neither par-
ticularly large in scale nor complex in implementation.
However, it does have a number of characteristics rel-
evant to more general problems from this class includ-
ing 1) the use of legacy analysis codes as contributing
analyses and 2) non-hierarchical variable coupling be-
tween disciplines. Propulsion, trajectory optimization,
and mass properties analyses are included in the RLV
problem formulation. A commercial design framework
is used to assist data exchange and legacy code inte-
gration.

The need for a formal multidisciplinary design opti-
mization approach is introduced by first investigating
two more conventional approaches to solving the sample
problem. A rather naive approach using iterative sub-
level optimizations is clearly shown to produce non-op-
timal results for the overall RLV. The second approach
using a system-level response surface equation (RSE)
constructed from a small number of RLV point designs
is shown to produce better results when the independent
variables are judiciously chosen. However, the response
surface method (RSM) approach cannot produce a truly
optimum solution due to the presence of uncoordinated
sublevel optimizers in the three contributing analyses.

Collaborative optimization (CO) appears to be an
attractive multidisciplinary design optimization approach
to solving this problem. Initial implementation attempts
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using CO have exhibited noisy gradients and other nu-
merical problems. Work to overcome these issues is cur-
rently in progress.

NOMENCLATURE

A Engine Exit Area (in?)
Advanced Carbon-Carbon
Cs Thrust coefficient (T/P.A,)
Central Composite Design
CcO Collaborative Optimization

DSM  Design Structure Matrix

Iy Engine Vacuum Specific Impulse (sec)
MER  Mass Estimating Relationship

MR Mass ratio (gross weight/burnout weight)
P, Engine Chamber Pressure (psia)

r Engine mixture ratio

RLV  Reusable Launch Vehicle

RSE  Response Surface Equation

RSM  Response Surface Method

S.ef Wing Planform Area (ft?)
Sequential Quadratic Programming
Single-Stage-to-Orbit

Toac Engine Vacuum Thrust (Ibf)

Ty Engine sea-level Thrust (Ibf)

T4/W. Engine sea-level thrust-to-weight ratio
T¢/W, Vehicle sea-level thrust-to-weight ratio
TABI  Tailorable Advanced Blanket Insulation
TUFI  Toughened Uniform Fibrous Insulation

Wiy Vehicle dry weight (Ib)
Wg Vehicle gross weight (Ib)
AV Velocity increment (ft/sec)
€ Nozzle expansion ratio

DESIGN PROBLEM STATEMENT

The RLV to be designed is a second-generation SSTO
vehicle that is launched from the Kennedy Space Center
to the International Space Station (target orbit is 220 nmi
x 220 nmi x 51.6°). The propulsion system is to be com-
prised of five high thrust-to-weight engines. Primary
orbit insertion occurs at a transfer orbit of 50 nmi x 100



nmi x 51.6°. An on-orbit AV of 1100 fps is included to
transfer the vehicle to the final orbit, rendezvous with
the space station, and deorbit. The unpiloted vehicle is
required to carry a 25,000 Ib payload to orbit. The ve-
hicle is also classified as a Generation 2 reusable launch
vehicle, therefore all technologies are commensurate
with 2005 technology freeze date for the first flight in
2010. The propellant tanks are to be made of an alumi-
num-lithium alloy. Graphite-epoxy is used in the ex-
posed wing and carry through structure, as well as the
primary, secondary, and payload structures. The ther-
mal protection system uses ACC, TUFI tiles and TABI
blankets. A schematic of the reference RLV is shown in
Figure 1.

LANDING ENGINES
LOX TANK LH2 TANK
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Figure 1. Schematic of reference RLV

DESIGN TOOLS
PROPULSION

SCORES (SpaceCraft Object-oriented Rocket En-
gine Simulation) is a web-based rocket engine analysis
tool developed at Georgia Tech [1]. This tool suitable
for use in conceptual design, provides propulsion met-
rics such as thrust and specific impulse. Only top-level
propulsion parameters are required for input. These pa-
rameters include mixture ratio, chamber pressure, throat
area, and expansion ratio. The SCORES web-based tool
is public and can be accessed at the Uniform Resource
Locator (URL) address listed below:

http://titan.cad.gatech.edu/~dwway/SCORES

SCORES may be run from the web or interactively
from the UNIX operating system For the purposes of
this exercise, the UNIX version of SCORES was coupled
with Phoenix Integration’s Model Center computational
framework [2].

SCORES models a rocket engine in two parts. First,
the chemical processes occurring in the combustion
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chamber are analyzed. Second, the expansion of hot
gases in the convergent-divergent nozzle is analyzed.
The combustion process is assumed to occur adiabati-
cally and at constant pressure. Additionally, all of the
molecular species involved in the combustion are as-
sumed to be thermally perfect gasses. Finally, the initial
velocity of the reactants is taken to be zero, thus assum-
ing an infinite-area combustor. Therefore, the tempera-
ture and pressure in the combustion chamber are taken
to be total values. The initial temperature of all the re-
actants is assumed to be 500K. The composition of the
product gasses is then determined through chemical
equilibrium calculations.

For the convergent-divergent nozzle, the flow is as-
sumed frozen at the equilibrium conditions calculated
for the combustion chamber. The expansion process is
then modeled as a steady, inviscid, quasi-1D, isentropic
flow. Because of the quasi-1D assumption, cross-sec-
tional area and expansion ratio are the only geometry
variables. A detailed description of the nozzle contour
is not necessary. The combustion products are assumed
to be a mixture of calorically perfect gasses.

Thrust and I, are calculated from the determined
nozzle exit conditions. These estimates typically over-
predict the thrust and I,. This over-prediction is due to
the ideal nature of the assumptions. Statistical perfor-
mance efficiencies derived from existing flight hardware
are then used to simulate losses by correcting down-
wardly adjusting the ideal thrust and I, values.

SCORES provides an option to sizing the nozzle
throat area to match a required thrust. Because the thrust
is linear with throat area, the required throat area is
simply the guessed value, 1 sq.in. by default, multiplied
by the ratio of required thrust to calculated thrust. There-
fore, no iteration is required, making the sizing option
just as rapid as the analysis option. A low-fidelity esti-
mation of thrust-to-weight (T/W) is also provided. This
estimation is based on the premise that the engine will
develop a constant power-to-weight (P/W), where power,
defined in Equation 1, is based on the chamber and exit
enthalpies.

P=m(h.-h,) (1)
Power is easily calculated within the same routines

that predict thrust and Isp. If the P/W is known, then
the T/W is found easily from the thrust and power by

Equation 2.
w=Gks @



To allow for differences in technology levels,
SCORES provides a user input to select the T/W rela-
tive to other engines. The user may select “high”, “aver-
age”, or “low” from a pull-down menu. A selection of
“average” uses a P/W of 0.017 MW/Ib, while a selection
of “high” or “low” uses a P/W of 0.023 or 0.015 MW/Ib
respectively.

PERFORMANCE

The tool used to simulate the trajectories of the RLV
was the Program to Optimize Simulated Trajectories,
POST [3]. POST is a Lockheed Martin and NASA code
that is widely used for trajectory optimization problems
in vehicle design. POST is a generalized event-oriented
code that numerically integrates the equations of mo-
tion of a flight vehicle given definitions of aerodynamic
coefficients, propulsion system characteristics, atmo-
spheric tables, and gravitational models. Guidance al-
gorithms used in each phase are user-defined. Numeri-
cal optimization is used to satisfy trajectory constraints
and minimize a user-defined objective function by chang-
ing independent steering and propulsive variables along
the flight path. POST runs in a batch execution mode
and depends on an input file (or input deck) to define
the initial trajectory, event structure, vehicle parameters,
independent variables, constraints, and objective func-
tion.

MASS PROPERTIES

The weights and sizing analysis uses a photographic
scaling on a set of parametric mass estimating relation-
ships (MER’s) that have a NASA Langley heritage. This
analysis is performed on a Microsoft Excel spreadsheet.
Using the results of the trajectory analysis, the booster
is photographically scaled up or down until the avail-
able mass ratio on-board the currently sized vehicle
(MR _avail) and the required mass ratio from POST
(MR req). Since changing the vehicle scale changes the
gross weight, sea-level thrust requirements, etc., the dis-
ciplines in the main iteration loop must be iterated until
the vehicle size converges. This typically takes 4 to 5
iterations.

Primary booster structural materials include alumi-
num lithium alloy for the propellant tanks and graph-
ite-epoxy composite for other structure such as exposed
wings, the wing carry through, and verticals. Other sub-
system highlights include an autonomous flight control
system, electrohydraulic actuators, high power density
fuel cells, lightweight avionics, and environmentally safe
LOX-ethanol orbital maneuvering system (OMS) pro-
pellants.
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The weights and sizing analysis provides a great
deal information to the other analyses. Gross weight and
wing reference area are given to the trajectory analysis
and required sea-level static thrust is used by the pro-
pulsion analysis.

COMPUTATIONAL FRAMEWORK

In addition to the tools used for each discipline, a
fourth tool, Phoenix Integration’s Model Center soft-
ware package, was used to coordinate the system level
analysis. Model Center a program that facilitates cross-
platform analysis integration. For each of the disciplines,
a wrapping script was written to respectively send and
collect the inputs and outputs of each tool. POST and
SCORES were set up to run on UNIX machines while
the weights spreadsheet was run in Microsoft Excel on
a Windows NT machine. Once each of the tools was
properly wrapped and set up, one could easily link the
inputs and outputs of the three disciplines to one an-
other from within Model Center. These links were setup
as appropriate to the design problem and the optimiza-
tion method used to solve it. With the setup complete,
Model Center is capable of transferring the appropriate
information between the tools as well as coordinating
their execution.

Model Center also provides an optimization pack-
age, which was used in the methods that required sys-
tem level optimization. This package is based on the
popular optimization code, DOT [4]. For the collabora-
tive optimization, sequential quadratic programming was
used as the optimization algorithm. As system level op-
timization progresses, Model Center neatly records and
organizes all the desired variables and constraints at each
system level iteration. Model Center was also very help-
ful in the data collection for the RSM method by evalu-
ating and collecting the results of multiple runs as setup
by the user. All data collected by Model Center is easily
exportable to Excel, making it easy to analyze the final
results.

Without the use of a program like Model Center a
great deal of user interaction is required to manually
run each analysis. Manually running each analysis re-
quires the user to change input variables, run the tool
and appropriate collect the results. This process can be
very time consuming and tedious. With so much inter-
action being required by the user to manually run each
tool, there is also an increased likelihood of making
mistakes. Though using Model Center certainly takes
more time to set up, the cost of doing so is negligible
when compared to the timesavings and error reduction
gained when doing the actual analysis. However, it



should be mentioned that in using Model Center it was
imperative that the disciplinary analyses be very robust.
For disciplinary tools that traditionally require a bit a
tweaking and interaction (such as POST), a little extra
effort is required during setup to ensure that they per-
form consistently and accurately.

Overall, the use of Model Center greatly increased
the speed and efficiency with which the analyses were
performed. In fact, with methods such as collaborative
optimization that require many iterations and a great
deal of computational time, it is difficult to imagine if
manual implementation of such methods is even realis-
tically feasible or desirable.

DESIGN METHODOLOGY

The design structure matrix (DSM) is dependent
upon the design method used. In conventional methods,
variables are passed from one discipline to the others. A
DSM for conventional methods is shown in Figure 2.

-

Prop !
Perfor m.
. . M/"E‘SS/ >
_Props.

Figure 2. Conventional Method Design
Structure Matrix

The diagonal dotted lines indicate that local opti-
mization occurs within a given CA. A table depicting
the flow of variables through each of the CA’s is shown
in Table 1.

ITERATIVE OPTIMIZERS METHOD

Simple iteration of the disciplinary optimizers fol-
lows the DSM depicted in Figure 2. Each disciplinary
tool modified its own local variables to obtain local op-
timization based on the inputs received from the other
disciplines. The influence of local optimization on the
system level is easily seen as the overall design con-
verged at a suboptimal configuration.

The first step in this process is to let the first CA
make design decisions. The propulsion expert will typi-
cally select a design that will maximize his objective
function, I, This being the case, the propulsion expert
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will chose the lowest mixture ratio possible with the high-
est possible expansion ratio. Once the propulsion analysis
has been completed, the performance expert will per-
form an analysis to minimize the fuel consumed, thus
minimizing the mass ratio. Finally, the mass properties
analyst will use the weights and sizing sheet to mini-
mize vehicle dry weight.

Table 1. Coupling variables in the conventional

DSM
Variable Propulsion Performance M ass Properties
Tsl input
Tvac output input input
r output input
Ae output input input
Isp,vac output input
Tsl/Weng  output input
Sref input output
Wg input output
MR output input
Wdry output

RESPONSE SURFACE METHOD

A central composite design (CCD) matrix was used
to set values for the global variables for the response
surface method. Table 2 illustrates a generic CCD ma-
trix.

Table 2. Generic Central Composite
Design Matrix

X X X
1 -1
-1 -1 1
-1 1 -1
-1 1 1
1 -1 -1
1 -1 1
1 1 -1
1 1 1
0 0 0
- 0 0
a 0 0
0 - 0
0 a 0
0 0 -«
0 0 o

The results of the 15 runs of the array were used to
fit a response surface to the design space. The constraints
placed on the global variables were taken into account
in the DOE by limiting the range of testing. The alpha
values were set as the maximum range for the three de-
sign variables instead of the typical —1 and 1. The coded
variables are shown in Table 3.



Table 3. Response Surface Equation
Coded Variables

€ (x1) r(x) T/Wg (X3)
-a 30.00 4500 1.20000
-1 338.11 5.615 1.24054
0 50.00 7.250 1.30000
1 61.89 8.885 1.35946
70.00 10.000 1.40000

Once the response surface was determined, Matlab’s
constrained function optimizer (a sequential quadratic
programming based algorithm) was used to find the best
design.

COLLABORATIVE OPTIMIZATION

In collaborative optimization the general strategy
is to obtain the optimal system configuration for a given
objective function while allowing each CA to remain as
independent and focused as possible while still main-
taining consistency amongst disciplines. The primary
characteristic of collaborative optimization is that it al-
lows the CA’s to maintain their discipline level optimi-
zation capabilities. Normally, this would present a prob-
lem as is likely that the disciplinary objective functions
are not consistent with the system level object function.
For example, SCORES normally tries to maximize I,
but this however drives the engine weight up and may
result in an engine configuration that does not lend it-
self to a system level configuration that minimizes dry
weight.

L. {Tvac’, r’, Wg’, (Tsl/We)’, Isp vac’, Ae’, MR’ }
Optimizer
e - -
1 = 1
Ip ! Prop. !
1| - 1
[} [}
P
Jp ! Perform. !
[} - [}
-

[} [}
1 Mass ~ | 1

Ip pa
Wdry ! Props. 1
[} [}
L T o

Figure 3. Collaborative Optimization
Design Structure Matrix

To avoid this conflict, collaborative optimization
replaces the objective functions of each disciplinary op-
timization. The new objective function attempts to mini-
mize a newly defined error function, known a J term.
These J terms measure the relative error between the
output variables of the disciplinary tool and correspond-
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ing target values. These target values are set by the sys-
tem level optimizer, which is configured to minimize a
system level objective function under the constraint that
the J terms of each discipline are kept below a certain
tolerance. Each disciplinary tool is allowed to vary all
of its usual inputs and local variables to minimize its
own objective function. This allows for disciplinary ex-
perts to focus on their domain-specific issues while main-
taining interdisciplinary compatibility. Table 4 summa-
rizes the changes made for collaborative optimization
while Figure 3 show the modified DSM.

Table 4. Variable breakdown for Collaborative

Optimization
System Lewel
Objective Function Minimize Wary
Variables Tvac’, r’, E’, Tsl/We’, |5p’, Ae’, Wg’, MR
J <=tolerance
Constraints J <=tolerance
Jv <=tolerance
Propulsion
Minimize J:
= [1— (Ne! To)] 2+ 1= (r/ ¥
Objective Function b= 1= (e Tuac)]+ [1= € )]2

+[1— (Ae/ AN+ [1— (Ta/We) / (Tsa/We))]

+[L- (/)]
Tac, 1€, Ta/We, lsp', Ae'
Jac, 1, €, Pe
STWe, Isp, Ae

Input Variables
Local Variables

Calculated Variables

Trajectory Perfor mance

Minimize :
3= [1- (Ree/ Tuad)]” + [1— (Wo / Wg)]?
+[1— (Al A2 +[1— (S / Se)]?
+[L=(bp/ )]+ [L = MR/ MR)F

Objective Function

Input Variables Ta', Wy', A€, Séf, Isp', MR’

Local Variables Ty, Wg, Ae, Se, Isp, Azimuth, pitch angles

Calculated Variables MR

Mass Properties

Minimize Jv:

I = [L= (T / Toae)]* + [1 - (W / Wg)]?
+[1— (Ae/ AS)]? +[1— (Set/ Set)]’
+[1— (MR/MR)F +[1- (r/ r)f
+[1— (Ta/We) / (Ta/We))]?

Objective Function

Input Variables Tvac', Wg', Ae', Sref, MR, r', Tsl/We'
A, 1, Tsi/We, scale factor, /Wy

vk, Wg, Sef, MR

Local Variables

Calculated Variables




In the implementation of this method, it is crucial
to normalize all the target variables and the objective
function. After various trials, it was found that the con-
vergence speed and accuracy of the method was par-
ticularly sensitive to the tolerance allowed for the J terms.
If the tolerance was too loose, the system level optimizer
would converge on a design that was not realistically
feasible. If the tolerance is too tight, the optimizer may
converge at a suboptimal level or merely take an exces-
sively long time find the optimal answer. If the initial
guess is particularly bad, the optimizer may, again, have
difficulty finding a solution.

ADAPTING SCORES FOR CO

To implement collaborative optimization, each con-
tributing analysis must have its own optimizer. DOT
was chosen as the optimizer to be integrated with
SCORES. Since SCORES is normally run through an
input file using the web interface, the code had to be
modified somewhat to allow the program to be called in
a subroutine fashion. Several input options for this prob-
lem were fixed: H,/LO, combustion, staged-combus-
tion engine cycle, bell-shaped convergent-divergent
nozzle, sea-level (1 atm) ambient conditions, high T/W,
and English units. Izn addition, the initial guess for throat
size was set at 1 in . Three of the remaining inputs sup-
plied by the system level optimizer. These were required
sea-level thrust, nozzle area ratio, and propellant mix-
ture ratio. The remaining input, combustion chamber
pressure, was then the only design variable in the local
optimizer’s scope. The SCORES subroutine then pro-
vided specific impulse given the chamber pressure.

The optimization problem was then to maximize
specific impulse subject to the constraint that there be
no flow separation in the nozzle. This constraint was
assessed by comparing the sea-level thrust coefficient
(Cy) to the thrust coefficient at separation conditions,
(Cisep)- Separation was deemed to occur if C; exceeded
Ctsp- The separation thrust coefficient was found from
the maximum thrust coefficient (the thrust coefficient
at perfect nozzle expansion to atmospheric pressure) by
a curve fit which is a function of the nozzle area ratio
(g). The equation used was:

CF,, = .85 CF,, (1- &%) 3)

DOT, a FORTRAN subroutine, was compiled separately
and then linked with the SCORES C** code. The op-
tions used for the optimization were Sequential Qua-
dratic Programming (SQP), automatic scaling, and cen-
tral difference evaluation of gradients. The optimiza-
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straint that the chamber pressure does not exceed 3100

psia.

ADAPTING POST FOR CO

For both the iterative optimizers method and the
response surface method, the trajectory simulation is
identical. Beginning with launch from Kennedy Space
Center, the RLV is controlled by its initial heading and
then with several pitch angles, a total of five controls.
At the end of the simulation, the vehicle is constrained
to obtain an orbit of 50 nmi x 100 nmi x 51.6° at a flight
path angle of zero degrees. (Through use of the OMS
engines, the ISS orbit will be achieved.)

For these methods, the trajectory was optimized ev-
ery iteration of each vehicle design. The trajectory opti-
mization method used for the RLV simulation was the
accelerated projected gradient algorithm. The objective
of the optimization was to maximize the final weight
(in effect, minimize fuel consumed).

The trajectory simulation requires several inputs:
vacuum specific impulse, gross lift-off weight, wing plan-
form area, total vacuum thrust, and total exit area of the
engines. The output used was the required mass ratio,
which is burnout weight divided by gross lift-off weight.

The trajectory simulation for the CO method had a
few similarities to that of the iterative method and RSM.
POST still optimized using the accelerated projected gra-
dient algorithm. In addition, all of the local constraints
(the orbital termination criteria) exist and had to be met.

There are many differences however. As previously
stated, the objective for the trajectory simulation in the
CO method was one of the constraints at the system-
level, the error, J, as listed in equation 1. The optimizer
in POST tries to match the targets variables, those which
are ‘primed,’ to the local versions of those variables.

In order to set this up correctly in POST, the code’s
special calculations subroutine had to be employed. The
local versions of the target variables were recorded/ana-
lyzed at the appropriate moments and used in the calcu-
lation of J,.. Additionally, the local versions of the target
variables became added control variables in the POST
deck. Only five more controls were added because the
required mass ratio, as an output, was calculated inter-
nally.



ADAPTING THE WEIGHTS SHEET FOR CO

For collaborative design, the typical practice of scal-
ing the vehicle length until the mass ratio from the tra-
jectory analysis is abandoned in favor of a constraint
matching approach. In this case, the local optimizer,
instead of minimizing just the error in mass ratio, mini-
mizes the error for the target variables from the top-
level optimizer. At the local level, these target variables
can be either local input variables (length, engine exit
area, lift-off T/W, etc.) or local output variables (mass
ratio, gross weight, etc.) What is important is that the
analysis finds a valid (within weights and sizing) de-
sign that minimizes the error of the target vector.

The system-level optimizer requires the value of the
J error for the analysis, the value of the objective func-
tion dry weight and the gradients of both these variables
with respect to the targets in the J vector. To find the
gradient of the J error with respect to the targets, the
target values are varied within mass properties, then the
local optimization is repeated. Because the objective
function for the entire analysis is calculated by mass
properties, the gradient of this value is calculated si-
multaneously.

RESULTS

Of primary concern when comparing the various
methods were, first, the quality of the answer obtained,
second, the speed with which it was obtained, and fi-
nally, the overall difficulty in implementing the method.
To ensure that the results of each method were fairly
comparable to one another, a fixed set of initial guesses
was used for each method. These guesses are summa-
rized in Table 5.

ITERATIVE OPTIMIZERS

As expected, the results from the iterative optimiz-
ers method were quick and easy to obtain. To ensure
convergence, six loops were made through the iterative
optimizers DSM with the results of the previous itera-
tion being the inputs for the next. The results obtained,
however, were very poor. In its effort to maximize Iy,
SCORES drives the mixture ratio to its lower limit of
4.5 and the expansion ratio to its upper limit of 70.
Though a high Isp is generally good for driving dry
weight down, a high expansion ratio results in a larger,
heaver nozzle that drives dry weight up. Similarly, it is
not necessarily the case that POST's efforts to minimize
the consumed fuel and drive the MR down are in con-
junction with the system level objective function of mini-
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mum dry weight. The convergence history of the itera-
tive optimizers method is shown in figure 4.

w

i

w

Vehicle Dry Weight

1 2 3 4 5 6
Iterations

Figure 4. Dry weight vs. iteration history for the
iterative optimizers method

Table S. Initial Guesses for Optimization
Initial guesses by: SI RSM CO
Ty 3,000,000 Ibs X X X

r 6.500 X

lsp 44000s X
Ae 250.00 sq. ft. X
Td/W, 50.000 X
Wy 2,500,000 Ibs X X X
Sief 4000 sq. ft. X X X
Ts/Wg 120 X

RESPONSE SURFACE METHOD

The response surface method provided a near-opti-
mal solution. By picking out select points in the design
space a representative response surface equation was gen-
erated. A list of the runs performed to complete the
CCD matrix and their solutions is shown in Table 6.
The general form of the equation and a table of its coef-
ficients are shown below.

Wiy = Bo + BXy + BoXo + BaXg + Buxs +

2 2
BsXs + BeXs + BrXXo + BeXXs + PoXoXs

Q)



The RSE was determined using a least squares re-
gression program written in Matlab. A comparison of
the dry weight determined using the RSE and the opti-
mal dry weight found by using the design tools is shown
in Table 8.

Table 6. Coded variables and the corresponding
results for the RSM

X1 X2 X3 WpRY
3811 5.615 1.24054 330,315 Ibs
3811 5.615 1.35946 348,862 Ibs
3811 8.885 1.24054 552,152 Ibs
3811 8.885 1.35946 608,054 Ibs
61.89 5.615 1.24054 318,200 Ibs
61.89 5.615 1.35946 340,845 Ibs
61.89 8.885 1.24054 519,361 Ibs
61.89 8.885 1.35946 581,221 Ibs

50 7.25 13 378,252 Ibs

30 725 13 420,351 lbs

70 7.25 13 384,450 Ibs

50 45 13 357,490 Ibs

50 10 13 782,711 Ibs

50 7.25 12 359,818 Ibs

50 725 14 405,678 lbs

Table 7. Response surface equation
coefficient values

Coefficient  xterm Value
Bo 375370
B1 Xt -13008
B> X2 118436
B3 X3 12964
Ba Xt~ -6047
Bs %’ -217
Bs X5~ 77
37 XX 6086
Bs XLX3 65626
Bo XoXs -763

Table 8. Comparison of the RSE results to a
verification run using the design tools

INPUTS OUTPUT
e r  Tsl/Wg| Wdry % Difference
RSE 306725
DSM 574717 60051 12 3 2.65
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Because no system level optimizer is used in the
RSM, the difficulty involved in setting up and imple-
menting this method is relatively small. Because each
run is completely independent from the others, prob-
lems that may occur in the individual CA’s are not nearly
as detrimental as it is fairly easy to make adjustments
and reevaluate a specific run.

It should be noted, however, that this method re-
quires a good amount of previous knowledge about the
problem. The number of runs required to parameterize
the design space rises exponentially with the number of
variables used. Because of previous experience, it was
known which variables the local optimizers would drive
in conflicting directions with the overall objective of
minimum dry weight. These variables were the ones
chosen for the parameterization variables. Without such
knowledge, one would be required to use more variables
to explore the design space. This of courses would re-
quire more runs making the RSM method less feasible
for problems in which a good deal of knowledge of the
variable effects is not already known.

COLLABORATIVE OPTIMIZATION

Unfortunately the latest attempts to obtain a solu-
tion for this problem using collaborative optimization
have been met with limited success. Several problems
and difficulties have been noticed in the general imple-
mentation of this method. Perhaps the greatest limita-
tion of collaborative optimization is that it does not ap-
pear to be a quickly converging method, requiring sev-
eral iterations to minimize the objective and meet con-
straints. Additionally, POST calculations take a great
deal more time as the number of independent variables
is increased from 5 to 10. Furthermore, as the target
values set by the system level optimizer can fluctuate
quite a bit, several repetitions of POST are often required
to obtain optimality with POST. These limitations in
speed were surpassingly detrimental to time required
for debugging and tweaking the process in general.

Limited success has been achieved by using a “hot”
starting point that is known to be already converged.
Using the general initial guesses specified in table, a
refined starting point was obtained by iterating through
the regular CA’s until convergence was obtained. Fig-
ure 5 shows this convergence history. CO’s convergence
rate seems to be fairly sensitive to the tolerances allowed
on the error constraints. These results took approximately
14 hours and were obtained using a tolerance of .0001
corresponding to a total of 1% error between the targets
and outputs of each CA. This tolerance was initially
thought to be acceptable, but what was found was that
this error would tend to gather in a few variables.



To further compound the problem, these errors were
usually in the most sensitive of the design variables, such
as Is. Consequentially, these results are were unaccept-
able as the final design variables would vary signifi-
cantly between CA’s. This effect is well illustrated in
Figures 6 & 7 which show the convergence history of I
and MR respectively. Though the errors in these vari-
ables are technically satisfactory according to the toler-
ance allowed on the J terms, these errors are in reality
quite significant. Small differences in the values of Isp
and MR are known to greatly influence dry weight.
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Figure 5. Dry weight and J-term convergence for
collaborative optimization

Attempts were made to use tighter tolerances, but
this resulted in either excessively long calculation times
or premature convergence at a suboptimal solution. Un-
fortunately, there has been no success to date obtaining
any kind of results using a “cold” starting point that is
not necessarily an already converged design configu-
ration.
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Figure 6. Isp convergence for
collaborative optimization
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Table 9. Final configuration comparison

Iterative Optimizers RSM

Ta 3,937,930 1bs 3,966,746 bs
€ 70.00 57.47

r 4500 6.005
Pc 210.83atm 21088 atm
I 47210 44947 s
Ae 40081 5. ft. 31893sq. ft.
T/We 6753 73.66
Tvac 4,786,110 Ibs 4,641,680 Ibs
MR 711 777
We 3,281,608 Ibs 3,305,621 Ibs
Srer 57255q. ft. 51795, ft.
Ta/Wg 120 1.20
Wpry 346,297 Ibs 315,695 Ibs

CONCLUSIONS

Final configuration results and computations times
are summarized in tables 9 & 10 respectively. Addition-
ally, table 11 summarizes the constraint and variable
breakdown for each of the methods.

The answer obtained by the RSM is better than that
of the iterativeoptimizers method. By allowing the
indiviual CA’s to freely optimize their local objective
functions without any regard for the system level objec-
tive, the answers obtained from the iterative optimizers
method and RSM are inherently suboptimal. However,
the RSM results are far better due to the fact that the
ability to vary the most sensitive variables is removed



Table 10. Computation comparison

Iter@ve RSM
optimizers
Calls to Scores 6 0
Calls to Post 6 0
Calls to Weights 6 0
Systemlterations 6 6/per run
ApproxTime 9min 1.5hours

Table 11. Variable & constraint summary

Pr opulsion
Sl RSM (6(0)
Inputs 1 3 4
Local 3 1 4
Constraints 1 1 1
Per for mance
Sl RSM (6(0)
Inputs 5 5 6
Local 5 5 10
Constraints 4 4 4
Weights & Sizing
Sl RSM (6(0)
Inputs 4 4 7
Local 2 1 5
Constraints 2 2 1

from the local CA’s. The detriment of providing the CA’s
free control over all their variables is easily seen by look-
ing at how the iterative optimizers method drove the
expansion ratio to its maximum limit and the mixture
ratio to its lower limit. Although this configuration re-
sults in a very efficent engine, it is obviously in conflict
with the objective of minimum dry weight.

As the collaborative approach uses a system level
optimizer and directs the optimization of the CA’s, it
should not suffer from the same problems as the RSM
and iterative optimizers. Unfortunately, satisfactory re-
sults using collaborative optimization have not as yet
been obtained due to various numerical problems. Work
to correct these problems is still in progress.

FUTURE WORK

The limited results obtained from the Collabora-
tive Optimization study provide the opportunity to ex-
plore several alternative methods. It has been hypoth-
esized that the use of Sequential Quadratic Program-
ming as a system-level optimizer my present problems
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as the J terms become significantly small. Being a gra-
dient-based optimizer, SQP encounters difficulty once
the derivates approach zero.

As previously mentioned, certain variables in
the J terms are extremely sensitive and hold the major-
ity of the error. To alleviate this, it is proposed that the
errors of these sensitive variables be weighted to offset
their effect on the J term. Other alternatives include
choosing an optimizer that doesn’t use constraints in
conjunction with penalty functions and using the ad-
vanced capabilities of POST to determine gradients for
performance.
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