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ABSTRACT 

 
Reliability has long been a major consideration in the design of space systems, and in recent years it has 
become an essential metric in spacecraft design trade-space exploration and optimization. The purpose of 
this paper is to statistically derive and compare reliability results of Earth-orbiting satellites as a function of 
orbit type, namely geosynchronous orbits (GEO), low Earth orbits (LEO) and medium Earth orbits (MEO). 
Using an extensive database of satellite launches and failures/anomalies, life data analyses are conducted 
over three samples of satellites within each orbit type and successfully launched between 1990 and 2008. 
Because the dataset is censored, the Kaplan-Meier estimator is used to estimate the reliability functions. 
Plots of satellite reliability as a function of orbit altitude are provided for each orbit type, as well as 
confidence bounds on these estimates. Using analytical techniques such as maximum likelihood estimation 
(MLE), parametric fits are conducted on the previous nonparametric reliability results using single Weibull 
and mixture distributions. Based on these parametric fits, a comparative reliability analysis is provided 
identifying similarities and differences in the reliability behaviors of satellites in these three types of orbits. 
Finally, beyond the statistical analysis, this work concludes with several hypotheses for structural/causal 
explanations of these trends and difference in on-orbit failure behavior. 

1. INTRODUCTION 

Reliability has long been recognized as a critical 
attribute for space systems, and potential causes 
of on-orbit failures are carefully sought for 
identification and elimination through careful 
design and part selection, and extensive testing 
prior to launch. Unfortunately, despite the 
recognition of its importance, limited on-orbit 
failure data and statistical analyses of satellite 
reliability exist in the technical literature. To 
help fill this gap, Castet and Saleh (2009) 
recently collected failure data for 1,584 Earth-
orbiting satellites successfully launched between 
January 1990 and October 2008 [1]. The authors 
conducted a nonparametric analysis of satellite 
reliability and provided empirical curves of 
satellite reliability with 95% confidence 

intervals, as presented in Fig. 1. One limitation 
the authors recognized and discussed in [1] is the 
lumping together of all Earth-orbiting satellites 
into one category, and statistically analyzing 
their “collective” failure behavior. It can be 
argued that no two (or more) satellites are truly 
alike, and that every satellite operates in a 
distinct environment. As a result, the situation of 
the space industry is very different from that for 
example of the semi-conductor industry where 
data on, say, millions of identical transistors 
operating under identical environmental 
conditions are available for statistical analysis. 
The consequence is that in the absence of 
“satellite mass production,” statistical analysis of 
satellite failure and reliability data faces the 
dilemma of choosing between calculating precise 
“average” satellite reliability on the one hand, or 
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deriving a possibly uncertain “specific” satellite 
reliability on the other hand. 
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Figure 1: Satellite reliability with 95% 

confidence intervals [1] 
 
 This dilemma is explained in the following two 
possible approaches. The first approach is to 
lump together different satellites and analyze 
their “collective” on-orbit failure behavior 
(assuming that the failure times of the satellites 
are independent and identically distributed (iid)). 
The advantage of doing so is that one can work 
with a relatively large sample and thus obtain 
some precision and a narrow confidence interval 
for the “collective” reliability analyzed. The 
disadvantage is that the iid assumption may not 
be realistic, and the “collective” reliability 
calculated (with precision) may not reflect the 
specific reliability of a particular type of 
spacecraft. The second approach is to specialize 
the data, for example for specific spacecraft 
platform or mission type, or for satellites in 
particular orbits. The advantage of doing so is 
that the reliability analyzed is specific to the type 
of spacecraft considered (it is no longer a 
“collective” on-orbit reliability). The 
disadvantage is that the sample size is reduced, 
and as a consequence, the confidence interval 
expands (i.e., the results become increasingly 
uncertain). Given the available number of 
satellites (a few thousands), data specialization, 
which could reduce the sample size to say fewer 
than a hundred data points, would result in 
significantly large confidence intervals, and thus 
highly dispersed and uncertain “specific” 
satellite reliability calculations. 

 
In this paper, we adopt the second approach. We 
discuss this approach in [2] and [3] and analyze 
on-orbit reliability of satellites by mission type, 

and mass categories (data for specific satellite 
platforms and by manufacturer is also available). 
Reliability of satellite subsystems can be found 
in [4]. 
 
From a statistical perspective, several parameters 
(covariates) or characteristics of the design can 
affect the probability of failure of satellites. For 
example, the spacecraft complexity, its orbit, the 
number of instruments on-board or its payload 
size, to name a few, have some implications on 
satellite reliability. One factor impacting satellite 
reliability might be the orbit type since the 
choice of orbit can impact design choices on 
board the spacecraft as well as the system’s 
operating environment. Several questions follow 
this observation: for example, are different 
spacecraft orbits correlated with different failure 
behaviors on-orbit? Do low Earth orbit (LEO) 
satellites for example exhibit different failure 
behaviors than geosynchronous orbit (GEO) 
satellites? Do satellites in different orbits exhibit 
varying degrees of infant mortality? Etc.  
 
In this paper, we conduct statistical analysis of 
satellite reliability with orbit as a covariate. Our 
analysis is based on a data set of 1,488 Earth-
orbiting satellites successfully launched between 
January 1990 and October 2008. We first 
categorize these satellites by orbit: 
geosynchronous orbit (GEO), low Earth orbit 
(LEO) and medium Earth orbit (MEO). We then 
conduct nonparametric analysis of satellite 
reliability for each orbit category using the 
Kaplan-Meier estimator. Using analytical 
techniques such as Maximum Likelihood 
Estimation (MLE) and least squares regression, 
we then conduct parametric analysis assuming 1- 
and 2-Weibull mixture distributions. Based on 
these parametric fits, we provide a comparative 
reliability analysis identifying similarities and 
differences in the reliability behaviors of 
satellites in these three types of orbits. Finally, 
beyond the statistical analysis, we conclude this 
work with several hypotheses for 
structural/causal explanations of these trends and 
difference in on-orbit failure behavior.  

2. DATABASE AND DATA 
DESCRIPTION 

For the purpose of this study, we used the 
SpaceTrak® database [5]. This database 
provides a history of on-orbit satellite failures 
and anomalies, as well as launch histories since 
1957 and is considered one of the most 
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authoritative in the space industry with data for 
over 6,400 spacecraft. The sample we analyzed 
consists of 1,488 satellites. We restricted the 
present study to Earth-orbiting satellites 
successfully launched between January 1990 and 
October 2008. In order to compute the reliability, 
we used what is referred to in the database as a 
Class I failure, that is, a retirement of a satellite 
due to failure. For each spacecraft in our sample, 
we collect: 1) its orbit type; 2) its launch date; 3) 
its failure date, if failure occurred; and 4) the 
“censored time,” if no failure occurred. This last 
point is further explained in the following 

section, where we discuss data censoring and the 
Kaplan–Meier estimator. The data collection 
template and sample data for our analysis are 
shown in Table 1.  
 
The database provides information on a variety 
of orbits. We restricted the study to three 
relevant orbits: GEO, LEO, and MEO. Table 2 
presents the main characteristics of the three 
orbit categories, and Fig. 2 provides the number 
of satellites per orbit category from 1990 to 2008 
(i.e., the sample size for each orbit type).  

 
 

Table 1: Data collection template and sample data for our statistical analysis of satellite reliability 
(satellites are not arranged/shown in chronological order) 

 
Sample unit 

number 
Orbit 
type 

Launch 
date 

Failure date 
(if failure 
occurred) 

Censored time 
(if no failure 

occurred) 
Satellite #1 GEO 11/06/1998 11/15/1998 – 
Satellite #2 LEO 03/01/2002 – 10/02/2008 
…  … … … 
Satellite #1,488 MEO 04/26/2004 03/28/2006 – 

 
 

Table 2: Orbit characterization 
 

Orbit category Characteristics 
GEO near circular with apogee and 

perigee at circa of 36,000km 
LEO apogee and perigee up to 2000km 

 
MEO near circular with apogee and 

perigee at circa of 20,000km 
 

 

 
Figure 2: On-orbit satellites distribution per orbit category from 1990 to 2008 

 

Total: 1,488 satellites 

MEO 
111 

(7.4%) 
GEO 
495 

(33.3%) 
LEO 
882 

(59.3%) 
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3. NON-PARAMETRIC SATELLITE 
RELIABILITY ANALYSIS 

In this section, we briefly review censoring in 
statistical data analysis and the Kaplan-Meier 
estimator of reliability when the underlying data 
is right-censored, as is the case in our sample. 
Nonparametric means that the statistical analysis 
does not assume any specific parametric 
distribution (also referred to sometimes as 
distribution-free analysis). We then provide the 
reliability results for satellites in GEO, LEO, and 
MEO. 
 
Censored Data Sample and Kaplan-Meier 
estimator 

 
Censoring occurs when life data for statistical 
analysis of a set of items is incomplete, which is 
the case in our sample. More specifically, we 
have Type IV censoring (also known as random 
censoring), that is right-censoring with staggered 
entry. This means the following: 1) the satellites 
in our sample are activated at different points in 
time (i.e., the satellites are launched at different 
calendar dates) but all these activation times in 
our sample are known, 2) failures dates and 
censoring are stochastic, and 3) censoring occurs 
either because a satellite is retired from the 
sample before a failure occurs or because the 
satellite is still operational at the end of our 
observation window (October 2008). Censoring 
requires careful attention: deriving a reliability 
function from censored life data is not trivial, 
and it is important that it is done properly if the 
results are to be meaningful and unbiased. In this 
work, we adopt the Kaplan–Meier estimator [6], 
which is best suited for handling the type of 
censoring we have in our sample. The derivation 
of the Kaplan-Meier estimator formula can be 
found in [1,6]. The Kaplan-Meier estimator of 
the reliability function with censored data is 
given by Eq. (1): 
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Should there be ties in the failure times, say mi 
units failing at exactly t(i)—this  situation is 
referred to as a tie of multiplicity m—then Eq. 2 
is replaced by: 
 

ˆ p i ==== ni −−−− mi

ni

    (3) 

 
If a censoring time is exactly equal to a failure 
time, a convention is adopted that assumes 
censoring has occurred immediately after the 
failure (that is, at an infinitely small time interval 
after the failure). 
 
Non-parametric reliability results of GEO, 
LEO, and MEO satellites 

 
With this brief overview of censoring and the 
Kaplan-Meier estimator, we can now analyze the 
on-orbit satellite reliability from our censored 
data sets. For the 1,488 satellites analyzed, and 
the 3 orbit categories here considered, we 
obtained 22 Class I failures for the GEO 
category, 70 for the LEO category, and 2 for the 
MEO category. The data was then treated with 
the Kaplan-Meier estimator (Eq. 1), and we 
obtained the non-parametric reliability results of 
GEO, LEO, and MEO satellites shown in Fig. 3a 
and 3b. 
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Figure 3a: Nonparametric results of GEO and LEO satellites reliability 
 

 
Figure 3b: Nonparametric result of MEO satellites reliability  
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Figure 3a and 3b are known as the Kaplan plots 
of reliability. Vertical cuts across Fig. 3 read as 
follows, for example: 
 

• The most likely estimate of GEO 
satellites reliability at t = 1 year on-orbit 

is R̂  = 98.7%. 
 

• The most likely estimate of GEO 
satellites reliability at t = 7 year on-orbit 

is R̂ = 96.8%. 
 
The Kaplan plots for the GEO, LEO, and MEO 
satellites allow us to visually identify some 
important trends in satellite reliability and on-
orbit failure behavior. For example:  
 

1. GEO satellites exhibit a small infant 
mortality, with a reliability dropping to 
approximately 98.7% after one year. In 
addition, GEO satellites exhibit a clear 
wear-out failure behavior between 6 and 
12 years, with a reliability dropping from 
97.5% to 92.5% (Fig. 3a). 
 

2. LEO satellites exhibit a significant infant 
mortality, with a reliability dropping to 
97% after one year. In addition, between 
the third and the sixth year, a “light” 
wear-out failure behavior can be observed 
with a reliability dropping from 
approximately 96.5% to 95% (Fig. 3a). 

 
3. For the MEO satellites (Fig. 3b), only two 

failures can be observed over 111 MEO 
satellites. As a result, no significant 
conclusions can be drawn about the 
nonparametric reliability results of these 
satellites. 

 
These trends will be explored more closely and 
analytically in Sections 4 and 5. 

4. PARAMETRIC RELIABILITY 
ANALYSIS 

Nonparametric analysis provides important 
results since the reliability calculation is not 
constrained to fit any particular pre-defined 
lifetime distribution. However, this flexibility 
makes nonparametric results neither easy nor 
convenient to use for various purposes often 
encountered in engineering design (e.g., 
reliability-based design optimization). In 
addition, some failure trends and patterns are 

more clearly identified and recognizable with 
parametric analysis. Several possible methods 
are available to fit a parametric distribution to 
the nonparametric reliability function (as 
provided by the Kaplan-Meier estimator). In the 
following, we present two parametric methods 
based on the Weibull distribution to fit the 
nonparametric reliability of satellites in each 
orbit category discussed previously. 
 
Weibull distribution  

 
The Weibull distribution is one of the most 
commonly used distribution in reliability 
analysis. Its reliability (or survivor) function can 
be written as follows:  
 



















−=
β

θ
t

tR exp)(  for t ≥ 0  (4) 

 
where β is the shape parameter (dimensionless) 
and θ the scale parameter (units of time), both 
nonnegative. The reason for the wide adoption of 
the Weibull distribution is that it is quite flexible, 
and with an appropriate choice of the shape 
parameter β, it can capture different kinds of 
failure behaviors. For example, when 0 < β < 1, 
the Weibull distribution models infant mortality 
(which corresponds to a decreasing failure rate); 
when β = 1, the Weibull distribution becomes 
equivalent to the Exponential distribution 
(constant failure rate); and when β > 1, the 
Weibull distribution models wear-out failures 
(which corresponds to an increasing failure rate).  
 
In previous publications, we demonstrated the 
appropriateness of the Weibull distribution as a 
parametric model for satellite reliability [1,4,7]. 
In this work, we first derive Weibull fits for the 
three nonparametric reliability results using the 
Maximum Likelihood (MLE) procedure. 
However, the parametric results will be shown to 
be within 0.6 to 3.2 percentage points of the 
“benchmark” nonparametric results, and for our 
purposes, these results are not sufficiently 
accurate. We therefore proceed with deriving 
mixture Weibull distributions for the 
nonparametric results and demonstrate a 
significant improvement in the accuracy of the 
parametric fits. The details are discussed next. 
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Maximum Likelihood Estimation (MLE) of 
single Weibull fit  

 
Details of the Maximum Likelihood Estimation 
procedure can be found in [8], and its analytic 
derivation is provided in [4].  When applied to 
the nonparametric reliability results shown in 
Fig. 3a and 3b, the MLE procedure yields the 
Weibull parameter estimates for each satellite 
orbit category. The results are provided in Table 
3. 
 

Table 3: Maximum Likelihood Estimates of 
the Weibull parameters for satellite reliability 

across the three orbit categories 
 

Orbit category β θ  
  years 
GEO 0.7190 582.5 
LEO 0.3473 34048.9 
MEO 1.6347 79.4 

 
 
The information in Table 3 reads as follows. 
Consider for example the GEO satellites. Its 
nonparametric reliability is best approximated by 
the following MLE-derived Weibull distribution: 
 



















−=
719.0

5.582
exp)(

t
tRGEO

  (5) 

 
The values of the shape parameter (β = 0.7190) 
and the scale parameter (θ = 582.5) are the 
Maximum Likelihood Estimates. Figure 4 shows 
the nonparametric reliability curve and the MLE-

derived Weibull fit for the three orbit categories. 
For satellites in LEO, Fig. 4 provides a visual 
verification that the MLE-derived Weibull 
distribution is a satisfying fit for the 
nonparametric reliability. It is difficult to derive 
the same conclusion for the two other orbit 
categories.  
 
The goodness-of-fit of the Weibull distribution is 
reflected in this work by the maximum and 
average errors over 15 years between the 
nonparametric reliability results (the 
“benchmark” results) and the Weibull fit. Table 
4 provides the maximum and average error 
between the nonparametric reliability and the 
Weibull fit for the three orbit categories. Despite 
this reasonable accuracy of the parametric fit, 
Fig. 4 shows that the single Weibull distribution 
does not fully capture the failure trends in the 
data, especially for the GEO and MEO satellites. 
To improve the quality of the parametric fit, we 
derive in the next subsection mixture Weibull 
distributions for the non-parametric reliability 
results derived in Section 3. 
 

Table 4: Error between the nonparametric 
reliability and MLE Weibull fit for each 

satellite category 
 

Orbit 
category 

Maximum 
error 

(percentage 
point) 

Average 
error 

(percentage 
point) 

GEO 1.6 0.7 
LEO 0.6 0.2 
MEO 3.2 1.0 

 

 
 
 
 
 

  
GEO category LEO category MEO category 

Figure 4: Nonparametric reliability and single Weibull fit 
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Mixture distributions  

 
Several distributions such as the Exponential, 
Weibull, or Lognormal, can be used as a basis 
for linear combination to generate a mixture 
distribution. In this subsection, we maintain the 
Weibull as the basis for our parametric 
calculations and derive mixture of two Weibull 
distributions for the nonparametric satellite 
reliability of each orbit category. The parametric 
reliability model with a mixture of two Weibull 
distributions can be expressed as follows: 
 










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
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21

21

exp)1(exp)(
ββ

θ
α

θ
α tt

tR   (6) 

 
The parameter α is used to modify the relative 
weight given to each Weibull distribution in the 
mixture. A generalized expression for n mixture 
distributions is provided in [9]. We restrict our 
calculations in this work to n = 2 since as will be 
shown shortly, the results are significantly 
accurate and the 2-Weibull distributions follows 
with notable precision the different failure trends 
in the nonparametric results. Limited incremental 
accuracy is provided by 3-Weibull mixture 
distributions. Increasing n provides insignificant 
accuracy improvement. 
 
 

 
The nonlinear least squares method provides us 
with the best fits for the parameters of the 
2-Weibull mixture distribution for each orbit 
category. The results are provided in Table 5. 
For the three orbit categories, the new parametric 
fit of the reliability using a 2-Weibull mixture 
distribution accurately follows the nonparametric 
reliability, as shown in Fig. 5.  
 
It is worth pointing out that the first Weibull 
element with a shape parameter β1 < 1 captures 
satellite infant mortality while the second 
Weibull element with a shape parameter β2 > 1 
captures satellite wear-out failures.  As expected, 
the fits provided by the mixture distributions 
approach for the three orbits categories are better 
than those provided by the MLE approach. Table 
6 provides the 2R coefficients and the sum of the 
squares of errors (SSE) of the three mixture 
distributions formulated for each orbit category. 
The 2R  coefficients of the fits are higher than 
97% for the three categories. To gauge the 
precision improvement between the single 
Weibull and the 2-Weibull mixture distributions, 
we calculate both the maximum and the average 
error between the nonparametric reliability (the 
benchmark results) and the parametric models. 
The results are shown in Table 7. 

Table 5: 2-Weibull mixture distribution parameters 
 

Orbit category α β1 β2 θ1 θ2 
    years 

GEO 0.0496 4.1070 0.3300 9.8 661600.0 
LEO 0.9927 0.2997 68.6300 136100.0 14.4 
MEO 0.9526 1.4790 8.3600 101900.0 6.0 

 

 

  
 

 
 

GEO category LEO category MEO category 
 

Figure 5: Nonparametric reliability and 2-Weibull mixture fit for the three satellite categories 
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Table 6: Goodness-of-fit of the 2-Weibull mixture distribution for each satellite category 

 

Ceofficient Orbit category 
 GEO LEO MEO 
2R  0.9908 0.9845 0.9749 

SSE 0.03978 0.01698 0.08776 
 
 

Table 7: Error between the nonparametric reliability 
 and the parametric models over 15 years 

 

Orbit category Error Parametric fit 

 percentage point Single Weibull  2-Weibull mixture 

maximum error 1.6 0.7 
GEO 

average error 0.7 0.2 

    

maximum error 0.6 0.4 
LEO 

average error 0.2 0.1 

    

maximum error 3.2 1.8 
MEO 

average error 1.0 0.2 

 
 
As seen in Table 7, the 2–Weibull mixture 
distribution is significantly more accurate than 
the single Weibull distribution in capturing the 
(benchmark) nonparametric satellite reliability. 
Section 3 briefly presented the general trends in 
the nonparametric reliability curves of each orbit 
category. In order to lead further investigations 
on the behavioral differences between the three 
satellite categories, the next section provides a 
detailed comparative analysis of the satellite 
reliability across orbit categories based on the 
mixture distributions previously developed. 

5. COMPARATIVE ANALYSIS OF 
SATELLITE RELIABILITY ACROSS 
ORBIT CATEGORIES 

This section identifies periods of time during 
which the reliability of the orbit categories show 
similarities or differences in their behavior. 
Figure 6 presents the absolute difference in 
satellite reliability for each pair of orbit 
categories: LEO/MEO, LEO/GEO, and 
MEO/GEO. More than characterizing the 
amplitude of the difference itself, we ultimately 

seek to identify a period of time during which 
the difference remains approximately constant, 
meaning that the two reliability curves have the 
same behavior. For example, a significant 
increase of the absolute difference early in time 
after successful orbit insertion during ],0[ 1t , 

followed by a relatively constant evolution of the 
difference during ],[ 21 tt , would mean that the 

two reliability curves do not exhibit similar 
infant mortality behavior during ],0[ 1t but also 

that they do show similar behavior later in time 
during ],[ 21 tt . First we can notice that all the 

three differences jump up to 1 percentage point 
during the first year following orbit insertion. 
This result indicates that satellites across the 
three orbit categories have different failure 
behavior early on orbit, that is they have 
different infant mortality behavior. A quick 
glance at Fig. 6 also reveals that significant 
periods of time during which any of the three 
reliability differences remains roughly constant 
are difficult to find. The only period of interest 
would eventually be between 3 and 6 years for 
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the LEO/GEO difference but yet, the periods 
responsible for similarities and differences 
between reliability profiles are not explicitly 
identified on a plot like Fig. 6.  
 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

Time after successful orbit insertion (years)

A
b

so
lu

te
 d

iff
er

en
ce

 b
et

w
ee

n
 r

el
ia

b
ili

ty
 c

u
rv

es
(p

er
ce

n
ta

g
e 

p
o

in
ts

)

 

 

LEO - MEO
LEO - GEO
MEO - GEO

 
 

Figure 6: Pairwise differences in satellite 
reliability over time 

 
To better assess whether the reliability and 
failure behavior of two different orbit categories 
are similar after a given period, we investigate 
their conditional reliabilities. For an item that has 
survived until time T, the conditional reliability 
allows the calculation of its probability of 
survival for an additional period of operation, 
knowing that the item has survived until T. By 
considering conditional reliabilities, we can 
perform a comparative analysis of failure 
behavior of the different satellite categories over 
different time periods and by selectively filtering 
out or disregarding failures prior to T. The 
benefits of doing so will be demonstrated 
shortly. Using the time domains shown in Fig. 7, 
the conditional reliability is defined as follows 
[10,11]: 
 

R t T( )= Pr TF > T + t TF > T{ }  (7) 

 

0 T T + t

t

 
Fig. 7. Time domains for conditional 

reliability from [11] 
 

TF is the random variable Time-to-Failure. By 
definition of the conditional probability and the 
reliability function, (Eq. 7) can be reduced to: 

 

R t T(((( ))))====
Pr TF >>>> T ++++ t{{{{ }}}}

Pr TF >>>> T{{{{ }}}}
====

R T ++++ t(((( ))))
R T(((( ))))

 (8) 

 
The conditional reliability is particularly useful 
for the study of a burn-in and its impact. In our 
case, we make a related, although broader, use of 
conditional reliabilities to study the failure 
behavior of satellites in different orbit categories. 
The conditional reliability is useful for 
comparing two different reliability curves. 
Indeed, the conditional reliability “eliminates” or 
filters out the failure behavior of the system up 
to the time T. To illustrate the relevance of this 
observation for our study purposes, consider the 
following two systems, the first one suffering 
from significant infant mortality during the [0; t1] 
period, and the second one is not. In addition, the 
two systems have the same failure behavior 
during the [t1; t2] period. The reliability curves of 
these two systems will be different and hardly 
comparable. While the reliability curves will 
clearly indicate the difference in infant mortality 
behavior between the two systems, these curves 
will not identify the similarity in failure behavior 
between the two systems during the [t1; t2] 
period. The difference between the curves is only 
due to the failures during the initial [0; t1] period. 
Thus, by setting T = t1, in Eq. 8, we can calculate 
the two conditional reliability curves over [t1; t2], 
and the two resulting curves will be similar, due 
to the same failure behavior during this period. 
By filtering out the failures during the initial 
period, the similarity of the failure behavior of 
the two systems during [t1; t2] can thus be clearly 
identified. Hence, by carefully selecting the 
appropriate time(s) T, the conditional reliability 
helps us separate the impact of early failures, and 
clearly determine periods of similar failure 
behavior, if they exist. 
 
Guided by visual inspection of Figure 6, we 
iteratively examined various evaluation times T. 
The most significant and meaningful cases are 
discussed next. For the LEO and GEO 
categories, we suggested that the absolute 
difference remains roughly constant (varying by 
less than 0.2 percentage point) between 3 and 6 
years after orbit insertion, which might 
demonstrate a similar reliability behavior during 
this time period. Figure 8a shows the absolute 
difference between the conditional reliabilities 
for satellites that have survived 3 years, that is 
for T = 3 years, for the LEO and GEO categories. 
As the figure shows, no reliability data is shown 
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until t = T. Until t = 6 years, the absolute 
difference between the conditional reliabilities 
varies very little and remains below 0.2 
percentage points. After t = 6 years, the absolute 
difference between the conditional reliabilities 
increases significantly, suggesting a divergence 
of the two failure behaviors of satellites in LEO 
and GEO. This phenomenon can be verified in 
Fig. 8b, which shows the conditional reliabilities 
evaluated for T = 3 years for the GEO and LEO 
satellites. The two reliability curves are almost 
overlapping between 3 and 6 years, then a 
significant divergence occurs between the two 
curves after t = 6 years.  
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Regarding the other comparative reliability 
analyses, namely between LEO/MEO and 
GEO/MEO, no significant period of time was 
found showing similar failure behavior. In 

addition, the small sample size of the MEO 
satellites (111 satellites) and only 2 failures 
renders it difficult to make strong inferences 
about the actual reliability and on-orbit failure 
behaviors of these satellites (more details on this 
point can be found in the appendix).  
 
In the next section, we discuss several 
hypotheses for possible structural/causal 
explanations of the difference in reliability and 
failure behavior of satellites across orbit 
categories. 
 

6. HYPOTHESES FOR CAUSALITY 
ANALYSIS 

The previous sections demonstrated that there 
are significant differences in the reliability and 
failure behavior of the LEO and GEO satellites. 
This section explores possible causes of these 
differences. The most obvious factor that varies 
from one orbit category to another is the space 
environment. The space operating environment 
strongly influences the performance and lifetime 
of on-orbit satellites and can lead to costly 
malfunctions or loss of subsystems and 
spacecraft [12]. The space environment, as a 
function of orbit choice, also impacts design 
decisions and has implications on satellite size, 
weight, complexity, and cost [13], all of which 
can impact satellite reliability. Programmatic 
considerations can also be important influencing 
factors of satellite reliability. These hypotheses 
are discussed next. 
 

Environmental Factors 

Upper Atmosphere 

One obvious difference between LEO and the 
higher MEO and GEO orbits is the rarefied 
atmosphere present in LEO. This results in 
aerodynamic drag that must be counteracted for a 
satellite to remain in orbit for long periods of 
time. Orbit lifetime for typical satellites is on the 
order of a few months at 300 km altitude and a 
few years at 400 km altitude [14]. However, 
orbit lifetime estimates are subject to significant 
uncertainty because they are limited by the 
accuracy of drag and space weather models [15].  
Two well-known examples of unintended re-
entries due to inadequate drag predictions are the 
American Skylab and Soviet Salyut 7 space 
stations. Skylab was originally expected to 
remain in orbit ten years after the last crew 

Figure 8a: Absolute difference in 
conditional reliability evaluated for T = 3 
years between GEO and LEO satellites 

Figure 8b: Conditional reliabilities 
evaluated for T = 3 years between GEO 

and LEO satellites 
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departed in 1974, allowing for potential 
servicing by the Space Shuttle. However, Skylab 
became the victim of unexpectedly high solar 
activity and re-entered in 1979 [16]. Similarly, it 
was intended for Salyut 7 to remain in orbit 8-20 
years after its 1986 decommissioning for 
potential retrieval by the Soviet Buran space 
shuttle. However, it re-entered in February 1991 
due to unexpected solar activity which raised 
upper atmospheric density by factors of 4-5.  
Furthermore, a local peak in solar activity in late 
January 1991 prevented the impact location from 
being known more accurately than within a half-
orbit until just three hours prior to impact [15, 
17]. 
 
Since atmospheric drag effects and their 
associated uncertainties typically manifest 
themselves gradually, they are rarely the direct 
causes of satellite failures. However, they do 
affect decommissioning dates for LEO satellites 
and may exacerbate the effects of otherwise 
more minor failures. For example, upper 
atmosphere drag on LEO satellites may result in 
shorter windows during which an operations 
team can effectively recover the satellite from 
propulsion, attitude control, or communications 
failures before drag losses or drag-induced 
torquing effects become too large. 
 
In addition, the upper atmosphere is associated 
with chemically corrosive effects of highly 
reactive species such atomic oxygen.  This form 
of oxygen, predominant from about 200 km to 
600 km in altitude, can react with organic films, 
composite materials, and metallized surfaces, 
causing degradation on sensor performance [18]. 
Solar arrays and space mirrors are an example of 
subsystems that encounter a degradation problem 
caused by the impact of atomic oxygen in the 
LEO environment [12, 19]. Extensive erosion 
due to atomic oxygen is one failure mechanism 
in LEO that does not exist in the GEO and MEO 
orbits. 

Plasma and Magnetic Field 

Ionization of the space environment is highly 
dependent on altitude. At about 300 km, 1% of 
the atmosphere is ionized while this number 
increases to 100% ionization in the 
geosynchronous environment. These charged 
particles, forming the plasma environment, 
charge the surface of any spacecraft within it to 
high negative voltages. If the local electric field 
exceeds the breakdown field along the surface of 
the material, it can trigger an electrostatic arc and 

electromagnetic interference (EMI) large enough 
to disrupt electronic components [20]. This has 
been attributed as a major failure mode for GEO 
satellites, particularly as they emerge from an 
eclipse period into a solar storm [21]. At low 
altitude, this charged phenomenon only appears 
in the high latitudes regions, where auroral 
electrons collide with the spacecraft. It is yet 
much more common for higher orbits, such as 
GEO.   

Radiation 

There are several types of radiation that may 
threaten Earth-orbiting spacecraft. Since these 
types of radiation impact satellites in distinct 
altitude ranges, they are also candidate 
explanations for differences in reliability 
behavior among LEO, MEO, and GEO satellites. 
 
• The Van Allen radiation belts consist of 

electrons and ions with energies greater than 
30 keV. They are distributed nonuniformly 
within the magnetosphere up to a distance of 
7 Earth radii. It is usually acknowledged that 
space missions beyond low Earth orbit leave 
the protection of the geomagnetic field, and 
transit the Van Allen belts. Thus they face 
more threats caused by the Van Allen 
radiations. The region between two to three 
Earth radii lies between the two radiation 
belts and is sometimes referred to as the 
“safe zone” [22]. 

• Solar particle events (SPEs) occur in 
association with solar flares. They are rapid 
increases in the flux of energetic particles, 
from 1 MeV to above 1 GeV, and can last 
from several hours to several days. 
Ultimately, they can lead to degradation of 
solar arrays or electro-optical sensors [13]. 
Depending on their energy level, the SPEs 
penetrate the Earth magnetosphere at 
different altitudes. It is more likely that they 
will impact high altitude orbits, such as 
geosynchronous orbits, than low-Earth 
orbits. 

 
Thermal and Power Cycling 

In addition to space environment effects, another 
substantial difference among the three orbit 
categories is the degree of thermal and power 
cycling. In a one-day period, a 400 km LEO 
satellite orbits the Earth about sixteen times, 
while a GEO satellite orbits the Earth once. As a 
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result, the LEO satellite cycles between eclipse 
and sunlight periods at least sixteen times as 
often as the GEO satellite, subjecting the LEO 
satellite to substantially more thermal and power 
cycling. It is reasonable to consider that thermal 
expansion and contraction effects could cause 
component fatigue, particularly for delicate 
components. It is also plausible that power 
subsystem cycling, especially for the battery’s 
charge and discharge in and out of eclipse, could 
cause different failure modes for satellites in 
LEO and GEO. Cycling effects may be one 
contributor to the substantial infant mortality 
exhibited in the LEO satellite reliability data. 
 
Programmatic Effects 

A final hypothesis for differences in the observed 
LEO and GEO satellite reliability behavior deals 
with the effect of programmatic decisions.  
Typically, GEO satellites are designed for use 
over a period of time on the order of a decade or 
more.  In contrast, LEO satellite design lifetimes 
are generally shorter, often less than five years. 
The development of potentially more expensive 
and longer-lived GEO satellites is likely to 
include more investment in quality control 
testing, and more focus on reliability, part 
selection, and redundancy. The much lower 
infant mortality for GEO satellites may be 
attributable to this system development 
consideration. 

7. SUMMARY 

We derived in this work nonparametric and 
parametric reliability results for Earth-orbiting 
satellites as a function of orbit type, namely 
geosynchronous orbits (GEO), low Earth orbits 
(LEO) and medium Earth orbits (MEO). We 
used an extensive database of satellite launches 
and on-orbit failures and anomalies to derive, 
using the Kaplan-Meier estimator, nonparametric 
reliability results for each satellite category. 
Next, using the Maximum Likelihood Estimation 
(MLE) technique and least squares regression, 
we derived parametric fits of the results with 
single and 2-Weibull mixture distributions. The 
parametric fits using the mixture distributions 
proved to be significantly accurate in capturing 
the failure trends in the nonparametric results. 
Based on these parametric fits, we provided a 
comparative reliability analysis identifying 
similarities and differences in the reliability 
behaviors of satellites in these three types of 

orbits. Finally, beyond the statistical analysis, we 
concluded this work with several hypotheses for 
structural/causal explanations of these trends and 
difference in on-orbit failure behavior. 
 

APPENDIX 
 

Confidence interval analysis 

 
The Kaplan-Meier estimator (Eq. 1) provides a 
maximum likelihood estimate of reliability but 
does not inform us about the dispersion around 
ˆ R (ti) . This dispersion is captured by the 

variance or standard deviation of the estimator, 
which is then used to derive the upper and lower 
bounds for a 95% confidence interval (that is, a 
95% likelihood that the actual reliability will fall 
between the two calculated bounds, with the 
Kaplan-Meier analysis providing us with the 
most likely estimate). The variance of the 
estimator is provided by Greenwood’s formula 
(Eq. 9), and the 95% confidence interval is 
determined by Eq. 10. 
 

vˆ a r R(ti)[[[[ ]]]] ≡≡≡≡ σ 2(ti) ==== ˆ R (ti)[[[[ ]]]]2
⋅⋅⋅⋅

m j

n j (n j −−−− m j )j≤≤≤≤ i

∑∑∑∑  (9) 

 

R95%(ti) ==== ˆ R (ti) ±±±± 1.96⋅⋅⋅⋅ σ(ti)  (10) 
 
More details about these equations can be found 
in [23, 24, 25]. 
 
When Eqs. (9) and (10) are applied to the data 
within each category along with the Kaplan-
Meier estimated satellite reliabilitŷ R (ti)  shown 
in Fig. 3, we obtain the 95% confidence interval 
curves. These results for each orbit category of 
satellites are shown in Fig. 9. It shows for 
example that the GEO Satellites reliability at t = 
1 year will be between 97.7% and 99.7% with a 
95% likelihood—these values constitute the 
lower and upper bounds of the 95% confidence 
interval at t = 1 year. Notice that the dispersion 
of R(ti)  around ˆ R (ti)  increases with time. This 
increase in dispersion can be seen in Fig. 9 by 
the growing gap between the Kaplan–Meier 
estimated reliability and the confidence interval 
curves. This phenomenon illustrates the 
increasing uncertainty or loss of accuracy of the 
statistical analysis of satellite reliability with 
time resulting from the decreasing sample size. 
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GEO category LEO category MEO category 
Figure 9: Satellite reliability with 95% confidence intervals for each orbit category 
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