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Abstract

Space Domain Awareness (SDA) is the actionable knowledge required to predict, avoid,
deter, operate through, recover from, and/or attribute cause to the loss and/or degradation of
space capabilities and services. A main purpose for SDA is to provide decision-making pro-
cesses with a quantifiable and timely body of evidence of behavior(s) attributable to specific
space threats and/or hazards. To fulfill the promise of SDA, it is necessary for decision makers
and analysts to pose specific hypotheses that may be supported or refuted by evidence, some
of which may only be collected using sensor networks. While Bayesian inference may support
some of these decision making needs, it does not adequately capture ambiguity in supporting
evidence; i.e., it struggles to rigorously quantify ‘known unknowns’ for decision makers. Over
the past 40 years, evidential reasoning approaches such as Dempster Shafer theory have been
developed to address problems with ambiguous bodies of evidence. This paper applies math-
ematical theories of evidence using Dempster Shafer expert systems to address the following
critical issues: 1) How decision makers can pose critical decision criteria as rigorous, testable
hypotheses, 2) How to interrogate these hypotheses to reduce ambiguity, and 3) How to task a
network of sensors to gather evidence for multiple competing hypotheses. This theory is tested
using a simulated sensor tasking scenario balancing search versus track responsibilities.

1 Introduction

Space situational awareness (SSA) is concerned with accurately representing the state knowl-
edge of objects in the space environment to provide better prediction capabilities for threats such
as potential conjunction events. More recently, the discourse on SSA has turned toward space
domain awareness (SDA), reflecting the ever-growing reality of world-wide space capabilities and
the impact that decisions in the space environment can have on a global relational scale. In partic-
ular, SDA focuses on gathering actionable data to supply to decision-makers in their evaluation of
hypotheses [1]. The space community as a whole suffers from a problem of producing high quan-
tities data (in the form of tracks) but being unable to produce significant data on any specific object
or event to increase understanding of that event. Currently, there are over 20,000 trackable objects
in the space object catalog [2]. Due to observational constraints imposed by orbital mechanics,
the limited number of space-observing sensors are unable to observe each object. This hinders
the ability to reliably provide information on maneuvers or other events in space. Therefore, more



emphasis is being placed on algorithms and processes that have an ability to ingest disparate data
from many sources and fuse an understanding of the greater situation of the space domain.

In typical Bayesian reasoning, deterministic probabilities are placed on event hypotheses under
the assumption that the only possible realizations of this hypothesis are true or false. However,
in complex decision-making contexts, information is not always best-represented in this strictly
binary manner, since some evidence for a particular hypothesis might also involve ambiguity. An
expert might be able to confirm or refute a given set of hypotheses, but it cannot attribute belief to
any hypotheses for which it is not an expert. For this reason, evidential reasoning methods, such as
Dempster-Shafer theory, quantify this ambiguity in situation knowledge, leading to more realistic
modeling of human analyst processes [3, 4].

The human-analyst-like approach to belief structures in Dempster-Shafer theory and the decision-
making focus of SDA make the pair a promising combination. SDA focuses on actionable knowl-
edge required for operation in the space environment without loss or degredation of capabilities
and services [1]. Decision-making in SDA ranges from collecting raw observables, to identify-
ing space object properties such as orbit state, to inferring mission types and evaluating specific
threats [1]. Given this “big-data” problem, decision-makers must form hypotheses about the envi-
ronment and its constituent objects, and apply available data to evaluate these hypotheses. Current
techniques focus largely on collecting observables, identification of physical states and parame-
ters, and determining functional characteristics [1]. For instance, some tasking techniques simply
aim to maximize the number of collections in a given time horizon, whereas others might focus
on minimizing covariance in the state estimates [S] Recent improvements in these data collection
techniques include the use of Finite Set Statistics in detection and tracking [6, 7] and the classi-
fication approaches using ontologies and taxonomies [8]. Evidential reasoning has an ability to
augment the previous techniques by ingesting a wide range of SDA data (e.g. observational data,
correlated tracks, classification results) as evidence that is used to directly interrogate hypotheses
of interest to the decision-maker.

This paper begins by introducing relevant elements of evidence-based reasoning. A binary-
hypothesis approach to individual hypothesis formulation is discussed to allow decision-makers
to form rigorous, testable hypotheses. A mathematical framework for decision-making in SDA
sensor tasking is developed to allow interrogation of these hypotheses on the basis of removing
ambiguity from the system. The application of this framework in a multi-objective framework is
further developed since the subsets of the SDA problem are inherently multi-objective. Due to the
combinatorial nature of these problems, a toy example relevant to SDA is developed to demonstrate
applicability of this method in a reduced space.

2 Theory

In this section begin by summarizing relevant aspects of Dempster-Shafer theory, introducing
terminology and notation that will be used throughout the paper. This is followed by a discussion
on the relevance of ignorance in decision-making contexts, and further how decision-makers can
decompose complex hypotheses into simple binary hypotheses to apply Dempster-Shafer effec-
tively. Finally, we present the sensor tasking ignorance-based optimization methodology in Eqn.

(1.



2.1 Dempster-Shafer Theory

Dempster-Shafer (D-S) theory deals with the assignment of belief to particular hypotheses
based on available evidence. The set of hypotheses under consideration © = {6, 6,, ...} is called
the frame of discernment. In D-S theory, the hypotheses that comprise the frame of discernment
should be mutually exclusive and collectively exhaustive; in other words, exactly one of these
hypotheses must be true at a given instant.

2.1.1 Basic Belief Assignments

Given a frame of discernment O, the function m, called the basic belief assignment (BBA),
assigns belief values in the range 0 to 1 to a subset of hypotheses: m : § — [0,1],0 C ©. A BBA
represents an expert’s belief in each hypothesis based on the evidence available to that expert.
BBAs are typically assumed to possess a few properties:

1) ZAQ@ m(A) =1
2) m(0) =0

The first property ensures that the support attributed to the hypotheses in the frame of discernment
adds up to 1. The second property enforces that belief is only attributed to hypotheses available in
the frame of discernment.

The set of hypotheses that have non-zero belief mass are the focal set of the associated BBA.
For ease of discussion, a number of common BBAs are typically defined based on their focal
sets. A vacuous BBA is one in which all the belief mass is assigned to O, such that m(0) = 1,
m(A) = 0V A C ©. A simple BBA is one in which the focal set consists of only two elements:
the entire frame of discernment © and one other hypothesis, as in m(A) = p, m(0) = 1 — p,
m(B) =0V B € 29\ {4,0}.

Using BBAs, Shafer defines the notions of belief and plausibility, which form lower and upper
bounds on the probability that a proposition is provable given the available evidence. Belief and
plausibility can be computed from a given BBA m using Egs. (1) and (2), respectively:

bel (A) =) m(B) (1)
BCA
pl(A)= Y m(B)=1-Dbel(~A) (2)
BNA#0

where — A is the negation, or complement, of hypothesis A. In other words, the expert’s belief in,
or support for, hypothesis A, is composed of the sum of the belief masses attributed to A and its
subsets. The plausibility of hypothesis A is composed of the sum of the belief masses attributed
to any hypothesis whose intersection with hypothesis A is non-empty. Also note that, since the
truth-set © represents the disjunctive combination of an exhaustive set of hypotheses, the belief
and plausibility of the truth-set must both be equal to 1.
2.1.2 Combination Rules

Numerous methods exist for combining BBAs from multiple experts to form a fused mass
function [9]. The new mass function behaves just like any other BBA, so a fused understanding
of belief and plausibility can be obtained. Each combination method exhibits slightly different
properties, so implementation should take into consideration use-cases of this fused belief and



characteristics of the evidence sources. A common BBA combination technique is Dempster’s
conjunctive rule, which is commutative, associative, and admits the vacuous BBA. Dempster’s
conjunctive rule of combination, shown in Eq. (3), is often represented using the & operator. The
belief mass attributed to hypothesis A C © after combination of BBAs from experts ¢ and j is
given as:

Mig; (A) = (m; & m;) (A) = ZBQC#} "_%(If)mj(C ) )
K=Y mi(B)m(C) (4)

BNC=0

where K is a term that accounts for conflict between the bodies of evidence. The use of the
conflict term K in Eqn. (3) has the effect of attributing conflicting evidence to the null-set. Since
support cannot be attributed to the null-set (in classical Dempster-Shafer theory), this belief mass
is normalized across the remaining hypotheses [9].

Some uses of Dempsters rule lead to counter-intuitive results in the presence of extreme con-
flict, an observation typically referred to as Zadehs paradox [10]. However, the scenario in Zadehs
paradox can be resolved by more carefully adhering to Cromwells Rule, i.e. not assigning a prob-
ability of exactly O or 1 to any particular prior. This caveat, with the inclusion of the open-world
assumption, i.e. admitting that the actual true event might lie outside the theorized set of pos-
sible events, led to the development of the Transferable Belief Model (TBM) as a derivative of
Dempster-Shafer theory [11]. The constraints of this particular application allow the classical
Dempster-Shafer implementation to be appropriate without applying TBM.

It is important to note that Dempsters rule is not idempotent. Subsequent evidence is assumed
to be statistically independent of previous evidence. Therefore, when using Dempsters rule, the
evidence must be assumed to be distinct; otherwise, repeated evidence will be heavily weighted in
the fused belief mass.

Dempster’s rule is also not the only combination rule for BBAs. For instance, Yager developed
arelated class of combination rules that, like Dempster’s rule, are commutative and not idempotent,
but in Yager’s case the rule is quasi-associative [12, 13]. The primary difference in Yager’s method
is the use of a separate probability structure, the ground probability assignment, to pool evidence
before conversion to a BBA [9]. Instead of normalizing out conflict, evidence from conflicting
evidence is attributed to the universal-set, the frame of discernment ©. As such, Yager’s rule is
also called the unnormalized Dempster’s rule, and indeed in the case of no conflict both methods
yeild the same result [9].

Additional combination rules have been developed that do enforce idempotence, which can be
employed in the case of non-distinct bodies evidence. While the above methods are conjunctive
(AND-based) in the attribution of evidence to hypothesis-intersections, alternate methods employ
disjunctive (OR-based) to handle evidence from varying-reliability sources [9].

For a more complete discussion on important developments in Dempster-Shafer theory, Yager
and Liu compiled a book of classic works, reviewed by Dempster and Shafer, on the theory of
belief functions [14].

2.2 Importance of Ignorance

Dempster-Shafer and other evidential reasoning theories do not require an expert to report
belief in only singleton hypotheses. Instead, the focal set can contain any subset of the frame
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of discernment, including the entire frame of discernment itself. This particular hypothesis is
referred to as the universal-set, so-called because it is, by definition, the disjunctive combination
of all the mutually exclusive and collectively exhaustive hypotheses. The hypothesis A = O is
surely true; one of these hypotheses must have occurred given the exhaustive nature of the frame
of discernment. However, attributing belief mass to © does not increase an analyst’s understanding
of the situation. Instead, it represents a residual ambiguity, indicating that the expert was unable to
attribute that belief to any particular hypothesis. This admits an ignorance on the part of the expert
that is crucial in modeling realistic decision-making environments.

Similarly, contributing belief to any non-singleton subset of hypotheses admits some ignorance
(e.g. note the indeterminism in the statement "I attribute X belief to either A or B”), since the
expert is saying it is unable to further delineate between those hypotheses based on its available
evidence. When considering potential courses of action, the ideal course leads to a state of perfect
knowledge and no residual ambiguity; in other words, all belief is attributed solely to singleton
hypotheses. This idea of ignorance is essential to our approach to tasking in SDA: to support
the objectives of decision-makers, their hypotheses must be possible to interrogate with evidence,
with the goal of confirming or rejecting the hypotheses. This can be alternately formulated as
a minimization of ignorance in the hypothesis space. In a similar way that covariance-reduction
techniques aim to approach the truth of the estimated state (e.g. orbit) given the available data, a
tasking scheme focused on ignorance-reduction will yield the truth-or-falseness of that hypothesis
given the available evidence.

2.3 Binary Hypothesis BBAs

From Eqn. (3) It can be seen that the computational complexity of the combination of two
BBAs scales quadratically with the number of hypotheses in the frame of discernment. The O(n?)
nature of Dempster’s rule means it is computationally preferable to restrict the number of hypothe-
ses n in ©. The simplest and most computationally attractive frame of discernment is therefore a
binary frame where the two hypotheses are simply a null and alternate hypothesis: © = {6, -0}
where the — symbol indicates the negation of hypothesis #. Using first order logic, a compli-
cated frame of discernment an be decomposed into a number of subsets of frames, each addressing
smaller portions of information. The important aspect to consider is that the hypotheses being
formed must be able to be interrogated through data that is currently available or actionable. The
relevant action can then gather evidence to directly interrogate this hypothesis, feeding a BBA that
represents that particular expert.

Utilizing a binary hypothesis structure allows the combined BBA to be written simply:

Kig = mi(8)m;(~6) + my(~8)m; (0 )
iy (0) m;(0)m;(0) + mlfezw;é(@) + m;(©)m;(8) ©
i (—0) = m;i(—8)m;(—0) + m21(—|_9)[7<nj(@) + m;(©)m;(—0) o
ey (©) = "OIO) ®)

Additionally, in this case, the ignorance in frame © associated with BBA m is simply the belief



attributed by m to the whole frame, since it is the only non-singleton hypothesis:
ig (©) =m(0) )

In the next section, we give an example of how BBAs can be constructed for some classic SDA
Sensors.

2.4 SDA Sensors as Dempster-Shafer Experts

In order to apply Dempster-Shafer reasoning, available SDA sensors must be cast as Dempster-
Shafer experts, using that sensor’s data as evidence to contribute belief mass to the available hy-
potheses. In this paper, we are concerned with the tasking of electro-optical (EO) sensors such
as telescopes. A number of physical properties of the sensor must be provided for simulation,
such as focal length and pixel size. Information on the observation environment is also available
in the form of cloud cover detection, sky brightness estimation, an observatory weather station,
and local weather forecasting. This particular arrangement represents the available sensors for the
Georgia Tech observatory, which is home to the Georgia Tech Space Object Research Telescope
(GT-SORT), a half-meter Raven-class telescope.

The radiometric model developed by Coder et al. [15] is used to compute the probability of
detection of an RSO for a given EO sensor. To compute the probability of detection of an RSO for
an EO sensor, the radiometric model in Eqn. (10), developed by Coder et al., is used [15]:

SNRangn - ,U/so>:|
V20,

where the relevant terms are: I, background sky irradiance measured in (arcseCQ), traem atmo-
spheric transmittance, SNR, is the required SNR for a successful detection based on the chosen
detection algorithm. The remainder of the terms and their methods of calculation are discussed at
length in [15]. Importantly, this model provides the ability to ingest information from the afore-
mentioned sensors and form BBAs. Preliminary work [16] showed how sensors available at the
Georgia Tech Observatory, particularly an All-Sky camera and sky brightness monitor, could be
used to fuse a better understanding of the observation environment, incorporating that real-time
data into the tasking algorithm through Eqn. (10). Using the probability from Eqn. 10 as belief in
the hypothesis that an object will be detected, for instance, the belief and ignorance can be pooled
for all sensors. This will be demonstrated in the simulated scenario below.

1
Py (Lsky, tratm) = 5 [1 —erf ( (10)

2.5 Ignorance-Based Optimization

In the case that a decision-maker is only concerned with a single hypothesis, the above for-
mulation focused on minimizing ignorance can be implemented as a single-objective optimization
problem. However, most interesting tasking problems occur where there are multiple competing
objectives, such as the “search vs track” scenario. In this case, allocation of sensor resources to
address one objective will necessarily hinder progress in another objective.

One approach to multi-objective optimization involves the minimization of the weighted-sum
of the competing objectives. This approach allows the decision-maker to specify the degree to
which he/she is concerned with a particular hypothesis and adjust tasking accordingly.

To formalize the optimization problem, let us define the set of all possible actions as A and
the set of all relevant hypotheses . At a given epoch ¢, each action A; x.,+1 acts on the current
understanding of the environment F, to gather new information and update the relevant hypotheses
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Figure 1: Search versus Track scenario illustration.

at the next time instant, A; y.5+1(Hy) — Hpy1. The total sum of ignorance in the hypotheses Hj,
can be calculated as ig (Hy) = ig (Hyx) +ig(Hay) + ... +ig (Hn, k). Therefore, given a set
of N weightings for N hypotheses W = {w;,ws,...,... N} the set of decisions Dy.yp-1 €
Apkrr X o XA s 1.0+ 07 taken from times ¢y, . . . , £ 37 can be determined to minimize weighted
total ignorance at the final time-step as follows:

W:{wl,wg,...7...N} (11)
A1 = {AU k15 Ao ks - - -}
Hk = {Hl,ka H2,k7 s 7HN,k}

Dikrri—1 € Aperr X oo X Appm—1:ht M

N
Dkﬂiﬂfl ig (Hpyn) = Zzlwiig (Hipenv)

Varying the weights and re-evaluating the objective function generates a list of candidate solu-
tions to minimize weighted total ignorance. The non-dominated points, with respect to ignorance
in each individual hypothesis, form a pareto frontier [17]. That is to say, any point on that surface
can be considered an optimal solution to this tasking problem.

Notice that the decision set Dy y/—1 1s an element from the Cartesian product of action spaces.
It is this search space to find the optimal decision set that makes this problem, like the well-known
Traveling Salesman problem, NP-complete. The addition of a selection of weightings further in-
creases the dimensionality of the problem, making long-time-horizon solutions with many different
hypotheses and actions computationally intractable. Therefore, the simulations in this paper will
deal with a simplified example that is computationally feasible at least in small time steps.

3 Simulation Results

A search-versus-track simulation, illustrated in Fig. 3, is presented to evaluate the validity
and applicability of the theoretical results to realistic SDA scenarios. In this simulation, a single
sensor is tasked with tracking two space objects, one in low-Earth-orbit (LEO) and the other in
Geostationary orbit (GEO). Additionally, the sensor is tasked to search for new space objects not
already in the catalog. Therefore, the decision-making process is a multi-objective optimization
problem, trading between these three objectives (track object 1, track object 2, or search).



3.1 Hypothesis Formulation

The first step in applying Dempster-Shafer theory to this problem is to rigorously define hy-
potheses to be interrogated. In particular, we endeavor to formulate binary hypotheses to lessen
the computational burden in evidence combination and computing ignorance.

3.1.1 Search

The goal of the search phase is to look for new space objects that are not in the space object
catalog. The hypotheses can be stated simply as:

fs - An observation yields successful detection of a new space object.
—fs - An observation does not yield successful detection of a new space object.

To provide evidence for search, a prior distribution is developed using space object catalogs.
This is based of the assumption that an electro-optical sensor is Specifically, the Space-Track.org
catalog is used for TLE data, and the Celestrak catalog is used for auxiliary space object data, such
as radar cross-section. The prior is computed by propagating the entire space object catalog for
a simulated 24-hours, generating a sampling of unit-vectors in inertial space. A Gaussian kernel
(with 10 m 1-sigma uncertainty) is convolved across each of the unit-vectors to form a probability
density function (PDF) for the locations of space objects averaged over one day.

The PDF is further refined by accounting for observation conditions using Earth-shadow and
solar phase angle. Using a simple cylindrical Earth-shadow model [18], if the object is deemed to
be in Earth-shadow (both conditions met in Eqn. (12)) its probability density is zeroed out.

0 S ||rsun X Xso” - RE (12)
0 S Tsun * Tso (13)

Similarly, solar phase angle ¢ (the angle formed by the space object and the sun from the
perspective of the observer) is considered by scaling the mean of the relevant Gaussian component
by %. If ¢ is near O-degrees (space object directly between Earth and Sun), its probability density
is significantly discounted. These constraints ensure that the prior PDF of space objects includes
only those objects in good optical observation conditions. Finally, the PDF is transformed into
local look-angle (azimuth-elevation) space for the observer at each simulation time epoch and re-
normalized to include only those space objects above the horizon (elevation < 0). The final PDF
can be interrogated to find the region of highest space object density to provide a region to search.

A sample contour plot of the PDF can be seen in Fig. 2 in two coordinate systems: right
ascension-declination and azimuth-elevation. On these contours, the dark regions represent higher
densities of observable space objects. Note that the extreme declinations show the highest densities
near the poles, matching intuition for dense regions of space. The GEO belt also stands out at zero
declination, though portions of the GEO belt are discounted due to solar phase angle. The azimuth-
elevation data is shown in a polar plot, with the center representing 90-degrees elevation (directly
overhead) and azimuth increasing clockwise from north at the top.

Now the prior PDF P can be used to provide evidence for the search hypotheses in planning
the sensor schedule. At each time step (%), the search region (az, el) with the highest space object
density is selected, yielding the following binary BBA for search, m:

ms(0s) = Ps(t,az,el) , mg(—0s) =0 , mg({0s,0s}) =1 — Ps(t,az,el) (14)
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Figure 2: Search prior PDFs based on space object catalogs

Note that the space object density at any given search area is typically very low (Ps(t, az,el) <<
1), so the amount of evidence gained (or ignorance lost) through a search action is similarly low.
3.1.2 Track

The goal of the track phase is to track objects that are not in the space object catalog. The
hypotheses can be stated simply as:

Or - An observation yields successful detection of the tracked object.

=601 - An observation does not yield successful detection of the tracked object.

The BBA for track is more complicated than that for search, since the 1 hypothesis can be
decomposed into a number of parts. In order to guarantee successful detection, the space object
needs to be visible (above the horizon), detectable (in favorable observation conditions), and its
position uncertainty must be contained the field of view of the sensor.

Testing for visibility is straightforward: the space object elevation must be above a threshold
value based on the observing environment (e.g. 20 deg to clear the skyline in Atlanta):

Pv =1 if €l[t] >= elthresholcl (15)
=0 else (16)

Detectability involves more effort to account for the local observation conditions, including
cloud cover and sky brightness. Equation (10) is used here again to compute the probability of
detection, P, given the local conditions.

Finally, the uncertainty requirement enforces that the covariance remain within certain bounds.
The associated probability is computed by determining the volume of the covariance ellipse that is
intersected by the field of view after rotating the covariance into the observer’s frame.

P. =1 if covariance within FOV a7
A fov
_ 18
A,y else (18)



Table 1: GT-SORT Sensor Properties

Property Value Units
Latitude 33.7756 deg
Longitude -84.3963 deg
Altitude 200 m
Focal Length 3.0 m

Resolution | (2736, 2192) px
Field of View | (14.2,11.4) | arcmic
IFOV 0.312 arcsec

Having computed the component probabilities, the binary BBA for track is computed as fol-
lows, m;:

my(0;) = Py(t,el) x Py(t,az,el) x P.(t,az,el) (19)
my(—6;) =0 , my ({0, 20, }) =1 — Py(t,el) x Py(t,az,el) * P.(t,az,el) (20)

This formulation has the effect of ensuring that ignorance associated with the track hypothesis
is low only when the detection, visibility, and covariance are within expected values.

3.2 Optimization Problem

Following the formulation in Eqn. (11), the optimization problem relevant to this simulated
scenario is defined as follows:

W = {w17w27w3} (21

A1 = {11 kb1 Togokt1s Skekr1
Hi ={O1 %, Ok, Osic}

Dikym—1 € Ak g1 X oo X Apy Motk M

min ig (Hppm) = g wiig ( zk+M

Drk+m—1
= wimyg, (07, k+m) + womp, (On, krar) + Wsms(Os ktar)

where w; + wy + w3 = 1 and M is the chosen time horizon.

3.3 Implementation Details

The simulations begin on September 4, 2016, 20:59:00 EST and end on September 4, 2016,
21:19:00 EST. The sensor cadence is set to 1 minute, meaning there are 20 tasking decision epochs.
Even in this low dimensional problem, analyzing all permutations of 3 actions over 20 time steps
yields well over 3-billion candidate schedules. This longer time horizon could not be computed in
a reasonable amount of time, so instead a receding horizon is used. The scheduler optimizes over
a smaller time range to compute the optimal schedule based on weighted total ignorance at the
end of the horizon. The first step of this schedule is implemented, and then the scheduler horizon
recedes a step to recompute based on the new end-of-horizon status.

Sensor properties are taken from GT-SORT, as shown in Table 1

Space-track and Celestrak catalogs were both downloaded on September 4, 2016. A GEO
satellite (Echostar 11) and LEO satellite (Envisat) were selected as the tracked objects. Each TLE is
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propagated using SGP4 through the simulation time range to compute the observation geometries.
Covariances are propagated using an Extended Kalman Filter (EKF), with measurements gathered
in right-ascension declination space and measurement noise equal to the instantaneous field of
view (IFOV) of GT-SORT.

For the search hypothesis, the space object density prior is created using the downloaded cata-
logs and averaged over September 4, 2016.

For simplicity of this report, equal weighting is applied across all three hypotheses.

3.4 Scenario: Clear Dark Sky

In this set of results, the sky brightness and cloud cover are both non-factors; the optical prob-
ability of detection is 1 throughout the simulation. The horizon- and covariance-based estimations
are still a factor, though, and affect the projected ignorance-loss due to the track actions.

3.4.1 Greedy Optimization

The greedy optimization results in Fig. 4(a) show both computed optimal algorithm perfor-
mance and a snapshot of the simulation in progress. The polar plots show azimuth (around cir-
cumference, North at top) and elevation (radially outward, directly up at center) with the space
object density data superimposed over spacecraft tracks. Blue triangles indicate current position,
and the red square indicates the sensor’s current action. The time-series data shows the schedule
taken at top and the ignorance in each hypothesis at each time step.

These results demonstrate an ability to reduce ignorance quickly. The GEO and Search areas
are both detectable to start, but the ignorance reduction in the GEO observation is significantly
greater at step one, so it is chosen as the action. Further ignorance cannot be reduced in the GEO
observation, so the sensor switches to Search until the LEO object enters and satisfies the minimum
elevation requirement. As the LEO object’s uncertainty evolves during propagation, its ignorance
begins to rise again as the covariance exceeds the field of view. Therefore, it is observed again,
this time reducing a slightly different portion of the covariance due to the change in observation
geometry. Without a prediction horizon, however, this scheme oscillates between the remaining
viable options for ignorance reduction (Search and Track LEO).

3.4.2 S5-step Horizon

In Figs. 4(b) and 4(c), we see the same initial schedule, ignorance, and spatial data from the
greedy tasking simulations. In the 5-step horizon case, the sensor performs similar to the greedy
approach until the LEO tracking phase. This time, it recognizes that it can minimize the LEO
covariance (and thereby the ignorance) at the end of the simulation by observing it at the last
possible time step. This allows the sensor to continue to search for new objects and avoids the task
mode oscillation seen in the greedy approach.

3.5 Scenario: Dark Sky with Clouds

The final simulated data concerns a but dark night with clouds. Cloud cover is simulated in the
northern portion of the sky, where the LEO space object exits the field of view. The cloud-covered
greedy simulation results have been omitted from this section since they are similar to the greedy
results in clear skies.
3.5.1 5-step Horizon

Figure 4 shows the resulting cloudy night simulations. In good observation conditions, the
algorithm would want to get one more detection before the LEO object exits to minimize ignorance
from the covariance expanding. However, here the sensor pivots to look for the LEO object earlier,
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Figure 3: GT-SORT

just before it enters the cloudy skies. The remainder of the simulation is similar to the previous
5-step horizon, checking GEO right away and remaining on the Search hypothesis the rest of the
time.

4 Conclusions

This work applied Dempster-Shafer theory, with its ability to represent ambiguity to support
decision making, to SDA, with its emphasis on actionable information. Using first-order logic to
decompose complicated hypothesis spaces into binary hypotheses, the decision-maker can create
a computationally-tractable set of hypotheses to investigate. The optimization approach centers
around the minimization of ignorance in multiple competing objectives, providing a method of
tasking that goes beyond gathering data and attempts to directly interrogate hypotheses through
sensor action. Simulated results of a seach-versus-track scenario show the algorithm is able to
successfully assign the sensor to track a set of objects based on the observation conditions, while
also allocating resources to search for new objects.

Future work seeks to build upon this theory by applying multi-objective optimization tech-
niques for quickly identifying non-dominated solutions in this vast decision space. The current
paper used brute force to analyze all potential options, but ideally the current location on the
pareto surface and its sensitivities to different decisions should lead the decision-maker to be able
to optimize the weighting schedule and gather much needed actionable data.
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Figure 4: Scheduling and ignorance results for all simulated scenarios.
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