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Throughout the design process, guidance and control algorithms are continually assessed
to determine their applicability to a given application. Due to this need, an equitable as-
sessment of how various algorithms meet desired objectives is a necessity. Traditionally
these comparisons rely on conducting performance assessments of the algorithms that stress
the algorithms and then human judgment is used to provide recommendations on which
algorithm(s) to carry forward as the design matures. This paper presents a way to develop
a baseline robustness index, that is a single value that captures the desired attributes of
the algorithm in the presence of uncertainty, which can be used to compare various algo-
rithms. Due to the general formulation of the baseline index value, these indicies can be
comprised of algorithm complexity metrics, algorithm consistency metrics, and algorithm
performance metrics. These indicies can also be used to assess the e�ect of algorithm mat-
uration on a single algorithm. In this paper, the groundwork and underlying theory for
the methodology are described for use in both guidance and control algorithms. Addition-
ally, two example uses of the methodology are provided. One demonstrates the parametric
nature of the baseline robustness index and the 
exibility extended during the conceptual
design of a vehicle. The other demonstrates the impact on the baseline robustness index
as a propulsive propulsive guidance law is matured from the theoretical foundations to an
almost 
ight mature algorithm that is being developed for the Autonomous Landing and
Hazard Avoidance Technology program.

Nomenclature

Variables
a Acceleration vector
ac Commanded acceleration vector
aij Preference of element i relative to element j
A Reciprocal matrix of preferences
CD Coe�cient of drag
CL Coe�cient of lift
fd Force vector due to drag
fg Force vector due to gravity
fl Force vector due to lift
fpert Force vector due to perturbing forces
h Algebraic inequality function
g Local acceleration due to gravity
g Acceleration vector due to gravity
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g0 Gravitational constant (=9.806 m/s2)
Ip Inertia tensor in the principal frame
Isp Speci�c impulse
Ji ith sample of the objective function

Ĵ Objective function target
m Vehicle mass
mprop Propellant mass
n Number of values sampled
nlines Number of lines of code
N Number of Monte Carlo samples
q Algebraic inequality value
�q1 Free-stream dynamic pressure

�
= 1

2�v
2
rel

�
r Response of the analysis
r̂ Nominal response of the analysis
�r Distance to target vector in the target relative frame
S Reference area
T Thrust magnitude
tgo Time-to-go before touchdown
_u Di�erential constraint value
�v Velocity vector in the target relative frame
vrel Atmosphere relative velocity vector magnitude
vrel Atmosphere relative velocity vector
x Fixed deterministic parameters
y Free deterministic parameters
z Nominal value for probabilistic parameters
� Scaled eigenvector of weights
�c Commanded angular acceleration vector
�̂ Eigenvector consisting of attribute weights
� Weighting on the time-to-go
�r Perturbation in the response
�z Uncertainty for probabilistic parameters
� Eigenvalue
� Density
� = [x y z]T Position vector in the inertial coordinate system
_� = [ _x _y _z]T Velocity vector in the inertial coordinate system
� Baseline robustness index
 Di�erential constraint function
! Principal body rate vector
� Gravitational parameter
� Vector of Euler angles in the principal frame
�c Commanded torque in the principal frame

Subscripts
(�)0 Initial value of (�)
(�)attitude (�) associated with attitude motion
(�)c Constraint value of (�)
(�)curr Current value of (�)
(�)f Final value of (�)
(�)i ith component of the vector (�)
(�)l Lateral value of (�)
(�)max Maximum value of (�)
(�)min Minimum value of (�)
(�)nom Nominal value of (�)
(�)opt Optimal value of (�)
(�)t Target value of (�)
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(�)translational (�) associated with translational motion
(�)v Vertical value of (�)

Acronyms and Abbreviations
ACS Attitude control system
AHP Analytic Hierarchy Process
ALHAT Autonomous Landing and Hazard Avoidance Technology
EOM Equation of motion
MSD Mean square deviation
SNR Signal-to-noise ratio
TRL Technology Readiness Level

I. Introduction

Traditionally assessing the applicability of various guidance and control algorithms to particular ap-
plications has been done with a signi�cant amount of human judgment (i.e., where the engineer runs

certain tests that stress the algorithm and then provides a recommendation based on their experience). This
investigation discusses the development and implementation of a methodology that is capable of providing
a baseline index value (i.e., a cardinal number for comparison) for a wide variety of guidance and control
algorithms. The baseline index value is a direct assessment of the algorithm’s capability in a dispersed
environment to achieve a desired objective. Usually, the desired objective is performance based; however,
there is no inherent reason that the objective be entirely performance based. In particular, this objective
can also be a function of the complexity or consistency factors associated with implementing the algorithm.

A particular focus of this investigation is propulsive descent and landing applications on planetary bodies.
An example application will compare a propulsive terminal descent law applied at the Moon at two extremes
of the maturity spectrum. This example application will examine the gains (and losses) associated with the
maturation process of algorithms and, in particular, how applicable theoretical algorithms chosen during the
conceptual design process are to 
ight implementation.

II. Methodology Overview

A. Objectives

The objectives of this methodology (and the resulting framework) are to:

� Equitably assess how various guidance and control algorithms behave in the presence of uncertainty.
� Provide a meaningful value (i.e., a cardinal number) whereby guidance and control algorithms can be

compared to one another to assess their applicability to a certain application.
� Easily be able to assess a wide variety of guidance and control algorithms, provided they have a common

application.

The �rst objective, results from the fact that guidance and control algorithms operate in a non-deterministic
environment. That is, they operate where environmental, vehicle, navigational, and state dispersions are
present. Therefore, in order to obtain a true comparison of the algorithms, it is necessary that they be
evaluated in the environment in which they will ultimately operate. Going along with this idea is the idea
that comparison is equitable, which, fundamentally implies that the comparison is performed at the same
level. For instance, where the algorithm is tuned to perform the best that it can for the given performance
objective. The second objective, is simply a wish for the methodology to give more than just a ranking
of how well the algorithm achieves the objective. Instead of just a ranking, it is desirable to obtain the
magnitude of the di�erence in the baseline index for purposes of future downselection and benchmarking.
Finally, the third objective, is a statement of 
exibility. That is, that it is desired to be able to assess a
variety of algorithms using this methodology.
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B. Metrics of Interest

In order to create an equitable trade environment, appropriate metrics of interest (or �gures of merit)
need to be established. It is desired that each of these metrics of interest be measurable, quanti�able, and
independent from one another. For the given problem of comparing guidance and control algorithms, three
speci�c classes of metrics of interest can be established|algorithm complexity, algorithm consistency, and
algorithm performance. The �rst class of metrics of interest, algorithm complexity, is a measure of the
sophistication of the algorithm. Characteristics associated with the algorithm complexity include how much
storage capability is required to execute the algorithm and how much computational e�ort is required to
achieve a solution. Algorithm consistency, is a measure of how reliable the algorithm it is to produce a
feasible solution. For instance, how many infeasible commands are commanded. The �nal class of metrics
of interest, algorithm performance, is a measure of the goodness of the algorithm, that is, how well the
algorithm achieves its objective. These are typically physical quantities such as control e�ort or terminal
state error. As stated above, when selecting metrics of interest for an application, it is desirable that each
metric of interest be independent of one another, for instance terminal state error and terminal velocity error
should not both be included if velocity is a state of the system. Additionally, when forming a given objective
function for comparing algorithms to one another, it is necessary that the desirement of each of the metrics
of interest do not con
ict (e.g., it is desirable to minimize one metric of interest whereas for another metric
of interest it is desirable to maximize the metric of interest). For propulsive terminal descent applications
Tables 1-3 list potentially applicable complexity, consistency, and performance metrics of interest, their range
of values (as de�ned), and the desired objective for the metric. It is important to note that the actual metrics
of interest used in evaluation of the algorithm are mission dependent (i.e., metrics for one application may
not be appropriate for another application).

Table 1. Algorithm complexity metrics of interest.

Metric of Interest De�nition Minimum Value Maximum Value Objective

Clock Time to Code Time it takes to code the algorithm > 0 <1 Minimize

Run-time Complexity (O Based)

\Big-oh" analysis of the algorithm, i.e. if

> 0 <1 Minimize

jf(x)j �M jg(x)j then the algorithm is said to

be O(g(x)). The value used is the result

of converting g(x) to a Taylor polynomial (if

not already polynomial) and determining the

power of the power of the leading coe�cient,

e.g., g(x) � xa then the algorithm is O(xa)

and therefore the value for comparison is a

Run-time Complexity Maximum number of function calls it takes
> 0 <1 Minimize

(# of Function Calls Based) to compute one solution

Memory Required to Store Code
The storage size of the algorithm

> 0 <1 Minimize
(excluding comments)

Memory Required to Run Code
The maximum amount of memory required

> 0 <1 Minimize
by the algorithm to execute

Algorithm Heritage
Approximate TRL Level of the algorithm

1 9 Minimize
9(TRL)�1

Lines of Code Number of lines of code 1 <1 Minimize

Table 2. Algorithm consistency metrics of interest.

Metric of Interest De�nition Minimum Value Maximum Value Objective

Number of Infeasible Commands Count of Infeasible Commands 0 <1 Minimize
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Table 3. Algorithm performance metrics of interest.

Metric of Interest De�nition Minimum Value Maximum Value Objective

Terminal Distance Error
The terminal value of

0 <1 Minimize
[ (x�xt)

2

x2
t

+ (y�yt)2
y2t

]1=2

Terminal Downrange Distance Error The terminal value of jx�xt

xt
j 0 <1 Minimize

Terminal Crossrange Distance Error The terminal value of jy�ytyt
j 0 <1 Minimize

Terminal Velocity Error
The terminal value of

0 <1 Minimize
[( _h� _ht)

2 + ( _x� _xt)
2 + ( _y � _yt)

2]1=2

Terminal Vertical Velocity Error The terminal value of j _h� _htj 0 <1 Minimize

Terminal Downrange Velocity Error The terminal value of j _x� _xtj 0 <1 Minimize

Terminal Crossrange Velocity Error The terminal value of j _y � _ytj 0 <1 Minimize

Propellant Usage
Mass of propellant used by the

0 <1 Minimize
algorithm (both ACS and translational motion)

Reference Trajectory Error
The maximum over the trajectory of

0 1 Minimize
[(� (xcurr�xnom)2

x2
nom

)=n]�1=2

Attitude Constraint Distance
The maximum over the trajectory of

0 1 Minimize
[( (�c��)2

�2c
+ ( c� )2

 2
c

+ (�c��)2
�2
c

)=3]�1=2

Pitch Constraint Distance
The maximum over the trajectory of

0 1 Minimize
j �c
�c�� j

Yaw Constraint Distance
The maximum over the trajectory of

0 1 Minimize
j  c

 c� j

Roll Constraint Distance
The maximum over the trajectory of

0 1 Minimize
j �c

�c�� j

Attitude Rate Constraint Distance
The maximum over the trajectory of

0 1 Minimize
[( ( _�c� _�)2

_�2c
+ ( _ c� _ )2

_ 2
c

+ ( _�c� _�)2

_�2
c

)=3]�1=2

Pitch Rate Constraint Distance
The maximum over the trajectory of

0 1 Minimize
j _�c
_�c� _�
j

Yaw Rate Constraint Distance
The maximum over the trajectory of

0 1 Minimize
j _ c

_ c� _ 
j

Roll Rate Constraint Distance
The maximum over the trajectory of

0 1 Minimize
j _�c

_�c� _�
j

Maximum Acceleration Constraint Distance
The maximum over the trajectory of

0 1 Minimize
j gc
gc�g j

Terminal Vertical Acceleration
The terminal value of j avc

avc�av
j 0 1 Minimize

Constraint Distance

Terminal Lateral Acceleration
The terminal value of j alc

alc�al
j 0 1 Minimize

Constraint Distance

Minimum Altitude Constraint Distance
The maximum over the trajectory of

0 1 Minimize
j hminc

hmin�hminc
j

Maximum Altitude Constraint Distance
The maximum over the trajectory of

0 1 Minimize
j hmaxc

hmaxc�hmax
j

Minimum Velocity Constraint Distance
The maximum over the trajectory of

0 1 Minimize
j vminc

vmin�vminc
j

Maximum Velocity Constraint Distance
The maximum over the trajectory of

0 1 Minimize
j vmaxc

vmaxc�vmax
j

C. Robustness Index

1. Objective Function De�nition

With the chosen metrics of interest, an objective function can be de�ned which captures the characteristics
that are desirable in the given algorithm being baselined. Assuming a linear combination of the metrics of
interest, this objective function has the form

J = �TX =

nX
i=1

�iXi (1)
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where �i is a weighting on the importance of the ith variable, Xi. The Xi are the metrics of interest adjusted
for minimization or maximization. Note that this objective function is a scalar representation of a multi-
dimensional space. As such, multiple solutions for the value of Xi could occur for a singular value of J , even
for �xed �i. Hence, care should be taken to de�ne the metrics of interest such that in the domain of interest
J behaves acceptably well for the application.

2. Determination of the Weights

The weighting vector, �, gives a relative signi�cance (in
uence) of each of the metrics of interest on the
objective function. Ideally, �i takes on a value between zero and one and the sum of each of the �i is unity. In
order to determine the vector of weights, any one of a set of multi-attribute decision making techniques can
be used, including solicitation of expert opinion, the Analytic Hierarchy Process (AHP), and inner product
of vectors. For this methodology, it is assumed that AHP is used for the weighting, as it is a relatively
simplistic to implement and results in a meaningful, cardinal weighting vector. Additionally, consistency
checks are available for the pairwise comparisons.

AHP is an approach to multi-attribute decision making developed by Dr. Thomas Saaty in the 1970s
which creates more tractable subproblems (attributes) for comparison.1 These attributes are compared
pairwise with a relative scale of 1 to 9, with 1 indicating neutral preference and 9 indicating strong pref-
erence. These pairwise comparisons are used to form a reciprocal matrix as shown in Table 4. In Ta-

Table 4. Reciprocal matrix resulting from pairwise comparisons using AHP.

Attribute 1 Attribute 2 Attribute 3 Attribute 4

Attribute 1 1 a12 a13 a14

Attribute 2
1

a12
1 a23 a24

Attribute 3
1

a13

1

a23
1 a34

Attribute 4
1

a14

1

a24

1

a34
1

ble 4, element aij is interpreted as the relative preference of element i with respect to element j and
aij 2 f 19 ;

1
8 ;

1
7 ;

1
6 ;

1
5 ;

1
4 ;

1
3 ;

1
2 ; 1; 2; 3; 4; 5; 6; 7; 8; 9g with fractions indicating the relative preference for element j

over element i. Denoting this matrix as A, the weighting vector is a scaled version of the principal eigenvector
of A, that is, the principal solution of the equation

A�̂ = ��̂ (2)

where the eigenvector, �̂ is scaled such that

� =
�̂PN
i=1 �̂i

(3)

to produce the weighting vector. In other words, the weighting vector is a scaled dominant basis of the
reciprocal matrix. Additionally, the weighting vector not only gives an ordinal ranking of each of the metrics
of interest, it also gives cardinal meaning to them. For instance, if a metric of interest has a weighting that
is twice another metric of interest, it is twice as signi�cant (in the view of the assessor) as the other metric
of interest.

3. Mean Square Deviation and Signal-to-Noise Ratio

Since it is of interest to determine how robust the guidance or control algorithm is, two additional concepts
from statistics and robust design are used|the mean square deviation (MSD) and signal-to-noise ratio
(SNR).2 Traditionally, assessment of an algorithm under uncertainty is done using Monte Carlo simulation.
For each run of the Monte Carlo simulation, a di�erent objective function value will result, Ji. To capture
the robustness in a single variable, consider that robustness is a measure both of how close a value is to a
target objective function value and the spread of the response. The MSD captures both of these traits, and
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is de�ned as2

MSD(�1; �2) = E
h
(�1 � �2)

2
i

=
1

n

nX
i=1

(J1;i � J2;i)2 (4)

where J1;i is the ith sampled value of the objective function and J2;i is the ith desired value of the objective
function.

Since the MSD can take on a large number of values, for practical purposes it is necessary to alter it to
distinguish various values. The SNR accomplishes this task as well as provides a common objective function
to optimize on, if it is desired. The de�nition of the SNR used in this methodology is taken from Taguchi
robust design and has the general form2

SNR = �10 log10 (MSD) (5)

Given that the desire may be to minimize the objective function, maximize the objective function, or bring
the objective function to a certain target, the SNR can take on three speci�c forms. These are shown in
Eqs. (6)-(8), where Eq. (6) would be used if the minimum value of the objective function is desired, Eq. (7)
would be used if the maximum value of the objective function is desired, and Eq. (8) would be used if it is
desired that the objective function take on a certain value.

SNR = �10 log10

 
1

n

nX
i=1

J2
i

!
(6)

SNR = �10 log10

 
1

n

nX
i=1

1

J2
i

!
(7)

SNR = �10 log10

"
1

n

nX
i=1

�
Ji � Ĵ)2

�#
(8)

Pictorially, the maximization of the SNR is shown in Figure 1, where it is seen that maximizing the SNR
reduces the variance of the distribution and shifts the mean toward the desired target value.

Figure 1. Signal-to-noise ratio maximization.
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4. Robustness Index De�nition

In light of the previous section’s discussion, it is clear that the SNR captures the multi-dimensional robustness
problem in a single value that is quanti�able, measurable, and cardinal. Since it is based on the logarithmic
scale, it has the ability to represent large or small number equally well. Additionally, the SNR gives a
suitable robustness optimization function, should that be desired. Hence, the robustness index is de�ned in
this work as

�(J) = �10 log10 (MSD) (9)

As seen in Figure 2, the robustness index, �(J), is monotonically decreasing for increasing values of the MSD
with positive values occurring only for if the MSD is less than one.
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Figure 2. Robustness index behavior.

D. Creating a Robustness Index Baseline for Guidance and Control Algorithms

To create a robustness index baseline for guidance and control algorithms, �rst consider the analysis struc-
ture shown in Figure 3. The inputs into the analysis consist of �xed deterministic parameters (x), free

Figure 3. Analysis structure for robustness indexing.
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deterministic parameters (y), nominal values of the probabilistic parameters (y), and variations from the
nominal value of the probabilistic parameters (�z). The �xed deterministic parameters are values used
in the analysis that are speci�ed by the user but are not free to change from their speci�ed value at the
beginning of the analysis. The free deterministic parameters are values used in the analysis; however, their
values can change in the analysis by some external process (e.g., an external optimizer). The probabilistic
parameters are variables used in the analysis which behave according to an a priori de�ned probability
density function which have a nominal mean and deviation from this mean. Using these inputs, a simulation
is conducted with the guidance or control algorithm being evaluated in the loop, resulting in the response of
the simulation, r which is comprised of a nominal response (r̂) and a perturbation from the nominal response
(�r).

With this framework in mind, the algorithm’s robustness index can be established in the following manner:

1. Create an appropriate objective function, J

(a) Select the desired metrics of interest for the problem
(b) Formulate the components of the objective function such that they have a common objective (i.e.,

minimize or maximize)
(c) Determine the weight for each of the metrics of interest

2. Determine the distribution of the desired objective function

(a) Identify the parameters of the problem and their distribution (if applicable)|x, y, z and �z
(b) Record the value of the objective function, J , for the various combinations of the parameters

3. Obtain the SNR for objective function

(a) Identify the form of the SNR to use depending on the objective of J

4. Tune the free parameters, y, to give the algorithm the best performance possible for the desired
objective

(a) The optimization is formulated such that

Maximize: �10 log10 (MSD)

Subject To: _u =  (x;y; z;�z)

q � h (x;y; z;�z)

By Varying: y

5. Set the baseline index value equal to the tuned SNR for the objective (i.e., �(J) = SNRopt)

It is important to note that should there not be any free deterministic variables (y) then the optimization
cannot proceed and Step 4 will be omitted.

III. Analysis Framework

The methodology discussed in Section II.D has been implemented in a Matlab environment. The following
sections discuss details of the framework, including its organization, variable 
ow, and other speci�cs to the
implemented methodology.

A. Organization

As an example of how such an analysis framework can be implemented consider the organizational diagram
shown in Figure 4. For this implementation, the framework consists of six primary functions, three of which
are user modi�ed, two are user supplied, and one is user selectable. This organization allows for the tool
to be extremely generic and 
exible in its analysis of guidance and control algorithms, particularly because
the interface between the algorithms are user supplied. This means the user ensures the variables are used
correctly in the user supplied acceleration function.
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Figure 4. Organization of the analysis tool.

B. Function Descriptions

1. Wrapping Function

The wrapping function is the driving function for the entire analysis framework. Within this function the
�xed and free deterministic variables are de�ned, distributions for each of the probabilistic parameters yield
random variables for use in the Monte Carlo, and the weights for the objective function are speci�ed. These
weights can be prespeci�ed in the function or in real-time by calling an AHP script and using the results
of that analysis before completing the robustness analysis. This function also performs the tuning of the
free deterministic parameters of the problem and outputs the baseline robustness index for the algorithm as
well as the optimized values for the free deterministic parameters. This tuning is performed using Matlab’s
fmincon function, which uses a gradient approach to constrained multivariable minimization.

2. Monte Carlo Function

The execution of each Monte Carlo run is performed by this function. This function loops through the
prede�ned random variables (de�ned in the wrapping function) then computes the MSD and SNR for the
current Monte Carlo set. Assuming it is desired that the minimization form of the SNR is used and the
objective function is a pure linear combination of the output from the equation of motion (EOM) calling
function, no modi�cation of this function is necessary.

3. User De�ned EOM Calling Function

The user de�ned EOM calling function acts as an interface between the input problem parameters and the
equations of motion. This interface assigns values to each of the required parameters of the equations of
motion, speci�es the algorithm which is being analyzed, as well as any integration parameters. The actual
call to the integrator is done from this function. Currently Matlab’s ode45 is used with either an events
function or maximum time terminating the propagation of the dynamic equations.
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4. Equations of Motion

The equations of motion are prede�ned from a choice of three di�erent sets in the equation of motion calling
function. The three choices include a three degree-of-freedom (DOF) translational motion set, a three DOF
attitude set in the principal frame, and a six DOF set that combines the previous two sets.

Three Degree-of-Freedom Translational Motion
The three DOF translational motion set of equations of motion is formed in inertial, Cartesian space. It
accounts for spherically symmetric gravity such that

fg = � m�

k r k3
r + fpert (10)

where the perturbation, fpert, is given by a Markov Process gravity model (if desired). In Eq. (10), m is the
mass of the vehicle, � is the gravitational parameter of the planet, and r is the position vector of the vehicle
expressed in the inertial frame. Aerodynamic forces are accounted for when an atmosphere �le is speci�ed
(this �le gives the density as a function of altitude). The aerodynamic forces are given by

fl = �q1CLS l̂ (11)

fd = ��q1CDS
vrel

k vrel k
(12)

where Eq. (11) speci�es the lift force acting on the vehicle in an inertial frame and Eq. (12) speci�es the
drag force acting on the vehicle in an inertial frame. In these equations, �q1 is the free-stream dynamic
pressure (= 1

2�v
2
rel), vrel is the planet relative velocity vector expressed in the inertial frame, CL is the lift

coe�cient, CD is the drag coe�cient, S is the projected area of the vehicle, and l̂ is the inertial direction
of the lift vector. The �nal set of forces accounted for are those commanded by the guidance or control
algorithm. These are given by

fc = mac (13)

where m is the mass of the vehicle and ac is the commanded acceleration output from the algorithm. In the
implementation of the EOMs, the commanded acceleration is given in the planet relative frame and then
is transformed to the inertial frame. With these forces de�ned, the time rate of change of the state vector,

de�ned in this case as X =
�
rT3�1 vT

3�1 m
�T

, is given by

_X =

0B@ _�3�1

��3�1

_m

1CA =

0BBBB@
v3�1

fg + fl + fd + fc

m

�
jT j
g0Isp

1CCCCA (14)

Three Degree-of-Freedom Attitude Motion
The attitude equations of motion are written in the principal body frame. That is a frame whose has its
origin at the center of gravity and oriented such that the inertia tensor is diagonal for all time, that is

Ip =

0B@I1 0 0

0 I2 0

0 0 I3

1CA (15)

Again, the guidance or control algorithm is assumed to output an acceleration, this time an angular accel-
eration. As such, the commanded torque can be computed as

�c = Ip�c (16)

Using Euler’s equations in the principal frame and de�ning the state vector to be X =
�
�T3�1 !

T
3�1 m

�T
leads to the time rate of change of the state to be

_X =

0B@ _�3�1

_!3�1

_m

1CA =

0BBB@
!3�1

I�1p (�c � ~!Ip!)

�
jT j
g0Isp

1CCCA (17)
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where ~! is the skew-symmetric matrix associated with !.

Six Degree-of-Freedom Motion
The six degree-of-freedom equations of motion, as implemented, are just a combination of the prior two sets

of equations. That is, the time rate of change of the state vector, X =
�
rT3�1 vT

3�1 �T3�1 !
T
3�1 m

�T
, is

simply given by

_X =

0BBBBB@
_�3�1

��3�1

_�3�1

_!3�1

_m

1CCCCCA =

0BBBBBBBBB@

v3�1

fg + fl + fd + fc

m
!3�1

I�1p (�c � ~!Ip!)

�
jTtranslational + Tattitudej

g0Isp

1CCCCCCCCCA
(18)

Note, that in this case, the mass loss is due to a combination of the thrust due to translational motion of
the vehicle, Ttranslational, and that of the attitude motion of the vehicle, Tattitude.

5. User De�ned Acceleration Calling Function

The user de�ned acceleration calling function acts as an interface between the equations of motion and the
commanded acceleration function. The e�ective purpose of this function is to format the input into the
commanded acceleration in a format that is appropriate to it.

6. Commanded Acceleration Function

The commanded acceleration function is the guidance or control algorithm which is supplied by the user of
the framework.

IV. Guidance Algorithm Descriptions

For the example cases described subsequently, consider the following three translation guidance algo-
rithms. Each guidance algorithm is closed-loop and returns a commanded acceleration that is used by the
Commanded Acceleration Function.

A. Gravity Turn

A gravity turn, as used by the Lunar Surveyor spacecraft, provides a non-precise soft landing on a planetary
body.3 As such, it does not target a particular landing site, instead the algorithm targets an altitude at
which to null the velocity (i.e., the state vector in the target relative local vertical local horizontal frame

is of the form Xt =
�
�rT �vT

�T
= (� � 0 0 0 0)

T
, where * indicates an arbitrary, non-speci�ed state). For

this guidance law, the thrust is assumed to oppose the velocity vector and the commanded acceleration
magnitude is constant through the descent (thrust decreases linearly with the decrease in mass).

The geometry assumed for the gravity turn guidance law is shown in Fig. 5. Assuming the planet is (1)

at, (2) non-rotating, and that it has (3) a uniform gravitational �eld, the commanded acceleration ac is a
function of three parameters:

1. g =k g k2, the acceleration magnitude due to gravity (assumed to be surface gravitational acceleration)

2. �v =k v � vt k2, the magnitude of the spacecraft’s velocity relative to the target

3. R = �h csc 
 = h sec , the slant range to the target altitude at which the planet-�xed velocity is to
be nulli�ed

and is given by

ac = �
�

1 +
�v2

2Rg

�
v

v
(19)
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Figure 5. Gravity turn guidance law geometry

with corresponding thrust magnitude

T = m

�
g +

�v2

2R

�
(20)

This guidance law follows from the desire to follow an idealized parabolic relation for the velocity in terms
of the slant range. For values of  2 [0�; 45�] the constant acceleration assumption is appropriate, and a
closed-loop (in the dispersed sense) guidance law that satis�es the boundary conditions is obtained.

B. General Analytical Optimal Planetary Landing Law

For conceptual design with targeted landing capability (i.e., both position and velocity targeting) consider
the optimal planetary landing law described by D’Souza.4 This algorithm solves the variational two-point
boundary value problem for an optimal trajectory according to the cost function

J = �tf +

Z tf

0

aT (t)a(t)dt (21)

where � is a weight on free �nal time. In the solution procedure, it is assumed that the 
ight is over 
at,
non-rotating, atmosphere-free planet. Under these assumptions, the time-to-go (tgo), that is, the time before
touchdown, can be found by solving the transversality condition for the real, positive root of

t4go � 2
�vT �v

� + g2

2

t2go � 12
�vT�r

� + g2

2

tgo � 18
�rT�r

� + g2

2

= 0 (22)

where g is the local acceleration magnitude due to gravity (=k g k) and the vectors are given by

�r = (�r1 � �rf;1 �r2 � �rf;2 �r3 � �rf;3)
T

(23)

�v = (�v1 � �vf;1 �v2 � �vf;2 �v3 � �vf;3)
T

(24)

g = (0 0 g)
T

(25)

where the f subscript indicates the terminal state value. The commanded acceleration is then given by

ac = �4
�v

tgo
� 6

�r

t2go
� g (26)
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Note that there are no state constraints placed on the system which could result in infeasible subterranean
trajectories. However, by increasing the weighting on the free time-to-go, �, a pseudo-constrained trajectory
can be obtained. Additionally, this weighting gives a free deterministic parameter for the optimizer to act
upon during the optimization process.

C. ALHAT Terminal Phase Algorithm

The Autonomous Landing and Hazard Avoidance Technology (ALHAT) guidance algorithm is an algorithm
designed for technology planning and development for NASA’s lunar exploration campaign. It is comprised
of four maneuvers, a braking maneuver, a pitch-up maneuver, an approach maneuver, and a vertical descent
maneuver.5 These phases are shown in Figure 6.

Figure 6. ALHAT descent phases and powered descent sub-phases5

Like the D’Souza algorithm described previously, the approach maneuver of ALHAT’s guidance algorithm
provides a solution to the variable thrust two-point boundary value problem for the minimum control e�ort
solution. However, unlike the D’Souza algorithm, the ALHAT algorithm has practical constraints placed on
it for things such as the initial trajectory shape, the vehicle’s attitude, the touchdown glide slope, control
system implementation, and the rate that commands are output. With these constraints removed, the
optimal solution to the unconstrained variational problem is precisely that of an optimal linear pro�le for a
given approach time. This is the same solution as derived by D’Souza. It should be noted, that unlike the
general analytical optimal planetary landing law, there are no useful parameters to tune for this algorithm.
Therefore, when obtaining the baseline robustness index, it is not tuned (optimized).

V. Using the Baseline Robustness Index in Algorithm Selection

As an example application of the baseline robustness index during the conceptual design process, consider
the selection of the propulsive terminal descent algorithm for a robotic lander on the Moon. For this
application it is desired to achieve a soft landing at a desired landing spot. However, it is recognized
that mass may become a larger driving factor in the design than precision landing capability. Hence, two
algorithms are under consideration, the non-targeted gravity turn guidance law and the targeted general
analytical optimal landing law.

A. Objective Function De�nition

Based on the selection criterion described above, the metrics of interest are: the mass of the propellant used
during the descent (mprop) and the landed state accuracy (k rf � rt k and k vf � vt k). Therefore the
objective function is of the form

J = �1mprop + (1� �1)
p

1� 10�3 k rf � rt k + k vf � vt k (27)
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where the weight on the propellant mass, �1 is varied parametrically in order to gauge the impact of the
precision landing capability on the landed mass. With values of �1 less than 0.5 there is a bias towards
landed accuracy, while values greater than 0.5 biases the objective towards propellant mass.

B. Problem Parameters

For the analysis, it is assumed that the dispersions shown in Table 5 can be used. The three di�erent
variable distributions used are denoted as follows: (1) uniform (U(xmin; xmax)), (2) Gaussian (N (�; �2)), and
(3) triangular (T (xmin; xmax; xmode)). Notice the uncertainty in the landed position e�ectively represents a
map-tie error, that is, an uncertainty in the mapping of terrain features to the inertial position.

Table 5. Parameters used in the analysis.

Parameter Nominal Value Distribution Units

rplanet 1,737,100 - m

� 4:9027779� 1012 T
�
4:80472� 1012; 5:00083� 1012; 4:9027779� 1012

�
m3/s2

rt (1; 746; 660 0 0)
T

(N (1; 746; 660; 0) N (0; 100) N (0; 100))
T

m

vt (0 0 0)
T

- m/s

r0 (1; 738; 000 0 0)
T

(N (1; 738; 000; 100) N (0; 500) N (0; 500))
T

m

v0 (�173:2 100 0)
T

(N (�173:2; 100) N (100; 100) N (0; 10))
T

m/s

m0 300 U(298; 302) kg

Isp 218 U(345; 355) s

C. Results

Using the analysis framework on each of the algorithms the results shown in Figure 7 were obtained.

-35

-30

-25

-20

-15

-10

-5

0

0 0.2 0.4 0.6 0.8 1


(J

)

1

D'Souza Gravity Turn

-5

0

5

10

15

20

25

30

35

40

45

0 0.2 0.4 0.6 0.8 1

P
er

ce
n

t 
D

if
fe

re
n

ce
 B

et
w

ee
n

   
   

   
   

   
   

   


G

ra
v

it
y

 T
u

rn
(J

) 
an

d
 

D
'S

o
u

za
(J

)

1

Figure 7. Robustness index variation with importance of propellant mass, �1

As is expected, there is a crossover between the two algorithms depending on the signi�cance on the landed
accuracy, with a crossover point occurring when the propellant mass is � 133% more important than the
landed accuracy (i.e., �1 � 0:7). With the robustness index presented parametrically, it allows the designers
the 
exibility to choose the guidance algorithm based on what they feel the current design drivers are while
retaining information regarding the performance at other conditions. In this instance, with the general
analytical optimal planetary landing law’s robustness baseline being no worse than 1.3% di�erent than
gravity turn’s robustness baseline index across the range of �1 investigated, it would be to the designers’
advantage to downselect to the analytical optimal planetary landing law for development for the metrics of
interest considered in this application.
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VI. E�ect of Guidance Algorithm Maturity on the Baseline Robustness Index

Using the analysis framework described, the e�ect of the maturation of a propulsive terminal descent
guidance law was also investigated. Coupled with this analysis is a sensitivity analysis of the size of the
Monte Carlo as well as whether or not the methodology is able to achieve a known minimum.

A. Approach

Two of the propulsive terminal descent guidance algorithms described above|the general analytical optimal
planetary landing law as well as the ALHAT terminal phase algorithm, were used in the analysis of the impact
of algorithm maturation. As previously described, these algorithms demonstrate a natural progression from
the theoretical development of an algorithm (the general analytical optimal planetary landing law) to an
algorithm that takes into account practical considerations and is e�ectively 
ight ready (ALHAT’s terminal
phase). The general approach to these analyses is outlined below

� Develop a set of common metrics of interest for the problem
� Using these metrics of interest, develop appropriate weights for each metric, in order to form an

objective function
� Using the ALHAT DAC2 vehicle and dispersions, obtain each baseline robustness index using

{ The general analytical optimal planetary landing law, for three di�erent Monte Carlo sizes|500
samples, 1000 samples, and 1500 samples

{ The terminal phase of ALHAT’s algorithm for the 1000 case sample size

With these data, the performance of the optimizer coupled with the baseline robustness index, the sensitivity
to Monte Carlo size, and the e�ect of algorithm maturation can be analyzed.

B. Objective Function De�nition

The three objective functions used in this analysis are listed below:

1. J = mprop

2. J = 0:25 k rf � rt k +0:25 k vf � vt k +0:5mprop

3. J = 0:25 k rf � rt k +0:25 k vf � vt k +0:2nlines + 0:3mprop

These three objective functions were chosen with the overall objective of the investigation, to incorporate
non-performance based metrics of interest into the analysis of guidance and control algorithms. The �rst
two objective functions are purely performance based objectives, whereas the third includes a measure of
algorithm complexity. Additionally, for the general analytical optimal planetary landing law algorithm, each
of the objective functions have a known deterministic solution, namely � = 0.

C. Problem Parameters

The vehicle parameters (m0 and Isp) listed in Table 6 correspond to those of the ALHAT DAC2 vehicle.
Note that the initial and target states are chosen arbitrarily based on those used by D’Souza in his example
application problem.4 For shorthand, the di�erent variable distributions used for the dispersions are identi�ed
as: uniform (U(xmin; xmax)), Gaussian (N (�; �2)), and triangular (T (xmin; xmax; xmode)).

D. Results

Using the analysis framework on each of the algorithms the results shown in Table 7 were obtained. In Table
7, the column denoted as \D’Souza" corresponds to the general analytical optimal planetary landing law
and the column denoted as \ALHAT" corresponds to the ALHAT terminal phase algorithm. Considering
the performance of the optimizer on the SNR, the results show that increasing control e�ort (i.e., � > 0)
will improve robustness (less variation in the response). This is expected as increasing the control e�ort
reduces the dispersion in the landing state error. For each of the objective functions, it is seen there is very
little sensitivity to the size of the Monte Carlo simulation. In particular, the tuned baseline robustness index
varies by less than 0.1% for all cases examined. Maturing the algorithm also did not signi�cantly alter the
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Table 6. Parameters used in the analysis.

Parameter Nominal Value Distribution Units

rplanet 1,737,100 - m

� 4:9027779� 1012 T
�
4:80472� 1012; 5:00083� 1012; 4:9027779� 1012

�
m3/s2

rt (0 0 rplanet)
T

- m

vt (0 0 0)
T

- m/s

r0 (152; 400 30; 480 1; 752; 340)
T

(N (152400; 100) N (30480; 100) N (1752340; 10))
T

m

v0 (�914:4 0 0)
T

(N (�914:4; 0:01) N (0; 0:1) N (0; 0:8))
T

m/s

m0 32,240 U(32456; 34024) kg

Isp 446.9 U(444:9; 448:9) s

Table 7. Analysis results.

D’Souza ALHAT

Objective Function N � �(J) �(J) % Di�erence

J = mprop 500 0.3834 -77.4275 - -

J = mprop 1000 0.1738 -77.4135 -77.6197 0.266

J = mprop 1500 0.1731 -77.4134 - -

J = 0:25 k rf � rt k +0:25 k vf � vt k +0:5mprop 500 12.5032 -71.3856 - -

J = 0:25 k rf � rt k +0:25 k vf � vt k +0:5mprop 1000 16.4777 -71.3959 -71.5817 0.260

J = 0:25 k rf � rt k +0:25 k vf � vt k +0:5mprop 1500 12.0278 -71.3894 - -

J = 0:25 k rf � rt k +0:25 k vf � vt k +0:2nlines + 0:3mprop 500 13.8326 -66.9603 - -

J = 0:25 k rf � rt k +0:25 k vf � vt k +0:2nlines + 0:3mprop 1000 16.8814 -66.9731 -68.6076 2.441

J = 0:25 k rf � rt k +0:25 k vf � vt k +0:2nlines + 0:3mprop 1500 14.7131 -66.9655 - -

robustness of the algorithm. Due to the constraints maintained in the algorithm, slightly higher propellant
usage (� 2%) is observed across all of the cases. A major penalty is taken for the the number of lines of code
for the ALHAT algorithm since the algorithm’s code contains approximately two orders of magnitude more
lines of code than that of the theoretical algorithm. It is important to recognize, however, that the number
of lines of code is directly related to the maturity of the algorithm. Therefore, if desired by the stakeholders,
a factor accounting for the maturity of the algorithm could be included in the objective function, which
would o�set the tremendous penalty seen in this example.

VII. Altering the Analysis Framework for Control

Since control algorithms are typically designed to follow a desired acceleration pro�le, as opposed to
command an acceleration pro�le, slight modi�cation to the analysis framework is necessary. As the framework
is setup, the commanded acceleration function can remain the same or be changed to give an acceleration
pro�le solely as a function of time, (i.e., a(t)). Assuming this modi�cation has taken place, an additional
function should then be added to interpret the desired acceleration slew and apply the appropriate vehicle
dynamics. This function has combined control and vehicle dynamics functionalities since the output from
this block is an actual acceleration imparted on the vehicle from the control subsystem, ac, which is then
interpreted as if it were a command from guidance. These modi�cations are outlined in Figure 8.

VIII. Conclusions and Future Work

A methodology that identi�es a baseline robustness index for both guidance and control algorithms
has been developed. The baseline robustness index allows equitable comparison of various guidance and
control algorithms in a dispersed environment and is capable of including multiple classes of algorithm
metrics (complexity, consistency, and performance) in the assessment process. The baseline robustness
index employs concepts concepts from robust design, in particular the SNR and MSD, and allows for tuning
of the parameters in the algorithm in order to maximize the performance of the algorithm (for an equal
basis of comparison). The implementation of this methodology for both guidance and control applications
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Figure 8. Analysis structure changes required for analyzing control.

has been discussed as well as two example applications provided. The �rst design example emphasized
the use of the baseline robustness index in the selection of a propulsive descent guidance algorithm for
soft-landing on the Moon’s surface. This example showed the parametric nature of the robustness baseline
index and the how a di�erent algorithm may be selected should there be a di�erent emphasis in the same
general formulation of the objective function. The other example evaluated an immature algorithm (the
general analytical optimal planetary landing law) and a more mature version of the same algorithm (the
terminal phase of ALHAT’s terminal descent guidance law) to three di�erent objective functions, which
were comprised of both performance and complexity metrics of interest. It was seen that the specialized
performance of the mature ALHAT algorithm only slightly compromised the performance relative to each of
the objective functions considered. Additionally, it was observed that the results were relatively insensitive
to Monte Carlo sample size.
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