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Over the past decade, the space industry has increasingly recognized the need for new 
systems to be designed for flexibility, or the capability to be easily modified in response to 
changes in future requirements or environments.  Despite widespread interest, however, the 
state of the art in designing flexibility into space systems today remains limited.  To address 
these limitations, this paper presents the basis of a quantitative, stochastic, multi-objective, 
and multi-period framework for integrating flexibil ity into space system design decisions.  
Central to the framework are five steps that (1) define configuration options and transition 
costs, (2) define a stochastic model for mission demand environment changes, (3) link 
configurations and demand environments via quantitative performance metrics, (4) identify 
Pareto-optimal configuration paths and decision policies, taking advantage of efficient multi-
objective Markov decision process techniques, and (5) utilize these path and policy results to 
inform initial system selection.  The framework is applied to a realistic example in which 
design decisions are suggested for a hypothetical multi- or distributed-payload satellite 
system.  The application illustrates how flexibility-informed trades can permit selection of a 
satellite system that most effectively responds to uncertain future demands. 

Nomenclature 
A = set of available actions or decisions s = particular total state 
a = particular action or decision T = total number of time periods in time horizon 
b = per-period budget level t = current time period 
C = total cost transition matrix u = system utility 
ci,j = element of total cost transition matrix wi = weight on the ith objective 
Cdev = development cost transition matrix yi = per-period i th objective performance 
Crec = recurring cost transition matrix α = transition cost budget threshold 
G = set of available next-period positions β = multiplicative discounting factor 
g = set of zero-cost next-period positions γ = transition cost 
h = aggregate per-period objective function ι = reference system index 
J = cumulative aggregate objective function κ = reference time period index 
Q = demand environment state random variable λ = next-period system index 
M = number of objectives σ = current operating/demand environment state 
N = number of candidate next-period systems ς = prior operating/demand environment state 
n = objective function power Φi = number of transitions available from Config. i 
p = conditional state transition probability χ = starting position 
S = set of all total states ψ = next-step position 

I. Introduction 
VER the past decade, the Department of Defense, National Aeronautics and Space Administration (NASA), 
and other organizations with substantial stake in space systems have increasingly recognized the need for new 

spacecraft and space architectures to be designed for flexibility, or the capability to be easily modified in response to 
environments or requirements that may materialize months or years after these systems are fielded.  Recent high-
profile examples include the Defense Advanced Research Projects Agency (DARPA) System F6 program1-3, which 
seeks to demonstrate the flexibility of a wirelessly-connected cluster of free-flying satellites, as well as the U.S. 
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Human Spaceflight Plans (Augustine) Committee’s “flexible path” option for the future of U.S. human spaceflight4, 
which seeks to enable human mission options to a variety of inner solar system destinations. 

In general, this desire for flexibility is driven by an acknowledgement that future demands and expectations on a 
space system cannot be predicted with certainty – and a realization that accounting for this fact during early system 
design phases could result in important design decisions that might otherwise be overlooked.  Ultimately, flexibility 
could prove critical to a system’s ability to effectively respond to uncertain future events, whether these events take 
the form of mission-jeopardizing risks (e.g., for satellites, physical or directed energy attack, program funding cuts, 
or decreases in user demand for services) or mission-enhancing opportunities (e.g., increases in user demand or 
program funding).  However, posing this problem quantitatively is challenging.  Today, the objective of flexibility is 
frequently considered only qualitatively during design and system selection processes.  Occasionally, quantitative 
analysis is conducted but tends to be deterministic, single-objective, and/or limited to consider only one future time 
period.  In contrast, most practical system design problems are non-deterministic, concerned with decisions among 
competing objectives, and concerned with performance over multiple future time periods.  The question remains:  
How can space systems engineers and decision-makers systematically, quantitatively, objectively, and pragmatically 
consider flexibility in the design of a new space system? 

To contribute a further step toward development in this area, this paper presents the basis of a quantitative, 
stochastic, multi-objective, and multi-period framework for integrating flexibility into space system design 
decisions.  Central to the framework are five steps that model the systems and decisions of interest and subsequently 
provide multi-period and multi-objective decision support.  The framework itself draws from literature and tools 
within the fields of industrial engineering, aerospace engineering, and economics in order to operationally define 
flexibility and transform its consideration into a tractable problem of stochastic optimal control. 

This paper is organized as follows:  Section II provides highlights from the academic literature on flexibility and 
state of the practice in designing flexibility into aerospace systems.  Section III introduces this paper’s proposed 
framework, and Section IV illustrates the framework’s application in the context of a distributed-payload defense 
satellite system design decision.  Section V contributes a concluding discussion. 

II.  Flexibility Literature Highlights and State of the Practice 
The Merriam-Webster Dictionary defines flexibility as the “ready capability to adapt to new, different, or 

changing requirements.”5  This paper adopts a similar definition, namely that flexibility is the capability to easily 
modify a system after it has been fielded in response to a changing environment or changing requirements (cf. Ref. 
6). Central to this notion of flexibility are the conditions that (1) a system’s environment or requirements may 
change in the future and (2) the system can, to some degree, be modified to accommodate such change.  This 
definition also includes the notion of ease of modification:  All else being equal, one system is more flexible than 
another if it takes less effort or fewer resources to accomplish the same change.  These basic concepts form a 
common thread within the past century’s history of thought on flexibility; however, only within the past decade has 
the aerospace engineering community begun to develop quantitative methods for considering this property in the 
context of system design decisions.  This section surveys from past literature on flexibility, highlighting important 
concepts from the fields of economics, industrial engineering, and aerospace engineering. 

A. Early Economic Notions of Flexibility 
Some of the earliest discussions on flexibility in a decision-making context originate in the economics literature.  

As early as 1921, economist Frank Knight observed that, compared to agricultural production, which requires 
commitment at the beginning of each growing season, the supply of manufactured goods “is more flexible over short 
periods of time” since these goods can be stored and the decision about whether to bring them to the market can be 
delayed.7  Sixteen years later, Hart recognized that the postponement of decisions is a normal occurrence and 
preserves flexibility in a business plan.8  However, he also recognized that this flexibility generally comes at a cost: 

The entrepreneur’s fundamental means of meeting uncertainty is the postponement of decisions till 
more information comes in – that is to say, the preservation of flexibility in his business plan. But 
flexibility involves costs … ordinarily a given production-schedule can be produced at lower cost 
if the entrepreneur has adapted his input to it well in advance than if plans are improvised.8 

In 1939, Stigler developed economic thought on flexibility somewhat further.  He too recognized that “flexibility 
will not be a ‘free good’”9 but also illustrated how a flexible plant might have a smaller variability in average and 
marginal costs as a function of output compared to an inflexible plant.   
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In 1964, Koopmans reiterated the relevance of flexibility by observing that “almost all choices occurring in real 
life are sequential, ‘piece-meal,’ choices between alternative ways of narrowing down the presently existing 
opportunity rather than ‘once-and-for-all’ choices between specific programs visualized in full detail.”10  Koopmans 
introduced the notion of “partitioning of opportunities” which, as shown in Fig. 1, modeled the narrowing of 
opportunities with time as a tree of opportunity nodes spaced at discrete times in the future.  Koopmans’ partitioning 
of opportunities resembles decision tree analysis, introduced in the late 1950s and 1960s within the broader field of 
decision analysis.11-17 Decision tree analysis has been used substantially in management, economics, and engineering 
contexts (for examples, see Refs. 16-21), typically for the cases 
in which a user’s objective is minimization or maximization of 
the expected value of a single profit, cost, or utility metric.  A 
common drawback of the approach is that the analysis (and 
even simply populating the tree’s probability inputs) can 
quickly become unwieldy as the number of options and time 
periods grow into a “decision bush” rather than a “decision 
tree”.20-21  Also, typically the focus of decision tree analysis is 
on valuating existing options rather than recommending which 
options should be embedded into the system initially.22  
Nevertheless, recognition that the options provided by 
flexibility can be visualized in a rapidly-expanding tree 
structure provides a highly useful model for discussion and 
thought.  It also hints that dynamic programming techniques, 
which are well-suited to optimizing paths within networks of 
nodes, may be particularly useful in analysis of flexibility. 

B. The Two-Period State-Centric Notion of Flexibility 
A second and largely separate body of literature in economics and industrial engineering considers flexibility 

within a framework of period-to-period transitions between options in a state-space.  Epitomizing this view is a 
paper written in 1984 by Jones and Ostroy23 which suggested, “Flexibility is a property of initial positions.  It refers 
to the cost, or possibility, of moving to various second period positions.”  The authors also suggested, “One position 
is more flexible than another if it leaves available a larger set of future positions at any given level of cost.”  This 
was mathematically formalized with Eqs. (1) and (2).  Eq. (1) defines G(χ,σ,α) as the set of next-period positions ψ 
attainable from position χ at a cost γ that does not exceed some value α, in the context of some state σ of the 
operating environment.  Eq. (2) formalizes that position χ is more flexible than χ' (denoted by χ >F χ') if the set of 
positions attainable from χ always contains the set attainable from χ', excluding the zero-cost option to stay in χ'. 

 ( ) ( ){ }ασψχγψασχ ≤≡ ,,:,,G  (1) 

 ( ) ( ) ( )'\,,',,

   when'

χασχασχ
χχ

gGG
F

⊃

>
 (2) 

Thus, an important recognition in Jones and Ostroy’s work is that the relative flexibility of two positions is 
budget-dependent (or resource-dependent).  For an infinite budget, two positions would be equally flexible because 
each can reach the same set of [all possible] future positions.  At lower budgets, this may not be true.  However, Eq. 
(2) has a limitation:  It defines relative flexibility only for the case where the set of second-period positions from χ' 
is fully contained within the set of second-period positions from χ.  No conclusion can be drawn if one of the sets is 
not fully contained within the other.  This is appropriate in principle, as the positions available from χ' that are not 
available from χ may be very important (e.g., may perform particularly well in meeting a particular new requirement 
or environment), and it illustrates the need to consider more than cost when making decisions regarding flexibility. 

Other works which have advanced similar state-centric frameworks for considering flexibility include Christian 
and Olds,24,25 Gupta and Rosenhead,26 Baykasoğlu27, Silver and de Weck28-29, and Mandelbaum and Buzacott30.  In 
general, these frameworks and others of this class are helpful because they provide a visualization of the concept of 
flexibility itself (as opposed to the value of flexibility), which is intuitively related to the number of options that 
exist for a system over time.  However, these frameworks tend to be difficult to visualize and apply for decisions 
consisting of more than two periods. 

 

Figure 1. Visualization of Koopmans’ 
partitioning of opportunities 10.  



 
American Institute of Aeronautics and Astronautics 

 

4 

C. Flexibility in Aerospace System Design Literature 
Recently, the Department of Defense, NASA, and other aerospace organizations have increasingly emphasized 

the need for new aerospace systems to be designed for flexibility.  High-profile examples such as DARPA’s System 
F6 program and the Augustine Committee’s “flexible path” option for human space exploration have sparked a 
number of studies within the aerospace academic literature. 

Ross, Viscito, and Rhodes31-32 propose the analysis of flexibility in terms of epochs and eras, where an epoch is a 
time period of “fixed context and fixed value expectations”32 and an era is a time-ordered sequence of epochs.  Once 
an era is defined, Ross and Viscito31 propose quantifying flexibility via a metric called value-weighted filtered 
outdegree (VWFO) as defined in Eq. (3).  In this equation, uλ

κ+1 indicates the utility of system design option λ in 
epoch κ+1, and Arcι,λ

κ is a binary 0 or 1 depending on whether the transition is possible for a given budget.  As a 
result, systems with many high-utility next-epoch (next-period) options and few low-utility next-epoch options 
receive high VWFO scores.  However, this metric has some limitations.  First, the use of the signum function in the 
summation of Eq. (3) permits a system with many high-utility options and correspondingly many low-utility options 
to have a VWFO indistinguishable from one with only medium-utility options.  Second, VWFO is computed from 
epoch to epoch, making it difficult to assess for an entire era.  Finally, the metric convolves the flexibility with the 
value (or utility) of that flexibility, preventing the two from being distinguished.  However, the metric contributes a 
clear example employing a two-period state-centric concept of flexibility, including use of a budget constraint. 
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Greater depth on the flexibility problem was covered in theses by Saleh21 and later Mark33 and Nilchiani34.  In 
2002, Saleh21 extensively motivated the need for flexibility in space systems and examined its definition, in 
particular contrasting it against the more static property of robustness.  Specific examples were provided to illustrate 
the need for flexibility in modern space systems, including instances of historical requirements change, market 
demand change, and obsolescence.  Saleh applied techniques from decision tree and real options analysis to 
demonstrate the existence of net-present-value-optimal design lifetimes for revenue-generating satellites and used 
these techniques further to quantify the value of satellite servicing. 

In 2005, Mark33 further explored flexibility for the example of an unmanned aerial vehicle.  Mark proposed 
considering flexibility in the context of platforms and frames, where a platform is the set of common elements 
between modified designs and a frame is a set of changed elements.  Mark proposed to define flexibility as “the ratio 
of performance enhancement (output) to the cost and time required to realize such an enhancement (inputs)”33.  
Later in 2005, Nilchiani34 proposed a 12-step process for assessing the value of flexibility in a space system, which 
included using decision trees as well as creating a “flexibility tradespace” for visualizing alternatives’ cost-revenue 
(and/or cost-benefit) trades one period into the future.  Nilchiani also addressed how the proposed methodology 
could be integrated into a multi-attribute trade-space exploration in a methodology named FlexiMATE. 

In 2009, Lim35-36 also proposed a general approach to design evolution, focusing on aircraft and using example 
applications of evolving the F/A-18 Hornet fighter as well as a simpler cantilever beam design.  Lim adopted the 
framework of stochastic programming with recourse in order to optimize the initial design of a system while 
probabilistically considering events that could unfold one period in the future.  Lim suggested a combination of 
deterministic scenario-based optimization, stochastic programming, and interactive decision support tools to design 
evolvable systems using a 9-step process named EvoLVE. 

The work of Christian and Olds24-25 is another recent example of aerospace literature considering flexibility.  In 
their work, Christian and Olds describe flexibility in terms of a system’s ability to move between different end states 
in a lawful state space.  An example application evaluates two competing human exploration architectures in terms 
of their ability to easily achieve extended lunar missions.  Three state variables describe the performance 
requirements of the extended lunar mission,† and a Difficulty Scale for Evolvability Analysis (DSEA) is formulated 
to permit expert judgement to rate the difficulty (on a 1-3-9-27-81 scale) of evolving each architecture to meet 
various second-period performance states.  The authors observed that “a single metric cannot capture the sensitivity 
of an architecture’s capability to evolve” since that capability depends on the final evolved state that is desired. 

Finally, in 2006, Silver and de Weck28-29 proposed an analysis of evolvability based on expansion of a network 
of system operating and switching costs through several time periods.  A set of deterministic exogenous demand 

                                                        
† Contrary to Jones and Ostroy, whose state-space “positions” appear to refer to future options, the state space of 
Christian and Olds is defined by the performance of those future options. 
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scenarios was assumed, and an optimizer was used to find the least-cost path through the network for each scenario.  
The method was referred to as a time-expanded decision network (TDN) and was applied to selection of a NASA 
heavy-lift launch vehicle.  One notable limitation to the method is its single-objective and deterministic approach:  
Since the exact present and future demands of each scenario are known in advance to the decision-maker (or 
optimizer), paths through the time domain are able to fully specify an optimal solution.  No explicit consideration is 
given to the possibility that a decision-maker will make choices in part to hedge against uncertain future events. 

D. Flexibility in Aerospace Engineering Practice: An Example 
In May 2005, NASA Administrator Michael Griffin commissioned the Exploration Systems Architecture Study 

(ESAS)37 to recommend an architecture to support sustained human and robotic lunar exploration.  In its trade 
studies, ESAS used five categories of figures of merit, one of which was Extensibility/Flexibility.  Within this 
category were considerations of lunar mission flexibility, Mars mission flexibility, extensibility to other exploration 
destinations, commercial extensibility, and national security extensibility.  ESAS characterized these flexibility 
considerations in terms of qualitative 
high (green), medium (yellow), low (red) 
ratings based on expert judgement.  One 
example of these qualitative ratings for 
an evolved expendable launch vehicle 
(EELV) derived crew launch vehicle 
(CLV) is shown in Fig. 2. 

Aside from the primarily academic 
literature surveyed above, the ESAS 
methodology largely reflects of the state 
of the practice in designing for system 
flexibility today.  The approach has 
positive qualities in that it considers 
flexibility during conceptual design 
process, and it does so with the 
recognition that flexibility must be 
traded against other objectives such as 
cost.  As a result, this approach is 
amenable to application of standard 
multi-attribute decision-making 
techniques.  However, this approach has 
disadvantages in its subjectivity and its use of a Likert-like qualitative scale with no physical units.  This inhibits the 
analysis’ repeatability and allows substantial room for results to be disputed.  More fundamentally, the method treats 
flexibility as a scalar metric of the same class as cost or performance; however, it might reasonably be argued that 
the decision-maker does not care about flexibility itself (in whatever units one chooses for it), but rather cares about 
the effects that designed-in flexibility may have on future cost or performance. 

E. Gaps in the Literature 
This section has surveyed a broad set of engineering and economics literature; in the process, certain gaps have 

become evident in current thinking on flexibility and in current methods to consider this property in system design: 

� In much of the literature, there appears a tendency for engineers to consider flexibility as a system-
dependent scalar quantity.  This concept has driven the invention of numerous scalar measures for 
flexibility that are often subjective and expressed on a scale with no units or clear physical 
interpretation.  Further, when or if these measures are used in trade studies, they imply that flexibility 
is a property of the system separate from all others (such as cost and performance measures).  
However, the decision-maker likely has little interest in flexibility for the sake of flexibility:  He or she 
cares about flexibility primarily because of cost and performance benefits it may enable in the future. 

� Few existing methods for considering flexibility consider more than one period in the future.  While 
considering one future period is an important first step, it is only one period less myopic than the 
traditional single-period horizon.  If a system or program is to be operated for many decades (as is 
often the case in the aerospace industry), the prudent decision-maker cares not only to consider options 
for the first time that requirements or environments change, but also for many subsequent changes. 

 

Figure 2. Sample summary of figure of merit ratings for concepts 
in the ESAS report. 37  Note the qualitative red/yellow/green ratings 

for flexibility.  
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� Furthermore, of methods that do consider implications of flexibility more than one period into the 
future, few utilize stochastic models.  Some methods assume a deterministic schedule of future 
requirements, while others select a handful of deterministic scenarios upon which to evaluate the 
system of interest.  However, the probability of any one scenario occurring may be nearly (or, if 
continuous random variables are involved, exactly) zero. Without an understanding of the underlying 
probabilities of transition between demand or requirement environments, it may be problematic to 
assume a handful of scenarios can properly represent the entire space of possible futures. 

� While some existing methods (such as decision trees) permit valuation of the avenues of flexibility 
provided by a system, they typically operate by assuming a single expected-value objective function.  
In reality, engineering design involves trades among multiple cost and performance metrics as well as 
measures of dispersion for these parameters when subject to a stochastically changing environment. 

� Finally, the flexibility literature contains little discussion about the policies that flexible system 
operators need use to decide whether to exercise the options provided by flexibility.  Some appear to 
assume that the appropriate policy is to always modify the system to precisely meet the anticipated 
demand or requirement.  However, this is a very special case, and it may be in the program’s best 
interests not to meet this demand if it is likely to be transient, or to over-perform if doing so is likely to 
boost performance in a later period of high demand.  The policy by which the system will be operated is 
an important part of system design, especially for a flexible system. 

In summary, today there exists no quantitative, stochastic, multi-objective, and multi-period framework for 
integrating flexibility into space system design decisions.  It is such a framework that this paper proposes, drawing 
from literature and tools from industrial engineering, aerospace engineering, and economics in order to operationally 
define flexibility and transform its consideration into a tractable problem of stochastic optimal control.   

III.  A Markovian State-Space Flexibility Framework 
The gaps in the present literature listed in Section II.E suggest that at least four components are critical for a 

decision framework that integrates flexibility into space system design decision-making:  First, a stochastic model 
for the evolution of system demand over multiple time periods must be developed; such a model must describe what 
a system may be expected to accomplish (or what a decision-maker may be rewarded for performing) in the future.  
Second, a set of candidate system designs or configurations must be developed that is valid for multiple time periods 
in the future; this describes the future options available to the decision-maker and is suggested by the two-period 
state-centric notion of flexibility in the literature.  Quantitative performance measures are required to evaluate how 
well the configuration that is fielded at a given time fulfills the demand or mission requested of it; in some scenarios, 
multiple performance measures will be required to capture trades among multiple objectives.  Finally, since 
decisions regarding which system(s) to develop and field next must be made at multiple future time periods, a 
process must exist for integrating flexibility considerations into these decisions in an easily interpretable manner.  
Since the framework developed 
in this paper is intended to be 
used by decision-makers facing 
an immediate system selection 
problem, of particular interest is 
identification of the best 
system(s) to develop and field 
initially.  These components are 
illustrated graphically in Fig. 3. 

To accommodate these 
requirements, this paper presents 
a framework consisting of five 
basic steps, outlined in Fig. 4.  
First, system configuration 
options are identified and costs 
of switching from one 
configuration to another are 
compiled into a cost transition 
matrix.  Second, probabilities 

t = 4t = 2t = 1

??

t = 0

Operational System

(How)(How)

Demand Environment

(What)(What)

????

t = 3

System Under Development

????

t = 5

Two-Period, State-Centric Notion of FlexibilityTwo-Period, State-Centric Notion of Flexibility

Stochastic Demand Environment ModelingStochastic Demand Environment Modeling

Multiple Future PeriodsMultiple Future Periods
Quantitative 
Performance 
Measures

Quantitative 
Performance 
Measures

Quantitative 
Performance 
Measures

Quantitative 
Performance 
Measures

Sequential Decision SupportSequential Decision Support??

Figure 3. Critical components for decision frameworks addressing gaps 
in flexibility literature.  
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that demand on the system will 
transition from one mission to 
another are compiled into a 
mission demand Markov chain.  
Third, one performance matrix for 
each design objective is populated 
to describe how well the identified 
system configurations perform in 
each of the identified mission 
demand environments.  Fourth, 
possible future sequences of 
system configurations are 
simulated and sequences that are 
Pareto-optimal in terms of the 
decision-maker’s objectives are 
identified. In a complementary 
approach, the system decision 
problem is formulated as a multi-
objective variant of a Markov 
decision process, and Pareto-
optimal decision policies are 
identified.  Finally, the paths and 
policies from the latter step are 
synthesized into a set of data to 
inform initial system selection. 

IV.  Application:  Design of a Distributed-Payload Satellite System 
To illustrate this framework in a step-by-step manner, this paper poses a realistic example application in which 

design decisions must be made for a hypothetical multi-payload Department of Defense satellite system.  Motivated 
by the distributed-payload monolith concept recognized by the DARPA F6 program (e.g., see Refs. 39-41), the 
following application illustrates how flexibility-related trades can be quantified for this basic fractionated spacecraft 
concept.  Of particular interest is the answer to the following question:  How can a systems engineer or analyst select 
the design of the satellite system initially such that it can optimally (or Pareto-optimally) respond to the uncertain 
future demands that may be placed upon it? 

A. Step 1:  Define Configuration Options and Cost Transition Matrix 
As noted in Section II.B, in 1984 economists Jones and Ostroy23 suggested, “Flexibility is a property of initial 

positions.  It refers to the cost, or possibility, of moving to various second period positions.”  Similar views are 
supported elsewhere in the literature.  Thus, step 1 of this proposed framework begins by defining:  What are the 
possible “positions” of this satellite system? 

 
1. Defining the Configuration Space 

This paper’s framework proposes that the “positions” of an engineering system are its possible configurations, or 
its possible design options.  This choice for the position definition has the reasonable implication that given enough 
resources, the engineer or decision-maker can choose to field any particular system configuration (or be at any 
particular “position”) in the future. 

What it is that precisely defines these configurations is application-specific.  In the case of this distributed-
payload satellite system application, suppose that the decision-maker has the option of utilizing up to three specific 
payloads in any current or future system designs.  One payload (PL1) provides detection of distress transmissions, 
another (PL2) provides high-bandwidth communications, and a third (PL3) provides high-resolution imagery.  
Assumptions for mass, power, and pointing requirements for these payloads are shown in Table 1.‡  Considering that 
these three payloads can be distributed among up to three on-orbit modules and that not all three payloads need be 

                                                        
‡ This list of payloads is limited to three for demonstration purposes only and can easily be increased if a decision-
maker wishes to consider additional candidate payloads. 

 

Figure 4. Five major steps of this paper’s framework.  
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included in the system design (i.e., that omitting payloads is a valid 
consideration), there exist 15 distinct configuration options.  These 
configurations are represented graphically in Fig. 5 and, as noted in 
previous work39, can be decomposed into subsets of configurations 
described by Bell numbers.  Starting from the bottom, configurations 
11-15 represent all possible ways of distributing three payloads among 
between one and three modules (i.e., from monolithic to fully 
fractionated).  Configurations 5-10 cover all possible ways of 
distributing combinations of two payloads among up to two modules.  
Configurations 2-4 are the single-payload satellite system options, and 
Configuration 1 indicates the option to field no system at all. 

Even at this early point in the process, enumeration of the designs 
within the configuration space reveals two extremes in approaches for 
evolving the system to meet future needs:  The most modular (but in 
the long term, potentially costly) approach would be to launch new 
single-payload modules as new payloads are needed.  A robust (but in 
the short term, potentially wasteful) approach would be to launch a 
single spacecraft with all three payloads, betting that all capabilities 
will eventually be required.  A number of approaches fall between 
these extremes, and an important goal is to find the best possible 
sequence of configurations over the system’s time horizon, given the 
uncertainty in future demand or requirements.  One of the most 
important results of this search is eventual identification of the best 
possible initial design (i.e., what the decision-maker should build at 
the start of the program). 

 
Table 1.  Assumed payload characteristics for example design.42-46 

Payload 
No. 

Payload 
Description 

Flight 
Heritage 

Mass 
(kg) 

Power 
Requirement (W) 

Pointing 
Requirement 

(deg.) 
1 Search & Rescue Repeater NOAA-N 24.0 53 1.00 
2 LEO Transponders Orbcomm 8.4 10 5.00 
3 High Resolution Imager NigeriaSat-2 41.0 55 0.01 

 

2. Defining the Cost Transition Matrix 
Recalling that flexibility “refers to the cost, or possibility, of moving to various second period positions” 23, to 

proceed it is necessary to incorporate cost information in addition to information on the composition of each system 
configuration.  For space systems, these costs typically consist of development and operations costs.  Here, 
operations costs will refer to the total costs required to operate the currently-fielded configuration over the coming 
time period.  Development costs will refer to the total costs required to design, develop, produce, and launch the 
components needed to transition from the current configuration to a new configuration over the coming time period. 

In this scenario, suppose the decision-maker encounters a decision point every 30 months.  At these points, a 
decision must be made regarding which of the 15 system configurations to develop and then field 30 months later.  
Demand for payload services in each 30-month operations period is uncertain a priori and materializes after 
development, with the possibility that it will then change in subsequent period (see Fig. 6). 

Thus, the decision-maker has control over the system configuration but not the demand environment at each time 
step. However, at each decision point, the control that the decision-maker chooses to exercise comes at a certain 
cost.  For example, if the decision-maker is at the second decision point and has Config. 2 already on-orbit, in order 
to transition to Config. 8 he/she would need to expend the appropriate resources to develop and launch a new 
module.  In addition, he/she must simultaneously pay for the operation of the current on-orbit system.   

These transition costs can be represented in matrix form.  First, a development (or nonrecurring) cost matrix Cdev 
accounts for the one-time costs required to develop and produce one system given that another system already 
exists.  This cost, which can also be considered a switching cost, is the cost most central to the notion of flexibility 
and may be computed through application-specific cost estimating relationships.  In this case, application of the GT-
FAST fractionated architecture synthesis tool39,47 using the payload assumptions of Table 1 for a 10-year design 

PL12
PL23
PL34

PL1 PL25
PL1 PL36
PL2 PL37

PL2PL18
PL3PL19

10 PL2 PL3

PL1 PL2 PL311
PL2 PL3PL112

PL2 PL1 PL313
PL3 PL1 PL214

PL3PL1 PL215

1 Nothing

 

Figure 5.  Possible system 
configurations.  Each distinct 

rectangular block represents a free-
flying module.  The payloads inside 
each module are indicated in green. 
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lifetime in a 410 km circular orbit 
produces the transition cost estimates 
in Table 2.  These costs include 
appropriate spacecraft subsystem 
development and first-unit production, 
program management and systems 
engineering, software, ground segment 
development, launch, and assembly, 
test, and launch operations (ATLO). 

Importantly, note that Table 2 
accounts for the fact that free-flying 
modules for the next-period 
architecture need not be developed or 
produced if they exist already within 
the on-orbit cluster.  The most obvious 
manifestation of this is that the 
diagonal of matrix Cdev consists 
entirely of zeros; this signifies the 
intuitive fact that it costs nothing to 
develop configuration i given that 
configuration i already exists.  Similarly, note that no development costs are required to downgrade a configuration, 
such as a transition from Config. 15 (which, as shown in Fig. 5, includes three single-payload modules) to Config. 2 
(which consists of only the PL1 single-payload module).  This highlights a simplifying assumption within the data 
of this particular matrix that the cost to shut down or decommission a module is zero; however, given proper 
decommissioning cost models, this information could easily be included in Cdev. 

 

 
 
Second, a recurring cost matrix Crec shown in Table 3 accounts for operations and any production beyond the 

first unit.§  In this example application, first-unit production costs are the only applicable production costs, so the 
costs within this matrix are functions only of the row, i.e., the configuration that is operational over the length of the 

                                                        
§ In some instances, the analyst may wish to account for all of production within the recurring cost matrix, since 
even one-time production for a unique flight unit is traditionally bookkept as a recurring cost.  In the present 
application, one-time module production costs are considered more closely related to the one-time development 
costs and are accounted for in the development cost matrix. 

Table 2.  Development cost transition matrix, Cdev (data in $FY08M). 

  To Configuration 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 169 131 184 175 200 189 197 252 212 204 257 228 258 280 

2 0 0 36 89 80 105 94 36 89 117 109 94 134 163 117 
3 0 75 0 89 80 105 94 75 158 89 109 163 105 163 158 
4 0 75 36 0 80 105 94 103 75 36 109 163 134 80 103 
5 0 75 36 89 0 105 94 103 158 117 109 163 134 89 186 
6 0 75 36 89 80 0 94 103 158 117 109 163 36 163 186 
7 0 75 36 89 80 105 0 103 158 117 109 75 134 163 186 
8 0 0 0 89 80 105 94 0 89 89 109 94 105 163 89 
9 0 0 36 0 80 105 94 36 0 36 109 94 134 80 36 

10 0 75 0 0 80 105 94 75 75 0 109 163 105 80 75 
11 0 75 36 89 80 105 94 103 158 117 0 163 134 163 186 
12 0 0 36 89 80 105 0 36 89 117 109 0 134 163 117 
13 0 75 0 89 80 0 94 75 158 89 109 163 0 163 158 
14 0 75 36 0 0 105 94 103 75 36 109 163 134 0 103 
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Figure 6.  Planning periods and decision points (in blue) 
over a 10-year time horizon. 



 
American Institute of Aeronautics and Astronautics 

 

10 

coming 30-month time period.  These costs are also estimated using the GT-FAST tool, which draws upon a 
publicly-available NASA mission operations cost model.48 

 

 
 
Summing Cdev and Crec from Tables 2 and 3 yields the total cost transition matrix C in Table 4. Each element ci,j 

of this matrix specifies the total cost incurred over a subsequent 30-month time period as the result of the decision to 
transition from developing configuration i to developing configuration j.  For example, to transition from Config. 2 
to Config. 8 requires developing, producing, and launching the module containing PL2 as well as operating the 
current Config. 2, for a total transition cost c1,7 = $56 million.   

 
 

 
 

Table 3.  Recurring cost transition matrix, Crec (data in $FY08M). 

  To Configuration 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 
3 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 
4 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 
5 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 
6 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 
7 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 
8 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 

9 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 
10 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 
11 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 
12 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 
13 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 
14 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 
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Table 4.  Total cost transition matrix, C (data in $FY08M). 

  To Configuration 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 169 131 184 175 200 189 197 252 212 204 257 228 258 280 
2 20 20 56 110 101 126 115 56 110 138 130 115 154 184 138 
3 16 91 16 106 97 122 111 91 174 106 125 179 122 180 174 
4 22 96 58 22 102 127 116 124 96 58 131 184 155 102 124 
5 21 96 57 110 21 126 115 123 178 138 130 184 155 110 207 
6 23 98 59 113 104 23 118 126 181 141 133 186 59 187 209 

7 22 97 58 112 103 128 22 125 180 140 131 97 156 186 208 
8 23 23 23 113 104 129 118 23 113 113 132 118 129 187 113 
9 29 29 65 29 109 134 123 65 29 65 138 123 162 109 65 

10 25 99 25 25 105 130 119 99 99 25 134 187 130 105 99 
11 24 98 60 113 104 129 118 126 181 141 24 186 157 187 209 
12 29 29 65 118 109 135 29 65 118 147 138 29 163 193 147 
13 26 101 26 116 107 26 121 101 184 116 135 189 26 190 184 
14 29 104 65 29 29 135 124 132 104 65 138 192 163 29 132 
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3. Analyzing the Cost Transition Matrices 
The data represented by the cost transition 

matrices can be analyzed, visualized, and related to 
flexibility in several useful ways.  First, the relative 
trade between system initial costs and the switching 
costs (or one-time development costs) of Table 2 can 
be visualized as in Fig. 7. In this figure, each vertical 
line indicates the range of switching costs from a 
given configuration, defined by the rows of Table 2.  
Solid dots indicate minimum and maximum values, 
and triangles indicate median values.  Each vertical 
line is located horizontally at the cost needed to 
develop the configuration from scratch (in this case, 
Config. 1).  For example, if no system currently exists 
and a decision-maker chooses to develop Config. 5 
(involving a single module with PL1 and PL2 on 
board), a cost of $175 million is incurred (on the x-
axis), and the cost to switch configurations in the 
future varies from $0 to $186 million, depending on 
which future configuration is chosen.  In contrast, if 
the decision-maker instead chooses to develop Config. 
15 (involving three payloads among three modules), a 
cost of $280 million is initially incurred, and the cost 
to switch configurations in the future varies from $0 to 
$109 million.  Thus, to some extent Fig. 7 empirically 
confirms the intuitive trend that future switching costs can often be reduced by earlier investments. 

Second, the data from the total cost transition matrix (Table 4) can be visualized directly in the context of the 
two-period state-centric notion of flexibility mentioned earlier.  For this visualization see Fig. 8.  Here, each node in 
each of the three plots represents one of the configurations considered in the design space.  Each node is named SX, 
where X is the configuration number from Fig. 5, and has a color indicative of the number of on-board payloads 
(consistent with the colors of Fig. 7).  Above each of the three plots is a budget, and for every element of the total 
cost transition matrix less than or equal to the given budget, a directed link is drawn.  In cases where the total cost on 
the diagonal of the matrix is less than or equal to the budget, a dark circle is drawn around the appropriate node.  For 
example, the middle plot of Fig. 8 shows that, if the currently-fielded architecture is Config. 12, a $50 million 
budget for a given 30-month period would allow the decision-maker to transition to Configs. 1, 2, or 7, or to remain 
in Config. 12. In cases where no links or dark circles are associated with a configuration, the available budget is 
insufficient even to support operation of the current configuration into the next period.   

 

 

 Transitions Available for $25M Transitions Available for $50M Transitions Available for $100M 

 

Figure 8.  Available configuration transitions for three example 30-month budgets.  
Self-transitions are available if a dark ring circles a given configuration. Colors indicate each 
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Figure 7.  Switching cost vs. initial cost from Config. 1.  
Vertical lines indicate ranges of switching costs from each 
configuration; some overlap.  Solid dots indicate minima 

and maxima, and triangles indicate median values. 
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A natural observation from Fig. 8 is that, 
as budget is increased, more links become 
available.  That is, as the decision-maker has 
more resources available, more options exist.  
The total number of links in the graphs of 
Fig. 8 increases from 23 at the $20 million 
budget to 47 at the $50 million budget and 78 
at the $100 million budget.  Eventually, at a 
large enough budget, all 225 links would 
appear.  Linking this to the two-period state-
centric concept of flexibility, a clear indicator 
of the flexibility of a given configuration i is 
the number of links or transitions available to 
it for a given budget b (the number of “outs” 
available, which will be denoted Φi(b) ). 

This indicator is plotted in Fig. 9.  The 
figure shows the number of available 
transitions as a function of available budget, 
where data for each configuration is 
represented by a single line.  For example, 
the figure illustrates that for a per-period 
budget of $50 million, Config. 1 (the 
“nothing” configuration) has Φ = 1 transition 
available, Configs. 2-7 and 11 each have Φ = 
2 available transitions, Configs. 8-10 and 12-
14 each have Φ = 4 available transitions, and Config. 15 has Φ = 8 available transitions. It also shows that by a 
budget of $300 million, any configuration can be reached from any other configuration since all configurations have 
15 available transitions. 

Figure 9 highlights a few interesting transition characteristics for the configurations in the design space defined 
in Fig. 5.  If the quantity Φ is interpreted as a surrogate measure of flexibility, then it is easily seen that Config. 1 is 
significantly less flexible than any other configuration over most of the budget range plotted in Fig. 9.  For Config. 
1, the first available transition to another configuration occurs at $131 million; for the same budget, other 
configurations can already make between 9 and 13 transitions.  This occurs because Config. 1 has no capabilities 
that it can leverage to easily transition to other configurations, and all capabilities must be developed from scratch.  
It is also relevant to note that the three-payload monolith, Config. 11, which has no modules in common with other 
configurations, tends to have fewer transitions available than most other configurations at most budget levels.  On 
the other hand, Config. 15 (the fully fractionated design) very quickly attains a large number of available transitions 
as budget increases; this configuration is the first to reach 8 transitions and the first to attain the ability to make all 
15 available transitions.  This occurs because Config. 15 consists of three single-payload modules that can easily be 
used as pieces of other configurations; from Config. 15, the only modules that must be developed to reach other 
configurations are the two- or three-payload modules. 

In terms of number of transitions, the other configurations within the design space generally fall between the 
bounds of Configs. 1 and 15.  All illustrate that Φ is a monotonically increasing function of budget, which implies 
that any given configuration’s flexibility increases with available budget.  However, examples also can be found to 
illustrate that the relative flexibility between configurations is also a function of available budget.  For example, at a 
budget of $25 million, Config. 8 has four available transitions while Config. 15 has none.  In other words, at a 
budget of $25 million, it is reasonable to make the statement that Config. 8 is more flexible than Config. 15.  
However, at a budget of $50 million, Config. 8 still has four available transitions while Config. 15 can make eight 
transitions.  At this budget level, Config. 15 is more flexible than Config. 8, and the relative flexibility of these 
configurations has reversed.  The reason for this “flexibility reversal” becomes evident when it is recalled that the 
cost transition matrix accounts for both development and recurring operations costs:  When budget resources are 
scarce, operating a high-capability configuration (like Config. 15) consumes funds that would otherwise be available 
for developing the components needed to transition to another configuration.  However, as financial resources 
become more abundant, more capable configurations become more flexible because they already possess 
capabilities transferrable toward the development of other configurations. 
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Figure 9.  Available configuration transitions 
as a function of the available 30-month budget. 
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4. Key Observations from Step 1 
This step of the framework has shown that the two-period state-centric notion of flexibility can be adapted to 

apply to configuration changes for space systems, with particular emphasis on a distributed-payload satellite.  A cost 
transition matrix was formed and used to visualize the options that exist for changing the system as a function of 
available budget.  If a single, relatively constant per-period budget is likely to exist for the foreseeable future, that 
budget can be selected and a diagram such as one of the graphs in Fig. 8 can be useful in tracing possible 
configuration pathways.  If the available budget is likely to be subject to change or partially under the control of the 
decision-maker, the available transitions can be plotted as a function of budget to determine if additional budget 
would make a substantial difference in the available options.  Analysis of these graphs and associated data illustrate 
how budget itself can drive whether one configuration is more flexible than another. 

At the conclusion of this step, it is reasonable to ask:  From this information, what conclusions can be drawn 
about the best initial system configuration to select?  Unfortunately, none.  To do so requires overcoming two 
limitations of considering only configurations and cost over a two-period time interval.  First, the time horizon of the 
analysis must be expanded to more than two periods to avoid potentially myopic decision-making.  Second, the 
benefits of being in a given configuration at a given time must be quantified.  A limitation of considering only the 
number of available transitions metric is that it contains no information about the value of each configuration in each 
future time period.  As a result, it is possible to manipulate this metric to make certain configurations appear 
relatively more or less desirable by either (1) including in the state space a large number of physically similar 
configurations or (2) including in the state space a large number of configurations that are unlikely to have any value 
in the future.  These limitations are resolved in the following two steps of the framework. 

B. Step 2:  Define Markovian Demand Environment Evolution 
Typically, the performance of a system depends upon the environment in which it operates.  Thus, while Step 1 

of this framework focuses on defining the system itself and its available configuration states, the environment in 
which the system operates has not yet been discussed.  Step 2 fills this gap by proposing a model for the evolution of 
the environment.  Unlike the configuration state, which is under the control of the decision-maker, the environment 
state will characterize the demands placed on the system at any given time, which inherently is not under the control 
of the decision-maker and evolves stochastically. 

As mentioned in Section IV.A.1, up to three specific payloads are available for any current or future designs of 
the distributed-payload satellite system.  One payload (PL1) provides detection of distress transmissions, another 
(PL2) provides high-bandwidth communications, and a third (PL3) provides high-resolution imagery.  In terms of 
defining the demand environment, it is reasonable to expect that future demand may exist for the satellite system to 
provide any combination of these three services.  For example, in one time period, only high-bandwidth 
communications may be required, and in another, both high-resolution imagery and high-bandwidth 
communications may be needed.  Thus, there exist eight distinct demand environment states, indicated by the axes 
in Table 5.  Note that these environment states are mutually exclusive and, for example, “1” should be interpreted as 
“1 only” and “1+2” should be interpreted as “1+2 only”. 

It is also reasonable to expect that the evolution of demand for these services through time is unlikely to be 
properly modeled by a time series of independent random demand environments.  Rather, a subsequent period’s 
demand likely depends in 
part upon the current 
demand, a dependence that 
can be captured using a 
Markov chain stochastic 
model. Formally, a Markov 
chain is an ordered set of 
discrete random variables 
(e.g., {Q(t)}) for which the 
probability that Q(t) takes 
some value σ depends only 
on the value of Q(t-∆t), i.e., 
Q in the previous time 
period.  Thus, in a 
Markovian stochastic 
process, the past influences 
the future only through the 

Table 5.  Assumed demand environment transition probability m atrix.   Note 
that, in the demand environment naming convention, 1 indicates demand for distress 

transmission detection , 2 indicates demand for high-bandwidth communications, 
and 3 indicates demand for high-resolution imagery services. 

To Demand Environment 
 

None 1 2 3 1+2 1+3 2+3 1+2+3 

None 0.30 0.05 0.13 0.30 0.02 0.05 0.13 0.02 

1 0.20 0.15 0.09 0.20 0.06 0.15 0.09 0.06 
2 0.10 0.02 0.23 0.15 0.05 0.03 0.35 0.07 
3 0.10 0.08 0.07 0.23 0.05 0.19 0.16 0.12 

1+2 0.05 0.07 0.20 0.03 0.28 0.05 0.13 0.19 
1+3 0.05 0.05 0.05 0.20 0.05 0.20 0.20 0.20 
2+3 0.05 0.04 0.12 0.12 0.09 0.09 0.27 0.22 
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present state.**   The conditional probabilities P[Q(t) = σ | 
Q(t- ∆t) = ς] with which values of Q at time t-∆t evolve 
to other values of Q at time t are organized in a 
probability transition matrix. 

The particular probability transition matrix assumed 
for this example is shown in Table 5.  Ideally, this 
matrix would be populated using a set of expert 
judgements regarding future demand behavior or, if they 
exist, probabilities based on historical data.  In this 
notional example, the author’s judgement was used to 
select values that reflected a high likelihood that a 
current demand would be maintained (e.g., if high-
resolution imagery is demanded in the current period, it 
would be likely to also be demanded in the next period) 
and tended to place lower probabilities on the need for 
dedicated distress transmission detection services.  The 
probabilities in Table 5 also reflect an assumed 
conditional independence in the evolution of demand for 
each individual service; for example, given a particular 
demand Q(t-∆t), the probability of demand evolving for all three services (1+2+3) is equivalent to the product of 
three underlying probabilities that are conditional on Q(t-∆t) but reflect the likelihood that demand evolves to each 
of the services individually.  It is important to emphasize, however, that the particular probabilities in Table 5 are 
illustrative and can easily be substituted with if more data or other expert judgements become available. 

The Markov chain of Table 5 can be visualized as a set of demand environment states as in Fig. 10.  In this 
figure, high-probability transitions are represented as thick dark links and low-probability transitions are represented 
as thin light links.  The likelihood of self-transitions (along the diagonal in Table 5) are indicated by the darkness 
and thickness of rings around each state.  Thus, for example, this figure immediately allows identification of the 
highest-probability and lowest-probability transitions in the Markov chain and demand environment evolution. 

C. Step 3:  Define State-Dependent Performance Matrix 
Linking the on-orbit configuration to 

the demand environment is a matrix that 
specifies the amount of reward (e.g., 
revenue or an accumulated performance 
measure) earned in each time period as a 
function of the demand environment and 
system configuration in that period.  The 
application here uses the matrix in Table 
6, which specifies the number of 
demanded services that are performed 
given a particular configuration 
operating in a particular demand 
environment.  For example, if the 
demand in one time period is for imagery 
and communications (column 7) and the 
vehicle on-orbit is in Config. 15 (the 3-
payload fully-fractionated option, row 
15), the decision-maker accumulates the 
performance of two demanded services.  
As a result, the decision-maker is 
incentivized to place payloads in orbit 
that will meet demand for services. 

                                                        
**  If it is necessary to build additional memory into the process, it is possible to do so by expanding the chain’s state 
space (i.e., the definition of the possible values of Y). 

Table 6.  Performance matrix quantifying the number of 
demanded services performed in a given time period. 

  Demand Environment State 

  None 1 2 3 1+2 1+3 2+3 1+2+3 

1 0 0 0 0 0 0 0 0 
2 0 1 0 0 1 1 0 1 
3 0 0 1 0 1 0 1 1 
4 0 0 0 1 0 1 1 1 

5 0 1 1 0 2 1 1 2 
6 0 1 0 1 1 2 1 2 
7 0 0 1 1 1 1 2 2 
8 0 1 1 0 2 1 1 2 
9 0 1 0 1 1 2 1 2 

10 0 0 1 1 1 1 2 2 
11 0 1 1 1 2 2 2 3 
12 0 1 1 1 2 2 2 3 

13 0 1 1 1 2 2 2 3 
14 0 1 1 1 2 2 2 3 
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Figure 10.  Visualization of the demand 

environment Markov chain described by Table 5.  
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It is also worth noting that, although the present application adopts just one performance metric (and thus one 
performance matrix), multiple such matrices can be defined for any cumulative performance metrics of interest to 
the decision-maker.  For example, a decision-maker may also be interested in a cumulative binary metric that 
indicates a 1 or 0 in each time period depending on whether performance demands were fully met; over the long 
term, such a metric would indicate the percentage of time that the system fully meets the demands placed upon it. 

D. Step 4:  Decision Support Analysis 
With configuration transitions, demand environment transitions, and a performance matrix defined, there now 

exists enough information to run a simulation and begin to answer the question of what is the “best” initial 
configuration the decision-maker can choose.  Using Fig. 6 as a framework for a simulation timeline, one time 
period before a configuration is fielded (in this distributed-payload satellite example, at t = -2.5 years), a decision-
maker must choose which system configuration to initially design, develop, and produce.  At t = 0, the system that 
had been developed over the previous time period is fielded, and a demand environment materializes.  At this point, 
the system operator must make use of the currently operational system in attempting to fulfill the current demand.  
Meanwhile, the decision-maker must choose which configuration to design, develop, and produce over the coming 
period.  The cycle then repeats for as many periods as fills the time horizon under consideration.  In this case, the 
time horizon of interest is 10 years of operation. 

The decision support analysis in this step is divided into two complementary analysis options.  The first option, 
in which Pareto-optimal paths are identified, is simpler to implement and conceptually similar to long-term 
scheduling and roadmapping analysis.  The second option, in which Pareto-optimal policies are identified, is a more 
complete consideration of the problem and is akin to developing an optimal “playbook” of what actions to take 
given all possible future evolutions of the environment. 

 
1. Step 4A:  Find Pareto-Optimal “Open-Loop” Paths 

One question that Fig. 6 prompts is:  What configuration should the decision-maker choose to develop at each 
time increment?  In other words, what configuration should be selected for each of the yellow design and 
development blocks in Fig. 6?  The answer is not obvious, especially since the demand environment evolves 
stochastically.  For example, the decision-maker who wishes to be able to fulfill whatever demand the next period 
may bring would choose to build the most capable system possible, but this would come at substantial initial 
expense.  The decision-maker who would gamble that tomorrow’s demand will be the same as today’s would 
develop few or no new architectural components and in doing so save significant resources; however, this would 
come with the inability to perform if the next period’s demand materializes to require greater capability.  
Furthermore, whether one period’s decision is best (e.g., high-reward or low-cost in the long run) is likely to be 
dependent on other decisions throughout the system lifetime.  In the flexibility problem, it is in general necessary to 
consider all future decisions within a given time horizon in order to judge the appropriateness of any single decision.  
While this presents a unique difficulty within the realm of space system conceptual design, once complete it presents 
an automatic solution to the question of which configuration to select initially:  The appropriate configuration to 
select initially is the first configuration decision from the “best” time-ordered sequence of decisions. 

In this example, posing the problem such that we wish to find the optimal sequence of the four development 
decisions (each decision of which implies a selection among the 15 configuration options) means that there exist 154  
= 50,625 possible sequences (or paths).  Since the configurations on these paths are identified by the time on the 
clock at which they are chosen, this type of specification will be referred to as an open-loop path. 

Assuming an initial condition at t = -2.5 years in which the operational configuration is nothing (Config. 1) and 
there is demand for none of the services (the “None” environment), one approach to solving this problem is to 
simulate all 50,625 paths subject to the stochastically-changing demand environment and identify which produces 
the “best” combination of performance and cost.  Thus, for each of the paths, 1000 Monte Carlo simulations are run.  
At each time step of a simulation, the following events and computations occur: 

1. Mission demand evolves stochastically according to the Markov chain estimate of Table 5.   
2. The operator of the currently operational configuration attempts to use this system to fulfill the new 

mission demand, earning credit according to the performance matrix. 
3. The decision-maker chooses which configuration to develop in the current time period and field in the 

next time period, incurring a cost according to the cost transition matrix.  An available choice in any 
time period is to retain the current configuration, which requires no additional development resources. 

A sample set of Monte Carlo simulation results is shown in Fig. 11.  This figure shows the result of adopting a 
path representing an incremental buildup of capability in which Config. 4 (the PL3-only configuration) is fielded 
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initially.  In the next time period, a new module containing PL1 is launched, and PL2 is added in the third time 
period.  The cluster of three modules operates until the end of the 10-year time horizon.  Due to the simulation setup, 
a configuration decision must still be made in the final operational time period; since the cost of developing this 
final configuration will be incurred but no reward will be earned, Config. 1 (the “Nothing” configuration) is 
selected.  As the bottom left portion of Fig. 11 shows, this particular path (denoted as [4 9 15 15 1], by the 
configuration decisions made at each step) is subject to a stochastically changing demand environment.  The size of 
each yellow dot indicates the likelihood of demand being in a particular state (on the y-axis) at a given time (on the 
x-axis); note that all simulations begin in the “None” demand environment at t = -2.5 years, as specified by the 
initial condition.  The right-hand portion of Fig. 11 indicates how per-period cost and performance vary over time.  
Note that the per-period cost decreases from $184 million for the initial investment to $31 million in the final 
operations period, and number of demanded services performed per period increases from zero to a mean of 1.67 in 
the final period.  The total expected cost for this path over the time horizon is $407 million††, and the total expected 
number of demanded services performed is 4.69. 

 
 

 
 
 
                                                        
†† Note that once a path is chosen, cost is fixed.  As a result, the expected cost is equivalent to the minimum, 
maximum, and median costs across all path-based Monte Carlo simulations. 

 

Evolution of Path:  PL3PL3   →  PL3PL1 PL3PL3PL1PL1   →  PL3PL1 PL2 PL3PL3PL1PL1 PL2PL2   →  PL3PL1 PL2 PL3PL3PL1PL1 PL2PL2   →  Nothing 
 

 
 Evolution of States Evolution of Objectives 

   
Figure 11.  Evolution of configuration path [4 9 15 15 1], representative of an incremental capability buildup. 
In the plots on the left, the size of circles indicate the relative number of Monte Carlo simulation cases that exist in a 
given configuration or demand environment state (on the y-axes) at a given time (on the x-axes).  The plots on the 
right indicate the associated evolution of per-period cost and performance.  In all plots, gray lines indicate 
transitions made in at least one simulation.  Note configuration and cost are deterministic, since a path is specified. 
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Obtaining results like 
those in Fig. 11 for each of 
the 50,625 possible paths 
allows the total expected 
performance to be computed 
and plotted against total cost 
for each path as in Fig. 12.  In 
this figure, each blue “x” 
represents the total cost and 
performance of one path‡‡.  
Notice that, for the population 
as a whole, there is a general 
trend that, as more funds are 
invested, higher performance 
is expected.  However, it is 
important to recall that the 
decision-maker has a choice 
of which path to select.  As a 
result, if he or she cares 
primarily about total cost and 
expected total demanded 
services performed, it would 
make little sense to select a 
high-cost, low-performance 
point toward the lower right 
of the cluster.  Rather, the 
decision-maker would prefer to choose among the set of nondominated points that comprise the Pareto frontier.  
This Pareto frontier, shown in red in Fig. 12, is composed of the set of possible configuration sequences for which 
one objective cannot be improved without the sacrifice of another.§§  In this application, the frontier is comprised of 
just 12 of the 50,625 possible paths and helps to narrow the options considerably. 

Listed next to each of the Pareto-optimal points in Fig. 12 is its associated configuration path.  Note that at the 
bottom left of the figure is the “do nothing” option in which Config. 1 is fielded for all time periods; this is cost-
optimal but also provides the lowest possible performance.  At the other extreme is the Pareto-optimal highest-
performance option of fielding Config. 11, the three-payload monolithic satellite, for all time periods.  The Pareto-
optimal solutions between these two extremes involve developing Configs. 3, 5, 7, or 11, either immediately or after 
a 1-2 period delay.  Notably absent from the frontier are the higher-cost multiple-module configurations. 

One use of the data in Fig. 12 becomes evident when the sample path from Fig. 11 is overlaid as the yellow 
square in Fig. 12.  Here it can be seen that the incremental path [4 9 15 15 1] is dominated by solutions on the Pareto 
frontier.  In fact, one particular path, [1 11 11 11 1], accumulates near-identical performance for a total cost about 
$131 million (32%) lower.  In this Pareto-optimal path, detailed in Fig. 13, the three-payload monolithic satellite is 
fielded after a one-period wait, during which time demand evolves toward an environment in which multiple 
services are demanded.  Unlike the incremental path in Fig. 11, which exhibits a gradual decrease in per-period cost, 
the Pareto-optimal path in Fig. 13 exhibits an initial $204 million spike followed by $24 million in operations costs 
for three periods.  As a result, this cost profile results in significant savings, and the system still performs well since 
all three payloads are available to fulfill all requested services at times in the future in which the environment has 
evolved to one in which multiple services tend to be demanded. 

 
2. Step 4B:  Find Pareto-Optimal “Closed-Loop” Policies 

While straightforward and conceptually similar to an optimization of typical long-term scheduling and 
roadmapping efforts, the analysis presented in Step 4A has two principal disadvantages.  First, for applications with 
large numbers of configurations and long time horizons, it may not be practical to enumerate all possible paths.  For 

                                                        
‡‡ These totals are taken over the t = -2.5 year period (at which there is zero performance due to the initial condition) 
and the four subsequent periods. 
§§ For further familiarization with Pareto optimality, Refs. 49 and 50 are recommended. 

 
Figure 12.  Trade between total demanded services performed and total cost 

for all open-loop paths.  Pareto-optimal paths are identified by 5-period 
configuration sequences listed next to red circles. 
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example, if the number of time periods in the present application were doubled, the number of possible paths would 
increase from 50,625 to over 2.6 billion and take several years of run time on a standard desktop computer.  Second, 
assuming a set path for the entirety of the system’s lifetime neglects the ability of the decision-maker to make 
choices mid-program in response to the evolution of the demand environment. 

To overcome these limitations, Step 4B presents a complementary analysis that draws on a set of techniques 
from outside of the aerospace community that addresses this problem and is particularly well-suited for the state-
space framework set forth in Steps 1-3.  These techniques are associated with the class of stochastic control 
processes known as Markov decision processes (MDPs). 

To define any MDP, it is necessary to first define (1) a set of states (or state space) S that describes the system of 
interest, (2) a set of decisions or actions A available from each state s, (3) transition probabilities p(j|s,a) given that a 
particular decision a is made while the system is in state s, and (4) expected per-period rewards h(s,a) associated 
with actions and/or states.  In the case of MDPs on a finite time horizon, solutions typically exploit the 
computational efficiency of probabilistic dynamic programming, in which the overall maximization of a cumulative 
expected-value objective at the system’s initial state and time Js0,t0 is decomposed into a series of state-by-state, 
period-by-period maximization problems as specified in Eq. (4).***   The optimization is implemented starting from 
the final time period of interest and then working backward to the initial time t0.   

 

 
                                                        
***  The term β is a discounting factor.  In this paper’s analysis, β is set to unity. 

 
Evolution of Path:  Nothing  →  PL1 PL2 PL3PL1 PL2 PL3   →  PL1 PL2 PL3PL1 PL2 PL3   →  PL1 PL2 PL3PL1 PL2 PL3   →  Nothing 

 
 
 Evolution of States Evolution of Objectives 

   
Figure 13.  Evolution of configuration path [1 11 11 11 1], a Pareto-optimal path. 

In the plots on the left, the size of circles indicate the relative number of Monte Carlo simulation cases that exist in a 
given configuration or demand environment state (on the y-axes) at a given time (on the x-axes).  The plots on the 
right indicate the associated evolution of per-period cost and performance.  In all plots, gray lines indicate 
transitions made in at least one simulation.  Note configuration and cost are deterministic, since a path is specified. 
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It may be evident that the state-space flexibility framework for system configurations established in Step 1, 
Markovian demand environment definitions of Step 2, and performance and cost information from both Steps 1 and 
3 pose a problem that consists of states, possible configuration decisions, demand transition probabilities, and costs 
and performance rewards associated with transitions and states – all of which are the components of an MDP.  
However, two slight adjustments must be made to frame the present problem properly for an MDP: 

First, the framework has so far used two separate state spaces.  Step 1 introduced the configuration state space, 
and Step 2 introduced demand environment state space.  To utilize an MDP formulation, the problem must be 
represented in a single state space.  It is proposed that a total state be defined as the combination of the configuration 
and demand states (Total State = {Configuration State, Demand State}).  In the distributed-payload satellite 
example, there are 15 configuration states × 8 environments = 120 total states, which Fig. 14 illustrates graphically.  
In this three-dimensional “spindle” of total states, each vertical layer represents a particular demand environment 
and each column represents a particular configuration.  Thus, it is possible for the fielded system to be in any 
configuration and operating in any demand environment at any particular point in time.  Since configuration is under 
the control of the decision-maker, he or she can choose to move to any vertical column of the spindle at any point in 
time (recognizing that it takes one time step to make this move).  However, the demand environment is not under the 
control of the decision-maker.  Illustrated in Fig. 14 is an instance where Config. 15 is operating in Demand 
Environment 1.  If the decision-maker chooses to develop Config. 10 for the next time period, he or she is assured to 
move to the column corresponding to Config. 10†††; however, since the demand environment evolution is stochastic, 
the layer to which he or she moves is uncertain and depends on the evolution of the Markov chain specified by Step 
2.  Once the demand environment 
materializes, the decision-maker finds 
himself or herself at one particular total 
state and makes another decision about 
which of the 15 configurations to select 
for the following period. 

Second, in order to apply the 
dynamic programming technique implied 
by Eq. (4), the multi-objective problem 
illustrated in Step 4 must be carefully 
converted to a single-objective problem.  
To do this, the present framework 
proposes to use the interpretation of the 
Pareto frontier as the set of optima for a 
weighted aggregate objective function 
over all possible weights.  Thus, it is 
proposed that the Pareto frontier for the 
“closed-loop” case be found by forming 
an aggregate weighted objective 
function, solving the MDP problem as 
usual using this single objective, and 
repeating the process for a wide range of 
weights.  While a simple additive 
weighting function is an appealing 
aggregate function, it suffers from an 
inability to detect concave segments of 
Pareto frontiers.  To partially overcome 
this limitation, a heuristic technique 
using the variable-power per-period 

                                                        
††† The assumption implicit in this assurance is that the decision-maker will not by accident develop a configuration 
other than Config. 10, which is likely to be reasonable in most cases. 

 

Figure 14.  “Spindle” of Total States.  Each layer corresponds to one 
demand environment and each vertical column corresponds to one 

configuration.  Environments 4-7 are not depicted.  Arrows illustrate 
that, due to demand environment uncertainty, multiple possible total 

states are possible in the next period if a decision is made to transition 
from one configuration to another (e.g., Config. 15 to Config. 10). 
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aggregate objective function in Eq. (5) is used.  In this equation, M is the number of per-period objectives, wi is the 
weight on the ith objective, T is the total number of time periods in the time horizon, yi is per-period performance of 
the system in terms of the i th objective (normalized such that the sum of yi over all time periods cannot exceed unity 
or become negative, and such that higher values of yi are preferred), and n is the objective function power. 
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As a result of this formulation, which represents a natural adaptation of the problem framed in Steps 1-3, optimal 
solutions can be found efficiently for a range of decision-maker cost or performance preferences.  These solutions 
take the form of a matrix with |S| rows and T columns, where each element (s,t) indicates which of |A| possible 
actions or decisions should be made given the system is in state s at time t.  In other words, this matrix forms a 
policy by which the decision-maker should act to obtain optimal combinations of total cost and performance.  In this 
example application, each policy matrix has dimensions 120 (states) × 5 (time periods), and 15 options exist for each 
element of the matrix.  If a full-factorial analysis of all possible policies were to be conducted (as was done for the 
simple case of paths in Step 4A), 15600 = 10706 simulations would need to be executed!  However, use of the 
structure of the problem as posed by Eq. (4) and scanning over weights and powers as suggested in Eq. (5) permits 
optimal policy solutions to be found within hours on a standard desktop computer. 

Expected cost and performance results for policy solutions to the distributed-payload satellite system application 
are shown by each blue “x” in Fig. 15.  Among these solutions, the nondominated (Pareto-optimal) solutions are 
highlighted and connected in red.  Note that the minimum-cost and maximum-performance endpoints of the Pareto 
frontier are identical to those of the open-loop full factorial analysis of Fig. 12, and the shape of the frontier largely 
mirrors that of Fig. 12.‡‡‡  However, an interesting solution with performance superior to any available from an 
open-loop path is visible at an expected total cost of $40 million.  Depicted in Fig. 16 in the same format as the 
open-loop results earlier, it can be seen that this policy solution is nearly the same as the “do nothing” policy but 
with one exception:  As the top 
left plot shows, at the t = 0 time 
period the policy occasionally (in 
14.5% of cases) calls for a 
decision to develop and 
subsequently field the three-
payload monolith.   Whether 
decision is made is governed by 
the demand environment, as the 
policy indicates in Table 7.  In this 
table, the policy solution itself is 
shown, and the action specified by 
the policy is provided for a system 
in any state s (the row) at any time 
t (the column).  Looking only at 
the eight total states that are 
associated with Config. 1 (i.e., 
total states 1, 16, 31, 46, 61, 76, 
91, and 106), it can be seen that 
the decision to develop Config. 11 
rather than Config. 1 at t = 0 
occurs only in total states 91 and 
106, which correspond to a 
situation in which either the 2+3 
or 1+2+3 demand environment 

                                                        
‡‡‡ The sparsity of points on this frontier is largely due its concavity:  Only four of the frontier points could be found 
using n = 1 in Eq. (5).  The heuristic method adopted for improving the frontier estimate by increasing n beyond 
unity was only partially successful in identifying the full frontier, and this is a clear area for future development. 

 
Figure 15.  Trade between total demanded services performed and total 

cost for MDP policy solutions. 
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exists.  In other words, this policy achieves a low expected cost and an appreciable expected performance by only 
developing the three-payload monolith if a substantial demand for services materializes early during the program.  
Such a result is impossible to capture using the fixed configuration paths of Step 4A. 

Figure 15 also permits comparisons to be made with policies that might be brainstormed or proposed outside of 
the MDP solution procedure.  For example, one reasonable policy that might be proposed is to always develop and 
field the configuration that least expensively maximizes performance in the most likely next-period demand 
environment.§§§  The policy implied by this statement is provided in Table 8; for instance, if Config. 2 (the PL1-only 
configuration) is currently operational in the “1+2” demand environment (i.e., if the system is in total state 62), the 
most likely next-period demand environment according to Table 5 is also the “1+2” demand.  To least expensively 
fulfill both the PL1 and PL2 functions demanded in this environment, a single PL2-only module would be 
developed and launched, which places the system into Config. 8.  Thus, as Table 8 shows, Config. 8 is the decision 
made from total state 62 at all except the final time period.****  

The performance of this next-period anticipatory policy is summarized by the yellow triangle in Fig. 15 and 
detailed in Fig. 17.  Figure 15 in particular illustrates two interesting and important points regarding this anticipatory 
policy:  First, this policy is dominated by others discovered in the optimization process:  Both policies 9 and 10 on 
the Pareto frontier perform, on average, more demanded services at a lower cost.  Second, this anticipatory policy is 
just one of many options; even if it were nondominated, selection of this particular policy carries with it no options 
regarding cost and performance preferences.  In contrast, a search throughout the policy design space (as was 
completed in order to produce Fig. 15) allows the decision-maker to understand the cost and performance trades 
available and select a policy according to his or her preferences. 

 
                                                        
§§§ In the event that multiple demand environments have the same probability of materializing next, the environment 
with the demand for more services is used. 
****  The reason for the difference in the final time period decision is the same as discussed earlier in Section IV.D.1. 

 Evolution of States Evolution of Objectives 

   
Figure 16.  Evolution of states and performance for Pareto-optimal policy #3 (defined in Table 7). 

In the plots on the left, the size of circles indicate the relative number of Monte Carlo simulation cases that exist in a 
given configuration or demand environment state (on the y-axes) at a given time (on the x-axes).  The plots on the 
right indicate the associated evolution of per-period cost and performance. In all plots, gray lines indicate 
transitions made in at least one simulation. 



 
American Institute of Aeronautics and Astronautics 

 

22 

Table 7.  Pareto-optimal policy #3. 
Configuration decisions for a system in state s at time t are indicated by matrix elements shaded in gray. 

Current State, s Time at Period Start (years), t  Current State, s Time at Period Start (years), t 

Total 
State Env. Config. -2.5 0 2.5 5 7.5  

Total 
State Env. Config. -2.5 0 2.5 5 7.5 

1 None 1 1 1 1 1 1  61 1+2 1 11 1 1 1 1 
2 None 2 11 12 1 1 2  62 1+2 2 11 12 8 8 1 
3 None 3 11 11 3 1 3  63 1+2 3 11 11 3 3 3 
4 None 4 14 10 4 4 1  64 1+2 4 14 14 14 10 4 
5 None 5 14 5 5 5 1  65 1+2 5 5 5 5 5 5 
6 None 6 13 13 6 6 6  66 1+2 6 13 13 13 13 6 
7 None 7 7 7 7 7 1  67 1+2 7 7 7 7 7 7 
8 None 8 11 8 8 8 1  68 1+2 8 11 8 8 8 2 
9 None 9 15 15 9 9 4  69 1+2 9 15 15 15 15 9 
10 None 10 10 10 10 10 10  70 1+2 10 14 10 10 10 3 
11 None 11 11 11 11 11 11  71 1+2 11 11 11 11 11 1 
12 None 12 12 12 12 12 2  72 1+2 12 12 12 12 12 1 
13 None 13 13 13 13 13 6  73 1+2 13 13 13 13 13 6 
14 None 14 14 14 14 14 1  74 1+2 14 14 14 14 14 4 
15 None 15 15 15 15 15 2  75 1+2 15 15 15 15 15 15 
16 1 1 11 1 1 1 1  76 1+3 1 11 1 1 1 1 
17 1 2 11 11 2 2 2  77 1+3 2 11 12 12 2 2 
18 1 3 11 11 3 1 3  78 1+3 3 11 11 11 3 1 
19 1 4 14 14 4 4 4  79 1+3 4 14 14 10 4 1 
20 1 5 11 5 5 5 1  80 1+3 5 14 14 5 5 5 
21 1 6 13 13 6 6 1  81 1+3 6 13 13 13 6 6 
22 1 7 7 7 7 7 7  82 1+3 7 7 7 7 7 7 
23 1 8 11 8 8 8 2  83 1+3 8 11 11 8 8 8 
24 1 9 15 15 15 9 1  84 1+3 9 15 15 15 9 9 
25 1 10 10 10 10 10 10  85 1+3 10 10 10 10 10 1 
26 1 11 11 11 11 11 1  86 1+3 11 11 11 11 11 11 
27 1 12 12 12 12 12 2  87 1+3 12 12 12 12 12 12 
28 1 13 13 13 13 13 3  88 1+3 13 13 13 13 13 3 
29 1 14 14 14 14 14 1  89 1+3 14 14 14 14 14 5 
30 1 15 15 15 15 15 9  90 1+3 15 15 15 15 15 4 
31 2 1 11 1 1 1 1  91 2+3 1 11 11 1 1 1 
32 2 2 11 11 8 1 1  92 2+3 2 11 11 12 2 2 
33 2 3 11 11 3 3 1  93 2+3 3 11 11 3 3 3 
34 2 4 14 10 10 4 1  94 2+3 4 14 14 10 4 4 
35 2 5 11 5 5 5 1  95 2+3 5 14 5 5 5 5 
36 2 6 13 13 13 6 1  96 2+3 6 13 13 13 6 1 
37 2 7 7 7 7 7 1  97 2+3 7 7 7 7 7 7 
38 2 8 11 8 8 8 8  98 2+3 8 11 8 8 8 2 
39 2 9 15 15 15 9 1  99 2+3 9 15 15 15 9 4 
40 2 10 10 10 10 10 4  100 2+3 10 10 10 10 10 4 
41 2 11 11 11 11 11 11  101 2+3 11 11 11 11 11 1 
42 2 12 12 12 12 12 2  102 2+3 12 12 12 12 12 12 
43 2 13 13 13 13 13 1  103 2+3 13 13 13 13 13 13 
44 2 14 14 14 14 14 4  104 2+3 14 14 14 14 14 4 
45 2 15 15 15 15 15 8  105 2+3 15 15 15 15 15 15 
46 3 1 11 1 1 1 1  106 1+2+3 1 11 11 1 1 1 
47 3 2 11 11 12 2 2  107 1+2+3 2 11 11 12 8 2 
48 3 3 11 11 3 3 1  108 1+2+3 3 11 11 11 3 3 
49 3 4 14 14 10 4 1  109 1+2+3 4 14 14 10 10 1 
50 3 5 14 5 5 5 1  110 1+2+3 5 11 14 5 5 5 
51 3 6 13 13 13 6 6  111 1+2+3 6 13 13 13 13 6 
52 3 7 7 7 7 7 7  112 1+2+3 7 7 7 7 7 1 
53 3 8 11 8 8 8 3  113 1+2+3 8 11 11 8 8 8 
54 3 9 15 15 15 9 9  114 1+2+3 9 15 15 15 15 4 
55 3 10 10 10 10 10 4  115 1+2+3 10 10 10 10 10 3 
56 3 11 11 11 11 11 1  116 1+2+3 11 11 11 11 11 11 
57 3 12 12 12 12 12 1  117 1+2+3 12 12 12 12 12 2 
58 3 13 13 13 13 13 6  118 1+2+3 13 13 13 13 13 3 
59 3 14 14 14 14 14 5  119 1+2+3 14 14 14 14 14 1 
60 3 15 15 15 15 15 10  120 1+2+3 15 15 15 15 15 15 
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E. Step 5:  Implications for Initial System Selection 
Early in this paper it was emphasized that a major purpose of this framework is to inform initial system 

selection.  The analysis of Step 4 has produced a large set of data on optimal paths and policies to follow for the 
entire system time horizon, and it is easy to lose track of the implications this has for the initial  system decision.  
This final step of the framework builds upon the analysis results of Step 4 to provide implications for this decision. 

 
1. Implications based on the Expected-Value Pareto Frontier 
In the case of a path, the initial decision is simply the first configuration in its associated configuration sequence.  In 
the case of a policy, the initial decision is found by locating the initial condition in the row of the policy matrix (in 
this distributed-payload satellite application, at total state 1, which corresponds to the “nothing” configuration 
fielded and no services demanded) and examining the element in the first column (in this case, the t = -2.5 year 
column).  To facilitate this, the initial configurations specified by the Pareto-optimal paths and policies found in 
Figs. 12 and 15 are identified in Fig. 18.  In this figure, the Pareto frontier solutions of Figs. 12 and 15 are identified 
by their expected total cost on the x-axis.  On the y-axis are the initial configuration decisions called for by each 
Pareto-optimal path (yellow circles) or policy (blue squares).  Two particular observations can be made:  First, only 
three configurations (Configs. 1, 3, and 11) appear among the optimal initial decisions.  All paths and policies with 
other initial decisions are dominated by paths and policies using these three configurations.  Second, the size of the 
initial configuration tends to increase as the expected total cost of the system increases.  For example, only the 
“Nothing” configuration (Config. 1) appears as an optimal initial decision for total expected budgets under $195 
million; these solutions tend to be either policies that wait until sufficient demand materializes to justify the 
expenditure of funds or paths  that tend to delay initial operational capability until demand evolves substantially 
beyond the initial “None” environment.  At the highest expected total cost is the decision to initially develop the 
three-payload monolith (Config. 11), which is the least expensive method to ensure complete capture of all possible 
future demand for services. 

 

 

 Evolution of States Evolution of Objectives 

   
Figure 17.  Evolution of states and performance for an anticipatory policy (defined in Table 8). 

In the plots on the left, the size of circles indicate the relative number of Monte Carlo simulation cases that exist in a 
given configuration or demand environment state (on the y-axes) at a given time (on the x-axes).  The plots on the 
right indicate the associated evolution of per-period cost and performance.  In all plots, gray lines indicate 
transitions made in at least one simulation. 
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Table 8.  Anticipatory Policy. 
Configuration decisions for a system in state s at time t are indicated by matrix elements shaded in gray. 

Current State, s Time at Period Start (years), t  Current State, s Time at Period Start (years), t 

Total 
State Env. Config. -2.5 0 2.5 5 7.5  

Total 
State Env. Config. -2.5 0 2.5 5 7.5 

1 None 1 4 4 4 4 1  61 1+2 1 5 5 5 5 1 
2 None 2 4 4 4 4 1  62 1+2 2 8 8 8 8 1 
3 None 3 4 4 4 4 1  63 1+2 3 8 8 8 8 1 
4 None 4 4 4 4 4 1  64 1+2 4 5 5 5 5 1 
5 None 5 4 4 4 4 1  65 1+2 5 5 5 5 5 1 
6 None 6 6 6 6 6 1  66 1+2 6 13 13 13 13 1 
7 None 7 7 7 7 7 1  67 1+2 7 12 12 12 12 1 
8 None 8 4 4 4 4 1  68 1+2 8 8 8 8 8 1 
9 None 9 4 4 4 4 1  69 1+2 9 8 8 8 8 1 
10 None 10 4 4 4 4 1  70 1+2 10 8 8 8 8 1 
11 None 11 11 11 11 11 1  71 1+2 11 11 11 11 11 1 
12 None 12 7 7 7 7 1  72 1+2 12 12 12 12 12 1 
13 None 13 6 6 6 6 1  73 1+2 13 13 13 13 13 1 
14 None 14 4 4 4 4 1  74 1+2 14 5 5 5 5 1 
15 None 15 4 4 4 4 1  75 1+2 15 8 8 8 8 1 
16 1 1 4 4 4 4 1  76 1+3 1 11 11 11 11 1 
17 1 2 4 4 4 4 1  77 1+3 2 12 12 12 12 1 
18 1 3 4 4 4 4 1  78 1+3 3 13 13 13 13 1 
19 1 4 4 4 4 4 1  79 1+3 4 14 14 14 14 1 
20 1 5 4 4 4 4 1  80 1+3 5 14 14 14 14 1 
21 1 6 6 6 6 6 1  81 1+3 6 13 13 13 13 1 
22 1 7 7 7 7 7 1  82 1+3 7 12 12 12 12 1 
23 1 8 4 4 4 4 1  83 1+3 8 15 15 15 15 1 
24 1 9 4 4 4 4 1  84 1+3 9 15 15 15 15 1 
25 1 10 4 4 4 4 1  85 1+3 10 15 15 15 15 1 
26 1 11 11 11 11 11 1  86 1+3 11 11 11 11 11 1 
27 1 12 7 7 7 7 1  87 1+3 12 12 12 12 12 1 
28 1 13 6 6 6 6 1  88 1+3 13 13 13 13 13 1 
29 1 14 4 4 4 4 1  89 1+3 14 14 14 14 14 1 
30 1 15 4 4 4 4 1  90 1+3 15 15 15 15 15 1 
31 2 1 7 7 7 7 1  91 2+3 1 7 7 7 7 1 
32 2 2 7 7 7 7 1  92 2+3 2 7 7 7 7 1 
33 2 3 10 10 10 10 1  93 2+3 3 10 10 10 10 1 
34 2 4 10 10 10 10 1  94 2+3 4 10 10 10 10 1 
35 2 5 14 14 14 14 1  95 2+3 5 14 14 14 14 1 
36 2 6 13 13 13 13 1  96 2+3 6 13 13 13 13 1 
37 2 7 7 7 7 7 1  97 2+3 7 7 7 7 7 1 
38 2 8 10 10 10 10 1  98 2+3 8 10 10 10 10 1 
39 2 9 10 10 10 10 1  99 2+3 9 10 10 10 10 1 
40 2 10 10 10 10 10 1  100 2+3 10 10 10 10 10 1 
41 2 11 11 11 11 11 1  101 2+3 11 11 11 11 11 1 
42 2 12 7 7 7 7 1  102 2+3 12 7 7 7 7 1 
43 2 13 13 13 13 13 1  103 2+3 13 13 13 13 13 1 
44 2 14 14 14 14 14 1  104 2+3 14 14 14 14 14 1 
45 2 15 10 10 10 10 1  105 2+3 15 10 10 10 10 1 
46 3 1 4 4 4 4 1  106 1+2+3 1 11 11 11 11 1 
47 3 2 4 4 4 4 1  107 1+2+3 2 12 12 12 12 1 
48 3 3 4 4 4 4 1  108 1+2+3 3 13 13 13 13 1 
49 3 4 4 4 4 4 1  109 1+2+3 4 14 14 14 14 1 
50 3 5 4 4 4 4 1  110 1+2+3 5 14 14 14 14 1 
51 3 6 6 6 6 6 1  111 1+2+3 6 13 13 13 13 1 
52 3 7 7 7 7 7 1  112 1+2+3 7 12 12 12 12 1 
53 3 8 4 4 4 4 1  113 1+2+3 8 15 15 15 15 1 
54 3 9 4 4 4 4 1  114 1+2+3 9 15 15 15 15 1 
55 3 10 4 4 4 4 1  115 1+2+3 10 15 15 15 15 1 
56 3 11 11 11 11 11 1  116 1+2+3 11 11 11 11 11 1 
57 3 12 7 7 7 7 1  117 1+2+3 12 12 12 12 12 1 
58 3 13 6 6 6 6 1  118 1+2+3 13 13 13 13 13 1 
59 3 14 4 4 4 4 1  119 1+2+3 14 14 14 14 14 1 
60 3 15 4 4 4 4 1  120 1+2+3 15 15 15 15 15 1 
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Also noted next to several 
paths and policies in Fig. 18 are 
the number of transitions Φ 
available from each initial 
configuration (1, 3, or 11) for 
the average per-period cost 
associated with each total cost.  
As discussed in Step 1, this 
number Φ is an indicator of 
flexibility, and it can be seen 
that more flexible initial 
configurations  (Φ = 2 or Φ = 3) 
are selected at higher cost and 
performance preferences.  Thus, 
there exists some correlation 
between flexibility and 
performance.  However, the 
maximum-performance (and 
maximum-cost) Config. 11 
initial decision is far from the 
most flexible for its average $60 
million per-period budget; Fig. 
9 illustrates that the fully-
fractionated three-payload 
configuration (Config. 15) has 
Φ = 8 transitions available for 
the same budget.  Thus, this 
example illustrates that 
maximization of performance 
does not necessarily translate 
into maximization of the 
flexibility of a system’s 
configuration. 

 
2. Accounting for Non-Expected-Value Objectives 

A final relevant consideration for initial system selection is the fact that expected-value objective functions for 
the cumulative cost and performance metrics may not fully capture a decision-maker’s true objectives.  Use of these 
expected-value objectives enables the use of MDP dynamic programming techniques to efficiently explore the 
astronomically large policy trade-space; however, in the case of one-of-a-kind satellite programs a decision-maker 
may also be interested in minimizing risks associated with a given expected level of cost or performance. 

Operating under the assumption that the expected-value optima discovered in Step 4 are reasonable initial 
guesses for desirable policies, a specialized multi-objective genetic algorithm may be employed to perturb each of 
the policies identified in Fig. 15, simulate each new hybrid policy, and search for non-dominated solutions in terms 
of any combination of metrics that can be accounted for via simulation.  The results of Fig. 19 are produced by 
applying this technique to the new metrics of 90th percentile (near-worst-case) total cost and 10th percentile (near-
worst-case) total number of demanded services performed, in addition to the expected-value versions of these 
metrics.  Of particular note in the Fig. 19 multivariate plot are four subplots:  First, the data in the subplot of the 
second row and first column shows the familiar expected-value cost and performance trade, with slightly better 
Pareto frontier performance due to the genetic algorithm’s search.  Second, the data in the subplot of the last row 
and second column shows the 10th percentile performance vs. the 90th percentile cost; the performance data in this 
subplot is noticeably more discrete since fractional numbers of services performed are not possible in a simulation.  
Finally, the upper left and bottom right subplots show the correlations between the new percentile-based metrics and 
their expected-value counterparts.  In the cases of both subplots, linear correlation is quite strong (R² = 0.85 and 
0.88) and supports the use of expected value as a surrogate for optimizing the percentile-based metrics. 

Also of note in Fig. 19 is that each data point, which represents a particular policy result, has a color that 
corresponds to the initial configuration decision implied by its associated policy.  Of particular note is that these 

 

Figure 18. Initial configurations for Pareto-optimal paths and policies as 
a function of expected path or policy total cost.  Also noted are the number of 
transitions available for several initial configurations at their path or policy’s 

average per-period budget requirements. 
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initial decisions differ little 
from those implied by the 
original path- and MDP-
policy-based results in Fig. 
18.  Use of Config. 1 
initially is still associated 
with low cost and 
performance; use of 
Config. 3 is associated with 
medium values for both 
objectives; and Config. 11 
is associated with the 
highest levels of cost and 
performance.  The primary 
difference is the 
introduction of Config. 13 
as an initial decisions, 
which has performance and 
cost levels that are 
generally competitive with 
Config. 11. 

The usefulness of the 
multivariate plot of Fig. 19 
becomes more evident if 
cost or performance 
constraints are imposed by 
the decision-maker.  For 
example, suppose that this 
decision-maker has a $500 
million limit on the funds 
available for supporting 
this system over its time 
horizon.  If the decision-
maker wishes to be 90% 
sure that this budget will 
not be breached, a $500 
million constraint may be 
imposed on the 90th percentile total cost metric.  This constraint eliminates many high-cost (and also high-
performance) options that formerly fell into the high 90th percentile cost regions of the multivariate plot that are now 
gray in Fig. 20.  Similarly, the decision-maker may wish to have 90% confidence that more than one service will be 
performed over the system’s lifetime.  In this case an additional constraint may be imposed, represented by the 
horizontal gray stripe in the subplots of the last row in Fig. 20.  Combined, these two constraints eliminate a large 
number of the policy options available.  As Fig. 20, no policy options remain for which the “Nothing” configuration 
is acceptable.  Furthermore, in both the expected-value-based and percentile-based performance vs. cost subplots, 
policies involving the three-payload monolith (Config. 11) as an initial configuration exhibit lower cost for the same 
(or better) performance as those that involve Config. 13.  As a result, the decision is narrowed to one of whether to 
select a policy that suggests Config. 11 as an initial decision (at an expected and 90th percentile total cost of $300 
million, with 5.6 expected services performed and 3 services performed in the 10th percentile) or, instead, Config. 3 
(at an expected $285 million and 90th percentile $331 million total cost, with 3.8 expected services performed and 2 
services performed in the 10th percentile).  While no objectively correct decision exists, it is likely that the small 
($15 million, or 5%) difference in expected cost and large (1.8 services, or 38%) difference in performance between 
the options would compel many decision-makers to accept the slightly higher budget for such a significant 
performance increase. 

 

Figure 19.  Multivariate plot of multi-objective genetic algorithm policy results. 
Each data point indicates the performance of one policy result in terms of the four 

percentile-based and expected-value metrics of interest.  Data points are colored by 
their corresponding policy’s initial configuration decision. 
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V. Summary and Implications 
What conclusions can be drawn from the discussion over the last several pages?  Ironically, the data and analysis 

presented for this distributed-payload satellite application largely identify paths and policies that involve an initial 
decision to develop a three-payload monolith – one of the least flexible options as identified in Step 1 – as the way 
to best respond to a changing demand environment at a low lifecycle cost.  This is itself an interesting result, and it 
highlights the fact that integrating flexibility into space system design considerations is not synonymous with 
maximizing the flexibility of the system to be designed; rather, the benefits of flexibility must be traded against the 
costs.   However, the contribution of this paper is intended to be much broader than this single case study result:  As 
a consequence of this paper’s Markovian state-space framework, flexibility can be quantitatively integrated into 
design decisions for a variety of space systems operating in a variety of potential environments.  The present 
application serves as just one illustrative example.  Future work will involve expansion of this framework to 
encompass a variety of additional effects and applications. 

In short, the past decades have seen the state of the art in aerospace system design progress from a scope of 
simple optimization to one including robustness, with the objective of permitting a single system to perform well 
even in off-nominal future environments.  Integrating flexibility – or the capability to easily modify a system after it 
has been fielded in response to changing environments – into system design represents a further step forward. One 
challenge in accomplishing this rests in that the decision-maker must consider not only the present system design 
decision, but also sequential future decisions. Despite widespread interest in the topic, the state of the art in 
designing flexibility into 
aerospace systems – and 
particularly space systems 
– tends to rely on analyses 
that are qualitative, 
deterministic, single-
objective, and/or limited to 
consider only one future 
time period. 

To address these gaps, 
the present work proposes a 
quantitative, stochastic, 
multi-objective, and multi-
period framework for 
integrating flexibility into 
space system design 
decisions. Central to the 
framework are five steps. 
First, system configuration 
options are identified and 
costs of switching from one 
configuration to another are 
compiled into a cost 
transition matrix.  Second, 
probabilities that demand 
on the system will 
transition from one mission 
to another are compiled 
into a mission demand 
Markov chain.  Third, one 
performance matrix for 
each design objective is 
populated to describe how 
well the identified system 
configurations perform in 
each of the identified 
mission demand 

 

Figure 20.  Multivariate plot of multi-objective genetic algorithm policy results 
with cost and performance constraints imposed.  Each data point indicates the 

performance of one policy result in terms of the four percentile-based and expected-
value metrics of interest.  Data points are colored by their corresponding policy’s 
initial configuration decision.  Gray areas indicate regions of the space eliminated 

due to cost and performance constraints. 
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environments.  Fourth, possible future sequences of system configurations are simulated and sequences that are 
Pareto-optimal in terms of the decision-maker’s objectives are identified. In a complementary approach, the system 
decision problem is formulated as a multi-objective variant of a Markov decision process, and Pareto-optimal 
decision policies are identified.  Finally, the paths and policies from the latter step are synthesized into a set of data 
to inform initial system selection. 

The framework that this paper proposes builds on intuitive state-centric notions of flexibility from the previous 
economics and engineering literature and utilizes modeling and trade space exploration techniques from aerospace 
systems engineering and operations research to convert the flexibility problem into a comprehensive, tractable 
sequential decision-making problem.  The result is a framework that is quantitative, stochastic, multi-objective, and 
multi-period in nature.  In particular, the formulation of this problem posed here is amenable to solution through 
existing methods for Markov decision processes.  Considering flexibility in this way enables the selection of systems 
today, tailored to the decision-maker’s budget and preferences, that will be best able to perform when subject to a 
future of changing environments and requirements.  It is hoped that the theoretical and practical contributions made 
through the work in this paper not only advance current thought on flexibility in the aerospace engineering literature, 
but also provide new and advanced tools to allow the space systems engineer to better design the vehicles and 
architectures that allow for the most effective exploration, utilization, and protection of the final frontier. 
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