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Landing site selection is a compromise between safety concerns associated with the site’s 

terrain and scientific interest. Therefore, technologies enabling pinpoint landing (sub-100 m 

accuracies) on the surface of Mars are of interest to increase the number of accessible sites 

for in-situ research as well as allow placement of vehicles nearby prepositioned assets. A 

survey of various guidance, navigation, and control technologies that could allow pinpoint 

landing to occur at Mars has shown that negligible propellant mass fraction benefits are seen 

for reducing the three-sigma position dispersion at parachute deployment below 

approximately 3 km. Four different propulsive terminal descent guidance algorithms were 

analyzed with varying applicability to flight. Of these four, a near propellant optimal, 

analytic guidance law showed promise for the conceptual design of pinpoint landing vehicles. 

The existence of a propellant optimum with regards to the initiation time of the propulsive 

terminal descent was shown to exist for various flight conditions. In addition, subsonic 

guided parachutes are shown to provide marginal performance benefits due to the timeline 

associated with Martian entries, and a low computational-cost, yet near fuel optimal 

propulsive terminal descent algorithm is identified.  This investigation also demonstrates 

that navigation is a limiting technology for Mars pinpoint landing, with overall landed 

performance being largely driven by navigation sensor and map tie accuracy. 

Nomenclature 

ai = Acceleration along the i
th

 direction 

aj = Scalar defining convex state constraints 

a = Acceleration vector  Taaa 321  

b = Scalar weighting parameter 

ij
C  = j

th
 constant coefficient used in the modified Apollo lunar module guidance algorithm 

dtf = Terminal time increment 

f = Set of first-order differential equations of motion 

g = Local acceleration due to gravity 

g = Acceleration vector due to gravity 

i = Index 
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JJI  = Partition used in the optimal-control solution 

JI  = Partition used in the optimal-control solution 

JI  = Partition used in the optimal-control solution 

I  = Partition used in the optimal-control solution 

J = Performance index 

L = Scalar objective function describing path parameters 

m0 = Initial mass of the vehicle 

mprop = Mass of propellant 

p = Influence function vector 

ri = Position along the i
th

 direction 

r = Position vector  Trrr 321  

R = Matrix of influence functions 

Sj = Matrix defining convex state constraints 

t = Time 

tgo = Time-to-go until touchdown 

u = Control vector 

δu = Control vector increment 

vi = Velocity along the i
th

 direction  

v = Velocity vector  Tvvv 321  

W = Positive-definite weighting matrix 

x = State vector  TTT mvr  

 

α = Mass consumption rate 

Γ = Weighting on final time to go

ε = Tolerance level

ζ = Slack variable bounding thrust magnitude 

ρ1 = Thrust magnitude lower bound 

ρ2 = Thrust magnitude upper bound 

c = Commanded thrust vector 

υj = Vector defining convex state constraints

  = Scalar objective function 

ψ  = Adjoint constraint equations 

 

CDF = Cumulative Distribution Function 

EDL = Entry, Descent, and Landing 

EI = Entry Interface 

GNC = Guidance, Navigation, and Control 

MER = Mars Exploration Rovers 

MSL = Mars Science Laboratory 

PMF = Propellant Mass Fraction 

SOCP = Second-order Cone Problem 

TCM = Trajectory Correction Maneuver 

TRN = Terrain Relative Navigation 

I. Introduction 

t present, the choice of landing sites for Mars exploration vehicles is a trade between scientific interest and 

landing safety in which the safety element may preclude many interesting regions of the planet. The landed 

accuracy of an entry system is a function of four major items—delivery error at Entry Interface (EI), knowledge 

uncertainty at EI, environmental uncertainty, and vehicle performance
1
. Delivery error at EI refers to how closely 

the vehicle’s actual position and velocity vector at EI match the desired EI position and velocity vectors and is 

A 
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driven primarily by interplanetary navigation and how accurately trajectory correction maneuvers (TCMs) are 

performed. Knowledge uncertainty at EI is a result of accumulated sensor error from the last navigational update as 

well as the accuracy of that navigation update. Environmental uncertainty consists primarily of atmospheric 

deviations from the nominal density and wind profiles through the atmosphere, although other sources such as 

gravitational field modeling impact this uncertainty as well. The dispersions associated with the performance of the 

vehicle are comprised of uncertainties in the physical model of the entry system—mass properties, aerodynamic 

characteristics, etc., and how its systems perform—deployment events associated with the parachute, performance of 

the guidance, navigation, and control (GNC) systems, thrust and duration of burns, etc. The landing ellipse, as 

shown in Figure 1, is the cumulative effect of these uncertainties propagated throughout the vehicle’s entire 

trajectory mapped to a physical location on the surface of the destination planet. The Mars Science Laboratory 

(MSL), planned to launch in 2009, is anticipating a landing ellipse major axis of approximately 20 km which is a 

four-time reduction from the Mars Exploration Rovers (MER) and over an order of magnitude improvement from 

the Mars Pathfinder mission
2
. Relative to MER, this landed ellipse accuracy improvement is largely the result of the 

inclusion of a modified Apollo hypersonic guidance algorithm which modulates the direction of the vehicle’s lift 

vector to accommodate uncertainties in the atmospheric flight path
3
. Pinpoint landing accuracy is defined as a 

further two-order of magnitude reduction to MSL’s landing ellipse major axis to sub-100 m levels. By achieving this 

level of accuracy, a number of benefits can be realized such as minimizing rover traverse times to scientifically-rich 

locations and enabling entry systems to land near prepositioned assets on the surface as was outlined in the Mars 

Design Reference Mission for human exploration or suggested for robotic sample return missions
4
. 

II. Simulation and Vehicle Parameters  

Various GNC technologies are studied on a large-scale robotic entry vehicle in order to understand their 

implications on the capability to achieve sub-100 m level landed accuracies. The technologies investigated span the 

entire EDL sequence from the hypersonic phase through terminal descent and touchdown. Hypersonic, subsonic 

parachute, and propulsive terminal descent guidance is investigated using ideal navigation and identifying the 

propellant mass fraction (PMF) required to achieve pinpoint level accuracy. The PMF is the ratio of the propellant’s 

mass to the initial mass 

Entry Interface

( 3 km/s < V < 6 km/s, h ≈ 125 km)

Supersonic Parachute Deployment

(M ≈ 2, 6 km < h < 20 km) 

Heatshield Deployment

(0.5 < M < 2, 2 km < h< 20 km)

Propulsive Descent

(M < 1, h < 16 km)

Landed Ellipse

Nominal Trajectory

Trajectory Bounds

Accounting for Dispersions

Parachute/Backshell Jettison

(0.5 < M < 1, h 2 km < h < 16 km)

 
Figure 1. Typical Martian EDL sequence with uncertainty. 
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Terrain relative navigation (TRN) is also investigated by examining the effect of termination altitude and sampling 

frequency on TRN sensor performance as well as examining the effect of map-tie error on the overall landed 

vehicle’s accuracy.  

A three degree-of-freedom simulator with bank modulation is used for trajectory propagation. The 

simulator incorporates modular capability allowing easy incorporation of the various guidance algorithms 

assessed. The nominal trajectory has the vehicle, a 4.5 m, Viking heritage, 70° sphere-cone, starting at parachute 

deployment at an altitude of 8 km MOLA and Mach 2 with a flight path angle of -20°. It is assumed for all but 

the hypersonic guidance study, that the vehicle’s initial state at parachute deployment has a state dispersion 

similar to that of MSL, implying that a modified Apollo guidance algorithm is used throughout the hypersonic 

Table 1. Vehicle and state parameters
1,5

. 

Parameter Nominal Distribution Deviation (3σ or min/max)

Entry Mass 2616 kg Gaussian ±3 kg

Entry Flight Path Angle -14° Gaussian ±0.6°

Vehicle Diameter 4.5 m -- --

Trim Angle of Attack 11° Gaussian ±2°

Parachute Deploy Distance from Nominal 0 km Uniform 8 km

Parachute Deploy Velocity 488 m/s Gaussian 1.3 m/s

Parachute Deploy Flight Path Angle -20° Uniform ±0.2°

CA Multiplier (Kn≥0.1) 1 Gaussian 5%

CN Multiplier (Kn≥0.1) 1 Gaussian 10%

CA Multiplier (M>10) 1 Gaussian 3%

CN Multiplier (M>10) 1 Gaussian 5%

CA Multiplier (0.8<M<5) 1 Gaussian 10%

CN Multiplier (0.8<M<5) 1 Gaussian 8%

CA Multiplier (M<0.8) 1 Gaussian 5%

Supersonic Parachute Diameter 19 m -- --

Supersonic Parchute CD 0.61 Uniform ±10%

Subsonic Parachute Diameter 19 m -- --

Subsonic Parchute CD 0.68 Uniform ±10%

Maximum Terminal Descent Engine Thrust 3047 N Uniform ±5%

Minimum Terminal Descent Engine Thrust* 1142 N Uniform ±5%

Terminal Descent Engine ISP 220 s Uniform ±0.67%

*Only used in second-order cone algorithm  
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Figure 2. Density variation used in simulations. 
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phase of flight, except a constant parachute deployment altitude is assumed
5
. MarsGRAM was interrogated at a 

single latitude and longitude corresponding to the nominal landing site with dust tau varying between 0.1 and 0.9 to 

provide the mean and variation for the various environmental parameters used throughout the trajectory including 

the wind, acceleration due to gravity, and density
6
. Figure 2 shows a plot of the nominal density variation used in the 

simulations. Nominal vehicle, state, and environmental parameters with their dispersions are shown in Table 1. The 

entry state and hypersonic parameters were used by Striepe, et al, to derive the parachute deployment dispersion 

used for the initial conditions for the principal trades conducted
5
. 

III. Propulsive Terminal Descent 

Four different propulsive terminal descent algorithms were evaluated in this study. The first of which is a 

modified Apollo lunar module terminal descent algorithm which assumes linear variation of the vertical acceleration 

with quadratic variation in the remaining two axes and has no optimality conditions
7
. The second algorithm 

considered is a constrained gradient-based, indirect optimal control algorithm with iteration required to derive the 

control history
8
. The third algorithm, originally derived by D’Souza, is a fuel-optimal algorithm which assumes 

flight over a flat planet neglecting aerodynamic forces. These assumptions allow an analytic solution to be found 

which D’Souza showed to be optimal
9
. The fourth algorithm examined is a second-order cone formulation where 

convexity ensures that a global optimum is reached in a finite number of iterations with a feasible result obtained at 

each iteration, which is desirable should the algorithm be implemented on-board the vehicle
10

. 

A. Modified Apollo Lunar Module Terminal Descent Guidance Algorithm 

The modified Apollo lunar module guidance algorithm begins by assuming that the acceleration profile is 

quadratic in each of the three directions (downrange, crossrange, and altitude) relative to the target
7
. In equation 

form, that is to say that the acceleration in each direction is given by 

 
2

210)( tCtCCta
iiii   (2) 

This can be integrated to give the velocity and distance variation with time in each axis 
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Evaluating Eqs. (2) – (4) at the initial conditions,  

 0rr  )0(t  and 0vv  )0(t  (5 a-b) 

and final conditions 

 frr  )( ftt , fvv  )( ftt , and faa  )( ftt  (6 a-c) 

allows the solution for the coefficients in each axis to be solved. The resulting coefficients are given by 
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By assuming a linear acceleration profile in the vertical axis (i.e., setting C2=0) the time-to-go, tgo, to be solved for 

analytically and is given by the expression 
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Thus, the commanded thrust vector is given by 

  gaτC  m  (12) 

 The primary advantage of this algorithm is that it is computationally non-complex and allows for the 

acceleration profile to be found for all time. However, the algorithm does not provide for conditions to obtain the 

fuel optimal solution or constraints on the maximum commanded thrust. For some trajectories, these limitations can 

result in a very large relative PMF when the loop is closed around the guidance algorithm as a low altitude hover 

ensures that pinpoint accuracy is achieved. 

B. Gradient Based Optimal Control Algorithm 

The general optimal control problem is the process of finding the control history, u(t), and final time, tf, that 

minimizes the performance index 

    

ft

t

ff dttttLttJ

0

),(),(),( uxx  (13) 

for a given set of system equations  

  t,,uxfx   (14) 

that describe the physical system. For the terminal descent problem, the state variables of interest, namely the 

position and velocity vectors, are known at an unknown terminal time. The main difficulty associated with this type 

of problem is the free terminal time which increases the dimensions of the optimization problem to be solved. Often, 

the terminal time is thought of as an additional control parameter. Classical optimal control theory presents several 

solution methods for the class of problem with the terminal conditions being specified at a free terminal time 

including neighboring extremal methods, gradient methods, and quasi-linearization methods
8
. All three methods are 

iterative and rely on an initial solution that is modified through successive linearization. A gradient based approach 

allows for less stringent conditions to be imposed on the initial solution than other classical methods making it 

preferable for conceptual design for propulsive terminal descent. However, near the optimum, the number of 

iterations increases dramatically. The constraints associated with the terminal descent problem, namely the surface 

constraint and the maximum available thrust, can either be handled through penalty methods that penalize deviations 

from the constraints or by adjoining them to the objective function, with the later being implemented in this analysis. 

For the propulsive terminal descent problem, the states, x(t), are the position and velocity of the vehicle relative to 
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the target and the control vector, u(t), is the magnitude and direction of the thrust, or equivalently, the acceleration 

of the vehicle. A maximum thrust magnitude and an altitude restriction to prevent subterranean trajectories provide 

the constraints for the problem. With no weighting on the final time, a quadratic performance index can be 

formulated in the form of Eq. (13), which is comprised of solely the integrated control vector, u(t) 

 

ft

t

T dtttJ

0

)()(
2

1
uu  (15) 

The solution algorithm for the gradient based method implemented for this study is as follows
8
:  

1. Obtain the equations describing the motion of the vehicle, f(x,u,t) 

2. Determine the constraints for the problem, thrust magnitude and radius of the planet’s surface, and form the 

adjoint constraint equations, ψ[x(t),t]   

3. Estimate the control history, u(t), for the thrust vector and the terminal time, tf 

4. Integrate the equations of motion, Eq. (14) forward using the initial conditions, x(t0), and estimated control   

history from Step 3 from t0 to tf. Record x(t), u(t), ψ[x(tf),tf],  

ftt
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5. Integrate backwards in time the equations 
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to obtain the influence functions and a matrix of influence functions. 

6. Simultaneously with the backward integration of Step 5, compute the quantities 
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where the matrix W is an arbitrary, time varying matrix that is positive-definite. 

7. Choose values of dψ that moves the terminal condition, ψ[x(tf),tf], closer to the desired value of  

ψ[x(tf),tf]=0. 

8. Determine  the vector 
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 where b is a weighting constant 

9. Determine increments to the control vector, δu(t), and terminal time dtf 
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10. Increment the estimates for the control vector, u(t), and the terminal time, tf 
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12. Record the solution for the control history, )()( tt new
uu   

 This iterative solution is advantageous as it finds a local minimum in the fuel consumption robustly and as 

accurately as the tolerance prescribed. However, it does suffer from being computationally intensive, requiring 

numerous iteration before convergence occurs, particularly if a poor initial solution is given. Additionally, the 

algorithm is dependent on numerical derivatives which increases the number of function calls dramatically 

depending on the scheme used to evaluate the derivatives. 

C. Closed-form, Analytic, Fuel Optimal Control Algorithm 

By assuming a planar, non-rotating planet with no atmosphere, D’Souza derived an analytic, unconstrained fuel-

optimal propulsive terminal descent algorithm that meets the necessary and sufficient conditions for an optimal 

control law
9
. The problem described by D’Souza minimizes the performance index 

 
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which includes a weighting, Γ,  on the final time. It is shown that the control law which minimizes this index, under 

the assumptions mentioned previously, is given by 
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where  

  Tfff rrrrrr
321 321 r  (28) 

  Tfff vvvvvv
33221 1

v  (29) 



 9 

  Tg00g  (30) 

The time-to-go, tgo, is shown from the transversality condition from the Euler-Lagrange equations to be the real 

positive root of the equation 
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Equation (31) can be solved either numerically or analytically and substituted into Eq. (27) to obtain the desired 

acceleration vector for all time. The commanded thrust is then this acceleration vector multiplied by the mass of the 

vehicle at the given instant in time. 

 This closed-form, analytic algorithm has a clear computational advantage compared to the iterative optimal 

control solution as it requires a single computation for the free time-to-go which is, in turn, substituted into an 

equation of known state parameters (relative position and velocity to the target) to obtain the commanded thrust. 

However, the formation of the algorithm does not have any constraints on either the maximum thrust magnitude or 

minimum altitude. Without these constraints, a physically impossible solution could be obtained. However, by 

propagating ahead in time, violations in these constraints can be foreseen and an appropriate adjustment in the 

weighting on time-to-go, Γ, can be prescribed using Newton iteration. While requiring numerical integration and 

iteration, obtaining the proper increment on the time-to-go weighting was shown to be significantly less 

computationally intensive than the gradient method described previously. 

D. Second-order Cone Algorithm 

 For propulsive terminal descent, the control space is, in general, non-convex due to a minimum allowable thrust 

magnitude, which none of the prior three methods described take into account. Due to this non-convex constraint, 

determining a control history that results in the global minimum with regards to PMF is not guaranteed. Açikmeşe 

and Ploen have shown that there exits a convex programming approach to the propulsive terminal descent problem 

which relaxes this non-convex constraint and, in turn, guarantees arrival at the global minimum in PMF
10

. Their 

work also reformulates the convex propulsive terminal descent guidance problem in the discretized case as a second-

order cone programming problem (SOCP), which can be solved using interior-point solution methods. Interior-point 

methods are well studied and are known to converge to within a given tolerance of the optimum in a known, finite 

number of iterations, which cannot be said for any solution method of the general propulsive terminal descent 

guidance problem. Furthermore, the solution obtained by the interior-point method to any desired accuracy is 

feasible. Therefore, potential application to flight exits for this algorithm. The derivation of this algorithm assumes 

constant gravitational acceleration and negligible atmospheric forces; however, variations in these quantities from 

that modeled can be treated as disturbances when the guidance algorithm is implemented in a closed-loop sense. 

 The non-convex propulsive terminal descent guidance law problem can be posed as 

 Minimize: 
ft

t

dtJ

0

Cτ  

 Subject to: m/Cτgr  , Cτm , 210   Cτ , 0)(3 tr ,  (32) 

 njattS j

T

j ,...,1 ,0)()(  xcυx jj , 0rr )0( , 0rr  )0( , 0)0( mm  , 0rr  )()( ff tt   

where convex path constraints are included. The problem can be made convex, by reformulating it in terms of a new 

variable, ζ. This introduces an additional constraint to ensure that the new variable acts as a slack variable. 
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 Minimize: 
ft
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dttJ

0

)(  

 Subject to: m/Cτgr  , Cτm , )(tCτ , 21 )(0   t , 0)(3 tr  (33) 
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Graphically, this transformation of the non-convex control space to convex control space by the introduction of 

this slack variable is shown in Figure 3 for a two-dimensional case. In general, the solution to the non-convex 

problem is a feasible solution to the relaxed problem; however, the converse is not guaranteed to be true. However, 

Açikmeşe and Ploen have shown that the optimal solution found by the relaxed problem is also the optimal solution 

to the non-convex problem
10

.  

To implement this algorithm numerically, the continuous time problem needs to discretized. In their work, 

Açikmeşe and Ploen describe a change of variables transformation for Eq. (33) that leads to a continuous 

optimization problem, but one which has convex performance index as well as convex state and control constraints. 

In particular, the change of variables they introduce lead to constraints that are either linear or of the form of a 

second-order cone. Following this change of variables, the problem is discretized in time while enforcing the 

constraints at the nodes of the resulting mesh which results in a finite-dimensional SOCP problem. The resulting 

SOCP can be solved using an interior-point method algorithm which will arrive at the global minima in polynomial 

time
10

. 

 

Remark: When implementing this algorithm, several existing software packages exist. In particular, SeDuMi was 

utilized for this study, which is a Matlab oriented software package that solves symmetric cone optimization 

problems, such as the problem posed here
11

. Should one not want to rely on a preexisting package, several other 

SOCP solution methods exist such as the interior-point method described by Lobo, et al, and the Q method for 

second-order cones described by Xia and Alizadeh
12,13

.  

E. Comparison of the Four Propulsion Guidance Algorithms 

The four propulsive terminal descent algorithms were evaluated in a dispersed environment shown in Table 1 for 

the case of a large robotic entry vehicle from the parachute deployment point through the soft touchdown assuming 

ideal navigation knowledge. One-thousand cases for each algorithm were sampled and the PMF required to achieve 

pinpoint accuracy was computed. For comparison, a gravity turn from starting at Mach 0.9 (h = 1.6 km, v = 200 m/s, 

 = -34°) to target a soft touchdown of the nominal vehicle results requires 231 kg of propellant (a PMF of 0.088). 

Figure 4 shows the cumulative distribution functions (CDFs) for the PMF of the gradient based optimal guidance 
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Figure 3. Non-convex thrust control space and convex thrust control space. 
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algorithm, the closed-form analytic guidance algorithm, the second-order cone algorithm, and the modified Apollo 

lunar module guidance algorithm. Additionally, two curves are shown in Figure 5 for the second-order cone 

algorithm—one which imposes a minimum thrust bound (1142±57 N) and one which does not. This figure 

effectively shows the propellant cost of not pulsing the engines during the terminal descent. Table 2 provides a 

quantitative and qualitative comparison between each of the four algorithms, where the qualitative metrics were 

assessed on a relative basis to one another. In this table, the minimum thrust bound was eliminated from the second-

order cone algorithm so that a fair comparison on the optimality can be made. 

At the 99% confidence level, there is little discernable difference in the PMF for the gradient based optimal 

algorithm, second-order cone algorithm, and the closed-form analytical. Even at lower confidence levels, the PMF is 

only a few percent different. The PMF for the modified Apollo lunar module algorithm is significantly higher (0.87 

at the 99% confidence interval), which is unachievable in a realistic design. This significant difference in PMF is 

due to the lack of robustness to the environmental parameters variations seen since the algorithm was developed for 

use on a planetary body lacking an atmosphere and the prediction of the acceleration profiles does not agree with 

that experienced. Therefore, in order to achieve a soft landing with pinpoint accuracy, a constant altitude 

translational maneuver is undertaken once the vehicle has crossed an altitude threshold (200 m AGL). 

 
Figure 4. CDFs of the PMFs for each of the algorithms without a minimum thrust constraint. 

 

Table 2. Comparison of the four propulsive descent algorithms. 

Modified Apollo Lunar 

Module Algorithm

Gradient Based 

Optimal Control 

Algorithm

Closed-Form, Analytic 

Algorithm

Second-order Cone 

Algorithm

Optimality at 99% C.I. [PMFmin/PMF] 0.36 1.00 0.97 0.99

Equations of Motion Evalutations 1 327 8 163

Robustness Poor Good Moderate Good

Ease of Implementation Good Poor Good Moderate

Applicability to Flight Good Moderate Moderate Good

Numerical Stability Good Moderate Moderate Good  



 12 

For application in conceptual design studies, the PMF performance of the closed-form analytic algorithm is 

sufficiently close to the gradient based fuel-optimal PMF. As an example of the computational efficiency of the 

closed-form algorithm as compared to the iterative gradient algorithm, for a single control history determination 

(i.e., a call of the closed-loop guidance algorithm at one instant in time during the descent), the closed-form 

algorithm required eight functional evaluations of the equations of motion whereas the iterative algorithm required 

327 functional evaluations of the equations of motion. This clear computational advantage afforded by the closed-

form analytic algorithm and makes this algorithm the preferred algorithm for further studies conducted as well as for 

conceptual design. 

For flight applications, the second-order cone algorithm with a lower thrust bound is preferred. For flight 

systems, the cycling of engines on and off, which can result from not specifying a minimum thrust constraint, is not 

desired as it increases the probability of loss of mission. It can be seen that  both the gradient based algorithm and 

the second-order cone algorithm arrive at nearly the same PMF for the propulsive pinpoint landing problem with no 

minimum thrust constraint, as both problems, as posed, are convex. As seen in Table 2, the number of evaluations in 

the equations of motion for the second-order cone algorithm is half that of the gradient based algorithm. This results 

in a run-time on the order of one-quarter that of the gradient based algorithm due to the polynomial convergence 

properties of the SOCP, making the SOCP preferable in conceptual studies as well to the gradient based optimal 

guidance law. 

F. Propulsive Descent Initiation 

Using the analytic fuel-optimal guidance law, a design space investigation was performed of the altitude, 

velocity, downrange, and flight path angle space to determine if a combination of those sensible parameters yields a 

minimum in the PMF required to achieve pinpoint landing. The minimum PMF observed for a representative case in 

the downrange-altitude space is shown in Figure 6(a), while Figure 6(b) shows the variation of PMF for changes in 

velocities for different initial flight path angles at parachute deployment. These two representative figures help to 

demonstrate the existence of a single PMF minimum in this design space. The existence of such a minimum 

persisted for all examined cases. This minimum could be leveraged in the further development of guidance 

algorithms in order to identify the time to begin the propulsive terminal descent and further minimize the amount of 

propellant required for the propulsive terminal descent phase of flight.    

 
Figure 5. CDF of the PMF for the second-order cone algorithm with the cost of the minimum thrust constraint. 
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IV. Subsonic Guided Parachute Performance 

A subsonic steerable parachute was included in the entry vehicle system used for terminal descent. Several other 

studies have investigated the inclusion of subsonic parachutes in the past, these include one performed by 

Mitcheltree, et al, in which a test program is laid out for Earth qualification of the parachute and one performed by 

Witkowski, et al, where the inclusion of a subsonic chute was investigated
14,15

.  For this trade, a circular parachute 

with a nominal drag coefficient of 0.68 was assumed. The guidance algorithm is based on a model described by 

Yakimenko, et al, which modulates the drag vector in order to steer towards a reference trajectory using a 

performance index to minimize the amount of time it takes to arrive on the reference
16

. For evaluation purposes, the 

parachute is deployed at Mach 0.9 in the descent trajectory subsequent to release of the supersonic parachute and is 

used until 1 km AGL. At this altitude, the analytic propulsive guidance algorithm is activated. One thousand Monte 

Carlo cases were conducted using the parameters in Table 1.  

As shown in Figure 7, the results of this Monte Carlo analysis show no major improvement at appreciable 

confidence levels (e.g., greater than 90%) in the PMF required to achieve pinpoint accuracy. The principal reason 

No Guided Parachute

Guided 

Parachute

 
Figure 7. CDFs of the benefit of a subsonic guided parachute. 

Increasing Flight

Path Angle

Increasing Flight

Path Angle

(a) (b)
 

Figure 6. Design space slice for propulsive terminal descent. 
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for this lack of benefit is that the timeline associated with a significant fraction of the Martian entries (e.g., a CDF 

above 80%) does not allow for the subsonic guided parachute to be inflated for a significant length of time, as would 

occur on in Earth applications. For all of the cases investigated the deployment of the subsonic parachute occurred 

below 5 km allowing a maximum 4 km guided descent segment. Additionally, there is no consideration for the 

energy state once on the trajectory, which could be a dominant factor as a spiraling trajectory about the reference 

will increase the energy and increase the propulsive force required to negate it. 

V. Hypersonic Guidance Performance 

 The ramifications of the inclusion of a hypersonic guidance algorithm was evaluated by examining the semi-

major axis of the supersonic parachute deployment ellipse and examining the PMF required to achieve a pinpoint 

landing using the closed-form, analytic guidance law and ideal navigation. As shown in Figure 8, these results 

demonstrate a marginal PMF reduction below a position delivery error at parachute deployment of 3 km. Because a 

supersonic parachute deployment ellipse greater than 3 km leads to a dramatic rise in the PMF required to achieve 

pinpoint landing, a 3 km dispersion footprint is suggested as a target for Mars hypersonic guidance algorithm 

technology development. 

 

VI. Terrain Relative Navigation Sensor Performance 

The impact of terrain relative navigation on the ability to perform pinpoint landing was studied via linear 

covariance by assuming a sensor suite consisting of an inertial measurement unit (accelerometer and gyroscope), a 

radar altimeter, a velocimeter, and a 3-dimensional TRN sensor. This sensor suite has the specifications shown in 

Table 3. Additionally, a covariance matrix at EI-10 minutes was obtained from the Jet Propulsion Laboratory for 

MSL assuming TCM-5 was performed. This entry uncertainty was propagated to the parachute deployment ellipse 

with sensor error accumulating throughout the descent. Using this sensor suite, a navigational knowledge error of 

approximately 200 m was seen at parachute deployment. Thus, pinpoint landing is precluded.  
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Figure 8. PMF  for supersonic parachute deployment semi-major errors.  

Table 3. Navigation sensor data. 

Sensor

Altitude 

Active [km]

Termination 

Altitude [km] Bias Sensor Realization Error Noise (1σ)

Accelerometer N/A N/A 30 μg 66 ppm 5 μg/Hz
1/2

Gyroscope N/A N/A 0.02 deg/hr 1.6 ppm 50 μrad/Hz
1/2

Radar 20 0.01 -0.1 m 0 m 5 m

Velocimeter 2 0.01 (-0.14, 0.07, -0.06) m/s (5.79×10-5, 5.79×10-5, 5.79×10-5) rad 0.5 m/s

3D Terrain Relative Navigation Sensor 8 2.5 (4.3, 28.7, -15.7) m (0, 0, 0) m 42 m  
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By varying the termination altitude of the TRN sensor, a surrogate of the performance achievable by the sensor 

is available. Additionally, the frequency of navigation data updates performed in-flight is investigated. The landed 

error variation for the nominal case is seen in Figure 9 as a function of these two variables. As expected, the general 

trend shows improving landed accuracy with decreased termination altitude as the TRN sensor’s accuracy is altitude 

dependent. A minimum is seen as well for the 0.1 Hz and 0.5 Hz case at approximately 1.5 km. Sensor data below 

this altitude may be more inaccurate that the known state, which, in turn, leads to the overall knowledge error 

decreasing. This is not seen in the 1 Hz sampling rate as more accurate data is obtained between 1 and 1.5 km 

improving the knowledge of the known state. 

Additionally, the impact of map-tie error was investigated by considering values from 0 to 1000 m and 

examining the total landed accuracy of the vehicle. As shown in Figure 10, for a sub-100 m landed accuracy, the 

maximum allowable one standard deviation map-tie error is approximately 25 m. The variation in landed uncertainty 

with map-tie error is approximately logarithmic. This can be attributed to the TRN sensor negating the majority of 

the map-tie error above 200 m and is largely a function of the capabilities of the sensor. 
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Figure 10. Map-tie error impact on landing uncertainty. 
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Figure 9. Landed accuracy for various TRN termination altitudes and sampling frequencies. 
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VII. Conclusions 

This investigation compared the performance of four propulsive terminal descent algorithms for a sub-100 m 

landing accuracy application at Mars. An iterative propellant optimal guidance law was implemented. However, it 

was seen that a near-optimal guidance law which assumes a flat, atmosphere-free planet was of sufficient accuracy 

for conceptual design, while being significantly less computationally intensive. Additionally, a convex algorithm 

which arrives at the constrained global minimum in PMF was investigated for its strong applicability to flight. Using 

the near-optimal analytic guidance law a minimum was shown to exist in the altitude, velocity, downrange, flight 

path angle space which could be leveraged during the implementation of the algorithm. 

Pinpoint landing technology system trade studies performed demonstrated that driving hypersonic guidance 

requirements to an accuracy below 3 km results in marginal performance gains. In addition, it was shown that the 

use of a subsonic guided parachute does not significantly decrease the propellant mass fraction required for pinpoint 

landing, while the added system complexity of a subsonic guided parachute would have to be seriously considered. 

This investigation also demonstrates that navigational uncertainty is the principal driving factor precluding pinpoint 

landing at Mars with map-tie error needing to be driven below 25 m and TRN sensor termination altitude needing to 

be driven below 1 km for sub-100 m landed accuracy. 

The results of this study were obtained assuming a parachute deployment ellipse with similar semi-major axis 

length to MSL at a constant altitude. The altitude variations that will inevitably result from the system and 

environment dispersions should be accounted for in order to further add fidelity to these results. The initiation of the 

propulsive descent for this work started at Mach 0.9; however, a trade between the PMF and the initiation state 

relative to the target exists and should be explored in future work. A third area of potential extension of this work is 

the influence of various hypersonic phase guidance algorithms (e.g., a predictor-corrector algorithm or the modified 

Apollo algorithm) and navigation performance on the propulsive terminal descent phase. For instance, does a 

predictor-corrector algorithm that targets an optimal parachute deployment altitude for the terminal descent guidance 

algorithm strongly impact the performance of the system? 
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