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Electro-optical sensors play an increasingly important role in the SSA domain for
tracking satellites and debris objects. Such sensors provide data that complement
other methods, like radar based sensing, by providing a higher angular resolution,
and thus improving the estimation of an object’s orbit, attitude and physical properties.
The acquisition of such data is invaluable for obtaining more accurate collision risk
assessments and formulating improved debris mitigation efforts. The Georgia Tech
- Space Object Research Telescope aims to improve detection and tracking for ag-
ile Raven-class telescopes with narrow fields of view and high angular resolutions.
A secondary imaging system was used to correct the Georgia Tech - Space Object
Research Telescope’s pointing errors for tracking objects at high angular rates using
a closed-loop controller. This paper will focus on the development and results of a
real-time hardware-in-the-loop hand-off from a finder scope to a larger telescope.

1. Introduction

The purpose of Space Domain Awareness (SDA) is to provide decision-makers
quantifiable and timely evidence of behavior(s) attributable to specific space domain
threats and hazards.A foundational input to SDA activities are direct optical, radar,
and other observations of on-orbit objects. Presently, there are an excess of 20,000
resident space objects (RSOs) larger than 10 cm in Earth orbit. Of these, around 1,100
are active spacecraft.

As the number of space objects increases with time, so too does the risk of possible
collisions between these objects [1]. Past fragmentations of larger space objects have
resulted in the formation of orbital debris, even when measures were taken to mitigate
the possibility of such outcomes [2]. Hence, to reduce the risk of future collisions, pre-
cise monitoring and tracking of space objects and debris is required. Typically, radar or
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optical-based sensors are used to perform this task. Electro-optical sensors can pro-
vide information about an object’s physical properties, attitude, and orbit. Hence, track-
ing space objects with ground-based telescopes is essential to futher understand the
orbital population. This paper focuses on the development of an autonomous tracking
capability for the Georgia-Tech Space Object Research Telescope (GT-SORT), which
will improve GT-SORT’s ability to acquire useful space object data.

Telescopes with wide fields of view, between 1°-2°, are able to track space objects
with open-loop tracking using Two-Line Elements (TLEs) and commercial tracking soft-
ware [3],[4]. The GT-SORT is capable of tracking Low-Earth-Orbit (LEO) and Geosta-
tionary Earth Orbit (GEO) objects. However, due to its narrow field of view (FoV), TLE
errors are often larger than the GT-SORT’s FoV, resulting in missed detections if used
open-loop. To obtain additional pointing information, a finder scope is used. The main
objective was to develop an in-house closed loop tracking capability for low-earth-orbit
(LEO) objects using such a finder scope.

This paper will focus on the theory required to develop the controller, the approach
and methodology used to carry the project to fruition, and a portrayal of the results ob-
tained with the developed architecture. Three main tasks were necessary to complete
this endeavor. The first, interfacing the finder scope camera and mount hardware with
the observatory computer. The second, developing control algorithms to control the
telescope’s mount. The third, implementing object detection techniques with estima-
tion techniques to use as state feedback for the controller.

Table 1: GT-SORT Performance

Focal Ratio | FoV (arcmin.) | iFoV (arcsec.) | Limiting Magnitude
f/6 ‘ 14.23 x 11.40 ‘ 0.31 ‘ 12.9

Table 2: Rokinon 135 mm Lens Performance

Focal Ratio | FoV (arcmin.) | iFoV (arcsec.) | Limiting Magnitude
f/2 \ 287.58 x 181.38 \ 8.127 \ 12.06
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Figure 2: Rokinon Finder Scope

2. Theory

2.1. Dynamics and Control

This section covers the theory used to develop the controller and estimate the
telescope’s pointing errors with respect to the space object being tracked. The theory
is tailored for a velocity (rate) controller in ra-dec state space. TSX, the software used
to control Software Bisque’s Paramount ME 1l, used with GT-SORT, offers a capability
to set tracking rates. This is exploited in the development of a controller that can
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navigate the telescope to ra-dec positions on a particular side of the local meridian,
since the Paramount ME 1l is a German-Equatorial mount.

The telescope’s system dynamics, denoted by x(7), are modeled with the following
state in the inertial ECI angular system (2 states because a rate controller is used):

(1)
| 6(1)
The dynamics of the object’s true trajectory are given by:

() =

(1)

()

For TLE reference trajectory tracking, the telescope’s dynamics are broken into the
TLE nominal trajectory and the control input as:

are(f)| | |ua(t)
r1E(t) i [ué(f)] )

The TLE trajectories are the nominal ones. By controlling around these, the position
errors, e can be found, without any loss of generality:

o[

x(t) =

€(t) = xo(t) — x(t) (4)

By breaking up the object’s true rates into the TLE rates and some perturbation, 7,
the following is obtained:

€(1) = xpLe(t) — x(1) + (1) (5)
Taking the derivative of the above with respect to time, results in:

(1) = XrLp(r) — X(1) + (1) (6)

When the telescope is tracking the TLE trajectory, the above expression than sim-
plifies to:

& = [258] +10) 7)

Note, the telescope’s ra-dec is denoted by x, the target’s (space object) true ra-dec
is xo and the predicted ra-dec of the target from TLEs is denoted by x7; . The majority
of the error between the telescope and the object’s true position are dependent on
the control terms. The n term contains the inherent TLE errors. Figure 3 shows how
these trajectories are seen through the finder scope’s FoV, along with the true state,
estimated state, and perturbation n. If the TLE’s nominal trajectory and rates are
tracked, then any TLE errors cause the satellite to slowly drift with respect to the optical
sensor on the ground. This phenomena is evident while tracking LEO objects and less
so with MEO or GEO cases.

Given the time an object is being tracked, it is assumed that ra-dec rates are well
understood. Additionally, in the time interval considered, any perturbations on the
object while tracking are small with respect to its period; hence n(r) ~ 0. If an object is
tracked open-loop, the following error dynamics are expected:
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Figure 3: Trajectories as seen by the Finder Scope

&(t) ~ 0 (8)

If there is any drift between the object and the TLE, the object detection and state
estimator should capture these perturbations and feed the estimates to the controller,
removing the drift. Hence, making the assumption regarding the error dynamics is
valid as long as the state estimate is fed back frequently.

By changing the telescope’s rate away from the nominal TLE trajectory results in
the following error dynamics:

&b =u (9)

Using Equation 9, a suitable control law can be designed to correct for any tele-
scope pointing errors. An LQ control law is implemented by solving the following opti-
mal control problem:

to+At
min f ()" Qe() + u(r) Ru(r)) dr + €(ty + At)! Se(ty + Ar) (10)

st. €t)=u

ue [uminv Mmax] (1 1 )

Where the Q, R, S are the state, control and terminal cost matrices, respectively.
Note that Q and R are positive-definite and S is positive semi-definite. Equation 12
then gives the optimal control solution [5], [6].

u*(t) = —R'BT P(t)e(r) (12)
The solution for P can be found via:
@ A -BR'B"||®
=12 (1
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Time-invariant A, B, R, and Q matrices then result in:

A =0, (14)
B=1I, (15)

A -BR'BT
.
P=Y®! (18)
P(ty+ At =S (19)

A similar approach to the above is used for the LQ infinite-time horizon controller.
This requires (A, B) to be completely controllable and (A, Q'?) to be completely ob-
servable.

P=A"TP+PA+Q-PBR'B"P=0 (20)

Solving the above Riccatti equation, which has a known optimal control law [5] is given
by:

u* = -R'B" Pe (21)
However, effective use of the optimal controller requires accurate error estimates.

2.2. Image Processing

Image processing techniques are used to measure the telescope’s attitude and
pointing errors. Canny edge detection [7] failed to detect objects reliably due to the
noise characteristics of the image. Hence, a matched filtering based approach (tem-
plate matching) [7] was also tested with the original finder scope. Due to large pro-
cessing times and the availability of a new finder scope with a larger aperture, this
approach was replaced with an signal-to-noise ratio (SNR) based thresholding. Fur-
thermore, a Gaussian blur filter was used to get accurate centroid information, whilst
also reducing noise.

For SNR-based thresholding, the background noise needs to be well characterized.
Additionally, in a highly light polluted area, like mid-town Atlanta where GT-SORT is
located, background estimation and subtraction becomes significant due to the noise
variability throughout the image. Once the effective background is subtracted, a pixel-
wise SNR map can be estimated as:

E[Si] — Msig
VV(ZV(S,') O sig

With an SNR map, a particular SNR threshold, S NR,, can be chosen to form the
following binary image:

SNR =

(22)

1, I.,>SNR,

This binary image is used to extract blob and region properties. The object is
detected using this method and its centroid serves as raw measurements for the esti-
mator.

B {0, I, < SNR,
xy —
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2.3. Estimation

A Kalman filter is used to estimate the object’s state in the finder scope’s FoV [8].
Due to the integration time of the sensor, measurements are taken in discrete-time
and fed to the controller, which is modelled in continuous time. Although the original
telescope states are in terms of angular position, the Kalman filter estimates both the
angular position and velocity. The filter incorporates the ra-dec rates as follows:

a
o
Yor = |4 (23)
5
The model for the Kalman filter is based on the following:
Xoxr1 = PXoy + Wi (24)
Yo =Hixor + v (25)
wi ~ N(0,0) (26)
v ~ N(0, D) (27)
[1 0 Ar O
01 0 At
P=loo 1 0 (28)
00 0 1
(1 0 00
B = 0100 (29)

Note, the state estimates of the object are fed into the controller at discrete inter-
vals.

3. Methodology

First, to remove timing errors during the data acquisition phase and post processing
phase of the project, the computer’s clocks are synced with available atomic clocks
through a Network Time Protocol (NTP) server. Then, the finder scope’s boresight is
manually aligned with the main telescope’s optical axis.

Moreover, the telescope is controlled such that the object, circled in red in Figure
4, is brought inside the telescope’s FoV, shown by the rectangle with cross-hairs. To
achieve this, images are taken as the telescope tracks a space object based on the
propagated state from the TLEs. As the telescope slews, stars streak in the image
as a result of non-zero camera integration time. The stars in the image are registered
with the inertial frame using Astrometry.net software’ and is used to obtain estimates
of the telescope’s pointing and also of the object’s state.

TLE errors, combined with GT-SORT pointing errors, often cause objects to appear
outside of the main telescope’s FoV and is illustrated by Figure 4. These cases mainly
occur when tracking LEO space objects, which drift away from their TLE trajectories
with time, if not updated regularly.

"http://www.astrometry.net
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Figure 4: Graphical Representation of Problem

To correct for the pointing discrepancy in real-time, parallelized code implemented
in Python is used. The sequence of operations can be seen in Figure 5. First, the
TLE trajectories are computed based on the ground station’s location. Then, three
processes are initialized in parallel. Each stream depends on outputs of the others,
but if computed in parallel (after initialization), the lag in the system is minimized and
is equal to the camera’s integration time. The first stream controls the finder scope
camera and takes pictures for the duration of the session. The second, the image pro-
cessor, is fed images from the image capture stream and processes them to compute
the ra-dec position error between the telescope and the object. After the first image is
taken, the image capturing and processing is done in parallel. The third proess runs
the telescope mount controller, which always runs independently in the background.
However, when state estimates are available from the image processor, they are in-
corporated into the LQ infinite time-horizon policy.

Obtain TLE trajectories
Specify object and time
interval

/ Parallel Processes \

Capture Images Image Processing Unit Optimal Controllgr
Take Image Image *  Object Detection State Est.| © Remove Errors with
Subtract Dark Frame Measurements MI.DC/ LQ logic
Subtract Background State Estimation: * Drive TSX to Track

Kalman Filter Target Ra-Dec

K Repeat Until Convergence... /

Figure 5: General Structure of Algorithm




3.1. Dynamics and Control

Once the TLE trajectories are computed a-priori, they are corrected to stop before
the local meridian or start at the local meridian (depending on the trajectory of the
object). This is due to the physical constraint of the German-Equatorial mount which
prevents it from crossing from one side of the meridian to the other instantaneously.

The general control strategy is shown in Algorithm 1.

Algorithm 1: General Control Strategy

1 Initialization: compute required trajectories;

2 while Object is in groundstation’s FoV do

3 Obtain mount’s ra-dec position;

4 Compute target ra-dec position ;

5 Compute error between mount ra-dec position and
reference trajectory;

6 Compute control input;

7 Slew mount via TSX using input rates;

if Error estimate received from image processor

then

9 Update reference trajectory with discrete ra-dec

error;

10 else

11 \ Continue tracking reference trajectory;

12 end

13 end

The mount’s current ra-dec position is readily available from TSX and the target
position is the TLE trajectory offset by the errors calculated from the object detection
code. These discrete-time error measurements/estimates, and their correction, can be
seen in Figure 6. Since TLE trajectories have position and rate errors, space objects
in LEO tend to drift in the finder scope’s FoV. The more often the error is estimated
and fed to the controller, the less the object drifts in the finder scope’s FoV.

e(®)

to ty t, tm t

Figure 6: Expected Controller Behavior



3.2. Object Discrimination and Estimation

The object detection code used is designed for cases where the object is visible
in the finder scope’s FoV with a relatively high SNR. The use of more sophisticated
object discrimination algorithms, such as multi-target tracking filters, were considered
but not used due to time-constraints.

Before processing the images, the dark frame of the finder scope camera and the
estimated background are subtracted to make the images zero-mean. However, per-
forming the background estimation process is computationally inefficient. To perform
this more quickly, the background mean is estimated and subtracted, using the follow-
ing technique.

Let z; represent the signal that is observed in pixel i of the image. Then, the ob-
served value can be decomposed into the signal from stars and RSOs, background,
and noise as s;, b;, and w;, respectively.

Zi:S,‘+b,'+Wi, Wi"'N(0,0') (30)
Elz] = E[s;] + E[b;] (31)

Computing the mean of both sides using all pixels yields:

i Elz] = Zn: Els;] + i E[b:] (32)

Since most of the image is dark because of the sky, the number of pixels that con-
tain the signal from stars or RSOs are much less compared to the pixels that contain
only the background signal. Hence,

n

Z E[s;] < Z E[b,] (33)
— Z Elz] ~ Z E[b:] (34)

Therefore, for any particular image (assuming there is no varying background sig-
nal due to the moon or city lights), the mean of the image approximates the background
mean well. A simple linear least squares model with a raw image mean predictor
variable and a background mean response variable is used. The model predicts the
background mean as:

f@ey) =v0 + 1z (35)

where k = 1,...,m denotes the image index. The residual, ¢; is found by subtracting
the actual background mean b; from the predicted background mean, f(i;,y), and is
equal to:

ex = b — (yo + v120) (36)
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The parameters y, and vy, are estimated by minimizing the following cost function:

H 2
2 @)

The linear regression model is made with more than 3000 pictures and allowed
the background mean to be estimated as a function of the image mean. To build the
model, images from different observation sessions are used with a variety of camera
gain and integration time settings. As a result, the underlying data is representative of
a variety of usable settings and provides a simple and quick approach to estimating
the background mean. The maximum residual was roughly 300 counts (16-bit). Given
that the intensity count range is [0, 65536], and that the maximum residual is off by
0.45%, the model fits the data well.

Moreover, a thresholding technique was used to construct a binary image based on
SNR thresholding. The Scikit-Image toolbox [9] for Python was used to obtain the x,y
pixel coordinates of each blob’s centroid using a weighted average of pixel intensities
in the original image. These centroid coordinates are fed into the Astrometry.net tool,
to identify the ra-dec of the objects in the image. The process layout can be see in
Figure 7.

Due to noise, most blobs obtained from the images provide no useful information.
As such, an intensity based threshold is applied. Then, an area based threshold is
applied to eliminate any region in the image that is smaller than the object’s expected
point spread function (PSF), as seen through the finder scope. The result is a subset
of the originally found blobs with useful information.

Blob Detection Blob x-y Astrometry.net Blob ra-dec
Image *  SNR Thresholding coord. Obtain ra-dec of detections in coord.
Region Properties frame
Intensities * Provide image x-y to ra-dec
Areas mapping

Weighted Centroids

Figure 7: Image Processing Unit

Two techniques can be used to identify the space object within the detection set.
One is based on looking at the x-y pixel displacement of all the detections, between
adjacent frames, and the other analyzes the ra-dec displacement. To increase the
realibility of the identification method, objects that correspond to stars were removed
from the image through star subtraction.

For the pixel method, a set of images are considered. In this set, if the detection
that moved the least in pixel space is at similar x-y pixel coordinates (by some pre-
defined tolerance), then this is likely the space object of interest. Additionally, if the
number of potential matches found is more than 80%, then the most recent object’s
coordinates are used for the error computation. This is possible since the object’s x-y
coordinates whilst nominal TLE tracking are expected to be similar. The process is
similar to defining Bernoulli trials and counting the successes of the experiment based
on the above criteria. When the percentage of success is above 80%, the ra-dec error
is computed and fed to the TSX control algorithm.
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When comparing two frames, the Hungarian Algorithm [10] is used to associate
objects between the two frames. In pixel-space, objects that moved more than a spec-
ified Euler distance are eliminated. In ra-dec space, objects that moved more than
what is expected from the TLE trajectories are removed. This reduces the frequency
of false-positives using the Hungarian Algorithm.

The pixel based method has limitations, particularly when the telescope is correct-
ing estimated errors. Since the criteria of identification requires the object to be static,
the object cannot be discriminated when the controller is removing the errors, as its
pixel coordinates will change more than the pre-defined tolerance.

The ra-dec method works best when the telescope moves away from the TLE nom-
inal rates, as the object’s ra-dec dynamics are independent of the telescope’s motion
(as opposed to the pixel space method). This method is not affected by the telescope
correcting the estimated errors. As such, a Kalman filter is used to provide less noisy
feedback to the controller. The object is identified by picking the detection (measure-
ment) with the smallest Mahalanobis distance based on the covariance information
from the Kalman filter.

Both of the above methods were implemented and tested for this paper. However,
the results shown in this paper are from the pixel based method only. Although these
methods are relatively fast in computation time, they are not so robust while tracking
objects in different orbit regimes. This can be alleviated by using a multi-target tracking
filter such as a Gaussian Mixture-PHD filter or a Generalized Labeled Multi-Bernoulli
filter. However, this was outside of the scope of the paper and is future work.

4. Results

Figure 8 shows sample star streak detections, along with the object and TLE posi-
tion whilst tracking Iridium 914. The green dot represents the expected position from
the TLEs. The red dot displays the discriminated objected. The black dots represent
the centroids of star streaks. The black box represents the telescope’s FoV within the
finder scope’s FoV. The ra-dec pointing error between the TLE and the telescope’s
optical axis here are (-0.1552°, -0.2531°). This is different from the TSX’s pointing
accuracy and requires further investigation. However, the error between the TLE’s
expected position (green) at that time and the actual position of the object (red) was
(-0.1813°, 1.0533°). This provides some experimental insight into the inherent error of
aTLE.

Given the computer used, an integration time of 0.5 seconds (2 Hz) is chosen to
provide the image processing enough time to complete its tasks and also to capture as
much of a space object’s signal as possible. At this rate, the image processing code
was also faster than the image capturing code. As such, the only lag in the system
came from the camera’s integration time.

The combined blob detection and Astrometry.net processing frequency was roughly
2.32 - 3.03Hz (180-230 ms and 150-200 ms for detection and Astrometry.net, respec-
tively). This performance was achieved whilst using a Macbook Pro 2015 with a 3.1
GHz Intel i7 processor. The computational times can be reduced further if a desktop
computer with newer components is used. The image processing code was tested on
such a computer, and the expected image processing frequency was roughly 4-7 Hz.

The results from the computer architecture mentioned above resulted in a number
of successful tracking cases. Due to spatial constraints, the trajectory plots and images
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Figure 8: Finder Scope FoV: TLE Position (Green) vs. Object’s Measured Position
(Red), Iridium 914

of one case are shown. The Iridium 914 satellite, with NORAD catalog ID 24836, was
tracked for a duration of just under three minutes. The long-tracking time is as a result
of the satellite’s trajectory not intersecting the ground station’s local meridian.

Figures 9-12 show relevant outputs of the TSX mount (telescope) compared to the
TLE trajectories over time. The convergence from an initial pointing offset to the TLE
trajectory is visible at the beginning. After converging, the telescope follows the TLE
trajectory almost exactly for a brief interval. During this interval, images were taken
and the object’s ra-dec position was estimated. This corresponds to the large peaks
visible in Figures 10-12. The divergence from the TLE’s nominal ra-dec trajectories
can be seen in Figure 9.

The behavior above can be seen in the ra-dec error plots, in Figure 10. As images
were taken and processed, the controller received discrete inputs (error estimates)
and corrected for them over time. The initial input is the largest as that is the initial
pointing error. After this is corrected, only small deviations away from the telescope’s
center had to be corrected due to the object drifting.

The effects of Equation 3 can be seen in Figure 12. The nominal trajectory along
with the deviations towards the space object’s true trajectory can be seen. As the error
is corrected in continuous time, the control rates always return to the nominal TLE
rates, as mentioned in the previous section.
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Figure 14: After Correction: 10/24/17 10:33:39 UTC, Iridium 914, Altitude: 767.3 km.
The satellite is within the main telescope’s FoV
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5. Conclusion

This project consisted of designing, implementing, and testing a hardware-in-the-
loop system to autonomously track space objects with a Raven-class telescope in real-
time. This was done using a secondary imaging system, the finder scope, with a wider
FoV than GT-SORT. This task was accomplished successfully by interfacing the optical
train along with a German-Equatorial mount using Python. Image processing, optimal
control and estimation techniques were designed, implemented, and demonstrated on
real data.

There are numerous potential extensions to this work. First, a multi-target track-
ing algorithm can be implemented to robustify the object discrimination process. This
would result in smoother trajectories by increasing the measurement update frequency
in the controller. Additionally, the image processing from the main telescope camera
can be fused with that of the finder scope, resulting in faster convergence and in-
creased accuracy.
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