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Abstract 

The capability to recover gracefully from hardware or software faults is critical for many aerospace applications. 

This is particularly true for missions involving proximity operations, where multiple vehicles are operating at close 

range. Previous proximity operations missions have experienced faults that resulted in a failure to meet mission 

objectives. Fault protection systems are used to detect, identify the location of, and recover from faults. Typically, 

aerospace systems use a rule-based paradigm for fault protection, where telemetry values are monitored against 

logical statements such as static upper and lower limits. The model-based paradigm allows more complex decision 

logic to be used. The state machine approach for model-based fault protection has been explored by industry but has 

not yet been widely adopted for aerospace applications.  

This study focuses on fault protection for the Guidance, Navigation, and Control vehicle subsystem, which is 

essential for any aerospace vehicle and has many complex and interrelated hardware and software components. Two 

separate case studies have been analyzed through this work, one for atmospheric flight and one for space flight. The 

first case involves detecting hardware faults on an unmanned aerial vehicle used for aerial surveying and mapping 

and is addressed in a previous paper. The second case is the focus of this paper and involves automated proximity 

operations during approach and capture of the orbiting sample canister for a Mars Sample Return mission.  

For each case study, high-level failure modes are identified and linked to individual root cause events via fault 

tree analysis. The results of the fault tree analyses are developed into a generic and modular state machine fault 

protection architecture. This architecture will apply to a wide variety of aerospace applications and contains 

components that can be rearranged, added, or removed easily. The architecture facilitates export of the state machine 

logic to flight software via autocoding or other methods. 

 

Keywords: fault protection; autonomy; proximity operations; state machines; model-based design; guidance, 

navigation & control  

 

Acronyms/Abbreviations 

FOV  Field-of-view 

FP  Fault Protection 

GN&C  Guidance, Navigation, & Control 

I2C  Inter-Integrated Circuit 

IR  Infrared 

LIDAR  LIght Detection And Ranging 

JPL  Jet Propulsion Laboratory 

MATLAB  Matrix Laboratory 

MAV  Mars Ascent Vehicle 

MSR  Mars Sample Return 

NASA    National Aeronautics  

& Space Administration 

NeMO  Next Mars Orbiter 

OS  Orbiting Sample container 

ROCS  Rendezvous OS Capture System 

SRO  Sample Return Orbiter 

TBR  To Be Resolved 

UAV  Unmanned Aerial Vehicle 

 

1. Introduction 

Fault protection (FP) systems for aerospace 

applications ensure that the vehicle can detect faults and 

respond autonomously to transition the vehicle into a 

safe state. This research develops a fault protection 

architecture that utilizes state machines for Fault 

Detection, Isolation, & Recovery. It builds on previous 

fault protection capabilities by incorporating state-based 

decision logic, model-based design, and autocoding to 

flight software, resulting in a generic, modular 

architecture that is portable to embedded systems. The 

architecture is broadly applicable for aerospace 

applications, with relative proximity operations as a 

specific case study. One important goal of this research 

is to increase autonomy in fault protection, which is 

vital for complex, time-constrained applications where 

real-time control by human operators is not feasible. 

Another goal is to advance model-based approaches to 

fault protection, in which the fault protection 

architecture keeps track of the state of the system via a 
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model of system behavior. Two primary applications are 

considered as case studies for this research: a rotorcraft 

Unmanned Aerial Vehicle (UAV) project with a start-up 

company called FalconViz [1] and a Mars Sample 

Return (MSR) project with the NASA Jet Propulsion 

Laboratory (JPL) at the California Institute of 

Technology [2]. 

 

1.1 State Machine Approach to Fault Protection 

State machines are model-based representations of 

complex logical relationships. They provide a visual 

block-diagram development that is fairly 

straightforward to understand and is particularly useful 

for fault protection. Each block represents a specific 

state or sub-state of the system, and arrows between 

blocks represent transitions between states. A logical 

condition is associated with each transition, and if the 

condition associated with the transition becomes true, 

then the active state of the diagram will move from one 

state to another. State machines have yet to be widely 

adopted by industry for fault protection, even though 

they have been explored and used in some flight 

systems, as referenced in [1,3]. 

The example state machine in Figure 1 shows the 

possible states of a camera power switch. There are two 

primary states of the switch, “Open” and “Closed”. 

Transitions between the states are activated when an 

“Open-cmd” or “Close-cmd” command is sent to the 

camera. Additional states and transitions such as 

“Tripped Open” (a fault state) and “Load overcurrent” 

(a root cause of the fault state) are added to illustrate a 

known fault condition of the system. Another low-

probability random event, such as a single-event upset 

caused by radiation, could allow an un-failed switch to 

arbitrarily change state. Finally, fault states “Failed 

Open” and “Failed Closed” are added into the system, 

showing how the state machine can be used to 

implement fault detection.  

The “state” of a system includes any “aspects of the 

system that we care about for the purposes of control” 

[4]. Traditionally, state has included only continuous 

physical parameters such as position, velocity, attitude, 

temperature, and pressure. However, states can also 

include discrete quantities such as operating modes and 

device health. These discrete states can then be 

represented as state machines, as shown in Figure 1. 

State machine representations may be significantly 

simpler than the actual physical or software processes 

they represent, which is why they are considered 

models. However, a state machine for FP purposes can 

be developed in a way that represents all possible states 

relevant to mission success. Knowledge of the state is 

not the same as the state itself, and the status of a state 

machine representation at any time is only as accurate 

 
 

Fig. 1.  Example usage of state machines for fault protection [4] 

 



68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.  

Copyright ©2017 by the International Astronautical Federation (IAF). All rights reserved. 

IAC-17-C1.5.11x336573                        Page 3 of 15 

as the information that is provided to it. If input data is 

outdated or incorrect, the active state chosen by the state 

machine representation may be outdated or incorrect as 

well. 

 

1.2 Paper Organization 

The paper is organized in the following manner. 

Section 1 introduces background for the topic, Section 2 

presents a summary of the UAV case study, Section 3 

presents an introduction to the ongoing MSR case study, 

Section 4 presents the methods that have been applied 

for MSR FP, Section 5 presents results and discussion 

for MSR, and Section 6 presents forward work. 

 

2. Summary of UAV Case Study 

One application of the state machine FP architecture 

has been developed for a multirotor UAV system in use 

by FalconViz. This FP system has been dubbed the 

“UAV Nervous System,” and serves as a proof-of- 

concept of the state machine FP architecture. A flight 

test demonstrating successful detection of faults has 

been completed, and the results were published at the 

67th International Astronautical Congress in 

Guadalajara, Mexico [1]. Note that much of the content 

of this section is expanded in detail in that paper. A 

FalconViz hexacopter (six rotors) was used as a proof-

of-concept testbed for the UAV Nervous System. Fault 

protection provides a more reliable vehicle for 

performing aerial surveys and other tasks with 

FalconViz UAVs. 

A fault tree analysis was performed, providing a 

systematic top-down symbolic approach to model 

chains of possible faults for the system [5]. The fault 

tree is made up of a top level event, which is a 

foreseeable, “undesirable event toward which all fault 

logic paths flow” [6]. The top event is connected to 

various intermediate events that could cause it.  In turn, 

each intermediate event is connected to other lower-

 
 

Fig. 2. Fault Tree for FalconViz UAVs, with most important faults highlighted 
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level events that could cause it. The bottom level is 

comprised of basic events or root cause events. These 

are initiating events whose cause is not analyzed further. 

Events are connected by “and” and “or” logic gates. 

High-level failure modes are identified and linked to 

individual root cause events. 

The fault tree for the FalconViz UAVs is shown in 

Figure 2. This is an expansion of the Internal Vehicle 

Flight Hardware branch of a generic fault tree [1] and 

shows basic event faults identified by the FalconViz 

engineering team. The top-level failure for this analysis 

is “Loss of control” which can be traced back to each 

the identified faults. The three most important faults 

identified were “Motor not spinning,” “Motor or ESC 

overheats” and “Excessive vibration,” as indicated by 

the red box in Figure 2. In this study, each branch of the 

fault tree will be expanded to identify all possible root 

causes for the top event. One specific fault was 

addressed as a starting point: unbalanced propellers 

leading to excess vibration. 

Vibration detection is accomplished by evaluating 

accelerometer data measured from the arms of the UAV 

that house the propellers. If a propeller is unbalanced, 

then there will be much more vibration in the system. A 

Simulink model records data from the accelerometer 

and feeds it through a supervised machine-learning 

classification algorithm. The algorithm determines the 

health of the system from the data. For testing, the 

propeller is unbalanced by adding a few pieces of 

electrical tape on one side. Flight test data is captured 

for both an unbalanced propeller (with tape) and a 

balanced propeller (without tape) and is used to train 

and validate the classification model in MATLAB on 

the ground. 

Once model training and validation is complete, the 

system is ready for in-flight detection. Data collected 

from the accelerometer is fed into the Simulink model 

in real-time and reformatted. It is then fed into the 

MATLAB fault detection algorithm, which uses the 

trained model to determine if the propeller is balanced. 

If the live data is classified as “unbalanced” by the 

detection algorithm, then the vibration FaultDetected 

flag is set to 1; otherwise the flag is set to 0, indicating 

the propeller is “balanced.” Then, a state machine 

shown in Figure 3 is used to determine the state of the 

system based on the persistence of fault detections. 

The UAV Nervous System has been flight-tested 

and successfully indicates the state of vibrations during 

flight. Since publication of [1], additional sensor 

capability has been added for detection of current, 

 
 

Fig. 3. Example of possible fault protection requirements [1] 
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voltage, and temperature anomalies. A second vibration 

sensor has also been added to another arm of the UAV, 

and additional sensors can be added easily using the I2C 

communication protocol. Similar state machines to 

Figure 3 have been added to the UAV Nervous System 

for each additional sensor. Data has been collected for 

all of these sensors in flight tests and will be used for 

verification and validation of the final fault protection 

architecture. 

 

3. Introduction to Mars Sample Return Case Study 

The top priority stated in the current planetary 

science decadal survey is to perform a Mars Sample 

Return mission [7]. In one mission concept, a Mars 

orbiter would rendezvous with a sample canister 

launched from the surface and capture it for return to 

Earth [2]. The last stage of this rendezvous operation, 

including capture, must be autonomous. During this 

autonomous phase, fault protection will be used to 

ensure that operations proceed under nominal 

conditions, take action to address certain fault 

conditions, or abort the capture phase if necessary. This 

research establishes a desired set of fault protection 

behaviors for the autonomous rendezvous and capture 

phase of the MSR orbiter mission. First, a fault tree 

analysis is performed to determine which faults should 

be considered based on input from subject matter 

experts. Several major areas are considered, including 

relative orbit determination, guidance & control, 

sequencing, and capture operations. Next, a selected 

subset of faults in each of these areas is expanded in 

detail. Criticality, detection, diagnosis, and response 

strategies are examined at various stages of the 

rendezvous and capture process. These details are used 

to define a set of potential fault protection requirements 

that accounts for different conditions in different stages 

of the process. Finally, a preliminary fault protection 

architecture is developed that shows how fault 

protection could be implemented during this unique and 

challenging mission phase. This architecture will utilize 

the state machine paradigm, a key tool of model-based 

design, rather than the current industry standard of rule-

based fault protection. 

 

3.1 Mars Sample Return Mission Context 

In the current MSR mission concept, the Mars 2020 

rover will collect soil and rock samples and cache them 

on the Martian surface. They would then be collected by 

a subsequent “fetch” rover (or other vehicle) and 

inserted into an Orbiting Sample container (OS). The 

OS would be placed on a Mars Ascent Vehicle (MAV) 

and launched into Mars orbit, as shown in Figure 4a. 

Once the MAV reaches orbit, it would release the OS. 

In one mission concept, the Sample Return Orbiter 

(SRO) would perform ground-in-the-loop rendezvous, 

as shown in Figure 4b, followed by autonomous 

approach and capture operations (also known as 

“terminal rendezvous and capture”) to collect the OS, as 

shown in Figure 4c. The fully autonomous portion 

would encompass approximately the last 100 meters of 

rendezvous and would occur during the sunlit portion of 

one orbit. Finally, the samples would be returned to 

Earth or cis-lunar space for recovery and laboratory 

study. The Guidance, Navigation, and Control (GN&C) 

process for the terminal rendezvous and capture phase is 

complex, with a number of risk areas that could result in 

 
 

Fig. 4. Mars Sample Return rendezvous concept 

 

a.) 

b.) 

c.) 
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failure to capture the OS.  This mission-critical 

autonomous activity presents the need for a 

comprehensive FP approach. 

 

3.2 Desired Outcomes and Key Requirements 

The terminal rendezvous and OS capture scenario 

provides an excellent case study for fault protection 

research. The main goal of this work is to develop a 

desired set of FP behaviors for autonomous rendezvous 

and capture of the OS. This is being done in 

collaboration with the Next Mars Orbiter (NeMO) 

mission formulation team at JPL, which is currently 

studying this problem. The NeMO rendezvous working 

group is made up of members from three disciplines: 

relative orbit determination, guidance & control, and 

sequencing. A separate team is developing concepts for 

the flight hardware subsystem that will perform the 

capture operation, known as the Rendezvous OS 

Capture System (ROCS). Inputs have also been sought 

from the NeMO flight systems working group about 

various aspects of spacecraft subsystem concepts. 

There are three desired outcomes of this study. First, 

a set of initial fault protection requirements should be 

defined. The requirements may then be used to drive the 

initial design of the SRO rendezvous and capture 

system. Next, the NeMO team desires to integrate fault 

protection with mission concept development, 

influencing design decisions during Pre-Phase A based 

on fault protection considerations. Finally, the NeMO 

team desires to apply the fault protection process used 

in this study to other aspects of the NeMO design. 

Several key requirements guided this study. First, 

mission success is vital. Fault protection should be 

designed to ensure that the SRO mission to capture the 

OS can be completed or aborted without ground 

intervention, even under fault conditions. As stated 

earlier, autonomy is a key feature, since the terminal 

rendezvous and capture will occur fully autonomously. 

Safety is a key concern, and fault protection should 

prevent the spacecraft from colliding with the OS. 

Finally, time criticality should be taken into account. 

For example, a fault response may be quite different at 

the beginning of the autonomous rendezvous sequence 

100 m from the target than in the last 5 or 10 meters. 

 

4. Methods for Mars Sample Return Case Study 

Several different tasks were undertaken in order to 

define the fault protection behavior for autonomous 

rendezvous and capture. Some of these are standard 

fault protection practices and others were customized 

for this study. All tasks have been completed at the 

preliminary level only, since detailed design has yet not 

begun for this mission concept. 

 

4.1 Fault Tree Analysis 

The first step in developing fault protection 

requirements is to perform a fault tree analysis. Through 

discussions with the NeMO rendezvous working group, 

a fault tree was defined that captures faults that could 

result in failure of the terminal rendezvous phase, as 

 
 

Fig. 5. High-level fault tree for autonomous rendezvous and capture 
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shown in Figure 5. 

The first discipline considered is Relative Orbit 

Determination, which involves calculating relative 

position & velocity from rendezvous sensor data. Next 

is Guidance & Control, which is responsible for attitude 

determination/control and trajectory control during 

rendezvous. In addition, sequencing uses the Virtual 

 Machine Language (VML) to direct the autonomous 

process based on state machines that are developed on 

the ground and loaded onboard [8]. Finally, Capture 

deals with the mechanical and logical components 

within ROCS. 

 An initial fault tree was developed prior to 

consulting the NeMO team. However, in order to 

capture the inputs from JPL experts representing each 

discipline, various breakout meetings were held to 

revise and expand this initial fault tree. These meetings 

were designed to simply brainstorm, add, remove, 

rearrange, or rename potential faults from the fault tree. 

Figure 6 shows one example of the results of these 

 
 

Fig. 6. Result of a fault tree brainstorming session for relative orbit determination 
 

 
Fig. 7. General spacecraft subsystem fault tree 
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breakout sessions. 

Finally, the results of all the breakout discussions 

were compiled to create comprehensive fault trees. A 

complete fault tree including over 50 root cause events 

(shown in the Appendix in text form because of space 

limitations) was constructed to capture all faults specific 

to rendezvous and capture. A second fault tree shown in 

Figure 7 was used to capture generic spacecraft 

subsystem faults that could occur during rendezvous.  

 

4.2 Subsystem Taxonomy 

To aid in clarifying terminology, a subsystem 

taxonomy (or system block diagram), shown in Figure 

8, was constructed to list out various elements, 

subsystems, and components of the system. This block 

diagram was also used to help team members 

understand conceptually what components should be 

considered for the fault protection process. An example 

of the terminology clarification is the naming of various 

rendezvous cameras, shown in the expansion of Figure 

8. Because the terms “Narrow Angle Camera” and 

“Wide Angle Camera” have different meanings in 

different contexts, the rendezvous team developed 

animal names for each camera. The “hawk” is a camera 

that can see far away, the “dog” is a shorter-range 

camera with a wider field of view, and the “fish” is a 

very wide-angle camera with a short range. 

 

4.3 Concept of Operations 

The next challenge was to link fault protection 

behavior to the state of the spacecraft within the 

rendezvous process. Along with members of the NeMO 

rendezvous team, a detailed process was defined for 

terminal rendezvous and capture. Defining the 

rendezvous process included specifying “Zones of 

Criticality” for the terminal approach. These zones are 

then used to alter fault protection behavior based on 

distance to the target and time to intercept. The zones 

are shown in Figure 9. Note that the durations and 

distances shown are very dependent on the rendezvous 

approach strategy selected, so the transition conditions 

between these zones may change, but the criticality (and 

thus impact on FP behavior) of the zones will endure 

regardless of the implementation selected. 

 
 

Fig. 8. Subsystem taxonomy, with an example expanded 
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The first zone is called the “passive miss region”. 

During this zone the SRO must constantly thrust to 

remain on an intercept course with the OS. If the SRO 

stops thrusting (a passive abort), then it will pass by the 

OS harmlessly. Zone 1 should last about 30-45 minutes 

and the distance to the target will close from 50 m to 

about 20 m. The second zone is called the “active abort 

region”. During this zone, if the SRO stops thrusting it 

will intercept the OS, but if an active abort maneuver is 

performed, intercept can be avoided. Zone 2 should last 

around 5 minutes, and the distance from the target will 

close from 20 m to about 5 m. The third zone is called 

the “unavoidable intercept region”. During this zone, 

the SRO can no longer avoid an intercept even if an 

abort maneuver is performed; it must either capture the 

OS or collide with it. Zone 3 should last around 2 

minutes and the distance from the target will close from 

5 m to zero. 

The rendezvous process was developed into a state 

machine that will be used by the fault protection system 

to determine how to respond to various faults as they are 

detected. Fault responses will be calibrated based on the 

relative risk to the mission in each zone. The state 

machine, shown in Figure 10, represents both nominal 

and off-nominal processes. The system begins in 

Passive Standby at the end of the ground-in-the-loop 

 
 

Fig. 9. Notional “zones of criticality” 

 
 

Fig. 10. State machine for rendezvous and capture process 
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rendezvous process; this is the state in the bottom left of 

Figure 10. This is a passively stable trajectory that will 

not impact the OS even if it drifts. A ground command 

will be given to initiate the autonomous sequence. In 

one strategy, this would include a Final Hop from the 

passively stable trajectory to the terminal approach 

corridor. This optional step may be removed later. 

If the Final Hop step is utilized, that step would end 

at a standoff position at the start of the terminal 

corridor. When proper lighting and communication 

conditions are achieved and the OS has been acquired 

by all rendezvous sensors, the “closed-loop” approach 

will begin. The system then enters the “Passive Miss 

Region”. If at any point in this region something goes 

wrong, the system simply stops maneuvers and enters 

Passive Abort. Once the vehicle is safe from collision 

with the OS, it would return to the Passive Standby state 

and await ground analysis and command to resume 

autonomous operations. If no problems occur, the 

system will enter the “Active Abort Region”, when the 

dynamic boundary is crossed. If at any point something 

goes wrong, an abort can be commanded to return to 

Passive Standby via the Active Abort mode. Finally, 

just before intercept the system enters the “Unavoidable 

Intercept Region”. 

If capture is unsuccessful and the OS does not enter 

the capture volume, the system enters the “LocateOS” 

state. It will attempt to determine where the OS is 

located before performing any slew or thrust maneuvers. 

Once the OS is found, an abort maneuver is 

commanded. If the OS enters the capture volume 

successfully, the capture process begins. The OS passes 

by a sensor such as a laser curtain and the door is 

closed. A confirmation sensor will then verify that the 

OS is inside. If the OS cannot be confirmed inside the 

capture volume after the door has closed, the system 

also enters the LocateOS state and will abort unless the 

OS is found inside the capture volume.  

 

4.4 Fault Protection Requirements 

Next, a subset of faults (bolded in the fault tree 

shown in the Appendix) was selected from the 

completed fault tree. Several representative faults were 

chosen from each area (relative orbit determination, 

guidance & control, sequencing, and capture). The 

selected faults are challenging to detect, diagnose, or 

respond to in a quick, efficient, and safe way. These 

faults were expanded in detail, and time-to-criticality, 

detection methods, diagnosis methods, and response 

strategies were examined at various stages of the 

rendezvous and capture process. These details were then 

used to define a set of potential fault protection 

requirements that accounts for different conditions in 

different stages of the rendezvous process. One example 

strategy for a single fault is shown in Figure 11, and the 

related possible fault protection requirements are shown 

in Figure 12. Finally, a second round of breakout 

meetings was held with technical experts in each area to 

share the results and seek direction for the next steps. 

 
 

Fig. 11.  Example fault protection strategy 
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5. Results and Discussion 

Each of the tasks described above has been 

completed successfully for an initial treatment of 

defining fault protection behavior for autonomous 

rendezvous and capture of the OS. A detailed fault tree 

has been defined, along with a system block diagram 

and a detailed rendezvous and capture process concept 

of operations. Initial fault protection strategies and 

requirements have been generated for a total of about 20 

key faults from the various discipline areas. 

 

5.1 Observations 

One goal of introducing fault protection earlier in 

the design cycle (during Pre-Phase A mission 

formulation) has been to help guide mission design 

considerations. One major observation is that the 

process of fault protection has been a forcing function 

for the NeMO mission formulation team to clarify some 

of their architecture and concept of operation decisions. 

In some cases, mission design and concept of operations 

assumptions have been documented for the first time. 

This has been an unexpected but welcome result, 

showing the value of fault protection not just as an add-

on to a space mission design but as an essential 

component of the system design from the beginning. 

 

5.2 Lessons Learned 

In retrospect, there are a few things that could be 

done differently based on lessons learned. First, it would 

make sense to build the fault tree with a more functional 

structure rather than one based on rendezvous discipline 

areas. For example, if the OS is not seen in the 

rendezvous sensor’s field of view, there could be an 

issue with relative orbit determination, attitude control, 

or sequencing that could cause this. The current version 

of the fault tree places this fault under relative orbit 

determination and not the other two branches. A more 

functional structure was suggested by a JPL fault 

protection expert, but the work was already far enough 

along with the process that it was decided to leave the 

fault tree in its current format. 

Defining terminology clearly is very important. 

There have been miscommunications at several 

meetings because of different understandings for the 

definitions of certain terminology. For example, 

although terms like “guidance, navigation, & control” 

have fairly standard definitions, they may have different 

connotations in different contexts. Even the term “fault 

protection” means different things to different people. 

This challenge has been addressed by inviting open 

discussion and feedback in group meetings and by 

attempting to clarify any terms that could be confusing 

or misunderstood when they are presented. When 

developing tools like a fault tree, it is important to 

anticipate how terms will be understood by engineers 

from various disciplines and define any terms that may 

be misinterpreted.  

Another challenge has been determining what to do 

next when each step is completed. Since a new method 

of fault protection design is being experimented with, 

there is not a defined process to follow. A final 

challenge has been a backlog in the communication of 

progress throughout the project. Because of the cadence 

of meeting cycles, work is often completed several 

weeks before it can be communicated to all relevant 

stakeholders. These challenges have been addressed by 

 

 
 

Fig. 12. Example of possible fault protection requirements 
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seeking additional direction and advice of fault 

protection experts and rendezvous/capture subject 

matter experts. Their suggestions have helped refine the 

direction of the study. 

 

6. Forward Work 
This work will be continued under a JPL contract 

with NeMO at Georgia Tech. The first step will involve 

developing a high-level flowdown of the fault 

protection architecture. This will include a conceptual 

design that identifies the arrangement of various 

components within the fault protection system, 

including how they will interact with each other and 

with other hardware and software components of the 

SRO. The next step is to create a preliminary 

implementation of the fault protection architecture in 

state machine form using the Stateflow toolbox within 

MATLAB/Simulink (or similar state machine tools). 

This system will be tested using simple simulated inputs 

(i.e. step functions) to demonstrate base-level 

functionality.  

An example case (“No OS data received from 

sensors”) has been selected to demonstrate how this 

fault protection system may diagnose faults on-board 

rather than relying on prior ground diagnosis assigning 

certain symptoms to specific faults. The fault protection 

architecture will utilize the state machine paradigm, a 

key tool of model-based design, rather than the current 

industry standard of rule-based fault protection. In this 

way, fault responses will be tied to the state of the 

system rather than simply as a reaction to the detection 

of symptoms. 

Finally, the MSR work will be used as a case study 

for the broader research on fault protection. The FP state 

machine system developed for the MSR application will 

be made more generic, and the UAV flight test data will 

be used for verification and validation of the generic FP 

system. There is potential for some of the MSR work to 

continue at JPL by adding more detail for the NeMO 

rendezvous and capture FP strategy and by extending 

these FP concepts to other aspects of MSR concept 

development. Some of these FP methods could also be 

fed back into JPL’s general fault protection process to 

continue improving them for current and future 

missions. 
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Appendix: Full Fault Tree for Mars Sample Return Terminal Rendezvous and Capture Phase 

 

Failure to Capture the OS 

 Fault During Approach 

  Relative Orbit Determination Fault 

   Rendezvous Sensor Data Fault 

    Sensor Hardware Fault 

     Sensor Loses Power 

     Sensor Settings Incorrect 

     Solid-State Recorder Malfunction 

    Sensor Background Noise 

     Radiation-Induced Noise 

     Temperature-Induced Noise 

          Stray Light Glint 

    OS Passes Too Quickly Through Imager FOV 

     SRO Angular Rates Too Great 

     OS Relative Velocity Too Great 

    Sensor FOV Impaired 

     Lens Fogged Due to Outgassing 

     Spacecraft Component in FOV 

     Debris in FOV 

    Poor Conditions for OS Tracking 

     OS Surface Properties Unfavorable 

     OS Blends Into Background 

     OS in Eclipse or Shadow (visual only) 

     Phase Angle Unfavorable 

     Flashlight Malfunction (visual only) 

    LIDAR/IR Sensor Faults 

        No OS Data from Sensors 

   Orbit Determination Computation Fault 

    Image Processing Fault 

    Navigation Software Fault 

http://www.hq.nasa.gov/office/codeq/doctree/%20rp1358.pdf
http://www.hq.nasa.gov/office/codeq/doctree/%20rp1358.pdf
http://www2.nuu.edu.tw/~er/%20reportfile/saminar/Fault_Tree_Analysis.pdf
http://www2.nuu.edu.tw/~er/%20reportfile/saminar/Fault_Tree_Analysis.pdf
https://solarsystem.nasa.gov/docs/131171.pdf
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    Mosaicing Algorithm Misses OS 

    Orbit Perturbations Differ from Models 

     OS Outgassing Perturbs Orbit 

          SRO Plume Impingement on OS 

     Atmospheric Drag Perturbs Relative Orbit 

     Other Orbit Perturbation Mismodeling 

    Incorrect Model Parameters (i.e. OS optical properties) 

    Ephemeris or Timing Fault 

    Filter Does Not Converge 

  Guidance & Control Fault 

   Attitude Fault 

    Degraded Attitude Knowledge 

     Inertial Measurement Unit Fault 

          No Data Output 

     Reset/Excessive Reset 

     Bias/Scale Factor Offset 

     Measurement Drift 

     

     Star Tracker Fault 

         No Output  

          Bias/Incorrect Output  

         Excessive Current Draw  

         Optics Contamination  

         Optics Coating Degradation  

         False/Intermittent Star ID  

              Temporary Lock-Up  

         Noisy Measurements  

         Sun Sensor Fault 

          Attitude Filter Does Not Converge 

    Degraded Attitude Control 

     Reaction Wheel Fault 

         Wheel Stuck/Seized/Not Rotating  

         Increased Drag/Friction  

         Excessive Current Draw  

         Excessive Vibration  

         Tachometer Fault  

         Drive Electronics Fault  

              Wheel Momentum Saturated  

     Reaction Control System Thruster Fault 

         Thruster Fails to Actuate  

         Thruster Stuck On  

         Tank heater fault  

         Propellant line freezing  

   Trajectory Fault  

    Maneuver Fault 

          Incorrect Timing, Direction, or Delta-V for Burn   

          Deadband Violation Does Not Trigger Manuever   

    Degraded Translational Control 
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    Unable to place OS inside capture cone 

          OS not aligned with capture cone   

          Rotation Rate Too High   

          Relative Velocity Too High   

   Guidance & Control Software Fault 

  Sequencing Fault  

   Spacecraft Reboot  

   Unable to Meet Conditions that Allow Transfer to a Key State 

        Tolerances on parameters too tight 

    Unexpected configuration 

    Telemetry Reporting Fault 

    Logical Error in Sequence 

   Premature Entry into any State 

    Logical Error in Sequence 

    Sequencing Software Coding Fault 

      Ground Command Halts or Unloads Sequence 

   Incorrect Config File Version Loaded 

 Fault During Capture  

  Capture Door Closure Fault  

   Door Close Timing Fault (Early/Late Closure) 

      Door Close Signal Does Not Activate 

   Door Mechanism Fault  

  Unexpected OS Dynamics  

      OS Spin Rate Exceeds Capture Requirement 

   OS Energy Exceeds Capture Capability 

   OS Impacts ROCS Components 

  Capture Detection Sensor Fault 

   Door Sensor Fault  

   OS Confirmation Sensor Fault 

   Force/Torque Sensor Fault 

      Sun Interference/Spoofing 

 


