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A Quantitative Methodology for Identifying Evolvable Space 
Systems 

John A. Christian, III* and John R. Olds† 
Georgia Institute of Technology, Atlanta, GA, 30332 

With the growing emphasis on spiral development, a system’s ability to evolve is 
becoming increasingly critical.  This is especially true in systems designed for the exploration 
of space.  While returning to the Moon is widely regarded as the next step in space 
exploration, our journey does not end there.  Therefore, the technologies, vehicles, and 
systems created for near-term lunar missions should be selected and designed with the 
future in mind.  Intelligently selecting evolvable systems requires a method for quantitatively 
measuring evolvability and a procedure for comparing these measurements.  This paper 
provides a brief discussion of a quantitative methodology for evaluating space system 
evolvability and an in-depth application of this methodology to an example case study. 

Nomenclature 
e = event 
s = state vector of original mission requirements 
s’ = state vector of evolved mission requirements 
S(X) = possible state space of system 
SL(X) = lawful state space of system 
W = evolvability vector 
wi = difficulty rating for i-th state variable along most efficient path of evolvability 
 

I. Introduction 
ECENT events have turned the eyes of the United States back to the moon, this time as a stepping stone to 
missions beyond.  In his speech at NASA Headquarters1 in Washington, D.C. on January 14, 2004, President 

George W. Bush said that “returning to the moon is an important step for our space program. Establishing an 
extended human presence on the moon could vastly reduce the costs of further space exploration, making possible 
ever more ambitious missions.”  It is clear, therefore, that the systems developed to accomplish these near term lunar 
missions should lend themselves to adaptation in order to meet the requirements more ambitious missions.  These 
systems must be evolvable.  Indeed, the President’s Commission on Implementation of United States Space 
Exploration Policy2 recommended that NASA “design an exploration architecture that evolves iteratively, 
systematically through a series of so-called spiral developments.” 

It is, therefore, necessary to develop a reliable method for identifying evolvable space systems.  This will allow 
evolvability to be included in the numerous figures of merit already used to select the optimal system out of a pool 
of numerous candidates.  Recalling that one of the attributes of a good figure of merit is the ability to achieve a 
quantitative measurement3, a quantitative methodology was chosen over a qualitative methodology.   

 

II. Defining Evolvability 
The first step in creating a metric to measure system evolvability is to precisely define the term "evolvability."  

Over the years, many definitions for evolvability have been formulated4,5,6,7.  Based on these past definitions, the 
following definition of evolvability is proposed: 
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Evolvability:  The capacity of a system to adapt to changing requirements throughout its lifecycle without 
compromising the integrity of the system. 

 
This simple definition, however, may be misleading- after all, evolvability may take many different forms and a 

given system may often accommodate change in a variety of ways.  Evolvability, then, can be viewed as a 
composite of the many methods a system possesses for adapting to change.  Understanding this functional 
breakdown, termed the "taxonomy of change" by Rowe, Leaney and Lowe5, is fundamental to developing a 
quantitative measure of the larger property of evolvability.  Evolvable systems may accommodate change primarily 
in one of two ways: statically or dynamically.  Further inspection shows that a system can adapt to change in one of 
four ways: make no changes to the system (generality), reconfiguring existing system components (adaptability), 
increasing the size of existing system components (scalability), or adding new components (extensibility).  These 
four methods of adapting to change will be referred to as the four classes of evolvability.  Figure 1 graphically 
illustrates the functional breakdown of evolvability.  

 

 
Figure 1.  A functional breakdown of evolvability. 

  
The four classes of evolvability, largely inspired by the work of Rowe, Leaney, and Lowe5 and information 

available in the SMC Systems Engineering Primer and Handbook3, are described in more detail in the definitions 
that follow.  These classes of evolvability are defined by the ability of a system to accommodate a change in 
requirements through: 
 

Generality:  No change in the existing architectural design (i.e. the system already meets the evolved 
requirements). 
 
Adaptability:  Rearranging or duplicating existing system components within the current architecture. 
 
Scalability:  Increasing the size of architectural components to accommodate increased loads. 
 
Extensibility:  Adding new components that were not part of the original architecture. 
 

III. Theoretical Support 
Given a more precise definition of evolvability and a better understanding of the ways in which a system may 

evolve, we begin the process of developing a quantitative metric for evolvability.  Any evolving system changes 
through exhibiting one or more of the four classes of evolvability, each of which may be quantified by representing 
independent mission attributes as state variables.  In this new state space each mission is modeled as a discrete point, 
while each system occupies a space representing the suite of missions it is capable of performing.  For example, 
when comparing multiple architectures capable of performing the same mission, a region should exist where the 
space occupied by these architectures overlap.  The point representing the baseline mission should lie within this 
overlapping region if all the architectures are initially capable of performing the mission.  In this approach, 
evolvability of a system is modeled through a transformation of the space occupied by that system.  The manner in 
which this space is transformed is governed by the specific mode(s) of evolvability exhibited by the system.  

This model of evolvability is largely based on the work of Mario Bunge8.  Although Bunge's work is primarily 
philosophical, it is also mathematically rigorous, which has lead to research in its application to engineering and 
computer science9,10,11.  An adaptation of Bunge's work to system evolvability is presented in the remainder of this 
section.  This discussion is an abbreviated version of the theory to be presented in more detail in a follow-on paper. 
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Bunge asserts that the world is constructed of entities called 'things.'  Furthermore, a thing may be either simple 
(consisting of only one thing) or composite (consisting of two or more things).  A system may be defined as a 
composite thing that may not be broken down into non-interacting components.  Many systems exhibit emergent 
properties (i.e. properties arising from the combination of things which cannot be directly traced to a property of one 
of the composite things), and evolution is an example of one of these emergent properties12.   

Because evolution is a type of change, it may be modeled as an event.  An event, e, is defined as an ordered pair 
of states, with each state (beginning, s, and end, s’) existing in the possible state space, S(X).  The possible state 
space exists in n dimensions (where n is the number of state variables), and represents all possible mission 
combinations.  An actual system, however, is not able to accomplish all possible missions, but rather a subset of 
these missions.  This smaller space that defines the capabilities of a particular system is known as the lawful state 
space, SL(X).  If the end state, s’, is outside of the lawful state space, SL(X), then this change may not occur unless 
the lawful state space is modified to include s’.  Therefore, an event is represented mathematically by the following 
expression: 

 e = <s, s’>     where s, s’ ∈  S(X) (1) 

The concept of modeling evolvability as an event implies that you must first have knowledge of both the initial 
and evolved states (a concept that will be crucial in developing a practical application of this theory).  Figure 2 
shows the possible modes of evolution that two states may define.  The first is static evolvability, e1:  the evolved 
state lies within the lawful state space of the original system, SL(X).  The second is dynamic evolvability, e2:  the 
evolved state does not lie within the lawful state space of the original system, but the lawful state space may be 
modified, SL(X’), to include the evolved state.  The third is a non-evolvable event, e3:  the evolved state does not lie 
within the lawful state space of the original system and the lawful state space may not be modified to include the 
evolved state; this event is not possible.   

SL(X’)

s

s1’

s2’

s3’
P1

P2

SL(X)

e1 = <s, s1’>
e2 = <s, s2’>
e3 = <s, s3’>

 
Figure 2.  Graphical representation of system evolvability. 

 

IV. Practical Application 
Admittedly, this methodology is quite abstract and could be applied to the problem of evolution in many 

different ways.  The approach presented in this section is but one of these many approaches.  The selected approach 
will be presented in the context of a case study for the purposes of example and clarity.  Here, it is important to point 
out that a more desirable evolvability score does not necessarily represent the best architecture to accomplish the 
mission at hand.  Evolvability is only one of a number of important figures of merit.  The architecture with the best 
evolvability score may also be too expensive or too risky. 
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A. Case Study Overview 
This case study will examine an example scenario where the objective is to determine which of two different 

architectures used to execute the same lunar exploration mission is most evolvable to a substantially more ambitious 
lunar campaign.  The first baseline architecture, representing a Libration Point Rendezvous (LPR) approach, is the 
OASIS architecture developed at NASA Langley Research Center.  The original Langley OASIS architecture was 
augmented with a lunar lander element to provide lunar surface capability.  The second baseline architecture, 
representing a Lunar Surface Rendezvous (LSR) approach, is the First Lunar Outpost.  These two baseline 
architectures are compared and numerical scores for evolvability are computed for each.  These scores represent 
each architecture’s potential to evolve to the extended lunar mission; therefore, the architecture with the better score 
is more desirable from an evolutionary standpoint. 

 
1. Libration Point Rendezvous Baseline Architecture 

The Orbital Aggregation and Space Infrastructure Systems (OASIS)13,14 architecture was developed by NASA’s 
Langley Research Center (LaRC) in 2002.  The purpose of OASIS is to create highly reusable infrastructure to 
service a wide array of potential missions.  By staging crew, fuel, and supplies at the Earth-Moon L1 (EML1) point, 
the OASIS architecture provides a platform for lunar excursions and other Earth’s neighborhood missions.  The 
OASIS architecture begins with the assumption that the mission starts from the International Space Station (ISS) in 
Low Earth Orbit (LEO) and that a “lunar gateway” already exists at the EML1.  From here, four new vehicles are 
introduced: the Crew Transfer Vehicle (CTV), the Hybrid Propellant Module (HPM), the Chemical Transfer Module 
(CTM), and the Solar Electric Propulsion (SEP) Stage 

Individually, any one of these vehicles is not very useful.  Each one performs a different task required by the 
mission: the CTV carries a crew of four to the EML1, the HPM carries the fuel, the CTM provides high-thrust 
chemical propulsion, and the SEP provides high-efficiency/low-thrust propulsion.  For the purpose of this 
comparison, a lunar lander element was added to the original OASIS architecture to add lunar surface capability.  
The lander will carry a crew of four to and from the lunar surface for a duration of seven days.  The lander can also 
carry 1,000 kg of cargo to the lunar surface.  The architecture will nominally be able to perform one lunar excursion 
every six months.  OASIS is also characterized by the reusability of its vehicles.  Ideally, each vehicle should be 
reused for a number of missions before requiring replacement. 
 
2. Lunar Surface Rendezvous Baseline Architecture 

The First Lunar Outpost (FLO) architecture15,16 was developed by NASA in 1992 as a proposed approach to 
return to the moon.  FLO was designed to send the crew all the way to the lunar surface in a single launch (as 
opposed to the modular approach used by OASIS).  The first manned mission begins by launching an unmanned, 
one-way cargo flight that contains a habitat and consumables.  Once this element has safely landed, a crew of four 
launches from Earth and lands on the lunar surface near the predeployed habitat.  Here, it is important to note that 
both the unmanned cargo mission and manned lander have a common descent stage.  The crew will stay on the lunar 
surface for 45 days in the habitat before returning to the manned lander for the return trip to Earth.  The manned 
lander is capable of delivering four crew members and 5,000 kg of cargo.  For the purposes of this study, one crew 
will be sent to the lunar habitat every six months.  Unlike OASIS, however, the vehicles in the FLO architecture are 
primarily expendable (with the exception of the hab).  Each crew module and lander is only capable of supporting a 
single mission. 

B. Selecting Evolvability State Variables for Space Systems 
When selecting a set of state variables, one should always use the minimum number of state variables to fully 

define a mission and render it distinct from all other missions.  The state variables selected should also be selected 
such that they independent of one another.  Here, it is important to recall that the state variables represent 
characteristics of specific missions (not characteristics of the architectures).  Also recall that the selected state 
variables from the basis for the possible state space in which all events will occur.  A much more detailed discussion 
of state variable selection will be included in the follow-on paper discussed earlier. 

Only thee state variables were chosen for this case study for the purposes of clarity and presentation.  Clearly, 
more than three state variables are necessary to fully distinguish a particular mission.  Unfortunately, more than 
three state variables may not be easily graphed, and a graphical representation of the state space helps illustrate the 
concept quite well.  Therefore, for the purposes of this case study, the following three state variables were chosen:   
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1. Number of crew per mission 
2. Duration on the lunar surface 
3. Cargo mass to lunar surface per year 

 
 In the case of the lunar case study presented in this paper, the baseline values for the three state variables and the 
maximum expected value of these variables are shown in Table 1. 
 
Table 1.  State variable data for baseline architectures. 

 Original Value 
State Variable LPR LSR 

Max Expected 
Value 

Number of crew per mission 4 4 8 
Duration on the lunar surface (days) 7 45 180 
Cargo to lunar surface per year (kg) 2,000 10,000 50,000 

 

C. Calculating a System's Evolvability Score 
Recall that a system may evolve either statically or dynamically through any of the four classes of evolvability.  

Because generality is basically the "do-nothing" alternative, it is the easiest class of evolvability to evaluate.  A 
system will either be general enough to meet these new requirements or it will not, so static evolvability may be 
viewed in a binary fashion.  The three classes of evolvability that describe dynamic evolvability, however, require a 
change in the capabilities (or lawful state space) of the system.  Therefore, evaluating evolvability should begin by 
assessing how much work must be done to the stretch the original state space to engulf the evolved state. 

 
1. Difficulty Matrices and the Difficulty Scale for Evolvability Analysis 

The process of evaluating evolvability begins with assessing the difficulty of stretching a system’s lawful state 
space along the direction of the i-th state variable.  This difficulty, however, frequently depends on the 
characteristics of the evolved system, requiring knowledge of both the beginning and end states to assign a difficulty 
rating.  Determining this metric may be done in a number of ways.  The methodology chosen in this particular 
approach requires the construction of a difficulty matrix for each state variable for a given system (i.e. each matrix 
addresses a specific system and state variable combination).  Each difficulty matrix will have four rows (each 
corresponding to one of the four classes of evolvability) and a number of columns equivalent to the number of 
values of the state variable for which results are desired.  Each element within the matrix represents the difficulty of 
stretching the capability of the system to the value indicated by the column through the evolvability path indicated 
by the row. 

The values that populate this matrix may be obtained quantitatively or by consensus.  A quantitative approach is 
preferred for assigning difficulty ratings, but this method may not be reasonable due to time and budget constraints.  
Therefore, for the purposes of this paper and case study, the consensus approach was used.  In this approach, a group 
of “experts” is asked to assign each of the difficulty ratings that populate the difficulty matrices.  For this group to 
effectively complete this task, some set of guidelines must be established to ensure consistent and accurate scoring.  
To accomplish this, the Difficulty Scale for Evolvability Analysis (DSEA) was formulated and is presented in Table 
2. 
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Table 2.  The Difficulty Scale for Evolvability Analysis (DSEA). 
Difficulty 

Rating 
 
Explanation 

1 Easy- Requires little effort to evolve.  Some new technology, but functionality of most system 
components remain unchanged.  System complexity remains about the same. 
 

3 Moderate- Requires a moderate amount of effort to evolve.  Some new technology, the functionality 
of some system components change, and system complexity increases by a small amount. 
 

9 Difficult- Requires a large amount of effort to evolve.  Many new technologies, the functionality of 
many system components change, and there is a substantial increase in system complexity. 
 

27 Very Difficult- Requires a very large amount of effort to evolve.  Many new technologies are 
required, most system components change functionality, and system complexity is greatly increased. 
 

81 Infeasible- The desired capabilities are prohibitively difficult, if not impossible, to accomplish.. 
 

Despite this scoring scale, the group of experts may still find it difficult to assign reliable difficulty ratings.  To 
aid such groups in developing these ratings, a brief discussion of the system attributes that lead to the different 
classes of evolvability is presented.  To begin, Rowe, Leaney, and Lowe5 provide some insight into the nature of the 
different classes of evolvability, shown in Fig. 3. 
 

Generality
Adaptability
Scalability

Extensibility

Increase in level of 
architecture 
evolvability

Increase in initial cost 
of implementation

 
Figure 3. Relationship between different classes of evolvability5. 

 
In order to provide additional guidance, Table 3 includes comments and guidelines outlining a few things to keep in 
mind when assigning DSEA scores.  In addition, a few useful definitions are listed below to help clarify the 
information presented in Table 3. 

 
Modularity17: The degree to which a system or computer program is composed of discrete components such 

that a change to one component has minimal impact on other components. 
 
Open Standards3: Parts, modules, objects, products and systems are based on vendor-independent, non-

proprietary, publicly available, and widely accepted standards.  Standards allow for a transparent environment where 
users can intermix hardware, software, and networks of different vintages from different vendors to meet different 
needs. 

 
Open Architecture18:  Hardware and software interfaces are defined such that additional resources can be added 

to the system with little or no adjustment. 
 
Interoperability3: The ability of systems, units, or forces to provide and receive services from other systems, 

units, or forces and to use the services so interchanged to enable them to operate efficiently together. 
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Table 3.  Characteristics of the three classes of dynamic evolvability. 
Class of Evolvability Common Design Characteristics 
Adaptability Modularity, open standards, standard interfaces 

 
Modularity is arguably more important in adaptability than in any other class of 
evolvability.  This is because the essence of adaptability is rearranging existing 
elements (or modules) to achieve a new mission.  If more modules are available, then 
more potential combinations for rearrangement may exist.  Open standards and standard 
interfaces are also necessary in conjunction with modularity to make reconfiguration 
possible. 

Scalability Room for growth, modularity, open standards 
 
Scalability involves increasing the size of one or more of the components of the system.  
Modularity is useful in allowing the engineer to scale only the components necessary 
without altering the other components. 

Extensibility Modularity, open standards, open architecture, interoperability 
 
A system desiring to evolve effectively through extensibility should be built on the 
aspects of the system which are most likely to remain unchanged.  These “islands of 
architectural stability”6 enable a complex system to evolve much quicker and easier than 
what might otherwise be possible.  Note that such islands of architectural stability 
suggest a modular approach, allowing the engineer to isolate core functionality in a set 
of stable, autonomous modules. 

 
2. Construction of the Difficulty Matrices 

Equipped with the tools to develop difficulty matrices and assign DSEA scores, we apply this procedure to the 
lunar case study.  A group of 11 graduate students in the Space Systems Design Lab (SSDL) at the Georgia Institute 
of Technology were presented with this case study and asked to populate the required difficulty matrices.  The 
difficulty matrices developed by this group for the LSR architecture are presented below in Table 4 through Table 6.  
The matrices for the LPR architecture we formulated in the same fashion but are not shown.  
 
Table 4.  Difficulty matrix for number of crew in the LSR (FLO) architecture. 

Number of Crew 
  4 6 8 

Generality 1 81 81 
Adaptability 1 1 1 
Scalability 1 9 27 
Extensibility 1 9 9 

 
Table 5. Difficulty matrix for the duration on lunar surface in the LSR (FLO) architecture. 

Duration on Lunar Surface (days) 
  7 90 180 

Generality 1 81 81 
Adaptability 1 1 3 
Scalability 1 3 9 
Extensibility 1 3 9 
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Table 6. Difficulty matrix for cargo mass to lunar surface per year in the LSR (FLO) architecture. 
Cargo mass to lunar surface per year (kg) 

  1,000 25,000 50,000 
Generality 1 81 81 
Adaptability 1 3 9 
Scalability 1 9 27 
Extensibility 1 9 27 

 
The consensus exercise performed by the SSDL graduate students was very successful, although a smaller group 
may have improved efficiency.  Of particular interest was the group’s tendency to always increase difficulty when 
moving from left to right (direction of increasing capability) in the difficulty matrices.  While such a tendency is 
normal, scores may not always increase from left to right.  There may be local minima or maxima in the difficulty 
scores and groups should be reminded of this at the beginning of the study. 
 
3. Computing and Comparing Evolvability Scores 

Given the opportunity, a system will evolve along the most efficient path (i.e. via the class of evolvability for 
which it is best suited).  Indeed, architectures need not exhibit all classes of evolvability to effectively evolve.  
Excelling in only one class may be all that is necessary.  To address this, the difficulty rating for the i-th state 
variable is given by the minimum EDSA score in the corresponding column.  The minimum EDSA score for the i-th 
state variable is denoted by wi.  An example of this is shown in Fig. 4 using one of the difficulty matrices for the 
LSR architecture.  Organizing these minimum EDSA scores into vector form yields the evolvability vector, W.  A 
separate evolvability vector must be constructed for each mission and architecture combination. 
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Note that in Fig. 4 the number of crew corresponds to the first state variable, meaning that the number of crew 
difficulty rating is w1.  Again, notice that the vectors shown in Fig. 4 represent the difficulty for only the LSR 
architecture, separate vectors must also be constructed for the LPR architecture. 
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Figure 4. Populating the evolvability vector for three different LSR (FLO) scenarios. 
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Now, the evolvability score may be simply calculated using the following expression. 

 W=ScoretyEvolvabili  (3) 

When using this metric a lower score indicates a more desirable result.  Applying this procedure to the LPR and 
LSR architectures in this lunar mission case study yields the results shown in Fig. 5 and Fig. 6.  The low evolvability 
scores (green) represent areas to which the architecture can easily evolve, while high evolvability scores (red) 
indicate areas the architectures may not reach. 
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Figure 5.  LPR architecture (OASIS) evolvability score contour plot for four crew members. 
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Figure 6.  LSR architecture (FLO) evolvability score contour plot for four crew members. 

D. Selecting the Most Evolvable System 
The contour plots shown in Fig. 5 and Fig. 6 are useful when the behavior of the system is of interest, but 

sometimes more concise metrics are also desirable.  How does one select the “most evolvable system?”  
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Unfortunately, it is not necessarily useful to present a system’s overall evolvability as a single number- this is better 
done through contour plots similar to those shown above.  This is because a single metric cannot capture the 
sensitivity of an architecture’s capability to evolve in the direction of required evolution.  If a single metric is 
desired, a single evolved state must be defined.  This allows the decision-maker to compare the candidate 
architectures based on their ability to evolve to a particular evolved state.  Because the evolved state is defined, each 
architecture should receive a single evolvability score.  The architecture with the lower score is better suited to 
evolve to the extended mission. 

Take, for example, the lunar case study investigated throughout this paper.  Suppose the customer desired to 
select the architecture most capable of evolving to a lunar mission that sends a crew of six to the lunar surface for 90 
days, along with the capability of sending 25,000 kg of cargo to the lunar surface each year.  Comparing the 
evolvability of these two architectures to this new mission yields the results shown in Fig. 7.  For this example, the 
LSR architecture (FLO) is more evolvable to this particular mission because it has the lower score.  
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Figure 7.  Evolvability score comparison between LPR architecture (OASIS) and LSR architecture (FLO) for 
a specific evolved lunar surface mission. 

 
This particular example underscores the necessity of defining the evolved state when stating that one architecture 

is more evolvable than another.  When asked in an informal manner which system they felt was more evolvable, 
seven of the students in the SSDL said OASIS is the most evolvable, while four students said FLO is the most 
evolvable.  Figure 7 clearly indicates that FLO is more evolvable to the stipulated evolved state, so why did over 
half the group say that OASIS was more evolvable? 

Individuals often have preconceived notions of what types of systems are evolvable.  Without the structured 
environment described above, it can be difficult to select the architecture that is most evolvable to the specific 
evolved mission under consideration.  Lacking the guidance of a structured methodology, an architecture’s ability to 
evolve to unrelated missions may cause it to look more evolvable than it actually is.  Take, for example, the OASIS 
architecture.  Its modularity and the location of a station at EML1 enable OASIS to easily evolve to many missions 
within Earth’s neighborhood (i.e. servicing satellites or stations at other libration points, acting as an in-space 
storage depot, etc.).  Such capability would be much more difficult to achieve through evolving FLO.  In this 
particular case study, however, the goal was to determine which architecture could better evolve to a more ambitious 
lunar campaign.  Here, the other capabilities of OASIS are not important.  What counts is its ability to evolve to 
ambitious lunar missions- something FLO is more capable of doing. 

The problem, therefore, generally lies in considering an architecture’s evolvability to states other than those of 
interest.  The methodology described in this paper alleviates this problem by providing a structured framework for 
organizing information and ranking system evolvability. 

V. Conclusion 
Current events have made evolvability a sought after attribute.  In this paper it was proposed that evolvability 

may be measured as a figure of merit, allowing us to finally ask the following question: is evolvability really a 
desirable property?  By considering evolvability among a host of other figures of merit (such as cost, reliability, 
performance, etc.) the decision-maker can decide if they can afford a highly evolvable system. 
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In this paper, a quantitative procedure for evaluating system evolvability was outlined and applied to an example 
case study.  A refined definition and functional breakdown of evolvability provide a structured framework in which 
this metric may be discussed and measured.  The proposed methodology allows for the computation of numeric 
evolvability scores indicating a system’s evolvability.  With additional refinement, the scope and reliability of this 
approach may be improved.  Furthermore, modification of the EDSA should also allow for increased flexibility in 
meeting the needs of the customer. 
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