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Abstract 
This paper describes an advance in the state-of-the-art of aerospace vehicle fault protection through development 

of an architecture that utilizes state machines for Fault Detection, Isolation, and Recovery. Through the application 
of state machine logic, the architecture actively responds to hardware and software faults, allowing autonomous 
recovery to a safe state. The study leverages a MATLAB/Simulink six degree-of-freedom simulation environment, 
allowing the evaluation of the fault detection algorithms in flight-like mission scenarios. The modularity of the 
simulation environment allows the investigator to define the sensor/actuator suite and software modules to test 
various combinations of algorithms and hardware models. 

Within Simulink, a tool called Stateflow is used to implement complex logical relationships by using state charts, 
also known as state machines, to represent the current state of different spacecraft hardware or software components. 
The fault protection architecture is developed as a Stateflow block that receives measurements of state variables from 
spacecraft software and hardware components in Simulink to decide the current state of the system. Based on that 
state, the fault protection algorithms determine if any faults are present (detection), determine the type of fault and 
likely location (isolation), and command actions to contain or prevent further faults (recovery). Outputs from the 
fault protection Stateflow charts issue commands back to the spacecraft software and hardware models, allowing an 
automated response to spacecraft faults. 

This fault protection architecture is designed to be generic, modular, and portable to flight software. The 
simulation environment allows setting parameters such as physical dimensions and trajectory, is applicable to a 
multitude of possible mission scenarios and allows alternate configurations, such as multiple cooperative or non-
cooperative vehicles. The visual block diagram environment offered by MATLAB/Simulink can be reconfigured to 
test many combinations of software and hardware components. Finally, the capability to easily convert into flight 
software code (i.e. autocoding) is available through the MATLAB/Simulink platform. 

The study advances the state-of-the-art in fault protection and builds on previous work by bringing together 
capabilities including Stateflow decision logic, autocoding to flight software, and model-based design into a single 
generic, modular architecture that is portable to embedded systems. The resulting architecture is intended to be 
broadly applicable for aerospace missions, advancing flight system capabilities for automated mission operations. 
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1. Introduction 
The capability to recover gracefully from hardware 

faults or algorithm convergence issues is critical for 
many aerospace applications, particularly for missions 
involving proximity operations (ProxOps), where 
multiple vehicles are operating at close range.  Previous 
ProxOps missions have experienced faults that resulted 
in a failure to meet mission objectives. For example, 
NASA’s Demonstration of Autonomous Rendezvous 
Technology experienced a complete mission failure 
when it collided with its target spacecraft during 
automated operations due to software errors that led to 
an inaccurate range estimation [1]. 

In the development of aerospace systems, 
verification and validation (V&V) are often focused on 
demonstrating that software algorithms and systems will 
work under nominal conditions. The robustness of the 
system to off-nominal scenarios is often not tested. 
Even when system robustness is evaluated, it is difficult 
to evaluate all possible failure modes. As more missions 
undertake autonomous operations, there is an increased 
need for real-time detection and correction of failures 
through Fault Detection, Isolation, and Recovery 
(FDIR). These capabilities are especially necessary for 
time-critical operations such as rendezvous and 
ProxOps. 

 
1.1 Previous Work 

Over the last few years, the development of FDIR 
for space missions has advanced significantly. A typical 
aerospace FDIR system is “a smart embedded system 
that is able to react to some know[n] events and to select 
a decision among a predefined set” [2]. Currently, the 
state-of-the-art in spacecraft FDIR involves using a set 
of rules or conditions that are checked against telemetry, 
with preprogramed responses that are executed when 
one of these rules is violated. For example, if a 
parameter persistently exceeds its expected range, a 
signal is sent to ground operators to warn them. Also, 
space mission teams usually develop custom FDIR 
systems from scratch for each new mission based upon 
the specific needs and requirements of the mission. 

The use of model-based fault protection has been 
explored and implemented in some scenarios, but it has 
not been widely adopted for various reasons. In recent 
years, several space mission teams have made use of the 
Stateflow toolbox within MATLAB/Simulink to 
develop FDIR algorithms and autocode those algorithms 
into Flight Software (FSW) including Deep Space 1 [3], 
and Deep Impact [4]. Recently, NASA’s Johnson Space 
Center has used MATLAB/Simulink, including 
Stateflow, to develop algorithms for Guidance, 
Navigation, and Control (GN&C), which are later 
autocoded into FSW [5]. Stateflow has also been used to 
evaluate errors in FDIR algorithms during spacecraft 
system Verification & Validation (V&V) [6]. Another 

FDIR architecture developed with Stateflow uses 
model-based design techniques to bring in V&V earlier 
in the design cycle by providing a link between 
subsystem design and FDIR design [7]. 

One space systems engineering team at the Jet 
Propulsion Laboratory has begun to analyze the FDIR 
problem in depth using model-based systems 
engineering approaches. This team has developed an 
FDIR architecture using the SysML software [8]. This 
architecture is used for identifying, evaluating, and 
managing failure modes during the design and V&V 
phases, though the implementation of FDIR for FSW 
does not stem directly from the architecture. 
 
1.2 Advances in State-of-the-Art 

The study presented here advances the state-of-the-
art in FDIR and builds on previous work by bringing 
together capabilities including Stateflow decision logic, 
autocoding to FSW, and model-based design into a 
single generic, modular FDIR architecture that is 
portable to FSW. Most previous FDIR studies have 
involved large, high-resource missions with custom-
built FDIR, while the proposed FDIR architecture is 
designed with a focus on small aerospace vehicles and 
will be applicable to a wide variety of missions. 
Stateflow logic allows complex decisions to be made in 
a hierarchical way where conditions and logical states in 
individual spacecraft software components, FDIR 
algorithms, and higher level “master” FSW mode logic 
all influence one another. Also, various initial 
conditions, environmental scenarios, and physical 
vehicle properties can be re-defined simply and easily in 
a MATLAB initialization script. The architecture also 
allows alternate configurations that enable testing of 
various scenarios. 

Numeric software algorithms such as Kalman Filters 
may or may not converge, depending on a variety of 
factors. For autonomous systems, divergent algorithms 
can lead to mission-critical failures if not detected and 
corrected. Many FDIR methods have been developed 
for software failures such as these, and the architecture 
developed in this work enables these algorithms to be 
rigorously tested and implemented. Numerous FDIR 
algorithms developed in academic environments never 
move from concept design to flight test implementation 
[2]. The architecture developed in this study allows 
these algorithms to be further developed in an integrated 
environment that closely models the behavior of 
aerospace vehicles in relevant environments. The 
proposed software environment also features an 
autocoding capability to convert integrated software 
modules and FDIR algorithms directly to FSW for 
further testing in hardware-in-the-loop (HITL) and 
flight applications. This will greatly facilitate the 
transition of new FDIR algorithms from concept design 
to implementation. 
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The primary area of applicability of the proposed 
study to the NASA Technology Area Breakdown 
Structure (TABS) is element 4.5.1 System Health 
Management under section 4.5 System Level Autonomy 
within Technology Area 04: Robotics and Autonomous 
Systems. System health management “monitors, 
predicts, detects, and diagnoses faults and 
accommodates or mitigates the effects either on-board 
or through telemetry processing on the ground” [9]. The 
proposed FDIR architecture results in on-board real-
time system health management software and will 
address many of the desired technical capabilities of 
TABS element 4.5.1. For example, the complex logic 
enabled by Stateflow charts allows the FDIR 
architecture to include prognostic and diagnostic 
components as an integral part of the system. The logic 
is also able to take complicated vehicle states into 
account to avoid false positives when faults are not 
present and false negatives when faults are present. It 
may even be used to anticipate faults and adapt to new 
situations that do not have pre-programmed responses. 
Finally, this study advances paradigm-shifting state 
machine-based approaches for FDIR that can be easily 
transitioned to FSW and validated using HITL testing. 
 
1.3 Paper Organization 

The paper is organized in the following manner. 
Section 1 introduces background for the topic, Section 2 
presents the overall concept of the FDIR Architecture, 
Section 3 presents a proof-of-concept of the FDIR 
Architecture, and Section 4 presents future work. 
 
2. FDIR Architecture Concept  

The concept discussed here leverages the 
development of a Six-Degree-of-Freedom (6DOF) 
simulation environment for the Prox-1 small satellite 
mission at Georgia Tech. The original purpose of this 
MATLAB/Simulink platform was for Guidance, 
Navigation, and Control (GN&C) algorithm integration 
and testing [10,11], but it can be adapted for the 
development of a more general FDIR system. 
Functionality is added to the simulation environment 
that can be applied generally to aerospace mission 
scenarios to test a variety of fault detection algorithms 
and mission architectures. For example, modularity of 
the simulation environment allows the investigator to 
replace the current sensor/actuator suite and software 
modules to test various combinations of state-of-the-art 
algorithms and hardware models. 
 
2.1 Development Environment 

Within MATLAB/Simulink, the Stateflow toolbox 
can be used to implement complex logical relationships. 
Stateflow is a simple graphical tool using state charts, 
also known as state machines, to represent the current 
state of different vehicle hardware or software 

components [12]. These charts can be integrated with 
larger simulations in Simulink using a Stateflow block, 
with variables being input to the block to influence the 
current state of the chart and variables being output 
from the block to influence the behavior of other blocks 
based on that state. These charts can be very simple, 
representing only a few possibilities, or they can involve 
complicated nested sets of states. Stateflow animates the 
status of the state charts during simulation so that the 
developer can monitor the simulation in real time for 
debugging and confirmation that the chart is properly 
constructed. An example Stateflow chart representing a 
thruster controller [10] is shown in Figure 1. This chart 
simply contains three states (Startup, ThrustOff, 
ThrustOn), transition conditions between the states, and 
an embedded function written in MATLAB syntax. The 
chart determines whether the thruster should be on or 
off based on whether the controller has received a 
command to fire (“ready”), the amount of time 
commanded, and the fuel margin (determined by the 
output of the MATLAB function). The Stateflow chart 
is integrated within a Simulink simulation as a Stateflow 
block with inputs and outputs, as shown in Figure 1. 

 

 

 
Fig. 1. Sample Stateflow chart representing a thruster 
controller (top); Demonstration of Stateflow block 
integration in Simulink (bottom) [10] 

 
The FDIR architecture takes data from the vehicle 

which is used to determine the likely state of the 
vehicle. This state can be classified as either “fault” or 
“no fault” based on how the decision logic is structured. 
Future versions of the architecture may also be able to 
isolate a fault from an unknown source and perform 
preventative actions to recover from the failure before it 
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becomes mission-critical. Outputs from the architecture 
can either send commands to the vehicle autonomously 
or notify ground operators to take corrective action. 
 
2.2 FDIR Architecture Requirements 

High-level requirements have been identified to 
guide the development of this FDIR architecture: it 
should be generic, modular, and portable to FSW. A 
generic architecture is not limited to any specific 
mission. The simulation environment should allow 
setting vehicle parameters such as physical dimensions 
and trajectory. It should be applicable to a multitude of 
possible mission scenarios and allow alternate 
configurations, such as individual vehicles, or multiple 
cooperative or non-cooperative vehicles. The 
architecture should also contain generic modules for 
commonly used components such as sensors and 
actuators. A modular FDIR architecture allows 
components to be easily rearranged. The visual block 
diagram environment offered by MATLAB/Simulink 
can be altered and reconfigured easily and allows for 
testing of many combinations of software modules and 
hardware components. 

The FDIR architecture should allow rapid transition 
from development to flight. A flight-like FDIR 
architecture should accurately model in-flight 
conditions of actual vehicles and missions. It should 
contain environment and hardware models with 
configurable settings. In addition, the computational 
requirements of the architecture should match the 
capability available on flight processors. The 
architecture should also have the ability to make the 
kinds of complex decisions normally required for 
autonomous FSW and should be evaluated by testing its 
response to realistic stochastic conditions rather than 
“canned” scenarios. It should be well integrated with 
other hardware and software components, allowing new 
components to be quickly evaluated. Finally, the 
capability to easily convert the architecture into FSW 
code (i.e. autocoding) is highly desirable. 

V&V of the FDIR architecture will assess the 
capability to meet the following key requirements. First, 
it should detect and possibly correct in real-time 
component, subsystem, and system-level software and 
hardware failures. These failures include sensor/actuator 
failures, errors, or degradation, improper controller gain 
settings, non-convergence of GN&C algorithms, and 
software or hosting hardware (i.e. processor) failures. 

Secondly, the architecture should detect and avoid 
mission-level failure modes, such as vehicle collision or 
uncontrolled behavior that renders the mission 
objectives unattainable. Thirdly, it should utilize 
complex decision logic in Stateflow to select the best 
course of action when multiple options exist. Finally, it 
should demonstrate fault protection logic that allows the 

system to avoid aborts by responding to correctible 
errors in real-time and still meet mission objectives. 
 
3. Proof-of-Concept: UAV Nervous System 

FalconViz is a start-up company based out of the 
King Abdullah University of Science and Technology 
(KAUST) in Saudi Arabia. It was founded in 2015 by 
two research faculty and a PhD student at KAUST: Dr. 
Neil Smith, Dr. Mohamad Shalaby, and Luca Passone. 
FalconViz designs and flies custom unmanned aerial 
vehicles (UAVs) for a variety of applications such as 
aerial surveying & mapping, inspection & monitoring, 
and surveillance. The company also collaborates with 
other research groups at KAUST such as the Hydrology, 
Agriculture and Land Observation (HALO) group led 
by Dr. Matthew McCabe. The HALO group uses 
modelling, remote sensing, and in-situ measurements to 
better understand elements such as water usage, crop 
health, and regional climate conditions. One effort of 
the HALO group involves the use of UAVs to capture 
thermal and hyperspectral imagery of desert agricultural 
plots. 

At KAUST during Summer 2016, a FalconViz 
hexacopter (six propellers) shown in Figure 2 was used 
as a proof-of-concept testbed for the FDIR software 
architecture described here. Two specific failures were 
addressed as a starting point: unbalanced propellers 
(leading to excess vibration) and overheating 
components. Detecting these failures provides a more 
reliable vehicle for performing aerial surveys and other 
tasks with FalconViz UAVs. 

 

 
Fig. 2. FalconViz hexacopter in flight 

 
3.1 Vibration Detection Hardware 

Unbalanced propellers cause excess vibration and 
can lead to screws coming loose and potential crashes. 
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Vibration detection is accomplished by evaluating 
accelerometer data measured from the arms of the UAV 
that house the propellers. A machine-learning algorithm 
determines the health of the system from the data. If the 
propellers are unbalanced, then there will be much more 
vibration in the system. Once it is trained and validated 
on the ground, the machine-learning model then 
identifies the health of the system from live data 
onboard the UAV. These outputs are sent into the state-
based FDIR architecture in Stateflow. 

A SparkFun Triple Axis Accelerometer and Gyro 
Breakout – MPU-6050 [13], shown in Figure 3a, is 
installed on one arm of the hexacopter. Data is collected 
via a microcontroller programmed with Arduino 
protocols called the Teensy 3.2 [14], shown in Figure 
3b. The Teensy is then connected to a MeegoPad T02 
compute stick [15], shown in Figure 3c, via USB.  

 
Fig. 3. (a) SparkFun Triple Axis Accelerometer & Gyro 
Breakout – MPU-6050 [13]; (b) Teensy 3.2 [14]; 
(c) MeegoPad compute stick [15] 

 
The shrink-wrapped MPU-6050 breakout board is 

mounted just below the propeller motor, as shown in 
Figure 4. The Teensy is installed on a SparkFun Teensy 
Arduino Shield Adapter [16] and connected to the 
MPU-6050 and other components via jumper cables and 
custom harnesses, as shown in Figure 5. A Simulink 
model run in Windows on the MeegoPad records data 
from the accelerometer and feeds it through a MATLAB 
supervised machine-learning classification algorithm 
called K-nearest neighbors (KNN) [17] to determine if 
the propeller is “balanced” or not. The propeller is 
unbalanced by adding a few pieces of electrical tape on 
one side, as shown in Figure 6. 

 
Fig. 4. Shrink-wrapped accelerometer breakout board 
(MPU-6050) installed on hexacopter arm, with sensor 
coordinate axes indicated. 
 

 
Fig. 5: Teensy installed on Arduino Shield Adapter [16] 
with USB and jumper cable connections 

 

 
Fig. 6. Hexacopter propeller unbalanced by adding 
electrical tape. 

 
3.2 Vibration Detection Software 

Flight test data is captured for both an unbalanced 
propeller (with tape) and a balanced propeller (without 
tape) and is used to train the KNN classification model 
in MATLAB on the ground. The raw data used to train 
the KNN model is shown in Figure 7. Data recording 
begins when the Simulink model is started on the lab 
bench. The copter then must be carried outside before 
flight, so the data is cropped in post-processing to start 
at the beginning of the flight.  

a.) b.) 

c.) 

Z X 

Y 
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Fig. 7. Training data for KNN classification model 
 

Fig. 8. Combined and labelled data for KNN classification model training; note that at this point there is no detection 
being done by the algorithm because the labels are set manually by the user to seed the KNN classification process 
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Fig. 9. Validation Data for KNN Classification Model 
 

 
Fig. 10. Detected activity levels from KNN classification model validation data
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Fig. 11. Simulink diagram for UAV nervous system 
 

Note that the timescale is based on the Simulink 
model’s internal time, which is not synchronized with 
real time. Actual flights lasted around two minutes, 
while in Simulink model time they lasted 40 sec. The 
timescale difference occurs because Simulink is not set 
up for “real time” operation. This does not impact 
system performance because input data are immediately 
processed in Simulink as they are received based on 
number of samples, not time duration. Figure 7 shows 
the unbalanced flight has a higher magnitude in y and z 
and y shifts to the negative region. However, this 
information is not provided to the KNN training 
algorithm. Instead, the raw data from the two flights is 
combined and manually labelled by the user as shown in 
Figure 8. Combined raw data for each axis (x,y,z) and 
assigned labels are fed into the KNN training algorithm 
in MATLAB. After training, the static KNN model is 
stored for use in flight and is not adapted during flight. 

The detection accuracy of the static model is verified 
with independent flight test validation data. This data is 
shown in Figure 9, and is captured in the same method 
as the training data, except that the validation flights 
were twice as long (about 4 minutes each). The KNN 
classification detection algorithm then uses the trained 
KNN model to select the labels for each data point. The 
validation results, shown in Figure 10, have a detection 
accuracy of 86.8%. 

Once model training and validation is complete, the 
system is ready for in-flight detection. Data collected by 
the Teensy real-time is fed into the Simulink model 
shown in Figure 11 via a serial connection over USB. 
The Teensy and serial connections run at 115,200 baud 
(bits per second). The data is converted from ASCII 
characters to numerical values by a custom MATLAB 
function and is saved to memory. It is then fed into the 
KNN fault detection algorithm, which uses the trained 
static model to determine if the propeller is balanced or 
not. The detection is run on 100 samples at a time, and 
if 50 or more of these samples are classified as 
“unbalanced” by KNN, then the vibration FaultDetected 

flag is set to 1; otherwise the flag is set to 0, indicating 
the propeller is “balanced”. 

This FaultDetected flag is fed into the Stateflow 
diagram shown in Figure 12. The Stateflow toolbox 
within MATLAB/Simulink [18] allows for tracking of 
nested flowchart states, with transitions indicated by 
blue arrows with Boolean conditions. If a condition 
registers as true, the transition will be activated to move 
from one state (or substate) to another. Default 
transitions specify the initial conditions of the diagram 
and are indicated by an arrow beginning at a dot and 
ending at the initial state or substate. The Stateflow 
diagram for vibration fault detection in Figure 12 begins 
with an initial state of “Normal” at the bottom right and 
an initial substate of “Standby”. If FaultDetected is set 
to 1, the substate within “Normal” transitions to 
“PotentialFault.” If the condition FaultDetected==1 
persists for a length of time specified by 
FaultPersistence, then the state transitions from 
“Normal” to “Fault”. However, if FaultDetected does 
not remain at 1 for long enough, then the state will 
remain “Normal” and the substate will return to 
“Standby”. Very similar logic applies for transitioning 
from “Fault” back to “Normal”: the condition 
FaultDetected==0 must persist for a length of time 
specified by ResolutionPersistence. The FaultStatus flag 
is the output signal from the current state of the 
Stateflow chart, with 0 indicating “Normal” and 1 
indicating “Fault”. Note that these time durations are 
tuned to account for the difference between real time 
and Simulink model time. 

Simulink sends the FaultStatus signal back to the 
Teensy and then on to the FrSky X8R telemetry receiver 
[19] shown in Figure 13a. The pilot can view the value 
of FaultStatus on their handheld Taranis X9D radio 
controller [20], shown in Figure 13b, to indicate 
whether the propeller is balanced or not (0 or 1). If the 
variable is set to 1, the controller is programmed to 
begin beeping. When the variable is set to 0, the 
controller stops beeping. 
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Fig. 12. Stateflow diagram for vibration fault detection
 

 

 
Fig. 13. (a) FrSky X8R telemetry receiver [19] installed 
on the hexacopter (b) Taranis X9D Plus radio [20] 

 
3.3 Vibration Detection Flight Test Results 

 The UAV Nervous System has been flight-tested 
and successfully indicates the state of vibrations during 
flight. Figure 14 shows data recorded during a final test 
flight. The top plot shows acceleration from the MPU-
6050 and the bottom plot shows the FaultStatus signal 
output by the Stateflow diagram. The flight begins with 
the copter on the ground in segment A, and tape is 
placed on the propeller to unbalance it. The copter takes 
off and flies with an unbalanced propeller in segment B. 
The nervous system quickly detects the imbalance and 
outputs a FaultStatus of 1 at around 10 sec, shortly after 
segment B begins. During segment C, the copter lands, 
and the tape is removed to restore the propeller balance. 
Segment D shows balanced flight, and at around 25 sec, 
the nervous system detects that balance has been 
restored and sets FaultStatus to 0. The copter lands 
again in segment E and tape is added again. During 
segment E near 35 sec, a FaultStatus of 1 occurs, and 
since there is no persistent “normal flight” data entering 
the system, FaultStatus does not return to 0. Unbalanced 
flight resumes during segment F, and FaultStatus 
remains at 1.  The tape is not well adhered to the 
propeller and it comes loose and flies off at 40 sec. The 
copter transitions to balanced flight in segment G,

a.) 

b.) 
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Fig. 14. Flight test data demonstrating successful vibration fault detection 

 
which the nervous system detects around 45 sec, 
returning FaultStatus to 0. The delays in FaultStatus 
transitions are expected, as the system is tuned to avoid 
constant flipping between 0 and 1. 

 

3.4 Overheating Detection 
In addition to the vibration sensor, a One Wire 

Digital Temperature Sensor DS18B20 [21] is used to 
monitor heating of the motors and electronic speed 

controls (ESCs). It is important to detect when ESCs 
overheat because they shut down and can lead to 
complete hardware failure. Figure 15a shows the 
DS18B20 sensor by itself and Figure 15b shows it 
installed on an ESC. The temperature reading in deg C 
is collected by the Teensy, then downlinked to the 
Taranis radio via the telemetry receiver. This value is 
displayed on the radio for the pilot, and the radio is 

A B C H D E F G 
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programmed to give a verbal warning (“too high”) when 
the temperature exceeds a predetermined threshold. This 
threshold is set by the pilot on the radio itself. An 
example plot of saved temperature values from the 
DS18B20 is shown in Figure 16. 

 

 
Fig 15. (a) One Wire Digital Temperature Sensor 
DS18B20 [21] (b) Temperature sensor installed on an 
electronic speed control (ESC) 
 

 
Fig. 16. Example plot of DS18B20 temperature data 
 

 4. Future Work  
The basic UAV nervous system architecture has 

been developed and tested with a single acceleration 
sensor and a single temperature sensor. A next step to 
expand the nervous system would be to expand the 
number of sensors. One accelerometer could be placed 
on each arm of the copter, and vibration fault detection 
can be performed on all arms independently. Then, if an 
imbalance is detected, the nervous system can indicate 
which propeller needs to be balanced. Similarly, 
temperature sensors can be placed on each ESC and 
motor and the nervous system can record all 
temperatures as a function of time and indicate to the 
pilot which components tend to overheat first. 

Further sensors can also be added to expand the set 
of detectable failures. For example, many times when 
there is a problem with a UAV the first indication to the 
operators is an unusual sound. Thus, microphones 
collecting audio data near each propeller may be able to 
provide additional warning of faults. Data from 
microphones could be processed through a machine 

learning algorithm similarly to the acceleration data. 
Also, current/voltage sensors can be placed on the ESCs 
to detect electrical issues before they become mission 
critical. Examples of other issues/failures on the UAVs 
that could be addressed by future work include 
monitoring the magnetic compass (which can 
malfunction in flight, leading to the regularly reported 
problem of “fly-aways”) and ensuring healthy 
navigation filters (i.e. GPS position/velocity and attitude 
determination for roll/pitch/yaw angles and rates). 
Monitoring navigation variables would require 
communication with the flight controller, and redundant 
navigation systems could also aid in detecting 
navigation errors. 

Another necessary update to the nervous system is 
smoothing out the startup process. Although quite 
convenient for prototyping and rapid development and 
testing, running Simulink in Windows onboard the 
copter is not the most elegant solution. It requires 
manually starting up Windows and initiating the 
Simulink model in the lab while connected to a monitor, 
then carrying the copter outside to begin flying. An 
intermediate step is to set up an HD video downlink to 
interact with Simulink in the field, but ultimately it 
would be desirable to remove the Windows/Simulink 
component from the system and perform all fault 
detection and data recording directly on the Teensy 
(with an SD card shield attached). The Teensy can be 
fully customized by programming in C, and Simulink 
has the capability to generate C code via autocoding. If 
a simple KNN classification detection algorithm is 
implemented in C, it can be integrated with autocode 
from Simulink and sensor interface code directly on the 
Teensy. This would streamline the process for using the 
nervous system and make it much easier to seamlessly 
integrate it with a copter for any mission. 

In addition to upgrading the UAV Nervous System, 
the FDIR architecture needs to be generalized and 
modularized in order to meet the requirements defined 
in Section 2.2. The Simulink model, especially the 
Stateflow chart, can easily be reconfigured for a general 
system that is applicable to UAV, satellite, and many 
other aerospace vehicle applications.  

Another proposed method for V&V of the FDIR 
architecture for space environments is through a HITL 
test platform designed to simulate a small satellite 
during ProxOps. This test platform will contain typical 
small satellite sensor and actuator hardware as well as 
flight processors and can be attached to the Simulink 
simulation using the Simulink Real Time toolbox from 
MATLAB. Simulink Real Time allows a simulation to 
be run on a desktop computer while accepting inputs 
from sensor hardware and sending outputs to actuator 
hardware, with both inputs and outputs passing through 
the flight processor. The FDIR algorithms can also be 
autocoded from MATLAB/Simulink into C and 

a.) b.) 
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integrated with FSW code to run directly on the flight 
processor during testing. This platform will be used 
verify that the FDIR architecture is properly designed 
for space applications and validate that it works as 
intended through testing in various scenarios with 
flight-like hardware and software. 
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