
68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.

Copyright ©2017 by the International Astronautical Federation (IAF). All rights reserved.

IAC-17-C1.5.11x336573 Page 1 of 15

IAC-17-C1.5.11x336573

STATE MACHINE FAULT PROTECTION FOR AUTONOMOUS PROXIMITY OPERATIONS

Peter Z. Schultea*, David A. Spencerb

a Graduate Research Assistant, Space Systems Design Laboratory, Georgia Institute of Technology, Atlanta,

Georgia, United States of America, pzschulte@gatech.edu
b Associate Professor, Space Flight Projects Laboratory, Purdue University, West Lafayette, Indiana, United States

of America, spencer@purdue.edu

* Corresponding Author

Abstract

The capability to recover gracefully from hardware or software faults is critical for many aerospace applications.

This is particularly true for missions involving proximity operations, where multiple vehicles are operating at close

range. Previous proximity operations missions have experienced faults that resulted in a failure to meet mission

objectives. Fault protection systems are used to detect, identify the location of, and recover from faults. Typically,

aerospace systems use a rule-based paradigm for fault protection, where telemetry values are monitored against

logical statements such as static upper and lower limits. The model-based paradigm allows more complex decision

logic to be used. The state machine approach for model-based fault protection has been explored by industry but has

not yet been widely adopted for aerospace applications.

This study focuses on fault protection for the Guidance, Navigation, and Control vehicle subsystem, which is

essential for any aerospace vehicle and has many complex and interrelated hardware and software components. Two

separate case studies have been analyzed through this work, one for atmospheric flight and one for space flight. The

first case involves detecting hardware faults on an unmanned aerial vehicle used for aerial surveying and mapping

and is addressed in a previous paper. The second case is the focus of this paper and involves automated proximity

operations during approach and capture of the orbiting sample canister for a Mars Sample Return mission.

For each case study, high-level failure modes are identified and linked to individual root cause events via fault

tree analysis. The results of the fault tree analyses are developed into a generic and modular state machine fault

protection architecture. This architecture will apply to a wide variety of aerospace applications and contains

components that can be rearranged, added, or removed easily. The architecture facilitates export of the state machine

logic to flight software via autocoding or other methods.

Keywords: fault protection; autonomy; proximity operations; state machines; model-based design; guidance,

navigation & control

Acronyms/Abbreviations

FOV Field-of-view

FP Fault Protection

GN&C Guidance, Navigation, & Control

I2C Inter-Integrated Circuit

IR Infrared

LIDAR LIght Detection And Ranging

JPL Jet Propulsion Laboratory

MATLAB Matrix Laboratory

MAV Mars Ascent Vehicle

MSR Mars Sample Return

NASA National Aeronautics

& Space Administration

NeMO Next Mars Orbiter

OS Orbiting Sample container

ROCS Rendezvous OS Capture System

SRO Sample Return Orbiter

TBR To Be Resolved

UAV Unmanned Aerial Vehicle

1. Introduction

Fault protection (FP) systems for aerospace

applications ensure that the vehicle can detect faults and

respond autonomously to transition the vehicle into a

safe state. This research develops a fault protection

architecture that utilizes state machines for Fault

Detection, Isolation, & Recovery. It builds on previous

fault protection capabilities by incorporating state-based

decision logic, model-based design, and autocoding to

flight software, resulting in a generic, modular

architecture that is portable to embedded systems. The

architecture is broadly applicable for aerospace

applications, with relative proximity operations as a

specific case study. One important goal of this research

is to increase autonomy in fault protection, which is

vital for complex, time-constrained applications where

real-time control by human operators is not feasible.

Another goal is to advance model-based approaches to

fault protection, in which the fault protection

architecture keeps track of the state of the system via a

mailto:pzschulte@gatech.edu
mailto:spencer@purdue.edu

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.

Copyright ©2017 by the International Astronautical Federation (IAF). All rights reserved.

IAC-17-C1.5.11x336573 Page 2 of 15

model of system behavior. Two primary applications are

considered as case studies for this research: a rotorcraft

Unmanned Aerial Vehicle (UAV) project with a start-up

company called FalconViz [1] and a Mars Sample

Return (MSR) project with the NASA Jet Propulsion

Laboratory (JPL) at the California Institute of

Technology [2].

1.1 State Machine Approach to Fault Protection

State machines are model-based representations of

complex logical relationships. They provide a visual

block-diagram development that is fairly

straightforward to understand and is particularly useful

for fault protection. Each block represents a specific

state or sub-state of the system, and arrows between

blocks represent transitions between states. A logical

condition is associated with each transition, and if the

condition associated with the transition becomes true,

then the active state of the diagram will move from one

state to another. State machines have yet to be widely

adopted by industry for fault protection, even though

they have been explored and used in some flight

systems, as referenced in [1,3].

The example state machine in Figure 1 shows the

possible states of a camera power switch. There are two

primary states of the switch, “Open” and “Closed”.

Transitions between the states are activated when an

“Open-cmd” or “Close-cmd” command is sent to the

camera. Additional states and transitions such as

“Tripped Open” (a fault state) and “Load overcurrent”

(a root cause of the fault state) are added to illustrate a

known fault condition of the system. Another low-

probability random event, such as a single-event upset

caused by radiation, could allow an un-failed switch to

arbitrarily change state. Finally, fault states “Failed

Open” and “Failed Closed” are added into the system,

showing how the state machine can be used to

implement fault detection.

The “state” of a system includes any “aspects of the

system that we care about for the purposes of control”

[4]. Traditionally, state has included only continuous

physical parameters such as position, velocity, attitude,

temperature, and pressure. However, states can also

include discrete quantities such as operating modes and

device health. These discrete states can then be

represented as state machines, as shown in Figure 1.

State machine representations may be significantly

simpler than the actual physical or software processes

they represent, which is why they are considered

models. However, a state machine for FP purposes can

be developed in a way that represents all possible states

relevant to mission success. Knowledge of the state is

not the same as the state itself, and the status of a state

machine representation at any time is only as accurate

Fig. 1. Example usage of state machines for fault protection [4]

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.

Copyright ©2017 by the International Astronautical Federation (IAF). All rights reserved.

IAC-17-C1.5.11x336573 Page 3 of 15

as the information that is provided to it. If input data is

outdated or incorrect, the active state chosen by the state

machine representation may be outdated or incorrect as

well.

1.2 Paper Organization

The paper is organized in the following manner.

Section 1 introduces background for the topic, Section 2

presents a summary of the UAV case study, Section 3

presents an introduction to the ongoing MSR case study,

Section 4 presents the methods that have been applied

for MSR FP, Section 5 presents results and discussion

for MSR, and Section 6 presents forward work.

2. Summary of UAV Case Study

One application of the state machine FP architecture

has been developed for a multirotor UAV system in use

by FalconViz. This FP system has been dubbed the

“UAV Nervous System,” and serves as a proof-of-

concept of the state machine FP architecture. A flight

test demonstrating successful detection of faults has

been completed, and the results were published at the

67th International Astronautical Congress in

Guadalajara, Mexico [1]. Note that much of the content

of this section is expanded in detail in that paper. A

FalconViz hexacopter (six rotors) was used as a proof-

of-concept testbed for the UAV Nervous System. Fault

protection provides a more reliable vehicle for

performing aerial surveys and other tasks with

FalconViz UAVs.

A fault tree analysis was performed, providing a

systematic top-down symbolic approach to model

chains of possible faults for the system [5]. The fault

tree is made up of a top level event, which is a

foreseeable, “undesirable event toward which all fault

logic paths flow” [6]. The top event is connected to

various intermediate events that could cause it. In turn,

each intermediate event is connected to other lower-

Fig. 2. Fault Tree for FalconViz UAVs, with most important faults highlighted

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.

Copyright ©2017 by the International Astronautical Federation (IAF). All rights reserved.

IAC-17-C1.5.11x336573 Page 4 of 15

level events that could cause it. The bottom level is

comprised of basic events or root cause events. These

are initiating events whose cause is not analyzed further.

Events are connected by “and” and “or” logic gates.

High-level failure modes are identified and linked to

individual root cause events.

The fault tree for the FalconViz UAVs is shown in

Figure 2. This is an expansion of the Internal Vehicle

Flight Hardware branch of a generic fault tree [1] and

shows basic event faults identified by the FalconViz

engineering team. The top-level failure for this analysis

is “Loss of control” which can be traced back to each

the identified faults. The three most important faults

identified were “Motor not spinning,” “Motor or ESC

overheats” and “Excessive vibration,” as indicated by

the red box in Figure 2. In this study, each branch of the

fault tree will be expanded to identify all possible root

causes for the top event. One specific fault was

addressed as a starting point: unbalanced propellers

leading to excess vibration.

Vibration detection is accomplished by evaluating

accelerometer data measured from the arms of the UAV

that house the propellers. If a propeller is unbalanced,

then there will be much more vibration in the system. A

Simulink model records data from the accelerometer

and feeds it through a supervised machine-learning

classification algorithm. The algorithm determines the

health of the system from the data. For testing, the

propeller is unbalanced by adding a few pieces of

electrical tape on one side. Flight test data is captured

for both an unbalanced propeller (with tape) and a

balanced propeller (without tape) and is used to train

and validate the classification model in MATLAB on

the ground.

Once model training and validation is complete, the

system is ready for in-flight detection. Data collected

from the accelerometer is fed into the Simulink model

in real-time and reformatted. It is then fed into the

MATLAB fault detection algorithm, which uses the

trained model to determine if the propeller is balanced.

If the live data is classified as “unbalanced” by the

detection algorithm, then the vibration FaultDetected

flag is set to 1; otherwise the flag is set to 0, indicating

the propeller is “balanced.” Then, a state machine

shown in Figure 3 is used to determine the state of the

system based on the persistence of fault detections.

The UAV Nervous System has been flight-tested

and successfully indicates the state of vibrations during

flight. Since publication of [1], additional sensor

capability has been added for detection of current,

Fig. 3. Example of possible fault protection requirements [1]

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.

Copyright ©2017 by the International Astronautical Federation (IAF). All rights reserved.

IAC-17-C1.5.11x336573 Page 5 of 15

voltage, and temperature anomalies. A second vibration

sensor has also been added to another arm of the UAV,

and additional sensors can be added easily using the I2C

communication protocol. Similar state machines to

Figure 3 have been added to the UAV Nervous System

for each additional sensor. Data has been collected for

all of these sensors in flight tests and will be used for

verification and validation of the final fault protection

architecture.

3. Introduction to Mars Sample Return Case Study

The top priority stated in the current planetary

science decadal survey is to perform a Mars Sample

Return mission [7]. In one mission concept, a Mars

orbiter would rendezvous with a sample canister

launched from the surface and capture it for return to

Earth [2]. The last stage of this rendezvous operation,

including capture, must be autonomous. During this

autonomous phase, fault protection will be used to

ensure that operations proceed under nominal

conditions, take action to address certain fault

conditions, or abort the capture phase if necessary. This

research establishes a desired set of fault protection

behaviors for the autonomous rendezvous and capture

phase of the MSR orbiter mission. First, a fault tree

analysis is performed to determine which faults should

be considered based on input from subject matter

experts. Several major areas are considered, including

relative orbit determination, guidance & control,

sequencing, and capture operations. Next, a selected

subset of faults in each of these areas is expanded in

detail. Criticality, detection, diagnosis, and response

strategies are examined at various stages of the

rendezvous and capture process. These details are used

to define a set of potential fault protection requirements

that accounts for different conditions in different stages

of the process. Finally, a preliminary fault protection

architecture is developed that shows how fault

protection could be implemented during this unique and

challenging mission phase. This architecture will utilize

the state machine paradigm, a key tool of model-based

design, rather than the current industry standard of rule-

based fault protection.

3.1 Mars Sample Return Mission Context

In the current MSR mission concept, the Mars 2020

rover will collect soil and rock samples and cache them

on the Martian surface. They would then be collected by

a subsequent “fetch” rover (or other vehicle) and

inserted into an Orbiting Sample container (OS). The

OS would be placed on a Mars Ascent Vehicle (MAV)

and launched into Mars orbit, as shown in Figure 4a.

Once the MAV reaches orbit, it would release the OS.

In one mission concept, the Sample Return Orbiter

(SRO) would perform ground-in-the-loop rendezvous,

as shown in Figure 4b, followed by autonomous

approach and capture operations (also known as

“terminal rendezvous and capture”) to collect the OS, as

shown in Figure 4c. The fully autonomous portion

would encompass approximately the last 100 meters of

rendezvous and would occur during the sunlit portion of

one orbit. Finally, the samples would be returned to

Earth or cis-lunar space for recovery and laboratory

study. The Guidance, Navigation, and Control (GN&C)

process for the terminal rendezvous and capture phase is

complex, with a number of risk areas that could result in

Fig. 4. Mars Sample Return rendezvous concept

a.)

b.)

c.)

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.

Copyright ©2017 by the International Astronautical Federation (IAF). All rights reserved.

IAC-17-C1.5.11x336573 Page 6 of 15

failure to capture the OS. This mission-critical

autonomous activity presents the need for a

comprehensive FP approach.

3.2 Desired Outcomes and Key Requirements

The terminal rendezvous and OS capture scenario

provides an excellent case study for fault protection

research. The main goal of this work is to develop a

desired set of FP behaviors for autonomous rendezvous

and capture of the OS. This is being done in

collaboration with the Next Mars Orbiter (NeMO)

mission formulation team at JPL, which is currently

studying this problem. The NeMO rendezvous working

group is made up of members from three disciplines:

relative orbit determination, guidance & control, and

sequencing. A separate team is developing concepts for

the flight hardware subsystem that will perform the

capture operation, known as the Rendezvous OS

Capture System (ROCS). Inputs have also been sought

from the NeMO flight systems working group about

various aspects of spacecraft subsystem concepts.

There are three desired outcomes of this study. First,

a set of initial fault protection requirements should be

defined. The requirements may then be used to drive the

initial design of the SRO rendezvous and capture

system. Next, the NeMO team desires to integrate fault

protection with mission concept development,

influencing design decisions during Pre-Phase A based

on fault protection considerations. Finally, the NeMO

team desires to apply the fault protection process used

in this study to other aspects of the NeMO design.

Several key requirements guided this study. First,

mission success is vital. Fault protection should be

designed to ensure that the SRO mission to capture the

OS can be completed or aborted without ground

intervention, even under fault conditions. As stated

earlier, autonomy is a key feature, since the terminal

rendezvous and capture will occur fully autonomously.

Safety is a key concern, and fault protection should

prevent the spacecraft from colliding with the OS.

Finally, time criticality should be taken into account.

For example, a fault response may be quite different at

the beginning of the autonomous rendezvous sequence

100 m from the target than in the last 5 or 10 meters.

4. Methods for Mars Sample Return Case Study

Several different tasks were undertaken in order to

define the fault protection behavior for autonomous

rendezvous and capture. Some of these are standard

fault protection practices and others were customized

for this study. All tasks have been completed at the

preliminary level only, since detailed design has yet not

begun for this mission concept.

4.1 Fault Tree Analysis

The first step in developing fault protection

requirements is to perform a fault tree analysis. Through

discussions with the NeMO rendezvous working group,

a fault tree was defined that captures faults that could

result in failure of the terminal rendezvous phase, as

Fig. 5. High-level fault tree for autonomous rendezvous and capture

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.

Copyright ©2017 by the International Astronautical Federation (IAF). All rights reserved.

IAC-17-C1.5.11x336573 Page 7 of 15

shown in Figure 5.

The first discipline considered is Relative Orbit

Determination, which involves calculating relative

position & velocity from rendezvous sensor data. Next

is Guidance & Control, which is responsible for attitude

determination/control and trajectory control during

rendezvous. In addition, sequencing uses the Virtual

 Machine Language (VML) to direct the autonomous

process based on state machines that are developed on

the ground and loaded onboard [8]. Finally, Capture

deals with the mechanical and logical components

within ROCS.

 An initial fault tree was developed prior to

consulting the NeMO team. However, in order to

capture the inputs from JPL experts representing each

discipline, various breakout meetings were held to

revise and expand this initial fault tree. These meetings

were designed to simply brainstorm, add, remove,

rearrange, or rename potential faults from the fault tree.

Figure 6 shows one example of the results of these

Fig. 6. Result of a fault tree brainstorming session for relative orbit determination

Fig. 7. General spacecraft subsystem fault tree

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.

Copyright ©2017 by the International Astronautical Federation (IAF). All rights reserved.

IAC-17-C1.5.11x336573 Page 8 of 15

breakout sessions.

Finally, the results of all the breakout discussions

were compiled to create comprehensive fault trees. A

complete fault tree including over 50 root cause events

(shown in the Appendix in text form because of space

limitations) was constructed to capture all faults specific

to rendezvous and capture. A second fault tree shown in

Figure 7 was used to capture generic spacecraft

subsystem faults that could occur during rendezvous.

4.2 Subsystem Taxonomy

To aid in clarifying terminology, a subsystem

taxonomy (or system block diagram), shown in Figure

8, was constructed to list out various elements,

subsystems, and components of the system. This block

diagram was also used to help team members

understand conceptually what components should be

considered for the fault protection process. An example

of the terminology clarification is the naming of various

rendezvous cameras, shown in the expansion of Figure

8. Because the terms “Narrow Angle Camera” and

“Wide Angle Camera” have different meanings in

different contexts, the rendezvous team developed

animal names for each camera. The “hawk” is a camera

that can see far away, the “dog” is a shorter-range

camera with a wider field of view, and the “fish” is a

very wide-angle camera with a short range.

4.3 Concept of Operations

The next challenge was to link fault protection

behavior to the state of the spacecraft within the

rendezvous process. Along with members of the NeMO

rendezvous team, a detailed process was defined for

terminal rendezvous and capture. Defining the

rendezvous process included specifying “Zones of

Criticality” for the terminal approach. These zones are

then used to alter fault protection behavior based on

distance to the target and time to intercept. The zones

are shown in Figure 9. Note that the durations and

distances shown are very dependent on the rendezvous

approach strategy selected, so the transition conditions

between these zones may change, but the criticality (and

thus impact on FP behavior) of the zones will endure

regardless of the implementation selected.

Fig. 8. Subsystem taxonomy, with an example expanded

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.

Copyright ©2017 by the International Astronautical Federation (IAF). All rights reserved.

IAC-17-C1.5.11x336573 Page 9 of 15

The first zone is called the “passive miss region”.

During this zone the SRO must constantly thrust to

remain on an intercept course with the OS. If the SRO

stops thrusting (a passive abort), then it will pass by the

OS harmlessly. Zone 1 should last about 30-45 minutes

and the distance to the target will close from 50 m to

about 20 m. The second zone is called the “active abort

region”. During this zone, if the SRO stops thrusting it

will intercept the OS, but if an active abort maneuver is

performed, intercept can be avoided. Zone 2 should last

around 5 minutes, and the distance from the target will

close from 20 m to about 5 m. The third zone is called

the “unavoidable intercept region”. During this zone,

the SRO can no longer avoid an intercept even if an

abort maneuver is performed; it must either capture the

OS or collide with it. Zone 3 should last around 2

minutes and the distance from the target will close from

5 m to zero.

The rendezvous process was developed into a state

machine that will be used by the fault protection system

to determine how to respond to various faults as they are

detected. Fault responses will be calibrated based on the

relative risk to the mission in each zone. The state

machine, shown in Figure 10, represents both nominal

and off-nominal processes. The system begins in

Passive Standby at the end of the ground-in-the-loop

Fig. 9. Notional “zones of criticality”

Fig. 10. State machine for rendezvous and capture process

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.

Copyright ©2017 by the International Astronautical Federation (IAF). All rights reserved.

IAC-17-C1.5.11x336573 Page 10 of 15

rendezvous process; this is the state in the bottom left of

Figure 10. This is a passively stable trajectory that will

not impact the OS even if it drifts. A ground command

will be given to initiate the autonomous sequence. In

one strategy, this would include a Final Hop from the

passively stable trajectory to the terminal approach

corridor. This optional step may be removed later.

If the Final Hop step is utilized, that step would end

at a standoff position at the start of the terminal

corridor. When proper lighting and communication

conditions are achieved and the OS has been acquired

by all rendezvous sensors, the “closed-loop” approach

will begin. The system then enters the “Passive Miss

Region”. If at any point in this region something goes

wrong, the system simply stops maneuvers and enters

Passive Abort. Once the vehicle is safe from collision

with the OS, it would return to the Passive Standby state

and await ground analysis and command to resume

autonomous operations. If no problems occur, the

system will enter the “Active Abort Region”, when the

dynamic boundary is crossed. If at any point something

goes wrong, an abort can be commanded to return to

Passive Standby via the Active Abort mode. Finally,

just before intercept the system enters the “Unavoidable

Intercept Region”.

If capture is unsuccessful and the OS does not enter

the capture volume, the system enters the “LocateOS”

state. It will attempt to determine where the OS is

located before performing any slew or thrust maneuvers.

Once the OS is found, an abort maneuver is

commanded. If the OS enters the capture volume

successfully, the capture process begins. The OS passes

by a sensor such as a laser curtain and the door is

closed. A confirmation sensor will then verify that the

OS is inside. If the OS cannot be confirmed inside the

capture volume after the door has closed, the system

also enters the LocateOS state and will abort unless the

OS is found inside the capture volume.

4.4 Fault Protection Requirements

Next, a subset of faults (bolded in the fault tree

shown in the Appendix) was selected from the

completed fault tree. Several representative faults were

chosen from each area (relative orbit determination,

guidance & control, sequencing, and capture). The

selected faults are challenging to detect, diagnose, or

respond to in a quick, efficient, and safe way. These

faults were expanded in detail, and time-to-criticality,

detection methods, diagnosis methods, and response

strategies were examined at various stages of the

rendezvous and capture process. These details were then

used to define a set of potential fault protection

requirements that accounts for different conditions in

different stages of the rendezvous process. One example

strategy for a single fault is shown in Figure 11, and the

related possible fault protection requirements are shown

in Figure 12. Finally, a second round of breakout

meetings was held with technical experts in each area to

share the results and seek direction for the next steps.

Fig. 11. Example fault protection strategy

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.

Copyright ©2017 by the International Astronautical Federation (IAF). All rights reserved.

IAC-17-C1.5.11x336573 Page 11 of 15

5. Results and Discussion

Each of the tasks described above has been

completed successfully for an initial treatment of

defining fault protection behavior for autonomous

rendezvous and capture of the OS. A detailed fault tree

has been defined, along with a system block diagram

and a detailed rendezvous and capture process concept

of operations. Initial fault protection strategies and

requirements have been generated for a total of about 20

key faults from the various discipline areas.

5.1 Observations

One goal of introducing fault protection earlier in

the design cycle (during Pre-Phase A mission

formulation) has been to help guide mission design

considerations. One major observation is that the

process of fault protection has been a forcing function

for the NeMO mission formulation team to clarify some

of their architecture and concept of operation decisions.

In some cases, mission design and concept of operations

assumptions have been documented for the first time.

This has been an unexpected but welcome result,

showing the value of fault protection not just as an add-

on to a space mission design but as an essential

component of the system design from the beginning.

5.2 Lessons Learned

In retrospect, there are a few things that could be

done differently based on lessons learned. First, it would

make sense to build the fault tree with a more functional

structure rather than one based on rendezvous discipline

areas. For example, if the OS is not seen in the

rendezvous sensor’s field of view, there could be an

issue with relative orbit determination, attitude control,

or sequencing that could cause this. The current version

of the fault tree places this fault under relative orbit

determination and not the other two branches. A more

functional structure was suggested by a JPL fault

protection expert, but the work was already far enough

along with the process that it was decided to leave the

fault tree in its current format.

Defining terminology clearly is very important.

There have been miscommunications at several

meetings because of different understandings for the

definitions of certain terminology. For example,

although terms like “guidance, navigation, & control”

have fairly standard definitions, they may have different

connotations in different contexts. Even the term “fault

protection” means different things to different people.

This challenge has been addressed by inviting open

discussion and feedback in group meetings and by

attempting to clarify any terms that could be confusing

or misunderstood when they are presented. When

developing tools like a fault tree, it is important to

anticipate how terms will be understood by engineers

from various disciplines and define any terms that may

be misinterpreted.

Another challenge has been determining what to do

next when each step is completed. Since a new method

of fault protection design is being experimented with,

there is not a defined process to follow. A final

challenge has been a backlog in the communication of

progress throughout the project. Because of the cadence

of meeting cycles, work is often completed several

weeks before it can be communicated to all relevant

stakeholders. These challenges have been addressed by

Fig. 12. Example of possible fault protection requirements

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.

Copyright ©2017 by the International Astronautical Federation (IAF). All rights reserved.

IAC-17-C1.5.11x336573 Page 12 of 15

seeking additional direction and advice of fault

protection experts and rendezvous/capture subject

matter experts. Their suggestions have helped refine the

direction of the study.

6. Forward Work
This work will be continued under a JPL contract

with NeMO at Georgia Tech. The first step will involve

developing a high-level flowdown of the fault

protection architecture. This will include a conceptual

design that identifies the arrangement of various

components within the fault protection system,

including how they will interact with each other and

with other hardware and software components of the

SRO. The next step is to create a preliminary

implementation of the fault protection architecture in

state machine form using the Stateflow toolbox within

MATLAB/Simulink (or similar state machine tools).

This system will be tested using simple simulated inputs

(i.e. step functions) to demonstrate base-level

functionality.

An example case (“No OS data received from

sensors”) has been selected to demonstrate how this

fault protection system may diagnose faults on-board

rather than relying on prior ground diagnosis assigning

certain symptoms to specific faults. The fault protection

architecture will utilize the state machine paradigm, a

key tool of model-based design, rather than the current

industry standard of rule-based fault protection. In this

way, fault responses will be tied to the state of the

system rather than simply as a reaction to the detection

of symptoms.

Finally, the MSR work will be used as a case study

for the broader research on fault protection. The FP state

machine system developed for the MSR application will

be made more generic, and the UAV flight test data will

be used for verification and validation of the generic FP

system. There is potential for some of the MSR work to

continue at JPL by adding more detail for the NeMO

rendezvous and capture FP strategy and by extending

these FP concepts to other aspects of MSR concept

development. Some of these FP methods could also be

fed back into JPL’s general fault protection process to

continue improving them for current and future

missions.

Acknowledgements

This material is based upon work supported by the

National Science Foundation Graduate Research

Fellowship Program under Grant No. DGE-1148903.

Any opinions, findings, and conclusions or

recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of

the National Science Foundation.

FalconViz and King Abdullah University of Science

and Technology (KAUST) provided funding support

and technical guidance for development of the UAV

Nervous System.

The Mars Sample Return fault protection work was

completed and will be continued under contract with the

NASA Jet Propulsion Laboratory at the California

Institute of Technology. Special thanks to Rob Lock

(NeMO Project System Engineer) and Peter Meakin

(Fault Protection and Autonomy group supervisor) for

their assistance. Also, the NeMO team provided many

inputs by participating in breakout discussions:

NeMO Rendezvous team: Austin Nicholas, Alan Didion

• Navigation: Ed Riedel, Rob Haw, Eric

Gustafson, Drew Vaughan, Dylan Boone

• Guidance/Control: George Chen, Jack Aldrich

• Sequencing: Chris Grasso, PJ Guske

ROCS team: Joe Parrish, Paulo Younse, Marco Dolci

NeMO Flight System team: Kristina Larson, Ny Sou

Okon, Travis Imken

Many engineers around JPL were consulted to solicit

ideas for fault protection research. Their insights will be

valuable as this work moves to the next stage: Lorraine

Fesq, Kevin Barltrop, Jeff Levison, John Day, Bob

Rassmussen, Mike Sievers, Magdy Bareh, Gene Lee,

Garth Watney, Len Reder, Rob Bocchino, Tracy

Neilson, Rajeev Joshi, Jean-Francois Castet, Ken Starr,

Lermont Khachikyan, Bobak Ferdowsi, and John West.

References

[1] P.Z. Schulte, D.A. Spencer, N.G. Smith, M.F.

McCabe, Development of a Fault Protection

Architecture Based Upon State Machines, IAC-16-

D1.IP.2x32540, 67th International Astronautical

Congress, Guadalajara, Mexico, 2016, 26-30

September.

[2] J.E. Riedel, J. Guinn, et al., A Combined Open-Loop

and Autonomous Search and Rendezvous

Navigation System for the CNES/NASA Mars

Premier Orbiter Mission, 26th Annual AAS

Guidance and Control Conference, Breckenridge,

Colorado, USA, Feb 2003.

[3] P.Z. Schulte, D.A. Spencer, Development of an

Integrated Spacecraft Guidance, Navigation, &

Control Subsystem for Automated Proximity

Operations, Acta Astronautica, 118 (Jan-Feb 2016),

168-186, doi:10.1016/j.actaastro.2015.10.010.

[4] M.D. Ingham, R.D. Rasmussen, M.B. Bennett, and

A.C. Moncada, Engineering Complex Embedded

Systems with State Analysis and the Mission Data

System, Journal of Aerospace Computing,

Information, and Communication, 2 (Dec. 2005).

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.

Copyright ©2017 by the International Astronautical Federation (IAF). All rights reserved.

IAC-17-C1.5.11x336573 Page 13 of 15

[5] B.E. Goldberg, K. Everhart, et al., Systems

Engineering “Toolbox” for Design-Oriented

Engineers, NASA Reference Publication 1358, Dec.

1994, http://www.hq.nasa.gov/office/codeq/doctree/

rp1358.pdf, (accessed 13.12.16).

[6] R.J. Simmons, Fault Tree Analysis, Tunghai

University, Feb 2009, http://www2.nuu.edu.tw/~er/

reportfile/saminar/Fault_Tree_Analysis.pdf,

(accessed 13.12.16).

[7] “Vision and Voyages for Planetary Science in the

Decade 2013-2022,” Committee on the Planetary

Science Decadal Survey, National Research Council

of the National Academies, 2011,

https://solarsystem.nasa.gov/docs/131171.pdf

(accessed 04.09.17).

[8] C.A. Grasso, VML 3.0 Reactive Rendezvous and

Docking Sequencer for Mars Sample Return, AIAA

SpaceOps Conference, Pasadena, California, USA,

2014, 5-9 May.

Appendix: Full Fault Tree for Mars Sample Return Terminal Rendezvous and Capture Phase

Failure to Capture the OS

 Fault During Approach

 Relative Orbit Determination Fault

 Rendezvous Sensor Data Fault

 Sensor Hardware Fault

 Sensor Loses Power

 Sensor Settings Incorrect

 Solid-State Recorder Malfunction

 Sensor Background Noise

 Radiation-Induced Noise

 Temperature-Induced Noise

 Stray Light Glint

 OS Passes Too Quickly Through Imager FOV

 SRO Angular Rates Too Great

 OS Relative Velocity Too Great

 Sensor FOV Impaired

 Lens Fogged Due to Outgassing

 Spacecraft Component in FOV

 Debris in FOV

 Poor Conditions for OS Tracking

 OS Surface Properties Unfavorable

 OS Blends Into Background

 OS in Eclipse or Shadow (visual only)

 Phase Angle Unfavorable

 Flashlight Malfunction (visual only)

 LIDAR/IR Sensor Faults

 No OS Data from Sensors

 Orbit Determination Computation Fault

 Image Processing Fault

 Navigation Software Fault

http://www.hq.nasa.gov/office/codeq/doctree/%20rp1358.pdf
http://www.hq.nasa.gov/office/codeq/doctree/%20rp1358.pdf
http://www2.nuu.edu.tw/~er/%20reportfile/saminar/Fault_Tree_Analysis.pdf
http://www2.nuu.edu.tw/~er/%20reportfile/saminar/Fault_Tree_Analysis.pdf
https://solarsystem.nasa.gov/docs/131171.pdf

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.

Copyright ©2017 by the International Astronautical Federation (IAF). All rights reserved.

IAC-17-C1.5.11x336573 Page 14 of 15

 Mosaicing Algorithm Misses OS

 Orbit Perturbations Differ from Models

 OS Outgassing Perturbs Orbit

 SRO Plume Impingement on OS

 Atmospheric Drag Perturbs Relative Orbit

 Other Orbit Perturbation Mismodeling

 Incorrect Model Parameters (i.e. OS optical properties)

 Ephemeris or Timing Fault

 Filter Does Not Converge

 Guidance & Control Fault

 Attitude Fault

 Degraded Attitude Knowledge

 Inertial Measurement Unit Fault

 No Data Output

 Reset/Excessive Reset

 Bias/Scale Factor Offset

 Measurement Drift

 Star Tracker Fault

 No Output

 Bias/Incorrect Output

 Excessive Current Draw

 Optics Contamination

 Optics Coating Degradation

 False/Intermittent Star ID

 Temporary Lock-Up

 Noisy Measurements

 Sun Sensor Fault

 Attitude Filter Does Not Converge

 Degraded Attitude Control

 Reaction Wheel Fault

 Wheel Stuck/Seized/Not Rotating

 Increased Drag/Friction

 Excessive Current Draw

 Excessive Vibration

 Tachometer Fault

 Drive Electronics Fault

 Wheel Momentum Saturated

 Reaction Control System Thruster Fault

 Thruster Fails to Actuate

 Thruster Stuck On

 Tank heater fault

 Propellant line freezing

 Trajectory Fault

 Maneuver Fault

 Incorrect Timing, Direction, or Delta-V for Burn

 Deadband Violation Does Not Trigger Manuever

 Degraded Translational Control

68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.

Copyright ©2017 by the International Astronautical Federation (IAF). All rights reserved.

IAC-17-C1.5.11x336573 Page 15 of 15

 Unable to place OS inside capture cone

 OS not aligned with capture cone

 Rotation Rate Too High

 Relative Velocity Too High

 Guidance & Control Software Fault

 Sequencing Fault

 Spacecraft Reboot

 Unable to Meet Conditions that Allow Transfer to a Key State

 Tolerances on parameters too tight

 Unexpected configuration

 Telemetry Reporting Fault

 Logical Error in Sequence

 Premature Entry into any State

 Logical Error in Sequence

 Sequencing Software Coding Fault

 Ground Command Halts or Unloads Sequence

 Incorrect Config File Version Loaded

 Fault During Capture

 Capture Door Closure Fault

 Door Close Timing Fault (Early/Late Closure)

 Door Close Signal Does Not Activate

 Door Mechanism Fault

 Unexpected OS Dynamics

 OS Spin Rate Exceeds Capture Requirement

 OS Energy Exceeds Capture Capability

 OS Impacts ROCS Components

 Capture Detection Sensor Fault

 Door Sensor Fault

 OS Confirmation Sensor Fault

 Force/Torque Sensor Fault

 Sun Interference/Spoofing

