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Over the past decade, the space industry has incrgagly recognized the need for new
systems to be designed for flexibility, or the capmlity to be easily modified in response to
changes in future requirements or environments. Dspite widespread interest, however, the
state of the art in designing flexibility into spae systems today remains limited. To address
these limitations, this paper presents the basis @ quantitative, stochastic, multi-objective,
and multi-period framework for integrating flexibil ity into space system design decisions.
Central to the framework are five steps that (1) déne configuration options and transition
costs, (2) define a stochastic model for mission mi@and environment changes, (3) link
configurations and demand environments via quantitiive performance metrics, (4) identify
Pareto-optimal configuration paths and decision paties, taking advantage of efficient multi-
objective Markov decision process techniques, and) utilize these path and policy results to
inform initial system selection. The framework isapplied to a realistic example in which
design decisions are suggested for a hypotheticalutti- or distributed-payload satellite
system. The application illustrates how flexibiliy-informed trades can permit selection of a
satellite system that most effectively responds tmcertain future demands.

Nomenclature

A = set of available actions or decisions s = particular total state
a = particular action or decision T = total number of time periods in time horizon
b = per-period budget level t = currenttime period
C = total cost transition matrix u = system utility
Cij = element of total cost transition matrix w = weight on the!" objective
Ciev = development cost transition matrix yi = per-period™ objective performance
Cec = recurring cost transition matrix a = transition cost budget threshold
G = set of available next-period positions £ = multiplicative discounting factor
g = set of zero-cost next-period positions y = ftransition cost
h = aggregate per-period objective function 1 = reference system index
J = cumulative aggregate objective function x = reference time period index
Q = demand environment state random variable A = next-period system index
M = number of objectives o = current operating/demand environment state
N = number of candidate next-period systems ¢ = prior operating/demand environment state
n = objective function power &, = number of transitions available from Config.
p = conditional state transition probability x = starting position
S = set of all total states ¥ = next-step position
[.  Introduction

VER the past decade, the Department of DefensaepiNdtAeronautics and Space Administration (NASA),

and other organizations with substantial stakeparce systems have increasingly recognized the foeecbw
spacecraft and space architectures to be designdééxibility, or the capability to be easily mdiéd in response to
environments or requirements that may materialipaths or years after these systems are fieldecteriRénigh-
profile examples include the Defense Advanced RekeRrojects Agency (DARPA) System F6 progtdnwhich
seeks to demonstrate the flexibility of a wirelgssbnnected cluster of free-flying satellites, asllvas the U.S.
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Human Spaceflight Plans (Augustine) Committee’sxiible path” option for the future of U.S. humarasgflight,
which seeks to enable human mission options taiatyaf inner solar system destinations.

In general, this desire for flexibility is drivery lan acknowledgement that future demands and extp@ts on a
space system cannot be predicted with certaintyd-aarealization that accounting for this fact dgrearly system
design phases could result in important designsaets that might otherwise be overlooked. Ultimatiexibility
could prove critical to a system’s ability to effieely respond to uncertain future events, whethese events take
the form of mission-jeopardizing risks (e.g., fatedlites, physical or directed energy attack, progfunding cuts,
or decreases in user demand for services) or migsibancing opportunities (e.g., increases in dsemand or
program funding). However, posing this problemmjitatively is challenging. Today, the objectivigflexibility is
frequently considered only qualitatively during idesand system selection processes. Occasiomplbntitative
analysis is conducted but tends to be determinisigle-objective, and/or limited to consider oohe future time
period. In contrast, most practical system desgigiblems are non-deterministic, concerned withglegs among
competing objectives, and concerned with perforreameer multiple future time periods. The questiemains:
How can space systems engineers and decision-majstesnatically, quantitatively, objectively, anéggmatically
consider flexibility in the design of a new spaygstesm?

To contribute a further step toward developmenthis area, this paper presents the basis of a itpiarg,
stochastic, multi-objective, and multi-period framoek for integrating flexibility into space systemesign
decisions. Central to the framework are five steps model the systems and decisions of interestsabsequently
provide multi-period and multi-objective decisionpport. The framework itself draws from literataed tools
within the fields of industrial engineering, aerasp engineering, and economics in order to operatodefine
flexibility and transform its consideration intdractable problem of stochastic optimal control.

This paper is organized as follows: Section IiMutes highlights from the academic literature @xibility and
state of the practice in designing flexibility iné@rospace systems. Section Il introduces thieps proposed
framework, and Section IV illustrates the framewsr&pplication in the context of a distributed-pmd defense
satellite system design decision. Section V cbates a concluding discussion.

II.  Flexibility Literature Highlights and State of the Practice

The Merriam-Webster Dictionary defines flexibiligs the “ready capability to adapt to new, differemrt
changing requirements.” This paper adopts a similar definition, namelgttfiexibility is the capability to easily
modify a system after it has been fielded in respdao a changing environment or changing requirdmgafi. Ref.
6). Central to this notion of flexibility are theorditions that (1) a system’s environment or reguients may
change in the future and (2) the system can, toesdeagree, be modified to accommodate such chaidés
definition also includes the notion of ease of rfiodtion: All else being equal, one system is mitegible than
another if it takes less effort or fewer resourte@ccomplish the same change. These basic centmpt a
common thread within the past century’s historyhafught on flexibility; however, only within the gladecade has
the aerospace engineering community begun to deglantitative methods for considering this propémtthe
context of system design decisions. This sectivmeys from past literature on flexibility, hightigng important
concepts from the fields of economics, industnmajiereering, and aerospace engineering.

A. Early Economic Notions of Flexibility

Some of the earliest discussions on flexibilityainlecision-making context originate in the econartiterature.
As early as 1921, economist Frank Knight observyest, tcompared to agricultural production, whichuiseg
commitment at the beginning of each growing seatbensupply of manufactured goods “is more flexiler short
periods of time” since these goods can be storddtzndecision about whether to bring them to tlaeket can be
delayed’ Sixteen years later, Hart recognized that thépeoement of decisions is a normal occurrence and
preserves flexibility in a business pfarHowever, he also recognized that this flexibitignerally comes at a cost:

The entrepreneur’s fundamental means of meetingrtainty is the postponement of decisions till
more information comes in — that is to say, thes@reation oflexibility in his business plan. But
flexibility involves costs ... ordinarily a given pitaction-schedule can be produced at lower cost
if the entrepreneur has adapted his input to it weddvance than if plans are improvisBed.

In 1939, Stigler developed economic thought onilfliéity somewhat further. He too recognized théeXibility
will not be a ‘free good® but also illustrated how a flexible plant mightveaa smaller variability in average and
marginal costs as a function of output compareghtmmflexible plant.
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In 1964, Koopmans reiterated the relevance of Biéky by observing that “almost all choices ocdog in real
life are sequential, ‘piece-meal,’” choices betwedternative ways of narrowing down the presentlystixg
opportunity rather than ‘once-and-for-all’ choidestween specific programs visualized in full det4ill Koopmans
introduced the notion of “partitioning of opporttias” which, as shown in Fig. 1, modeled the namowof
opportunities with time as a tree of opportunitge® spaced at discrete times in the future. Koaghpartitioning
of opportunities resembles decision tree analysispduced in the late 1950s and 1960s within ttoader field of
decision analysi$' ™" Decision tree analysis has been used substaritiaiiyanagement, economics, and engineering
contexts (for examples, see Refs. 16-21), typidaliythe cases
in which a user’s objective is minimization or makation of
the expected value of a single profit, cost, olitytmetric. A
common drawback of the approach is that the arsalgsid
even simply populating the tree’s probability ingutcan
quickly become unwieldy as the number of optiond &ime
periods grow into a “decision bush” rather thandecision
tree” 2! Also, typically the focus of decision tree anyis
on valuating existing options rather than recomnremevhich
options should be embedded into the system iniffall
Nevertheless, recognition that the options provideg
flexibility can be visualized in a rapidly-expandintree
structure provides a highly useful model for distois and
thought. It also hints that dynamic programminghteques,
which are well-suited to optimizing paths withintwerks of

nodes, may be particularly useful in analysis eXibility. Figure 1. Visualization of Koopmans’
partitioning of opportunities *°.
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B. The Two-Period State-Centric Notion of Flexibility

A second and largely separate body of literaturedonomics and industrial engineering considepshiity
within a framework of period-to-period transitiohstween options in a state-space. Epitomizing (e is a
paper written in 1984 by Jones and Osfteyhich suggested, “Flexibility is a property oftial positions. It refers
to the cost, or possibility, of moving to varioexend period positions.” The authors also sugde%@ne position
is more flexible than another if it leaves avaitahl larger set of future positions at any giverell®f cost.” This
was mathematically formalized with Egs. (1) and (Ep. (1) define$(y,0,a) as the set of next-period positions
attainable from positiory at a costy that does not exceed some valyein the context of some stateof the
operating environment. Eg. (2) formalizes thatitpms y is more flexible thary' (denoted by >¢ ') if the set of
positions attainable froppalways contains the set attainable frgexcluding the zero-cost option to stayin

G(r.0.a)={y :y(x.w.0)<a} 1)

x> 1 when
G(r.0,@) > Glx' o.a)\g(r)

Thus, an important recognition in Jones and Ostrayork is that the relative flexibility of two pogins is
budget-dependent (or resource-dependent). Farfauité budget, two positions would be equally flig because
each can reach the same set of [all possible]dytositions. At lower budgets, this may not betridowever, Eq.
(2) has a limitation: It defines relative flexiibyl only for the case where the set of second-pepiositions fromy’'
is fully contained within the set of second-perpmsitions fronmy. No conclusion can be drawn if one of the sets is
not fully contained within the other. This is appriate in principle, as the positions availableniry' that are not
available fromy may be very important (e.g., may perform partidylevell in meeting a particular new requirement
or environment), and it illustrates the need tosoder more than cost when making decisions regarftemibility.

Other works which have advanced similar state-zefrsmeworks for considering flexibility includeh@stian
and Olds*? Gupta and Rosenhe&tBaykasglu®’, Silver and de Weék?® and Mandelbaum and Buzacftt In
general, these frameworks and others of this eeséelpful because they provide a visualizatiothefconcept of
flexibility itself (as opposed to the value of flbitity), which is intuitively related to the numbef options that
exist for a system over time. However, these fnaanks tend to be difficult to visualize and appbr flecisions
consisting of more than two periods.

(2)
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C. Flexibility in Aerospace System Design Literature

Recently, the Department of Defense, NASA, andro#feeospace organizations have increasingly engaahsi
the need for new aerospace systems to be designéiexibility. High-profile examples such as DARRB System
F6 program and the Augustine Committee’s “flexipleth” option for human space exploration have sk
number of studies within the aerospace acadersiatiire.

Ross, Viscito, and Rhod®s? propose the analysis of flexibility in terms obeps and eras, where an epoch is a
time period of “fixed context and fixed value exions® and an era is a time-ordered sequence of epd@hse
an era is defined, Ross and Vistitpropose quantifying flexibility via a metric callevalue-weighted filtered
outdegree (VWFO) as defined in Eq. (3). In thisaipn,u;*** indicates the utility of system design optibiin
epochk+1, andArc, ;" is a binary 0 or 1 depending on whether the ttemmsis possible for a given budget. As a
result, systems with many high-utility next-epoctext-period) options and few low-utility next-epooptions
receive high VWFO scores. However, this metric $@mse limitations. First, the use of the signumcfion in the
summation of Eq. (3) permits a system with manyhiglity options and correspondingly many low-ifiloptions
to have a VWFO indistinguishable from one with omlgdium-utility options. Second, VWFO is compufesm
epoch to epoch, making it difficult to assess foreatire era. Finally, the metric convolves trexibility with the
value (or utility) of that flexibility, preventinghe two from being distinguished. However, theroetontributes a
clear example employing a two-period state-cemitcept of flexibility, including use of a budgenstraint.

VWG = S arfus - u ) A ®)
N-15 '

Greater depth on the flexibility problem was codeie theses by Saléhand later Mark and Nilchiant*. In
2002, Saleft extensively motivated the need for flexibility Bpace systems and examined its definition, in
particular contrasting it against the more statapprty of robustness. Specific examples wereigeobto illustrate
the need for flexibility in modern space systenmgluding instances of historical requirements cleangarket
demand change, and obsolescence. Saleh appliedigees from decision tree and real options argalysi
demonstrate the existence of net-present-valueraptilesign lifetimes for revenue-generating saéslliand used
these techniques further to quantify the valueatélite servicing.

In 2005, MarR® further explored flexibility for the example of ammanned aerial vehicle. Mark proposed
considering flexibility in the context of platformend frames, where a platform is the set of commlements
between modified designs and a frame is a setaigdd elements. Mark proposed to define flexibdi “the ratio
of performance enhancement (output) to the costtamel required to realize such an enhancement )pt
Later in 2005, Nilchiarif proposed a 12-step process for assessing the oBflexibility in a space system, which
included using decision trees as well as creatifftpzibility tradespace” for visualizing alternags’ cost-revenue
(and/or cost-benefit) trades one period into thterki Nilchiani also addressed how the proposethodelogy
could be integrated into a multi-attribute tradepexploration in a methodology named FlexiMATE.

In 2009, Lin?>* also proposed a general approach to design emo|ubcusing on aircraft and using example
applications of evolving the F/A-18 Hornet fightes well as a simpler cantilever beam design. Ldopted the
framework of stochastic programming with recourseorder to optimize the initial design of a systerile
probabilistically considering events that couldaldfone period in the future. Lim suggested a doatipn of
deterministic scenario-based optimization, stoébgsbgramming, and interactive decision suppaootsd@o design
evolvable systems using a 9-step process namedvEzoL

The work of Christian and OI#f§” is another recent example of aerospace literatomsidering flexibility. In
their work, Christian and Olds describe flexibilityterms of a system’s ability to move betweerfedi#nt end states
in a lawful state space. An example applicatioalwates two competing human exploration architestim terms
of their ability to easily achieve extended lunaissions. Three state variables describe the pedioce
requirements of the extended lunar missiand a Difficulty Scale for Evolvability Analysi®SEA) is formulated
to permit expert judgement to rate the difficulgn(a 1-3-9-27-81 scale) of evolving each architrecto meet
various second-period performance states. Theeutbserved that “a single metric cannot captueesensitivity
of an architecture’s capability to evolve” sincattikapability depends on the final evolved stad¢ ithdesired.

Finally, in 2006, Silver and de We€k® proposed an analysis of evolvability based on esjpm of a network
of system operating and switching costs througlers¢wime periods. A set of deterministic exogendemand

" Contrary to Jones and Ostroy, whose state-spausitiqms” appear to refer to future options, thatestspace of
Christian and Olds is defined by therformanceof those future options.
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scenarios was assumed, and an optimizer was udied tihe least-cost path through the network fachescenario.
The method was referred to as a time-expandedideaigtwork (TDN) and was applied to selection dfASA
heavy-lift launch vehicle. One notable limitatitmthe method is its single-objective and deterstiniapproach:
Since the exact present and future demands of sesmario are known in advance to the decision-méier
optimizer), paths through the time domain are &blfeilly specify an optimal solution. No expli@bnsideration is
given to the possibility that a decision-maker wikike choices in part to hedge against uncertaimdievents.

D. Flexibility in Aerospace Engineering Practice: An Ekample

In May 2005, NASA Administrator Michael Griffin camissioned the Exploration Systems Architecture $tud
(ESASY’ to recommend an architecture to support sustaingdan and robotic lunar exploration. In its trade
studies, ESAS used five categories of figures ofitmene of which was Extensibility/Flexibility. Whin this
category were considerations of lunar mission figxy, Mars mission flexibility, extensibility t@ther exploration
destinations, commercial extensibility, and natiosecurity extensibility. ESAS characterized thdéssibility
considerations in terms of qualitative

high (green), medium (yellow), low (red’ e EELV-derived CLV e
ratings based on expert judgement. O New Upper Stage Allas P1as22 | New Upper Stage
example of these qualitative ratings fc Human-Rated Human-Rated
an evolved_expendable launch ve_hlc Probability of Loss p— " — —
(EELV) derived crew launch vehicle of Crew :
(CLV) is shown in Fig. 2. it 1in 149 1in79 1in134 1in 172
_ Aside from the primarily academic Lunar Mission Flex-
literature surveyed above, the ESA ibility
methodology largely reflects of the staf e
of the practice in designing for syster |roms Commercial
flexibility today. The approach has Eﬁfgﬁ;‘l’ggcumy
pos_iti_v_e quali;ies in that it consider: Extensibility
flexibility during conceptual design Cost Risk _
process, and it does so with th Schedule Risk

iy - Political Risk
recognition that erX|b|!|ty_ must be DDTAE Cost 118 235 173 103
traded against other objectives such Facilties Cost 0.92 0.92 0.92 0.92

cost. As a result, this approach

amenable to application of standai Figure 2. Sample summary of figure of merit ratingsfor concepts

; 37 it ;
multi-attribute decision-making in the ESAS report.”* Note the qualitative red/yellow/green ratings

techniques. However, this approach h... for flexibility.

disadvantages in its subjectivity and its use bikart-like qualitative scale with no physical usit This inhibits the
analysis’ repeatability and allows substantial rdonresults to be disputed. More fundamentalig method treats
flexibility as a scalar metric of the same class@st or performance; however, it might reasonalelyargued that
the decision-maker does not care about flexibit#glf (in whatever units one chooses for it), tather cares about
the effectsthat designed-in flexibility may have on futurestor performance.

E. Gaps in the Literature
This section has surveyed a broad set of engirgeerid economics literature; in the process, cegajs have
become evident in current thinking on flexibilitychin current methods to consider this propertgystem design:

= In much of the literature, there appears a tendéorcgngineers to consider flexibility as a system-
dependent scalar quantity. This concept has drikeninvention of numerous scalar measures for
flexibility that are often subjective and expressed a scale with no units or clear physical
interpretation. Further, when or if these measaresused in trade studies, they imply that fldxjbi
is a property of the system separate from all sthguch as cost and performance measures).
However, the decision-maker likely has little ietgrin flexibility for the sake of flexibility: Hg she
cares about flexibility primarily because of coatigperformance benefits it may enable in the future

= Few existing methods for considering flexibilitynsimler more than one period in the futurghile
considering one future period is an important fg&p, it is only one period less myopic than the
traditional single-period horizon. If a systempryogram is to be operated for many decades (as is
often the case in the aerospace industry), theeptudecision-maker cares not only to consider aptio
for the first time that requirements or environnsettiange, but also for many subsequent changes.
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= Furthermore, of methods that do consider implicadiof flexibility more than one period into the
future, few utilize stochastic modelsSome methods assume a deterministic scheduleitofef
requirements, while others select a handful of ri&it@stic scenarios upon which to evaluate the
system of interest. However, the probability ofyame scenario occurring may be nearly (or, if
continuous random variables are involved, exaa®rp. Without an understanding of the underlying
probabilities of transition between demand or reguent environments, it may be problematic to
assume a handful of scenarios can properly représerntire space of possible futures.

= While some existing methods (such as decision )ineesnit valuation of the avenues of flexibility
provided by a system, they typically operate byiasreg a single expected-value objective function.
In reality, engineering design involves trades agamultiple cost and performance metrics as well as
measures of dispersion for these parameters whigigduo a stochastically changing environment.

= Finally, the flexibility literature contains littleliscussion about the policies that flexible system
operators need use to decide whether to exeraseptions provided by flexibility. Some appear to
assume that the appropriate policy is to alwaysifypdte system to precisely meet the anticipated
demand or requirement. However, this is a vergigpease, and it may be in the program’s best
interests not to meet this demand if it is likedybie transient, or to over-perform if doing sakelly to
boost performance in a later period of high demaFtte policy by which the system will be operated is
an important part of system design, especiallyaffiexible system.

In summary, today there exists no quantitativectststic, multi-objective, and multi-period framewdior
integrating flexibility into space system desigrcidmns. It is such a framework that this pap@ppses, drawing
from literature and tools from industrial engineggiaerospace engineering, and economics in avdgydrationally
define flexibility and transform its consideratimro a tractable problem of stochastic optimal oalnt

lll. A Markovian State-Space Flexibility Framework

The gaps in the present literature listed in Sactide suggest that at least four components atealrfor a
decision framework that integrates flexibility inépace system design decision-making: First, ehassic model
for the evolution of system demand over multiptediperiods must be developed; such a model mustibesvhat
a system may be expected to accomplish (or whatsidn-maker may be rewarded for performing) m fiiture.
Second, a set of candidate system designs or coafigns must be developed that is valid for migtipme periods
in the future; this describes the future optionailable to the decision-maker and is suggestechbytwo-period
state-centric notion of flexibility in the literatel Quantitative performance measures are reqtoregialuate how
well the configuration that is fielded at a givéme fulfills the demand or mission requested oifitsome scenarios,
multiple performance measures will be required &ptore trades among multiple objectives. Finadlyce
decisions regarding which system(s) to develop #&ld next must be made at multiple future timeipes, a
process must exist for integrating flexibility caterations into these decisions in an easily imetgble manner.
Since the framework developed
in this paper is intended to bt  suctem Under Development
used by decision-makers facin ” 1| 1| ”
an immediate system selectio f) = =
problem, of particular interest i< .
identification of the best
system(s) to develop and fielc ’
initially. These components art Il Il 1 ||

Sequential Decision Support

illustrated graphically in Fig. 3. (How) Two-Period, State-Centric Notion of Flexibility
To accommodate  thest
requirements, this paper presen Quantitative . .
a framework consisting of five oo Performance Multiple Future Periods

Measures I I

basic steps, outlined in Fig. 4
First, system configuration (Wh at) Stochastic Demand Environment Modeling
options are identified and cost:
of  switching  from one @ o @:t-1 Q@:->2 @:-: @:t-4 ®:-:
configuration to another are

compiled into a cost transitior Figure 3. Critical components for decision framewoks addressing gaps
matrix.  Second, probabilities in flexibility literature.
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that demand on the system wil
transition from one mission to Define Configuration

another are compiled into ‘ Options and Cost
Transition Matrix

Define Markovian Demand
‘ Environment Evolution

mission demand Markov chain
Third, one performance matrix fo
each design objective is populate
to describe how well the identifiec

system configurations perform ir Define State-Dependent ‘
. e .. Performance Matrix
each of the identified missior -
demand environments.  Fourtr U | _______ Decision Support Analysis
possible future sequences ¢ _ .
! . Analysis Analysis
system Conflguratlons are QOption A Option B

simulated and sequences that a
Pareto-optimal in terms of the

|
|
|
|
|
iQj ’ . : “Open-Loop” Paths “Closed-Loop” Policies
decision-maker’s objectives art : P p ‘ p
|
|
|
I

using Markov Decision

Find Pareto-Optimal Find Pareto-Optimal
Process Techniques

identified. In a complementary
approach, the system decisio
problem is formulated as a multi
objective variant of a Markov
decision process, and Paretc
optimal decision policies are

—— e = = =

. . . |dentify Path and/or Policy Commonalities
identified. Finally, the paths anc to inform Initial System Selection ‘

policies from the latter step art
synthesized into a set of data t
inform initial system selection.

Figure 4. Five major steps of this paper’s framewdk.

IV.  Application: Design of a Distributed-Payload Satdite System

To illustrate this framework in a step-by-step memnhis paper poses a realistic example applicatiovhich
design decisions must be made for a hypotheticéti4payload Department of Defense satellite systéviotivated
by the distributed-payload monolith concept recagdi by the DARPA F6 program (e.g., see Refs. 39-#B
following application illustrates how flexibilityalated trades can be quantified for this basidifraated spacecraft
concept. Of particular interest is the answeh#fbllowing question: How can a systems engine@mnalyst select
the design of the satellite system initially subhttit can optimally (or Pareto-optimally) respaiodthe uncertain
future demands that may be placed upon it?

A. Step 1: Define Configuration Options and Cost Tragition Matrix

As noted in Section 11.B, in 1984 economists Joaes Ostro§® suggested, “Flexibility is a property of initial
positions. It refers to the cost, or possibilit§,moving to various second period positions.” &mviews are
supported elsewhere in the literature. Thus, &tepthis proposed framework begins by defininghatvare the
possible “positions” of this satellite system?

1. Defining the Configuration Space

This paper’s framework proposes that the “positi@isin engineering system are its possible coméigans, or
its possible design options. This choice for thsiton definition has the reasonable implicatibattgiven enough
resources, the engineer or decision-maker can ehtodield any particular system configuration f@ at any
particular “position”) in the future.

What it is that precisely defines these configoradi is application-specific. In the case of thistributed-
payload satellite system application, supposettimtecision-maker has the option of utilizing apghree specific
payloads in any current or future system desigdae payload (PL1) provides detection of distresagmissions,
another (PL2) provides high-bandwidth communicatjoand a third (PL3) provides high-resolution imgge
Assumptions for mass, power, and pointing requiremr these payloads are shown in TableConsidering that
these three payloads can be distributed among tipée on-orbit modules and that not all three gag$ need be

* This list of payloads is limited to three for damstration purposes only and can easily be increfisedecision-
maker wishes to consider additional candidate paldo

7
American Institute of Aeronautics and Astronautics



included in the system design (i.e., that omittpayloads is a valid Nothing
consideration), there exist 15 distinct configumatioptions. These
configurations are represented graphically in Bigand, as noted in
previous worf®, can be decomposed into subsets of configurati
described by Bell numbers. Starting from the botteonfigurations
11-15 represent all possible ways of distributimgé payloads amonc
between one and three modules (i.e., from monolitta fully
fractionated).  Configurations 5-10 cover all pbksi ways of
distributing combinations of two payloads amongtapwo modules.
Configurations 2-4 are the single-payload satedljigtem options, and
Configuration 1 indicates the option to field neteyn at all. 10
Even at this early point in the process, enumaraticthe designs
within the configuration space reveals two extreimespproaches for 11
evolving the system to meet future needs: The mmgtular (but in
the long term, potentially costly) approach woull tb launch new 12
single-payload modules as new payloads are neefledbust (but in 13
the short term, potentially wasteful) approach wobé to launch a
single spacecraft with all three payloads, bettimat all capabilities 14
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will eventually be required. A number of approaxtall between 15 - L3

these extremes, and an important goal is to fired ldhst possible

sequence of configurations over the system'’s tiorezbn, given the Figure 5. Possible system
uncertainty in future demand or requirements. @©hahe most configurations. Each distinct
important results of this search is eventual idieatiion of the best rectangular block represents a free-
possible initial design (i.e., what the decisionkerashould build at flying module. The payloads inside
the start of the program). each module are indicated in gre

Table 1. Assumed payload characteristics for exang design??“®

Payload Payload Flight Mass Power RepoL:ir;teI:rrlgent
No. Description Heritage (kg) Requirement (W) % deg.)
1 Search & Rescue Repeater NOAA-N 24.0 53 1.00
2 LEO Transponders Orbcomm 8.4 10 5.00
3 High Resolution Imager NigeriaSat-2 ~ 41.0 55 0.01

2. Defining the Cost Transition Matrix

Recalling that flexibility “refers to the cost, possibility, of moving to various second period ifoBs to
proceed it is necessary to incorporate cost inftioman addition to information on the compositioheach system
configuration. For space systems, these costsalpiconsist of development and operations coskere,
operations costs will refer to the total costs megfuito operate the currently-fielded configuratmrer the coming
time period. Development costs will refer to tlotat costs required to design, develop, producd,laanch the
components needed to transition from the currenfigaration to a new configuration over the comiimge period.

In this scenario, suppose the decision-maker eriemtiia decision point every 30 months. At thesatpoa
decision must be made regarding which of the 1Esysonfigurations to develop and then field 30 thsriater.
Demand for payload services in each 30-month ojpastperiod is uncertain a priori and materializdter
development, with the possibility that it will thehange in subsequent period (see Fig. 6).

Thus, the decision-maker has control over the sysianfiguration but not the demand environmeneahdime
step. However, at each decision point, the corilral the decision-maker chooses to exercise comascartain
cost. For example, if the decision-maker is atsheond decision point and has Config. 2 alreadgroit, in order
to transition to Config. 8 he/she would need toespthe appropriate resources to develop and laanchw
module. In addition, he/she must simultaneouslyfpathe operation of the current on-orbit system.

These transition costs can be represented in nfatrix First, a development (or nonrecurring) costrix Cyey
accounts for the one-time costs required to develop produce one system given that another systerads
exists. This cost, which can also be considersditching cost, is the cost most central to theamoof flexibility
and may be computed through application-specifst estimating relationships. In this case, appboaof the GT-
FAST fractionated architecture synthesis 168l using the payload assumptions of Table 1 for ged)- design

»n 23
)
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lifetime in a 410 km circular orbit | Planning Period (4) |

produces the transition cost estimat [€ >
in Table 2. These costs includ | Planning Period (3) |
appropriate  spacecraft  subsyste A A
development and first-unit production le Planning Period (2) 5|
program management and systen [ Planning Period (1) _|
engineering, software, ground segme s 1 ‘
development, launch, and assembl Design and | Design and | Design and | Design and
test, and launch operations ( ATLO). Develal;ment Devel(c;;;ment Devel(t;[;ment Devel(c‘)‘;;ment

Importantly, note that Table 2 ® ® ® ® 3
accounts for the fact that free-flying
modules for the next-period 1) ) 3) (4)
architecture need not be developed Operation | Operation | Operation | Operation
produced |f they eXiSt already Wlthll’ Dema_nd_(l) Dema_nd_(2) Dema_nd_(3) Dema_nd_(4)
the On-Orbit Cluster. The mOSt ObViOU Materl|a||zes Materl|a||zes Mater||allzes Mater||allzes
manifestation of this is that the
diagonal of matrix Cdev consists t =-25yrs t=0 t=2.5yrs t=5yrs t=7.5yrs t=10yrs
entirely of zeros; this signifies the Figure 6. Planning periods and decision points (iblue)
intuitive fact that it costs nothing tc over a 10-year time horizon.

develop configurationi given that

configurationi already exists. Similarly, note that no developtremsts are required to downgrade a configuration,
such as a transition from Config. 15 (which, assshn Fig. 5, includes three single-payload module<Config. 2
(which consists of only the PL1 single-payload meylu This highlights a simplifying assumption withthe data

of this particular matrix that the cost to shut doar decommission a module is zero; however, gipeper
decommissioning cost models, this information caddily be included i€qe,

Table 2. Development cost transition matrix,Cg, (data in $FY08M).

To Configuration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1| 0 169 131 184 175 200 189 197 252 212 204 257 2288 280
21 0 0O 36 89 80 105 94 36 89 117 109 94 134 163 117
3| 0 75 0O 89 80 105 94 75 158 89 109 163 105 163 158
4| 0 75 36 0O 80 105 94 103 75 36 109 163 134 80 103
S| 5/ 0 75 36 89 0 105 94 103 158 117 109 163 134 896 18
| 6| 0 75 36 8 80 0 94 103 158 117 109 163 36 163 186
g% 7/ o 75 36 89 80 105 0 103 158 117 109 75 134 1636 18
S| 8| o 0 0O 89 80 105 94 0O 89 89 109 94 105 163 89
g 9| 0 0 36 0O 80 105 94 36 0 36 109 94 134 80 36
g1 0o 75 0 0O 80 105 94 75 75 0 109 163 105 80 75
11| o 75 36 89 80 105 94 103 158 117 0 163 134 1686 1
12| 0 0O 36 89 80 105 0 36 89 117 109 0 134 163 117
13| 0 75 0 89 80 0 94 75 158 89 109 163 0 163 158
14| 0 75 36 0 0 105 94 103 75 36 109 163 134 0 103
15| 0 0 0 0 80 105 94 0 0 0 109 94 105 80 0

Second, a recurring cost mat@. shown in Table 3 accounts for operations and aongyztion beyond the
first unit® In this example application, first-unit producticosts are the only applicable production costshe
costs within this matrix are functions only of tlov, i.e., the configuration that is operationa¢othe length of the

¥ In some instances, the analyst may wish to accfmurdll of production within the recurring cost trig, since
even one-time production for a unique flight ursttraditionally bookkept as a recurring cost. e fpresent
application, one-time module production costs amesitlered more closely related to the one-time Idpugent
costs and are accounted for in the developmenintasix.
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coming 30-month time period. These costs are afdonated using the GT-FAST tool, which draws ugon
publicly-available NASA mission operations cost raldti

Table 3. Recurring cost transition matrix, C,. (data in $FY08M).

To Configuration
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2] 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
3] 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
4| 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
g 5] 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21
"E 6| 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
éﬁ 7| 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
5 8| 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
LE) 91 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29
E 10| 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
11| 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
12| 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29
13| 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
14| 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29
15| 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31

SummingCqyeyand Ce from Tables 2 and 3 yields the total cost traasitnatrixC in Table 4. Each elemeny
of this matrix specifies the total cost incurreeioa subsequent 30-month time period as the resthie decision to
transition from developing configuratiorto developing configuration For example, to transition from Config. 2
to Config. 8 requires developing, producing, anghtdhing the module containing PL2 as well as opegate
current Config. 2, for a total transition cast = $56 million.

Table 4. Total cost transition matrix, C (data in $FY08M).

To Configuration
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 169 131 184 175 200 189 197 252 212 204 257 2288 280
2|20 20 56 110 101 126 115 56 110 138 130 115 1584 1138
3|16 91 16 106 97 122 111 91 174 106 125 179 1220 1874
4|22 96 58 22 102 127 116 124 96 58 131 184 155 1024

S| 5|21 9 57 110 21 126 115 123 178 138 130 184 1580 1207

®| 6|23 98 59 113 104 23 118 126 181 141 133 186 597 1809

g% 7|22 97 58 112 103 128 22 125 180 140 131 97 1566 1808

S| 8|23 23 23 113 104 129 118 23 113 113 132 118 1287 1113

g 9|29 29 65 29 109 134 123 65 29 65 138 123 162 1085

2110/ 25 99 25 25 105 130 119 99 99 25 134 187 130 1089
11| 24 98 60 113 104 129 118 126 181 141 24 186 1%87 209
12| 29 29 65 118 109 135 29 65 118 147 138 29 1633 1947
13| 26 101 26 116 107 26 121 101 184 116 135 189 280 184
14| 29 104 65 29 29 135 124 132 104 65 138 192 1639 232
15|31 31 31 31 11z 137 126 31 31 31 141 126 137 11z 31
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3. Analyzing the Cost Transition Matrices a0l : : : : : :
The data represented by the cost transiti B || ==@=0-Payload Configurations
matrices can be analyzed, visualized, and relatec | ==@== 1-Payload Configurations

=== 3-Payload Configurations

trade between system initial costs and the switch |
costs (or one-time development costs) of Tabler? «
be visualized as in Fig. 7. In this figure, eachtival

line indicates the range of switching costs from
given configuration, defined by the rows of Table
Solid dots indicate minimum and maximum value
and triangles indicate median values. Each vérti
line is located horizontally at the cost needed
develop the configuration from scratch (in thisezas
Config. 1). For example, if no system currentlysex 50l
and a decision-maker chooses to develop Config
(involving a single module with PL1 and PL2 o

|
|
|
flexibility in several useful ways. First, the agle 250} ____l____!| ==@m=2-Payload Configurations ||
|
|
|
|

200r

150+

100

Switching Cost, $FY08M

board), a cost of $175 million is incurred (on the or

axis), and the cost to switch configurations in tl ‘ ‘ ‘ ‘ ‘ ‘ ‘
future varies from $0 to $186 million, depending ¢ 0 50 100 150 200 250 300
which future configuration is chosen. In contrast, Initial Cost from Config. 1, $FY08M

the decision-maker instead chooses to develop §.or Figyre 7. Switching cost vs. initial cost from Cofig. 1.
15 (involving three payloads among three modukes; vertical lines indicate ranges of switching costsif each
cost of $280 million is initially incurred, and th®st  configuration; some overlap. Solid dots indicateima

$109 million. Thus, to some extent Fig. 7 empltjca

confirms the intuitive trend that future switchiogsts can often be reduced by earlier investments.

Second, the data from the total cost transitionrisn@Table 4) can be visualized directly in the t®a of the
two-period state-centric notion of flexibility meoned earlier. For this visualization see Fig.Here, each node in
each of the three plots represents one of the guarafiions considered in the design space. Each isathmedsy,
whereX is the configuration number from Fig. 5, and hasokor indicative of the number of on-board paywad
(consistent with the colors of Fig. 7). Above eatlihe three plots is a budget, and for every elanof the total
cost transition matrix less than or equal to theeigibudget, a directed link is drawn. In casesravttge total cost on
the diagonal of the matrix is less than or equahé&budget, a dark circle is drawn around the @ppate node. For
example, the middle plot of Fig. 8 shows that,hi¢ tcurrently-fielded architecture is Config. 12$20 million
budget for a given 30-month period would allow tfeeision-maker to transition to Configs. 1, 2, ppi7to remain
in Config. 12. In cases where no links or darklescare associated with a configuration, the abkEldudget is
insufficient even to support operation of the cotreonfiguration into the next period.

Transitions Available for $25M Transitions Available for $50M Transitions Available for $100M

Figure 8. Available configuration transitions for three example 30-month budgets.
Selttransitions are availale if a dark ring circles a given configuratic Colors indicate eac

11
American Institute of Aeronautics and Astronautics



A natural observation from Fig. 8 is tha
as budget is increased, more links becor
available. That is, as the decision-maker
more resources available, more options exi
The total number of links in the graphs ¢g-
Fig. 8 increases from 23 at the $20 millic’y
budget to 47 at the $50 million budget and " S
at the $100 million budget. Eventually, at @ ]
large enough budget, all 225 links woul§ . S_ (i = 5)
appear. Linking this to the two-period stat.e |
centric concept of flexibility, a clear indicato S —— S (i
of the flexibility of a given configuration is
the number of links or transitions available 1 |
it for a given budgeb (the number of “outs” |
available, which will be denotedi (b) ). ‘ |

This indicator is plotted in Fig. 9. Thez | *r}
figure shows the number of availabl 20 - I I

umber of Aval

s, (i =11)
s, (=12

m— S (i =13)

s, (=19

transitions as a function of available budge
where data for each configuration i | ‘ ‘ ‘ ,
represented by a single line. For examp 0 50 100 150 200 250 300
the figure illustrates that for a per-perio Available Budget, $FY08M

budget of $50 million, Config. 1 (the

“nothing” configuration) ha® = 1 transition Figure 9. Available configuration transitions

available, Configs. 2-7 and 11 each héve as a function of the available 30-month budget.

2 available transitions, Configs. 8-10 and 12-

14 each hav@® = 4 available transitions, and Config. 15 ldas= 8 available transitions. It also shows that by a
budget of $300 million, any configuration can baateed from any other configuration since all camf&gions have
15 available transitions.

Figure 9 highlights a few interesting transitioracteristics for the configurations in the dessgace defined
in Fig. 5. If the quantityb is interpreted as a surrogate measure of fleggbilhen it is easily seen that Config. 1 is
significantly less flexible than any other configtion over most of the budget range plotted in BigFor Config.

1, the first available transition to another coofggfion occurs at $131 million; for the same budg#her

configurations can already make between 9 andd8sitions. This occurs because Config. 1 has pabikities

that it can leverage to easily transition to otbanfigurations, and all capabilities must be depetbfrom scratch.
It is also relevant to note that the three-payloamholith, Config. 11, which has no modules in commth other

configurations, tends to have fewer transitiondlalsle than most other configurations at most budgeels. On
the other hand, Config. 15 (the fully fractionatksbign) very quickly attains a large number of E@é transitions
as budget increases; this configuration is thé firseach 8 transitions and the first to attaia dfility to make all
15 available transitions. This occurs because iGofb consists of three single-payload modules ¢ha easily be
used as pieces of other configurations; from Coriflgy the only modules that must be developed &chrether
configurations are the two- or three-payload masiule

In terms of number of transitions, the other camfegions within the design space generally falleen the
bounds of Configs. 1 and 15. All illustrate tldais a monotonically increasing function of budgetich implies
that any given configuration’s flexibility increasw®ith available budget. However, examples alsoleafound to
illustrate that theelative flexibility between configurations is also a fuiott of available budget. For example, at a
budget of $25 million, Config. 8 has four availaltansitions while Config. 15 has none. In otherds, at a
budget of $25 million, it is reasonable to make #t@tement that Config. 8 is more flexible than @pnl5.
However, at a budget of $50 million, Config. 8ldtids four available transitions while Config. I&nhanake eight
transitions. At this budget level, Config. 15 ioma flexible than Config. 8, and the relative flakty of these
configurations has reversed. The reason for fteibility reversal” becomes evident when it icaded that the
cost transition matrix accounts for both developtraamd recurring operations costs: When budgeturess are
scarce, operating a high-capability configuratiltke(Config. 15) consumes funds that would otheeviie available
for developing the components needed to transitionother configuration. However, as financiadowgces
become more abundant, more capable configurati@onie more flexible because they already possess
capabilities transferrable toward the developmémtioer configurations.

— S _ (i = 15)
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4. Key Observations from Step 1

This step of the framework has shown that the tewego state-centric notion of flexibility can beagued to
apply to configuration changes for space systernith, particular emphasis on a distributed-payloaélbte. A cost
transition matrix was formed and used to visuatiee options that exist for changing the system &mation of
available budget. If a single, relatively constpat-period budget is likely to exist for the fazeable future, that
budget can be selected and a diagram such as ottee ajraphs in Fig. 8 can be useful in tracing ibtss
configuration pathways. If the available budgdtkisly to be subject to change or partially untes control of the
decision-maker, the available transitions can lottedl as a function of budget to determine if addél budget
would make a substantial difference in the avadaigtions. Analysis of these graphs and assocdsgtdillustrate
how budget itself can drive whether one configarats more flexible than another.

At the conclusion of this step, it is reasonablesk: From this information, what conclusions tendrawn
about the best initial system configuration to e®e Unfortunately, none. To do so requires ov@ing two
limitations of considering only configurations acakt over a two-period time interval. First, thred horizon of the
analysis must be expanded to more than two petmds/oid potentially myopic decision-making. Sedpthe
benefits of being in a given configuration at aegitime must be quantified. A limitation of coraithg only the
number of available transitions metric is thatoh@ins no information about the value of each igométion in each
future time period. As a result, it is possiblem@nipulate this metric to make certain configuradi appear
relatively more or less desirable by either (1)ludmg in the state space a large number of phigisamilar
configurations or (2) including in the state spadarge number of configurations that are unlikeljpave any value
in the future. These limitations are resolvedhia following two steps of the framework.

B. Step 2: Define Markovian Demand Environment Evoluion

Typically, the performance of a system depends uperenvironment in which it operates. Thus, wisitep 1
of this framework focuses on defining the systeselftand its available configuration states, theirenment in
which the system operates has not yet been distu&tep 2 fills this gap by proposing a modeltfe evolution of
the environment. Unlike the configuration statéjali is under the control of the decision-makee, énvironment
state will characterize the demands placed onytsters at any given time, which inherently is notlenthe control
of the decision-maker and evolves stochastically.

As mentioned in Section IV.A.1, up to three speqifayloads are available for any current or futlesigns of
the distributed-payload satellite system. One gayl(PL1) provides detection of distress transimissi another
(PL2) provides high-bandwidth communications, antiied (PL3) provides high-resolution imagery. terms of
defining the demand environment, it is reasonabkexpect that future demand may exist for the lg&talystem to
provide any combination of these three servicesor &ample, in one time period, only high-bandwidth
communications may be required, and in another,h bbigh-resolution imagery and high-bandwidth
communications may be needed. Thus, there exht distinct demand environment states, indicatethb axes
in Table 5. Note that these environment statesnarteially exclusive and, for example, “1” shouldib&rpreted as
“1 only” and “1+2” should be interpreted as “1+2yn

It is also reasonable to expect that the evolubdemand for these services through time is uhlike be
properly modeled by a time series of independentdlomn demand environments. Rather, a subsequeiodiser
demand likely depends ir
part upon the current Table5. Assumed emandenvironment transition probability m atrix. Note
demand, a dependence thi that, in the demand environment naming convenfidngdicates demand for distress
can be captured using i transmission detection , 2 indicates demand fohttigndwidth communications,
Markov chain stochastic and 3 indicates demand for high-resolution imagssvices.
model. Formally, a Markov

N To Demand Environment
chain is an ordered set o

discrete random variables g None 1 2 3 1+2 1+3 243 14243
(e.g., {Q(1)}) for which the g None 0.30 0.05 0.13 0.30 0.02 0.05 0.13 0.02
probability thatQ(t) takes 2 1 0.20 0.15 0.09 0.20 0.06 0.15 0.09 0.06
some valuer depends only UEJ 2 0.10 0.02 0.23 0.15 0.05 0.03 0.35 0.07
on the value oQ(t-4t), i.e., g 3 0.10 0.08 0.07 0.23 0.05 0.19 0.16 0.12
Q in the previous time €| 1+2 | 005 007 0.20 0.03 028 005 013 0.19
period. ~ Thus, in a 8| 143 | 005 005 005 020 005 020 020 0.20
g"rzrckez\ga?he pasfﬁﬁ?lﬁiﬁtéz E | 2¢3 | 005 004 012 012 009 009 027 022

’ L | 1#2+#3| 0.02 0.02 0.08 0.08 0.08 0.08 0.32 0.32

the future only through the
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present state. The conditional probabilities ©[t) = o |
Q(t- 4t) = ¢] with which values ofQ at timet-At evolve
to other values ofQ at timet are organized in a
probability transition matrix.

The particular probability transition matrix assume
for this example is shown in Table 5. Ideally,sth
matrix would be populated using a set of expt
judgements regarding future demand behavior ¢hey
exist, probabilities based on historical data. tlhis
notional example, the author’s judgement was used
select values that reflected a high likelihood tlaat
current demand would be maintained (e.g., if hig
resolution imagery is demanded in the current pleriio
would be likely to also be demanded in the nexioplgr
and tended to place lower probabilities on the rfeed
dedicated distress transmission detection serviddse
probabilities in Table 5 also reflect an assum Figure 10. Visualization of the demand
conditional independence in the evolution of demand o ,vironment Markov chain described by Table 5.
each individual service; for example, given a pailtr
demandQ(t-4t), the probability of demand evolving for all threervices (1+2+3) is equivalent to the product of
three underlying probabilities that are conditionalQ(t-At) but reflect the likelihood that demand evolvesazh
of the services individually. It is important tmphasize, however, that the particular probabditre Table 5 are
illustrative and can easily be substituted witmdre data or other expert judgements become alailab

The Markov chain of Table 5 can be visualized a&gtaof demand environment states as in Fig. 10thifn
figure, high-probability transitions are represends thick dark links and low-probability transit®are represented
as thin light links. The likelihood of self-tratishs (along the diagonal in Table 5) are indicaigdhe darkness
and thickness of rings around each state. ThusXample, this figure immediately allows identfion of the
highest-probability and lowest-probability tranaits in the Markov chain and demand environmentuiool.

C. Step 3: Define State-Dependent Performance Matrix

Linking the on-orbit configuration to
the demand environment is a matrix th Table 6. Performance matrix quantifying the number of
specifies the amount of reward (e.c demanded services performed in a given time period.
revenue or an accumulated performan Demand Environment State
meas_ure) earned in each time period a 3 142 143 243 14243
function of the demand environment ar
system configuration in that period. Th
application here uses the matrix in Tab
6, which specifies the number o
demanded services that are perform
given a particular  configuration
operating in a particular deman
environment. For example, if the
demand in one time period is for imagel
and communications (column 7) and tt
vehicle on-orbit is in Config. 15 (the 3
payload fully-fractionated option, row
15), the decision-maker accumulates tl
performance of two demanded service
As a result, the decision-maker i
incentivized to place payloads in orb
that will meet demand for services.

None

o
o

© 00 ~NO Ol WN P

Configuration State
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1
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" If it is necessary to build additional memory itie process, it is possible to do so by expantiieghain’s state
space (i.e., the definition of the possible valoi¥).
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It is also worth noting that, although the pressmplication adopts just one performance metric (#od one
performance matrix), multiple such matrices cardéned for any cumulative performance metricsnéiiest to
the decision-maker. For example, a decision-makay also be interested in a cumulative binary rodtrat
indicates a 1 or O in each time period dependingvbather performance demands were fully met; owerlong
term, such a metric would indicate the percentdgene that the system fully meets the demandsegalagon it.

D. Step 4: Decision Support Analysis

With configuration transitions, demand environmgansitions, and a performance matrix defined, eheow
exists enough information to run a simulation aregjibb to answer the question of what is the “besitidl
configuration the decision-maker can choose. Ustitg 6 as a framework for a simulation timelin@eaime
period before a configuration is fielded (in thistdbuted-payload satellite example,tat -2.5 years), a decision-
maker must choose which system configuration tisaliy design, develop, and produce. tAt O, the system that
had been developed over the previous time peri@dléed, and a demand environment materializesthi& point,
the system operator must make use of the curreptlyational system in attempting to fulfill the cnt demand.
Meanwhile, the decision-maker must choose whictigoration to design, develop, and produce overcbraing
period. The cycle then repeats for as many peradflls the time horizon under consideration.this case, the
time horizon of interest is 10 years of operation.

The decision support analysis in this step is @dithto two complementary analysis options. Tha& foption,
in which Pareto-optimal paths are identified, isngler to implement and conceptually similar to lgegn
scheduling and roadmapping analysis. The secotiohoin which Pareto-optimal policies are iderifj is a more
complete consideration of the problem and is a&iméveloping an optimal “playbook” of what actiotstake
given all possible future evolutions of the envirent.

1. Step 4A: Find Pareto-Optimal “Open-Loop” Paths

One question that Fig. 6 prompts is: What configjon should the decision-maker choose to develameh
time increment? In other words, what configuratisould be selected for each of the yellow desigd a
development blocks in Fig. 6? The answer is naticas, especially since the demand environmentvesgol
stochastically. For example, the decision-makeo wishes to be able to fulfill whatever demand rtlest period
may bring would choose to build the most capabktesy possible, but this would come at substantigial
expense. The decision-maker who would gamble tdvabrrow’s demand will be the same as today’'s would
develop few or no new architectural components iandbing so save significant resources; howevas, \ould
come with the inability to perform if the next pmils demand materializes to require greater capabil
Furthermore, whether one period’'s decision is est., high-reward or low-cost in the long run)iiely to be
dependent on other decisions throughout the syltetime. In the flexibility problem, it is in gearal necessary to
consider all future decisions within a given tingihon in order to judge the appropriateness ofsaingle decision.
While this presents a unique difficulty within thealm of space system conceptual design, once eteniplpresents
an automatic solution to the question of which mpmftion to select initially: The appropriate fignration to
select initially is the first configuration decisifrom the “best” time-ordered sequence of decision

In this example, posing the problem such that wehwio find the optimal sequence of the four devalept
decisions (each decision of which implies a sedectimong the 15 configuration options) means treretexist 15
= 50,625 possible sequences (or paths). Sincedhfgurations on these paths are identified bytiime on the
clock at which they are chosen, this type of sjeatifon will be referred to as an open-loop path.

Assuming an initial condition dt= -2.5 years in which the operational configunatis nothing (Config. 1) and
there is demand for none of the services (the “Namvironment), one approach to solving this problis to
simulate all 50,625 paths subject to the stochalstichanging demand environment and identify whachduces
the “best” combination of performance and costus Hor each of the paths, 1000 Monte Carlo sinariatare run.
At each time step of a simulation, the followingerts and computations occur:

1. Mission demand evolves stochastically accordintpéoMarkov chain estimate of Table 5.

2. The operator of the currently operational configioraattempts to use this system to fulfill the new
mission demand, earning credit according to théopmance matrix.

3. The decision-maker chooses which configurationeteetbp in the current time period and field in the
next time period, incurring a cost according to ¢bst transition matrix. An available choice inyan
time period is to retain the current configuratiahjch requires no additional development resources

A sample set of Monte Carlo simulation resultshieven in Fig. 11. This figure shows the result dbpting a
path representing an incremental buildup of capgbit which Config. 4 (the PL3-only configuratiomd fielded
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initially. In the next time period, a new modulentaining PL1 is launched, and PL2 is added intlire time
period. The cluster of three modules operates thatiend of the 10-year time horizon. Due todimeulation setup,
a configuration decision must still be made in final operational time period; since the cost ofeleping this
final configuration will be incurred but no rewardll be earned, Config. 1 (the “Nothing” configuiai) is
selected. As the bottom left portion of Fig. 1lowh, this particular path (denoted as [4 9 15 15by]the
configuration decisions made at each step) is sutiea stochastically changing demand environmé@ihte size of
each yellow dot indicates the likelihood of demé&ethg in a particular state (on ti#@xis) at a given time (on the
x-axis); note that all simulations begin in the “NMdrdemand environment &t= -2.5 years, as specified by the
initial condition. The right-hand portion of Figl indicates how per-period cost and performancg oger time.
Note that the per-period cost decreases from $1lltbrmfor the initial investment to $31 million ithe final
operations period, and number of demanded sergmdermed per period increases from zero to a noéan67 in
the final period. The total expected cost for {hash over the time horizon is $407 millidnand the total expected
number of demanded services performed is 4.69.
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Figure 11. Evolution of configuration path [4 9 1515 1], representative of an incremental capabilitypuildup.

In theplots on the left, the size of circles indicate thlative number of Monte Carlo simulation cases #xist in i
given configuration or demand environment statetfeny-axes) at a given time (on theaxes). The plots on t
right indicate the associated evolution of per-pdricost and performanceln all plots, gray lines indica
transitions made in at least one simulation. Nmafiguration and cost are deterministic, sinceathpis specified.

™ Note that once a path is chosen, cost is fixecs aAresult, the expected cost is equivalent tontirémum,
maximum, and median costs across all path-basedevcarlo simulations.
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Obtaining results like 5 , T , T ! , T :
those in Fig. 11 for each of = ' : ' : :
the 50,625 possible path: ; : ;
allows the total expected 1 ' :
performance to be compute:
and plotted against total cos
for each path as in Fig. 12. Ir
this figure, each blue “x”
represents the total cost an
performance of one pdth
Notice that, for the population
as a whole, there is a gener:
trend that, as more funds ar
invested, higher performanct
is expected. However, it is
important to recall that the
decision-maker has a choic
of which path to select. As ¢
result, if he or she cares
primarily about total cost and
expected total demandes
services performed, it would
make little sense to select i Figure 12. Trade between total demanded servicegormed and total cost
high-cost, low-performance for all open-loop paths. Pareto-optimal paths are identified by 5-period
point toward the lower right configuration sequences listed next to red circles
of the cluster. Rather, the
decision-maker would prefer to choose among theoseondominated points that comprise the Pareiotiter.
This Pareto frontier, shown in red in Fig. 12, @nposed of the set of possible configuration seceifor which
one objective cannot be improved without the sieriéf anothef® In this application, the frontier is comprised of
just 12 of the 50,625 possible paths and helpstmw the options considerably.

Listed next to each of the Pareto-optimal point&im 12 is its associated configuration path. eNibiat at the
bottom left of the figure is the “do nothing” optian which Config. 1 is fielded for all time perigidthis is cost-
optimal but also provides the lowest possible pentmce. At the other extreme is the Pareto-optimgthest-
performance option of fielding Config. 11, the #ugayload monolithic satellite, for all time persodThe Pareto-
optimal solutions between these two extremes irevdiveloping Configs. 3, 5, 7, or 11, either imraggly or after
a 1-2 period delay. Notably absent from the frandire the higher-cost multiple-module configurasgio

One use of the data in Fig. 12 becomes evident wirersample path from Fig. 11 is overlaid as théowe
square in Fig. 12. Here it can be seen that ttremental path [4 9 15 15 1] is dominated by sohgion the Pareto
frontier. In fact, one particular path, [1 11 11 1], accumulates near-identical performance ftwtal cost about
$131 million (32%) lower. In this Pareto-optimaitp, detailed in Fig. 13, the three-payload mohisatellite is
fielded after a one-period wait, during which tirdemand evolves toward an environment in which Iplelti
services are demanded. Unlike the incrementalipafig. 11, which exhibits a gradual decreaseenperiod cost,
the Pareto-optimal path in Fig. 13 exhibits aniahi$204 million spike followed by $24 million inperations costs
for three periods. As a result, this cost prafdsults in significant savings, and the systenh g#itforms well since
all three payloads are available to fulfill all texpted services at times in the future in whichehé@ronment has
evolved to one in which multiple services tend ¢adlemanded.

...................................

T e « s Path Performance
' —&— Pareto-Optimal Path Performance
D Sample Path: [4 9 15 15 1]

I I I

1
100 200 300 400 A00 GO0 700 800 800
Expected Total Cost over 12.5 years, SF¥03M

Expected Total Demanded Services Performed

=
o

2. Step 4B: Find Pareto-Optimal “Closed-Loop” Polisie

While straightforward and conceptually similar toa @ptimization of typical long-term scheduling and
roadmapping efforts, the analysis presented in &epas two principal disadvantages. First, foplEations with
large numbers of configurations and long time @ it may not be practical to enumerate all ibsgaths. For

* These totals are taken over thee-2.5 year period (at which there is zero perfamoe due to the initial condition)
and the four subsequent periods.

88 For further familiarization with Pareto optimalitgefs. 49 and 50 are recommended.
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example, if the number of time periods in the pnésgplication were doubled, the number of posgialns would
increase from 50,625 to over 2.6 billion and tadeesal years of run time on a standard desktop atenp Second,
assuming a set path for the entirety of the systdifétime neglects the ability of the decision-raako make
choices mid-program in response to the evolutiathefdemand environment.

To overcome these limitations, Step 4B presenteraptementary analysis that draws on a set of tectasi
from outside of the aerospace community that addeethis problem and is particularly well-suited toe state-
space framework set forth in Steps 1-3. Thesentquks are associated with the class of stochastitrol
processes known as Markov decision processes (MDPs)

To define any MDP, it is necessary to first defjfipa set of states (or state spe&é)at describes the system of
interest, (2) a set of decisions or actidnavailable from each stase(3) transition probabilitiep(j|s,a) given that a
particular decisiora is made while the system is in stateand (4) expected per-period rewahgs,g associated
with actions and/or states. In the case of MDPsaofinite time horizon, solutions typically explothe
computational efficiency of probabilistic dynamimgramming, in which the overall maximization ofamulative
expected-value objective at the system’s initiatestand timels o is decomposed into a series of state-by-state,
period-by-period maximization problems as specifiedq. (4).” The optimization is implemented starting from
the final time period of interest and then worklmagkward to the initial time.
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Figure 13. Evolution of configuration path [1 11 1 11 1], a Pareto-optimal path.
In theplots on the left e size of circles indicate the relative numbe¥lohte Carlo simulation cases that exist
given configuration or demand environment statetfeny-axes) at a given time (on theaxes). The plots on t
right indicate the associated evolution of per-pdricost and performanceln all plots, gray lines indica
transitions made in at least one simulation. Nmafiguration and cost are deterministic, sinceathpis specified.

™ The termp is a discounting factor. In this paper’s analygiis set to unity.
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S

‘]s,t = Mma h(S’ a)"'ﬂz p(J |S’ a)‘]j,t+At (4)

acA(s) i

It may be evident that the state-space flexibifigmework for system configurations establishedStep 1,
Markovian demand environment definitions of Stejar®] performance and cost information from botlpSteand
3 pose a problem that consists of states, possdigguration decisions, demand transition proliédd, and costs
and performance rewards associated with transitiorts states — all of which are the components oVaP.
However, two slight adjustments must be made todréhe present problem properly for an MDP:

First, the framework has so far used tseparatestate spaces. Step 1 introduced the configuratete space,
and Step 2 introduced demand environment stateespdo utilize an MDP formulation, the problem mibst
represented in a single state space. It is prdpbse a total state be defined as the combinatithe configuration
and demand states (Total State = {ConfigurationteSt®emand State}). In the distributed-payloadeltits
example, there are 15 configuration states x &enmients = 120 total states, which Fig. 14 illussagraphically.
In this three-dimensional “spindle” of total statesich vertical layer represents a particular deh®vironment
and each column represents a particular configuratiThus, it is possible for the fielded systemb®in any
configuration and operating in any demand enviramnaé any particular point in time. Since configtion is under
the control of the decision-maker, he or she caosh to move to any vertical column of the spiradlany point in
time (recognizing that it takes one time step t&ethis move). However, the demand environmenbisunder the
control of the decision-maker. lllustrated in Fi is an instance where Config. 15 is operatind@mand
Environment 1. If the decision-maker chooses teligp Config. 10 for the next time period, he oe shassured to
move to the column corresponding to Configl"ithowever, since the demand environment evolugastdchastic,
the layer to which he or she moves is uncertaindemnds on the evolution of the Markov chain dgetby Step
2. Once the demand environmel "
materializes, the decision-maker find
himself or herself at one particular tote
state and makes another decision ab
which of the 15 configurations to selec
for the following period.

Second, in order to apply the
dynamic programming technique implie
by Eg. (4), the multi-objective problen
illustrated in Step 4 must be carefull
converted to a single-objective problen
To do this, the present framewor
proposes to use the interpretation of t| gny,. 3
Pareto frontier as the set of optima for
weighted aggregate objective functio
over all possible weights. Thus, it i
proposed that the Pareto frontier for tt
“closed-loop” case be found by formint gq, 1
an aggregate weighted objectiv

Erv. 8

Erv, 2

function, solving the MDP problem a \ = Config. 1
usual using this single objective, an =9 ° e
repeating the process for a wide range SR config. 14

weights.  While a simple additive ' Config. 12 Config. 13

weighting function is an appealing
aggregate function, it suffers from a
inability to detect concave segments 1
Pareto frontiers. To partially overcom
this limitation, a heuristic technique
using the variable-power per-perio

Figure 14. “Spindle” of Total States. Each layer corresponds to one
demand environment and each vertical column cooedp to one
configuration. Environments 4-7 are not depictédrows illustrate
that, due to demand environment uncertainty, malfossible total
states are possible in the next period if a denigsomade to transition
from one configuration to another (e.g., Config.ta%onfig. 10).

™" The assumption implicit in this assurance is thatdecision-maker will not by accident developafiguration
other than Config. 10, which is likely to be reasbi® in most cases.
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aggregate objective function in Eqg. (5) is usedl this equationi is the number of per-period objectives,is the
weight on thé™ objective, T is the total number of time periods in the timeizan, y; is per-period performance of
the system in terms of th® objective (normalized such that the suny;adver all time periods cannot exceed unity
or become negative, and such that higher valugsané preferred), anlis the objective function power.

h(s,a) =3 w(} -y (s:a)) 5)

As a result of this formulation, which representsatural adaptation of the problem framed in Stef3s optimal
solutions can be found efficiently for a range etidion-maker cost or performance preferences.séBelutions
take the form of a matrix witt§| rows andT columns, where each elemest)(indicates which ofA| possible
actions or decisions should be made given the ystan states at timet. In other words, this matrix forms a
policy by which the decision-maker should act to obtaitineal combinations of total cost and performantrethis
example application, each policy matrix has dimemsil20 (states) x 5 (time periods), and 15 optxns for each
element of the matrix. If a full-factorial analgsf all possible policies were to be conductedwas done for the
simple case of paths in Step 4A),°®5= 10° simulations would need to be executed! Howeveg of the
structure of the problem as posed by Eq. (4) aadrsng over weights and powers as suggested iiSEgermits
optimal policy solutions to be found within hours @ standard desktop computer.

Expected cost and performance results for polibytems to the distributed-payload satellite systegmplication
are shown by each blue “x” in Fig. 15. Among theekitions, the nondominated (Pareto-optimal) sahst are
highlighted and connected in red. Note that theimim-cost and maximum-performance endpoints ofPthreto
frontier are identical to those of the open-loofp flactorial analysis of Fig. 12, and the shapéhaf frontier largely
mirrors that of Fig. 13" However, an interesting solution with performarscperior to any available from an
open-loop path is visible at an expected total cdst40 million. Depicted in Fig. 16 in the sanmerfat as the
open-loop results earlier, it can be seen thatghiey solution is nearly the same as the “do mgthpolicy but
with one exception: As the top
left plot shows, at thé = O time B T T T T T T T !
period the policy occasionally (in ; ; PR D WO, WD T |
14.5% of cases) calls for ¢ ' ' '
decision to develop anc
subsequently field the three
payload monolith. Whether
decision is made is governed b
the demand environment, as th
policy indicates in Table 7. In this
table, the policy solution itself is
shown, and the action specified b
the policy is provided for a systen
in any states (the row) at any time
t (the column). Looking only at
the eight total states that ar
associated with Config. 1 (i.e.

Region of Dominated
Policy Solutions

Expected Total Demanded Services Perfarmed
[E8]
i

total states 1, 16, 31, 46, 61, 7t i pooeee *  MDP Pulicy Solutions 1
0 @ 0 —&— MDP Palicy Pareto Frontier

91, and 106), it can be seen th e _
the decision to develop Config. 1: | | | 5/ Anticipatory Policy Performance

rather than Config. 1 at = 0 100 200 a00 400 600 E00 OO EOD SO0

occurs On_ly in total states 91 an Expected Total Cost over 12.5 years, $FY0SM
106, which correspond to & )
situation in which either the 2+ Figure 15. Trade between total demanded servicegiformed and total

or 1+2+3 demand environmen cost for MDP policy solutions.

¥ The sparsity of points on this frontier is largdlye its concavity: Only four of the frontier ptircould be found
usingn = 1 in EqQ. (5). The heuristic method adoptedifoproving the frontier estimate by increasindpeyond
unity was only partially successful in identifyittge full frontier, and this is a clear area forung development.
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exists. In other words, this policy achieves a ypected cost and an appreciable expected penfaartay only
developing the three-payload monolith if a subséhrtermand for services materializes early durimg program.
Such a result is impossible to capture using tkedficonfiguration paths of Step 4A.

Figure 15 also permits comparisons to be made patities that might be brainstormed or proposedidatof
the MDP solution procedure. For example, one measle policy that might be proposed is to alwayget® and
field the configuration that least expensively nmaxes performance in the most likely next-periodnead
environment® The policy implied by this statement is providedrable 8; for instance, if Config. 2 (the PL1-pnl
configuration) is currently operational in the “T+®mand environment (i.e., if the system is iratatate 62), the
most likely next-period demand environment accagdim Table 5 is also the “1+2” demand. To leagtemsively
fulfill both the PL1 and PL2 functions demandedtinis environment, a single PL2-only module would be
developed and launched, which places the systemQanfig. 8. Thus, as Table 8 shows, Config. ®iésdecision
made from total state 62 at all except the fimaktiperiod.”

The performance of this next-period anticipatoryiqyis summarized by the yellow triangle in Figp &nd
detailed in Fig. 17. Figure 15 in particular ilitzges two interesting and important points regaydhis anticipatory
policy: First, this policy is dominated by otheliscovered in the optimization process: Both pe#® and 10 on
the Pareto frontier perform, on average, more dei®@duservices at a lower cost. Second, this aatiip policy is
just one of many options; even if it were nondorteda selection of this particular policy carrieghwit no options
regarding cost and performance preferences. Itrasin a search throughout the policy design sifasewas
completed in order to produce Fig. 15) allows tleeision-maker to understand the cost and perforené&nacles
available and select a policy according to hisargreferences.
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Figure 16. Evolution of states and performance foPareto-optimal policy #3 (defined in Table 7).
In theplots on the left, the size of circles indicate tblative number of Monte Carlo simulation cases #éxist in i
given configuration or demand environment statetfeny-axes) at a given time (on theaxes). The plots on t
right indicate the associated evolution of per-pdricost and performancén all plots, gray lines indica
transitions made in at least one simulat

553 |n the event that multiple demand environmentsthe same probability of materializing next, theieonment
with the demand for more services is used.

Fokk

The reason for the difference in the final time g decision is the same as discussed earlieeatich IV.D.1.

21
American Institute of Aeronautics and Astronautics



Table 7. Pareto-optimal policy #3.
Configuration decisions for a system in statg timet are indicated by matrix elements shaded in gray.

Current State, s

Time at Period Start (years),t

Current State, s

Time at Period Start (years),t

;(t);?é Env. Config.| 25 0 25 5 75 ;(t);?é Env. Config.| 25 0 25 5 75
1 None 1 1 1 1 1 1 61 142 1 i 1 1 1 1
>  None 2 11 12 1 1 2 62 142 2 11 12 8 8 1
3 Nome 3 11 11 3 1 3 63 142 3 11 11 3 3 3
4  None 4 14 10 4 4 1 64 142 4 14 14 14 10 4
5 None 5 14 5 5 5 1 65 142 5 5 5 5 5 5
6 None 6 13 13 6 6 6 66 142 6 13 13 13 13 6
7 None 7 7 7 71 71 1 67 142 7 7 7 71 17
8  Nome 8 11 8 8 8 1 68 142 8 11 8 8 8 2
9 None 9 5 15 9 9 4 69 142 9 15 15 15 15 9
10 None 10 10 10 10 10 10 70 142 10 14 10 10 10 3
11 None 11 11 11 11 11 11 71 142 11 11 11 11 11 1
12 None 12 12 12 12 12 2 72 142 12 12 12 12 12 1
13 None 13 13 13 13 13 6 73 142 13 13 13 13 13 &
14  None 14 14 14 14 14 1 74 142 14 14 14 14 14 4
15  None 15 15 15 15 15 2 75 142 15 15 15 15 15 15
6 1 1 1 1 1 1 1 76 143 1 1 1 1 1 1
17 1 2 11 11 2 2 2 77 143 2 11 12 12 2 2
18 1 3 11 11 3 1 3 78 143 3 11 11 11 3 1
19 1 4 14 14 4 4 4 79 143 4 14 14 10 4 1
20 1 5 11 5 5 5 1 80 143 5 14 14 5 5 5
21 1 6 13 13 6 6 1 81 143 6 13 13 13 6 6
2 1 7 7 7 71 17 82 143 7 7 7 71171
23 1 8 11 8 8 8 2 83 143 8 11 11 8 8 8
24 1 9 5 15 15 9 1 84 143 9 15 15 15 9 9
25 1 10 10 10 10 10 10 85 143 10 10 10 10 10 1
2% 1 11 11 11 11 11 1 86 143 11 11 11 11 11 11
27 1 12 12 12 12 12 2 87 143 12 12 12 12 12 12
28 1 13 13 13 13 13 3 88 143 13 13 13 13 13 3
20 1 14 14 14 14 14 1 89 143 14 14 14 14 14 5
300 1 15 15 15 15 15 9 90 143 15 15 15 15 15 4
31 2 1 1 1 1 1 1 91 243 1 11 11 1 1 1
2 2 2 11 11 8 1 1 92 243 2 11 11 12 2 2
33 2 3 11 11 3 3 1 93 243 3 11 11 3 3 3
34 2 4 14 10 10 4 1 94 243 4 14 14 10 4 4
3B 2 5 11 5 5 5 1 95 243 5 14 5 5 5 5
% 2 6 13 13 13 6 1 96 243 6 13 13 13 6 1
37 2 7 7 7 71 71 1 97 243 7 7 7 71 1 7
38 2 8 11 8 8 8 8 98 243 8 11 8 8 8 2
39 2 9 5 15 15 9 1 99 243 9 15 15 15 9 4
40 2 10 10 10 10 10 4 100 2+3 10 10 10 10 10 4
41 2 11 11 11 11 11 11 101 243 11 11 11 11 11 1
42 2 12 12 12 12 12 2 102 2+3 12 12 12 12 12 12
43 2 13 13 13 13 13 1 103 2+3 13 13 13 13 13 13
44 2 14 14 14 14 14 4 104 243 14 14 14 14 14 4
45 2 15 15 15 15 15 8 105 2+3 15 15 15 15 15 15
46 3 1 7 1 1 1 1 106 1+2+3 1 11 11 1 1 1
47 3 2 11 11 12 2 2 107 14243 2 11 11 12 8 2
48 3 3 11 11 3 3 1 108 1+2+3 3 11 11 11 3 3
49 3 4 14 14 10 4 1 109 14243 4 14 14 10 10 1
50 3 5 14 5 5 5 1 110 1+243 5 11 14 5 5 5
51 3 6 13 13 13 6 6 111 14243 6 13 13 13 13 6
52 3 7 7 7 71 17 112 14243 7 7 7 71 71 1
53 3 8 11 8 8 8 3 113 1+2+3 8 11 11 8 8 8
54 3 9 5 15 15 9 9 114 14243 9 15 15 15 15 4
55 3 10 10 10 10 10 4 115 14243 10 10 10 10 10 3
56 3 11 11 11 11 11 1 116 14243 11 11 11 11 11 11
57 3 12 12 12 12 12 1 117 14243 12 12 12 12 12 2
58 3 13 13 13 13 13 6 118 14243 13 13 13 13 13 3
59 3 14 14 14 14 14 5 119 14243 14 14 14 14 14 1
60 3 15 15 15 15 15 10 120 14243 15 15 15 15 15 15

22

American Institute of Aeronautics and Astronautics



E. Step 5: Implications for Initial System Selection

Early in this paper it was emphasized that a mpjmpose of this framework is to inform initial syst
selection. The analysis of Step 4 has producedge Iset of data on optimal paths and policie®liov for the
entire system time horizon, and it is easy to lose traficthe implications this has for theitial system decision.
This final step of the framework builds upon thalgsis results of Step 4 to provide implicationstfus decision.

1. Implications based on the Expected-Value Paretmfieo

In the case of a path, the initial decision is dintpe first configuration in its associated configtion sequence. In
the case of a policy, the initial decision is foundlocating the initial condition in the row ofdtpolicy matrix (in
this distributed-payload satellite application,tatal state 1, which corresponds to the “nothinghfiguration
fielded and no services demanded) and examininglédmaent in the first column (in this case, the -2.5 year
column). To facilitate this, the initial configuians specified by the Pareto-optimal paths andcigsl found in
Figs. 12 and 15 are identified in Fig. 18. In tigsire, the Pareto frontier solutions of Figs.akl 15 are identified
by their expected total cost on thaxis. On they-axis are the initial configuration decisions cdlfier by each
Pareto-optimal path (yellow circles) or policy (blaquares). Two particular observations can beemé&atst, only
three configurations (Configs. 1, 3, and 11) appeaong the optimal initial decisions. All pathglgwolicies with
other initial decisions are dominated by paths pwiities using these three configurations. Sectmelsize of the
initial configuration tends to increase as the efge total cost of the system increases. For elanoply the
“Nothing” configuration (Config. 1) appears as gutimal initial decision for total expected budgetsder $195
million; these solutions tend to be either policteat wait until sufficient demand materializes jtistify the
expenditure of funds or paths that tend to detdtyal operational capability until demand evolasbstantially
beyond the initial “None” environment. At the hagt expected total cost is the decision to injtidibvelop the
three-payload monolith (Config. 11), which is tleadt expensive method to ensure complete captaié pdssible
future demand for services.
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Figure 17. Evolution of states and performance foan anticipatory policy (defined in Table 8).
In theplots on the left, the size of circles indicate thlative number of Monte @a simulation cases that exist il
given configuration or demand environment statetfeny-axes) at a given time (on theaxes). The plots on t
right indicate the associated evolution of per-pdricost and performance. In all plots, gray lineslicate
transitions made in at least one simulat
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Configuration decisions for a system in statg timet are indicated by matrix elements shaded in gray.

Table 8. Anticipatory Policy.

Current State, s

Time at Period Start (years),t

Current State, s

Time at Period Start (years),t

;(t);?é Env. Config.| 25 0 25 5 75 ;(t);?é Env. Config.| 25 0 25 5 75
1 None 1 4 4 4 4 1 61 142 1 5 5 5 5 1
>  None 2 4 4 4 4 1 62 142 2 8 8 8 8 1
3 Nome 3 4 4 4 4 1 63 142 3 g8 8 8 8 1
4  None 4 4 4 4 4 1 64 142 4 5 5 5 5 1
5 None 5 4 4 4 4 1 65 142 5 5 5 5 5 1
6 None 6 6 6 6 6 1 66 142 6 13 13 13 13 1
7 None 7 7 7 71 71 1 67 142 7 12 12 12 12 1
8  Nome 8 4 4 4 4 1 68 142 8 8 8 8 8 1
9 None 9 4 4 4 4 1 69 142 9 g8 8 8 8 1
10 None 10 4 4 4 4 1 70 142 10 8 8 8 8 1
11 None 11 11 11 11 11 1 71 142 11 11 11 11 11 1
12 None 12 77 71 71 1 72 142 12 12 12 12 12 1
13 None 13 6 6 6 6 1 73 142 13 13 13 13 13 1
14  None 14 4 4 4 4 1 74 142 14 5 5 5 5 1
15  None 15 4 4 4 4 1 75 142 15 g8 8 8 8 1
6 1 1 4 4 4 4 1 76 143 1 11 11 11 11 1
17 1 2 4 4 4 4 1 77 143 2 12 12 12 12 1
18 1 3 4 4 4 4 1 78 143 3 13 13 13 13 1
19 1 4 4 4 4 4 1 79 143 4 14 14 14 14 1
20 1 5 4 4 4 4 1 80 143 5 14 14 14 14 1
21 1 6 6 6 6 6 1 81 143 6 13 13 13 13 1
2 1 7 7 7 71 71 1 82 143 7 12 12 12 12 1
23 1 8 4 4 4 4 1 83 143 8 15 15 15 15 1
24 1 9 4 4 4 4 1 84 143 9 15 15 15 15 1
25 1 10 4 4 4 4 1 85 143 10 5 15 15 15 1
2% 1 11 11 11 11 11 1 86 143 11 11 11 11 11 1
27 1 12 7 7 771 87 143 12 2 12 12 12 1
28 1 13 6 6 6 6 1 88 143 13 13 13 13 13 1
20 1 14 4 4 4 4 1 89 143 14 14 14 14 14 1
300 1 15 4 4 4 4 1 90 143 15 5 15 15 15 1
31 2 1 7 7 71 71 1 91 243 1 7 7 71 71 1
2 2 2 7 7 71 71 1 92 243 2 7 7 71 71 1
33 2 3 10 10 10 10 1 93 243 3 10 10 10 10 1
34 2 4 10 10 10 10 1 94 243 4 10 10 10 10 1
3B 2 5 14 14 14 14 1 95 243 5 14 14 14 14 1
% 2 6 13 13 13 13 1 96 243 6 13 13 13 13 1
37 2 7 7 7 71 71 1 97 243 7 7 7 71 71 1
38 2 8 10 10 10 10 1 98 243 8 10 10 10 10 1
39 2 9 10 10 10 10 1 99 243 9 10 10 10 10 1
40 2 10 10 10 10 10 1 100 2+3 10 10 10 10 10 1
41 2 11 11 11 11 11 1 101 243 11 11 11 11 11 1
42 2 12 7 7 771 102 2+3 12 7 7 7 71
43 2 13 13 13 13 13 1 103 2+3 13 13 13 13 13 1
44 2 14 14 14 14 14 1 104 243 14 14 14 14 14 1
45 2 15 10 10 10 10 1 105 2+3 15 10 10 10 10 1
46 3 1 4 4 4 4 1 106 1+2+3 1 11 11 11 11 1
47 3 2 4 4 4 4 1 107 14243 2 12 12 12 12 1
48 3 3 4 4 4 4 1 108 1+2+3 3 13 13 13 13 1
49 3 4 4 4 4 4 1 109 14243 4 14 14 14 14 1
50 3 5 4 4 4 4 1 110 1+243 5 14 14 14 14 1
51 3 6 6 6 6 6 1 111 14243 6 13 13 13 13 1
52 3 7 7 7 71 71 1 112 14243 7 12 12 12 12 1
53 3 8 4 4 4 4 1 113 1+2+3 8 15 15 15 15 1
54 3 9 4 4 4 4 1 114 14243 9 15 15 15 15 1
55 3 10 4 4 4 4 1 115 14243 10 15 15 15 15 1
56 3 11 11 11 11 11 1 116 14243 11 11 11 11 11 1
57 3 12 7 7 771 117 14243 12 12 12 12 12 1
58 3 13 6 6 6 6 1 118 14243 13 13 13 13 13 1
59 3 14 4 4 4 4 1 119 14243 14 14 14 14 14 1
60 3 15 4 4 4 4 1 120 14243 15 15 15 15 15 1
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Also noted next to severa
paths and policies in Fig. 18 ar I I - 15 T T I !

the number of transitionsb ot 8 Pareto-Optimal Paths ________ i

available from each initial Pareto-Optimal Policies

configuration (1, 3, or 11) for = | 13 S T . ......... ........ ]
the average per-period cos - : : : :

associated with each total cos - L] o mmn e i Foemmnoee gmommee LI .

As discussed in Step 1, thi | . . P F@R00M=S
number ® is an indicator of FL3 L — T T T o
flexibility, and it can be seen ; ; ; ; ;

' . - PL3 10 pmemseses fremnenees grenase- fommonenes remeeees b A
that more flexible initial - ; ; ; ; ;

configurations ¢ = 2 or® = 3)

are selected at higher cost ar
performance preferences. Thu
there exists some correlatiol
between flexibility and
performance. However, the

Initial Configuration
oo
T
1

X PL3 Bl-----e PRt RCECELEER Formnsnns S PERT PEFLFLED g
maximum-performance (anc ; ; ; ; ;
maximum-cost) Config. 11 3 O A J N ST SR S i
initial decision is far from the i ;
most flexible for its average $6( | e e boecoinndoee o 8,(357.7M) = 2
million per-period budget; Fig. F(BIROM=2 - #,(358.3M) = 2
9 illustrates that the fully- B ;- peeeeeeQeeeeeeedo--
fractionated three-payloac 5 5 5 5 |

. X . o ) F S S S S SO -
configuration (Config. 15) has - ‘ q,'((samiH ; ® (3373 =1 & ($51.0M)=1
® = 8 transitions available for - : i ; i '
the same budget. Thus, thi . 0 100 00 300

example illustrates that Expected Total Cost aver 12.5 years, §FYOSM

maximization of performance _. » i ) . -
does not necessarily translat Figure 18. Initial configurations for Pareto-optimal paths and policies as

into  maximization of the @ function of expected path or policy total costAlso noted ar¢he number of
flexibility of a system’s transitions available for several initial configurans at their path or policy’s
configuration. average per-period budget requirements.

2. Accounting for Non-Expected-Value Objectives

A final relevant consideration for initial systeralection is the fact that expected-value objectivections for
the cumulative cost and performance metrics mayuligt capture a decision-maker’s true objectivésse of these
expected-value objectives enables the use of MDiamic programming techniques to efficiently explohe
astronomically large policy trade-space; howewuerthie case of one-of-a-kind satellite programs @sa®-maker
may also be interested in minimizing risks assedatith a given expected level of cost or perforogan

Operating under the assumption that the expectkevaptima discovered in Step 4 are reasonabl@linit
guesses for desirable policies, a specialized robjéctive genetic algorithm may be employed tayéreach of
the policies identified in Fig. 15, simulate eag@wrhybrid policy, and search for non-dominated tohs in terms
of any combination of metrics that can be accouritedsia simulation. The results of Fig. 19 aredwced by
applying this technique to the new metrics of §@rcentile (near-worst-case) total cost antl iércentile (near-
worst-case) total number of demanded services peei, in addition to the expected-value versionghese
metrics. Of particular note in the Fig. 19 multieée plot are four subplots: First, the datahia subplot of the
second row and first column shows the familiar expe-value cost and performance trade, with slghdtter
Pareto frontier performance due to the geneticrdlgo’'s search. Second, the data in the subplabheflast row
and second column shows thé"Igercentile performance vs. the™percentile cost; the performance data in this
subplot is noticeably more discrete since fractionanbers of services performed are not possibke simulation.
Finally, the upper left and bottom right subpldisw the correlations between the new percentiledasetrics and
their expected-value counterparts. In the casdsotif subplots, linear correlation is quite str¢fj = 0.85 and
0.88) and supports the use of expected value as@gate for optimizing the percentile-based mestric

Also of note in Fig. 19 is that each data point,jclthrepresents a particular policy result, has larcthat
corresponds to the initial configuration decisionplied by its associated policy. Of particularencg that these
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initial decisions differ little

frqm those implied by the g 0 . Palicies calored by Initial Config. Decision:
original path- and MDP- ¢
policy-based results in Fig. & ° ¢ 1 - Nothing
18. Use of Config. 1 % 4 ¢ 3-
initially is still associated & | 8 ®
with  low cost and 3 200fgy Sestftline ¢ -
performance; use of % : T e 13 -
Config. 3 is associated wit T
medium values for both Mean Cost, $FY08M
objectives; and Config. 11
is associated with the 6 3
highest levels of cost anc & K> g Tl
performance. The primary ¢ , o
difference is the ¢ T ;‘ L t, @
introduction of Config. 13 o e G 4 S V2™ o
as an initial decisions, ¢ %[ % & 2 R 4
which has performance ant 2 '5/&’ = 14 >
cost levels that are 0 08—
generally competitive with 0 200 400 600 800 0 t’200 400 600 800
Config. 11. Mean Cost, $FY0SM 90" Pctile Cost, $FY08M
The usefulness of the o B v 6 o B
multivariate plot of Fig. 19 g g g
becomes more evident i z g &
cost or performance 5 ° 54 5!
constraints are imposed b g — S prmen v £ g
the decision-maker.  For %? o - %2 o - % 2 Sihe
example, suppose that thi = o e me o s0r wmo ome | O e
decision-maker has a $500 2 4 - 3 - T o leemi,
million limit on the funds 0 200 400 600 800 0 200 400 600 800 0 2 4 6
available for supporting Mean Cost, $FY05M 30" Pctile Cost, $FY08M Mean No. of Services

this system over its time o o . . .
horizon. If the decision- Figure 19. Multivariate plot of multi-objective genetic algorithm policy results.

maker wishes to be 90% Each data pointindicates the performance of onepoesult in terms of the four
sure that this budget will percentile-based and expected-value metrics ofgate Data points are colored by
not be breached, a $50 their corresponding policy’s initial configuratiosecision.

million constraint may be

imposed on the 90 percentile total cost metric. This constraintmitiates many high-cost (and also high-
performance) options that formerly fell into thelhiod” percentile cost regions of the multivariate phatttare now
gray in Fig. 20. Similarly, the decision-maker nveigh to have 90% confidence that more than ongcgewill be
performed over the system’s lifetime. In this caseadditional constraint may be imposed, represeby the
horizontal gray stripe in the subplots of the last in Fig. 20. Combined, these two constrainisielate a large
number of the policy options available. As Fig, 86 policy options remain for which the “Nothingdnfiguration

is acceptable. Furthermore, in both the expectddevbased and percentile-based performance vssgbplots,
policies involving the three-payload monolith (Cignfl1) as an initial configuration exhibit lowesst for the same
(or better) performance as those that involve QprifB. As a result, the decision is narrowed te ahwhether to
select a policy that suggests Config. 11 as afalrdecision (at an expected and"Qfercentile total cost of $300
million, with 5.6 expected services performed anseBrices performed in the L@ercentile) or, instead, Config. 3
(at an expected $285 million and"9percentile $331 million total cost, with 3.8 exfEtservices performed and 2
services performed in the I@ercentile). While no objectively correct decisiexists, it is likely that the small
($15 million, or 5%) difference in expected costidarge (1.8 services, or 38%) difference in penfance between
the options would compel many decision-makers toepic the slightly higher budget for such a sigaific
performance increase.
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V. Summary and Implications

What conclusions can be drawn from the discussien the last several pages? Ironically, the dathaaalysis
presented for this distributed-payload satellitpligption largely identify paths and policies thatolve an initial
decision to develop a three-payload monolith —afntheleastflexible options as identified in Step 1 — as ey
to best respond to a changing demand environmentaat lifecycle cost. This is itself an interegfiresult, and it
highlights the fact that integrating flexibility tm space system design considerations is not symouny with
maximizing the flexibility of the system to be dgsed; rather, the benefits of flexibility must baded against the
costs. However, the contribution of this papeniended to be much broader than this single sagby result: As
a consequence of this paper's Markovian state-sfraceework, flexibility can be quantitatively intedged into
design decisions for a variety of space systemsatipg in a variety of potential environments. Tpresent
application serves as just one illustrative exampfeuture work will involve expansion of this framerk to
encompass a variety of additional effects and agfiins.

In short, the past decades have seen the stake @frt in aerospace system design progress frooope f
simple optimization to one including robustnesghwthe objective of permitting a single system &fgrm well
even in off-nominal future environments. Integngtilexibility — or the capability to easily modify system after it
has been fielded in response to changing envirotsneimto system design represents a further stapafd. One
challenge in accomplishing this rests in that teeiglon-maker must consider not only the presestesy design
decision, but also sequential future decisions.piDeswidespread interest in the topic, the statehef art in
designing flexibility into
aerospace systems — ar
particularly space system:
— tends to rely on analyse:
that are qualitative,
deterministic, single-
objective, and/or limited to
consider only one future
time period. %0 200 400 00 800

To address these gap: Mean Cost, $FY0SM
the present work proposes
guantitative, stochastic,
multi-objective, and multi-
period framework for
integrating flexibility into
space  system desigt
decisions. Central to the
framework are five steps.
First, system configuration
options are identified and
costs of switching from one
configuration to another are
compiled into a cost
transition matrix. Second,
probabilities that demanc
on the system  will
transition from one mission
to another are compilec
into a mission demand
Markov chain. Third, one
performance matrix for
each design objective is
populated to describe how
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Figure 20. Multivariate plot of multi-objective genetic algorithm policy results
well the identified system with cost and performqnce cons_traints imposedEach dfata point indicates the
configurations perform in performance of one policy result in terms of the feercentile-based and expected-
each of the identified value metrics of interest. Data points are colobgttheir corresponding policy’s
mission demand initial configuration decision. Gray areas indieategions of the space eliminated
due to cost and performance constraints.
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environments. Fourth, possible future sequencesystiem configurations are simulated and sequethetsare
Pareto-optimal in terms of the decision-maker’'ssotiyes are identified. In a complementary apprp#uoh system
decision problem is formulated as a multi-objectixggiant of a Markov decision process, and Parptoval
decision policies are identified. Finally, thelmatnd policies from the latter step are synthdsizi® a set of data
to inform initial system selection.

The framework that this paper proposes builds éuitine state-centric notions of flexibility fronhé previous
economics and engineering literature and utilizesleting and trade space exploration techniques &emspace
systems engineering and operations research toedothe flexibility problem into a comprehensiveadtable
sequential decision-making problem. The resudt fsmework that is quantitative, stochastic, roltective, and
multi-period in nature. In particular, the formiiden of this problem posed here is amenable totismiuthrough
existing methods for Markov decision processesnditering flexibility in this way enables the s¢ien of systems
today, tailored to the decision-maker’s budget and pegfees, that will be best able to perform whenesilfo a
future of changing environments and requiremeittss hoped that the theoretical and practical Gbations made
through the work in this paper not only advanceentrthought on flexibility in the aerospace enginiag literature,
but also provide new and advanced tools to allog dpace systems engineer to better design thelegland
architectures that allow for the most effectivelexgtion, utilization, and protection of the firfabntier.
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