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Abstract—Unexpected spacecraft failures and anomalies may
prompt on-board systems to change a spacecraft’s state to a safe
mode in order to isolate and resolve the problem. The motiva-
tion for this paper is to investigate methods to tailor the impact
of safing events for spacecraft of different classes, destination,
duration, and other categories of interest. Modeling spacecraft
inoperability due to a spacecraft entering safe mode could en-
able mission planners to more effectively manage spacecraft
margins and shape design and operations requirements during
the conceptual design phase. This paper contributes to the area
of safing event modeling by using available datasets to develop
various distributions of frequency and recovery durations of
safing events for interplanetary spacecraft missions.

A safing event dataset compiled by JPL is first split into multiple
subsets based on various mission classifiers. Using a previously
developed mission simulation framework, a distribution of the
likelihood of inoperability rates is computed through a Monte
Carlo simulation. Three main safing event model types are
formulated, implemented, and compared in this paper: a single
Weibull distribution, a mixture of two Weibull distributions,
and a Gaussian Process model. For each model type, two dis-
tributions are incorporated into the mission simulation frame-
work: time-between-events and the recovery duration of a safing
event. By specifying appropriate parameters in the mission
simulation framework and Gaussian Process model, a Monte
Carlo simulation is conducted for a solar-electric Mars orbiter
similar to the proposed Next Mars Orbiter. Mission implications
from simulated outage times and safing events by each model
could motivate greater operability, faster fault resolution by
operations teams, and greater system margins.

By incorporating Gaussian Process models into a mission simu-
lation framework, a process is established by which historical
mission data may be incorporated and used to model future
safing events for interplanetary mission concepts. This en-
ables mission planners to make more informed decisions during
spacecraft development.
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1. INTRODUCTION & MOTIVATION
Advances in on-board computing in the last few decades have
enabled robotic spacecraft missions to take control of task-
ing responsibilities with fewer interactions from the ground.
Although engineers thoroughly design and test a variety of
conditions faced by the spacecraft, unexpected failures and
anomalies may still arise during the mission lifetime. Rather
than letting the spacecraft operate in such a state, a ‘safe’
mode can be implemented where the spacecraft’s systems are
preserved until the ground can diagnose and recover from
the situation. Safe mode is typically defined as the state in
which non-essential components and subsystems are powered
off, while the spacecraft maintains an attitude such that it
is power positive, thermally stable, and commandable by
ground operators [1]. Better modeling operability can enable
the development of new and complex mission architectures.

The proposed Next Mars Orbiter (NeMO) mission concept is
one such example and the mission concept evaluated in this
paper. NeMO may support relay & telecommunications in
the Martian relay network, perform remote sensing of Mars,
and partake in the Mars Sample Return campaign [2]. It may
include high-power, high-Isp solar electric propulsion (SEP)
to increase the overall capability of the mission. NeMO is
not the first SEP interplanetary mission; the Jet Propulsion
Laboratory (JPL) has flown SEP on Deep Space 1 (DS1)
and Dawn, and the Japanese Aerospace Exploration Agency
(JAXA) has flown this technology on Hayabusa. Further-
more, JPL has baselined SEP technology on the Pysche
mission that is planned to launch in 2022.

During NeMO’s interplanetary transfer to Mars, the SEP
engines will need to operate at a high duty cycle to achieve
the necessary ∆V . Multiple thrusting segments lasting weeks
to months may be necessary during the interplanetary cruise
phase of the mission. This requires the spacecraft to remain
operational during this extended maneuver. If the spacecraft
enters safe mode, those safing events have the effect of
reducing overall operability. The frequency and recovery
time of safing events may lengthen the mission, potentially
reducing available margins and increasing risk in the ability to
fulfill its full mission success criteria. A characteristic typical
to all types of missions, inoperability is a metric that can
impact the design and margins of a spacecraft. Typical inop-
erability values have been successfully estimated using best
engineering practices; however, developing a more rigorous
analysis and predictive methodology provides an additional
perspective on the likelihood and effects of safing events on
spacecraft operability.

An interplanetary spacecraft safe mode analysis was first
done by Imken et al. [3]. A database of 240 safe mode entries
from 21 interplanetary spacecraft was collected through a va-
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riety of sources including JPL, NASA’s Goddard Space Flight
Center (GSFC), NASA’s Ames Research Center (Ames),
and Johns Hopkins University Applied Physics Laboratory
(JHUAPL). This database contains missions starting with the
Galileo mission, launched in 1989, and continues to present
day with active missions. It not only includes when the safing
event occurred but also mission statistics, root cause of the
event, event recovery timeline, and other relevant data. The
definitions of time-between-events, recovery duration, and
inoperability period developed by Imken et al. are used in
this paper in the same manner. Imken et al. also developed a
Monte Carlo simulation to simulate the likelihood of realizing
an inoperability rate for future missions using the interplan-
etary safing event dataset [3]. The simulation is modified
to include the models developed in this paper to generate
bounding frequency and recovery duration distributions. In
order to generate bounding frequency and recovery duration
distributions, this simulation is modified to include the mod-
els developed in this paper.

The modeling fitting work done by Imken et al. indicates
that the Weibull distribution is a good candidate for the time-
between-events and recovery duration datasets [3]. Due to
its flexibility in describing a dataset with just two parame-
ters, a Weibull distribution is commonly used in reliability
models. Castet and Saleh modeled satellite reliability for
approximately 1600 Earth-orbiting satellites using both non-
parametric and parametric models [4]. A Weibull parametric
model was shown to best fit the nonparametric satellite failure
data. Mixed Weibull distributions, a linear combination of
two Weibull distributions, can also provide modeling non-
parametric satellite reliability with greater accuracy, as was
done by Dubos et al. [5].

Predictive analytics is an area of statistics that deals with
obtaining data about a system and using it to model future
trends for a particular application. Predictive analytics can be
defined as, “Technology that learns from experience (data) to
predict the future behavior of individuals in order to drive
better decisions” [6]. The approach taken in this paper
to model safing events lends itself from machine learning.
Evolved from computation learning theory in artificial intelli-
gence, it enables computers to automate learning and making
predictions from data. The foundation for the work done in
this paper starts with the dataset collection, data modeling,
and simulation efforts done by Imken et al. [3] and Master’s
thesis work by Pujari and Lightsey [7].

This paper contributes to the study of interplanetary space-
craft safing events by developing models as a means to
construct a predictive framework for the inoperability rate of
future spacecraft. The formulation of the first type of safing
event model is developed by adapting a single and mixed
Weibull distribution as a parametric class of models. Then, a
generalized model using Gaussian Process (GP) models with
varying mission inputs is trained and tested by selecting an
appropriate covariance function, inference method, training
data ratio, and noise parameter. Each model is then adapted
and implemented into the mission simulation framework,
whereby mission specific inputs are defined for the GP model.
The results from the inoperability rates are then compared
amongst the presented models for the Next Mars Orbiter
mission concept. Thus, based on the frequency and outage
time of a safing event simulated for a mission by the models,
mission designers can gain insights on inoperability, poten-
tially helping shape tracking, safing recovery, and missed
thrust requirements.

2. SIMULATION & MODEL ARCHITECTURE
In order to best quantify safing events, a simulation ar-
chitecture that can simulate inoperability rates for missions
concepts is developed. Each simulation includes a model that
provides prediction for the time-between-events and recovery
durations of a safing event. Two main models are considered
in this paper: a Gaussian Process model and a Weibull
Distribution model. The dataset and architectures for the
overall simulation and architectures for each model is detailed
in this section.

Safing Event Dataset

The safe mode event database containing Time-Between-
Events (TBE) and Recovery Duration (RD) collected by
Imken et al. is utilized in the same manner with the same
set of assumptions: no cascading safing events, recovery
durations from Galileo discarded, all events from the same
population, and others included by Imken et al. [3]. One
important assumption is that the time-between-events and
recovery durations for each safing event are assumed to be
independent and identically distributed (iid). The rationale
for this assumption is that it simplifies the analysis for a first
investigation, although this may not be completely realistic
if cascading safes are included. Generally, this assumption
enables the use of classical statistical methods to analyze the
dataset and subsets and make predictions. Additionally, no
data is assumed to be censored.

Each mission and its associated safing events are categorized
by four mission classifiers: Mission Class/Category, Mission
Destination, Mission Duration, and SEP as seen in Table 7 in
the Appendix. Each safing event is further classified by the
safing event cause and by the location of the safing event in
mission phase. The following list (including abbreviations)
shows all the possibilities that a safing event can be classified
under, and Figure 1 shows a histogram of the number of
safing events for each classifier. The reason the number of
valid safing events differ for time-between-events and recov-
ery duration is due to the fact that certain recovery durations
were not located; the assumptions for omission are given by
Imken et al. [3]. Note that TBE and RD are independent of
one another.

(1) Mission Class: Small, Medium, Large;
(2) Mission Destination: Asteroid / Comet, Heliophysics /
Exoplanet, Kuiper Belt Object, Moon, Mars, Saturn, Jupiter;
(3) Mission Duration [years]: 0-5, 5-10, 10-15, 15-20;
(4) Solar Electric Propulsion: Yes, No;
(5) Safing Event Cause: Environmental, Hardware, Opera-
tions, Software, Unknown; and
(6) Safing Event Mission Phase: Cruise-Primary, Cruise-
Extended, Orbit-Primary, Orbit-Extended.

The motivation to categorize the data into such subsets is
two-fold; one to enable the statistical and parametric analysis
as done by Pujari and Lightsey [7], and two to use these
as general inputs to the predictive model. A disadvantage
of specializing the data in this manner is that it reduces the
sample size for that mission classifier. By already having a
limited dataset due to few interplanetary missions, creating
subsets of the data with a low numbers of events could give
larger uncertainty to certain models. Many machine learning
algorithms require large number of datasets to train them
successfully.
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Figure 1. Mission Classifier Safing Event Histogram

Specific criteria are used to group missions into each clas-
sifier. For mission class, typical mission cost & mass are
factored into categorizing missions. For mission destination,
seven total destination categories are created based on the
typical mission environment. All categories except three have
more than one mission per destination category; the Moon,
Saturn, and Kuiper Belt Object had only one mission’s safing
event for those categories.

The mission duration is categorized based on their launch
date until the end-of-life or current date. They included both
primary and extended mission phases. Three Mars landers
and one failed Mars Orbiter only included the cruise phase of
their mission as part of the safing event database. For solar
electric propulsion, the category simply stated whether SEP
technology is baselined as part of the mission or not. For
safing event cause and mission phase, the bins are determined
based on the entry logs of safing events as determined by
Imken et al. [3].

Mission Simulation Architecture

A Monte Carlo analysis simulating safing events helps simu-
late the duration of a safing event and how much time would
pass between each event for future mission concepts. The
type of model specified impacts the distribution predicted.
For this paper, two main classes of models are considered:
a class of Weibull distributions (discussed in a future sub-
section) and a trained Gaussian Process model (discussed
in the following subsection). Using the established mission
classifiers, certain inputs are fixed for that mission, while
others can use elapsed time of flight if inputs vary over

time. This simulation bounds the impacts of safing events
through the use parametric and supervised-learning models
that use various mission inputs in order to best predict time-
between-safing-events and recovery durations. By leveraging
the simulation work done by Imken et al., the prediction
model framework is incorporated into the existing simulation
shown in Figure 2.

The maximum inoperability rate (MIR) is the primary quan-
titative result from a single Monte Carlo simulation. As
defined by Imken et al. and utilized with the same set of
assumptions in this paper, inoperability rate captures how
long a spacecraft enters an unplanned shutdown due to an
anomaly (inoperability period) and the percentage of time
it occupies during a thrust arc duration. The inoperability
period is defined as the time when the safe mode event occurs,
according to spacecraft’s mission elapsed timer, and when
the spacecraft has resumed nominal operations after exiting
from safe mode. This period includes the discovery delay that
arises from a set ground pass cadence, investigation, analysis,
and corrective action once a safing is realized, any extra
human factor delays, and finally the time-of-flight necessary
for a command to reach back to the spacecraft. A convolution
of the outage time and number of events, the inoperability rate
for each Monte Carlo run is combined to generate a prob-
ability distribution of the maximum inoperability rate. The
MIR is reported as a percentile pulled from this distribution,
usually as the 95th, 99th, or 99.7th percentile, as dictated by
mission architecture risk.

Gaussian Process Model Architecture

The first type of model utilized in predicting time-between-
safing-events and recovery durations independently is the GP
model. In a generalized manner, this section discusses the
data preparation required, overall architecture, and inputs of
the GP model.

Dataset Conversion for GP Model—In order for the mission
classifier inputs to be correctly interpreted by the GP model,
they must be converted from the categorical string inputs to
numerical values. The six categories defined earlier plus the
mission elapsed percentage (MEP) are encoded into a total
of 25 mission classifiers into a binary format. First, each
mission classifier category is split up based on the number
of mission classifiers. Since there is no ordinal relationship
between each mission classifier in a category, the one-hot
encoding methodology is applied. This is the case where a
new binary variable is added for each unique value. Integer
encoding is employed when sequential integers are applied
to a particular category. By assuming a natural ordering
between classifiers, poor performance or invalid results such
as predictions between classifiers, resulting in a non-integer
value could occur by utilizing integer encoding. Therefore,
one-hot encoding is applied to each mission classifier cate-
gory and then those binary numbers are concatenated together
to form a ‘chromosome’ where all inputs are specified in a
binary format. For example, the mission class category is
encoded as seen in Table 1.

Table 1. Mission Class One-Hot Binary Encoding

Mission Class Binary
Small [1 0 0]

Medium [0 1 0]
Large [0 0 1]

A similar encoding scheme is included for all other categories
(mission duration, mission destination, safing event cause,
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Figure 2. Safing Event Monte Carlo Simulation Block Diagram. Blue boxes indicate subprocesses, green is main
simulation output, black boxes are decisions, and gray is the simulation start

and safing event mission phase). For the solar electric propul-
sion category, a single number is used to represent whether
a mission had SEP on-board or not: 1 or -1, respectively.
Prediction performance may be better handled with a nonzero
binary representation for only two categorical inputs. The
mission elapsed percent is also included as the last category
as part of the chromosome for input purposes. This is a
continuous, positive real number valued from 0 to 1 and thus
did not need to be converted to binary. Concatenating each
category’s representation together, a total of 25 numbers (24
binary and 1 real-valued) represented the input space that is
used as inputs to the GP model, shown in Equation 1.

GP input = chromosone

= [Class,Destination,Duration,SEP,Cause,Phase,MEP]

= [1 : 3, 4 : 10, 11 : 14, 15, 16 : 20, 21 : 24, 25]
(1)

GP Model Simulation Architecture—Due to the flexibility in
the simulation framework, the trained GP prediction model
framework is incorporated into the existing simulation shown
in Figure 2. Figure 3 shows the developed GP model
framework such that it would be very easy to incorporate
into the existing simulation. The blue boxes in Figure 2
show where the GP model framework is incorporated into
the full mission simulation in a “plug-and-play” manner.
From the overall simulation to the GP model, the current
mission elapsed percent (MEP) for that particular iteration
only needs to be passed as an input. Then, using the MEP
and a few other fixed inputs, the GP model’s categorical
inputs are created. Using the one-hot encoding scheme
described earlier, the conversion from categorical to binary
inputs is made. Once the training of the particular GP
model (whether it is is for TBE or RD) is done, the training
data and optimized hyperparameters are used to generate a
prediction with a certain mean and variance. From that, a
time is randomly generated using the computed mean and
variance from a normal distribution (normrnd in MATLAB).
Since the GP model is not bounded to be strictly positive, it
is possible to obtain negative time values; thus the normal
distribution is resampled until a positive value is obtained.
Thus, a portion of the distribution to obtain a valid sample
gets smaller due to the skewed distribution computed. This
is discussed in further detail in the implementation section of Figure 3. Gaussian Process Model Block Diagram
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the GP model. In its current form, the GP model shows that
the percentage of probability mass that can be predicted as
negative is small and thus this assumption enables the use of
a traditional covariance and likelihood functions which have
better convergence properties.

The seven categorical inputs that the GP model requires are
listed in the inputs parallelogram in Figure 3. The first four
inputs are fixed and constant based on the candidate mission
that is be simulated. Safing event cause and safing event
mission phase are a function of the mission elapsed percent.
Once a safing event cause is determined in the first call to
the time-between-events GP model, it is passed along to the
recovery duration GP model such that the cause remains the
same for each event. The safing event mission phase is also
fixed based on the duration of user-supplied mission phases.
These parameters are easily tunable for each mission and
more complex logic and time-varying inputs can be applied.

Weibull Distribution Model Architecture

The other type of model used in the simulation framework
is a class of Weibull distributions. Imken et al. discusses
the use of a Weibull distribution to parametrically represent
the safing event dataset [3]. Similar to the GP model, two
Weibull distributions are created: one for the time-between-
events and the other for recovery durations.

Shown in Figure 4, the Weibull model flowchart shows how
a time-between-event or recovery duration is computed. This
model also fits in a “plug-and-play” manner into the mission
simulation. The input describes what type of Weibull model
is utilized prior to the Monte Carlo run. During the training
portion of the model, each dataset and the number of Weibull
parameters are specified, and the optimal Weibull parameters
are computed. This training portion is only required for the
first time when a new dataset or a different number of Weibull
parameters are specified since the optimal values will not
change. Then, regardless of the type of Weibull distribution
used and given the optimal parameters, a single random
value from a uniform distribution is selected and the Weibull
inverse CDF is applied for each run. Essentially the model
is a pseudo-random number generator that returns a Weibull
distributed time-between-event and recovery duration based
on the scale and shape parameter(s).

In the architecture considered for this paper, a total of four
Weibull distributions are defined based on the two datasets
(TBE and RD) and the two definitions of the Weibull dis-
tributions based on number of parameters (two params. &
five params.). One key difference from the GP model, is that
the Weibull distribution model is agnostic to mission inputs
and is only sensitive to the dataset. Thus, for any mission
concept, the full safing event dataset is considered applicable.
The underlying assumption in this model is that all events are
assumed to be equal in nature.

3. GAUSSIAN PROCESS MODEL
While the GP model and Weibull model architectures pre-
sented in Section 3 show how they work at high level, for-
mulating and adapting the models to the appropriate dataset
significantly shapes the predicted inoperability rates. Further-
more, the training portion of the model involves the selection
of various parameters, data, and functions, which is the most
important step to creating a successful predictive model. This
section explores the formulation, adaptation, training, and
assumptions for the GP model.

Figure 4. Weibull Distribution Model Block Diagram

Supervised learning algorithms, a specific class of machine
learning, infer a mapping function based on user-provided in-
put/output training data to predict new outputs given a certain
input. A few supervised learning algorithms are considered
before settling upon the use of a Gaussian Process model.
These algorithms are typically divided into classification,
clustering, or regression problems; modeling TBEs and RDs
is a classic regression problem. The algorithms considered
include artificial neural networks, Gaussian Process models,
and regression trees. Due to the number of mission classi-
fiers and possible permutations of each category’s classifier
exceeding the available data, a regression tree would be too
expansive to fully capture all possible scenarios. Rather
than a deterministic output that an artificial neural network
produces, a GP model gives a mean and variance based on
the confidence the model has for a new prediction. Adapted in
this paper, the GP model uses a nonparametric kernel-based
probabilistic models to take a prior distribution for a given
training dataset and obtain a posterior distribution for a set
of new inputs [8] [9]. A GP model can perform better with
lower amounts of data because of the flexibility in adopting
various functions in its computation. Furthermore, it showed
promise as a regression algorithm due to its Bayesian frame-
work rather than ‘black-box’ approach of neural networks.
Therefore, by modeling time-between-events and recovery
durations as a stochastic process that gives a posterior proba-
bility distribution, a GP model is chosen to learn and simulate
data for future safing events.
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Theory & Assumptions

One key assumption is that the arbitrary set of inputs, either
TBEs or RDs, evaluated over a function is one sample from
a multi-variate Gaussian distribution. In mathematical terms,
this is defined using Bayes Theorem as seen in Equation 2
where tr refers to the training data [9].

P (Y |X,Xtr, Ytr) ∼ N (YtrK(Xtr, Xtr)
−1K(Xtr, X),

K(X,X)−K(X,Xtr)K(Xtr, Xtr)
−1K(Xtr, X))

(2)

whereK(x, x∗) is the kernel function that maps an input from
x to x∗. The impact of this assumption is how the posterior
distribution of data is modeled. While typical reliability anal-
yses have shown Weibull distributions best modeling failure
events, those analyses are not able to capture inputs as is
possible by a GP model. Noise is also added on the observed
target values based on the confidence of the ‘measurements’
for safing event TBEs and RDs. Thus, another assumption
made is that the noise processes have a Gaussian distribution
for each observation n, seen in Equations 3 and 4, where β is
a hyperparameter representing the precision of the noise. This
assumption is made off the basis of the central limit theorem;
where noise is assumed to be random and the aggregate of
many random events tends to reflect a normal distribution.

tn = yn + εn (3)

P (tn|yn) ∼ N (tn|yn, β−1) (4)

During training there are a few fixed inputs and assumptions
made to keep training computationally manageable. The
maximum number of conjugate gradient steps during each
minimization is limited to 10,000. For all cases, a stan-
dard deviation of two is observed because it encompasses
95.5% of all possible values in a normal distribution. A
2σ value seemed adequate as a starting point to capture
most scenarios for safing event predictions. Although certain
training methodologies include a validation step to further
tune the model while performing the minimization, no such
validation is done. The safing event dataset is much smaller
when compared to conventional supervised learning datasets.
Therefore, having another subset of the total data go towards
validation, in addition to the testing dataset, would reduce the
available data for the training subset thus limiting the accu-
racy of training the GP model. For that reason, no validation
work has been performed on the GP model presented here
and will be investigated further in the future.

Training the GP Model

Rasmussen and Nickisch developed a MATLAB toolbox that
enables users to train, predict, and deploy Gaussian process
models [10]. A library of various covariance functions, mean
functions, inference methods, and likelihood functions are
available enabling easier implementation of a GP model [11].
The GP model is first trained by taking the full data set and
randomly dividing it up into training and testing data. Then,
it is initialized by setting the maximum number of conjugate
gradient steps, the mean function, the covariance function,
the likelihood and inference functions, and the initial values
for the hyperparameters (covariance, mean, and likelihood).
Selection of each of these values is very important, as it
dictates how the GP model will learn the safing event data.
The intricacies of the selection process are detailed by Pujari
and Lightsey, but a summary is included in subsections
below [7]. The optimized hyperparameters are computed

by minimizing the negative log-marginal-likelihood based off
the training data. Using those hyperparameters, the testing
data is provided into the GP model in order to compute
the regression loss between the testing data and the pre-
dicted outputs. Through iteration and mathematical intuition,
appropriate functions are selected, training data extracted,
and hyperparameters initialized as to minimize the overall
regression loss. Two separate GP models are developed:
one for the time-between-events and another for recovery
durations.

Automatic Relevance Detection—When training a GP model
in order to find the optimal hyperparameters, the maximum
likelihood function is computed to find the correlation length-
scale parameter [8]. Rasmussen and Williams [9] extended
this by incorporating a separate length-scale parameter for
each input variable. While computing the optimal parame-
ters, the relative importance of different inputs can be inferred
from the data based on the value of the length-scale parame-
ter. This methodology is called automatic relevance detection
(ARD). Thus, it is possible to detect whether certain input
variables will have a large or small effect on the predictive
distribution because the ‘weight’ parameter is correlated with
the normalized relative importance. The ARD framework
is easily incorporated into various kernel functions. For
safing events, this framework mathematically helps identify
whether certain mission classifiers have a greater importance
on predicting future safing event TBEs and RDs.

Minimization Criteria—The criteria used to evaluate differ-
ences between models during training are the mean square
regression losses. Two main figures of merit are computed:
mean regression loss and variance regression loss. Minimiz-
ing the distance between the predicted mean value and the
actual testing data is denoted as the mean regression error, as
shown in Equation 5.

errmean = Ytest − µtest (5)

Obtaining the smallest variance away from the predicted
mean is denoted as the variance regression error, as shown
in Equation 6.

errvar = (µtest + σ ×
√
V artest)− Ytest (6)

Then, the mean square error is computed for both mean and
variance errors as shown in Equation 7 where j is either the
mean or variance, i is the testing data number, and Ntest is
the total number of testing data points evaluated.

MSEj =
1

Ntest

Ntest∑
i=1

(errj)
2 (7)

Having a low mean regression loss indicates that the center of
the predicted posterior distribution matches with the supplied
testing output. A low variance regression loss indicates that
the confidence of the GP model for a particular set of inputs
is high.

Selection of Noise Parameter—In many instances, the data
collected may not be perfectly captured and therefore may
have some uncertainty associated with its values. By includ-
ing noise on the observed target values as seen in Equation 3,
the uncertainty can be accounted for each time the spacecraft
enters safe mode and how long it stays in safe mode. Thus,
the stochastic noise process in a GP can be thought of as a
signal-to-noise parameter of the observations for the safing
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event data collected; if greater uncertainty existed for a
particular measurement, a smaller SN ratio is used. In a
GP model, the noise standard deviation parameter (SN) is
incorporated into the likelihood function as a hyperparameter.

For both the time-between-events GP model and recovery
duration, SN values sampled ranged from 0.01 to 100 days.
Since there is a good amount of confidence with the data
collected and its sources, it is deemed that a noise standard
deviation value for time-between-events would be 0.1 days.
However, the confidence in the observations for when a
spacecraft entered and exited is lower than for time-between-
events. This is due to the fact that recovery periods doc-
umented include both subjective and objective values and
certain values are not well documented. Therefore, a noise
standard deviation value of 1 hour is deemed appropriate for
the level of confidence in the duration values collected.

Selection of Training Ratio—For the GP model, it is assumed
no validation dataset would be used; therefore, a training ratio
is selected, and the remaining percentage of data would be
used for testing. Possible training ratios considered are: 50%,
60%, 70%, 80%, 90%. Since dividerand MATLAB function
randomly splits the full dataset, 16 iterations per training
ratio are computed as to determine what ratio would yield
the lowest average and minimum MSEmean, MSEvar, and
negative log-marginal-likelihood (nlml) values. This is a
brute-force methodology to remove the randomness associ-
ated with assigning different training data per iteration. 16
iterations are assumed to be sufficient enough for computa-
tional tractability purposes; however, more iterations could
be included for future training purposes. Finding the smallest
average values is more important because it showed greater
consistency for that training ratio run across the 16 runs.

Thus, for the time-between-events GP model, a 70% training
ratio is selected as the average MSEmean and an average
MSEvar are the lowest across different percentages. For
the recovery duration GP model, an 80% training ratio is
selected that had the lowest average MSEmean and an av-
erage MSEvar. Since there are fewer valid data entries for
the recovery duration dataset, it makes sense that a greater
percentage of data is needed to accurately train the model.

Selection of Covariance Function—A covariance function is
one of the core ways a prior distribution is determined. Since
the training data are randomly selected, 16 iterations are again
computed for each covariance function evaluated and the av-
erage and minimum MSE across each iteration for the mean
and variance are computed. Five possibilities are considered
as viable covariance functions: squared exponential, Matern
with ν = 1/2, 3/2, 5/2, and the rational quadratic. Note that
ARD is assumed for all covariance functions since it provided
a means to understand the cross-correlation in the input space
and appropriately weight each input (mission classifier) while
training the model.

For the time-between-events and recovery duration GP mod-
els, the Matern covariance function with ν = 3/2 with ARD
distance measure is selected. For the TBE results, although
the computed MSE for the mean had a median value com-
pared to other covariance functions, the MSEvar is the
second lowest. Other covariance functions had their strengths
in either a minimal MSEmean or MSEvar, but the Matern
3/2 gave the greatest balance between minimizing mean and
variance MSE errors. For the RD results, the computed
MSEmean had a median value compared to other covariance
functions, but the MSEvar is the lowest and thus selected.

One reason why the Matern function also may be the optimal
choice is because it contains the absolute exponential kernel,
which may be able to better capture physical processes due to
its finite differentiability [9].

Selection of Mean Function—A mean function typically helps
specify where the expected posterior distribution’s mean
would lie. For both GP models, initially a mean function
is not added as to not constrain the hyperparameters during
minimization. The results show that having a constant mean
function gives lower mean squared errors. Thus, a constant
mean function with an initial value of 200 days is set before
the minimization for time-between-events and for recovery
duration, the initial value is set to 35 hours. A positive mean
function created a non-symmetrical distribution around zero
such that the probability of predicting a negative value would
be far lower; essentially the posterior distribution is skewed
towards positive values.

Selection of Likelihood & Inference Method—As stated by
Rasmussen et al., “The likelihood function specifies the prob-
ability of the observations given the GP and hyperparameters.
The inference methods specify how to compute with the
model, i.e. how to infer the (approximate) posterior process,
how to find hyperparameters, evaluate the log marginal like-
lihood, and how to make predictions” [10]. For a Gaussian
likelihood function, an exact Gaussian inference method is
used; however, for other likelihoods (e.g. Gamma, Weibull,
etc.), a Laplace approximation to the posterior Gaussian
process must be used. The likelihood functions that are
evaluated included: Gaussian, Gamma, and Weibull. The
latter two likelihoods are chosen over others to be evaluated
because they apply to only strictly positive data, as is the case
with the given time data.

For the time-between-events GP model, the Gaussian like-
lihood function had the second lowest MSEmean and a
median MSEvar. For the recovery duration GP model, the
Gaussian likelihood function had the median MSEmean and
a low MSEvar. While the Weibull likelihood function had
a lower MSEmean, convergence for the algorithm is limited
since the Gram matrix often became singular. The predictions
from a Weibull likelihood would be invalid and thus the
Gaussian likelihood and inference method is selected. Future
work is necessary to adapt a Weibull likelihood function to
properly converge.

Fully Trained Gaussian Process Model

A summary of the parameters and functions selected for each
GP model is shown in table 2. This table also includes the
performance metrics that are computed with the particular
testing data. While the lowest errors are chosen when se-
lecting parameters during training, the performance metrics
still illustrate that there is a significant amount of error in
prediction. This is due to a number of factors such as a
limited dataset, refinement in mission classifier definition,
and the various assumptions made on the dataset. Moreover,
these parameters are in no means the optimal configuration
for predicting safing events; this is a preliminary result to
establish the framework necessary to use GP models for
prediction of time-between-events and recovery durations.
The usage of other likelihood functions such as a Gamma or
Weibull is possible within the Gaussian Process framework,
referenced as generalized linear models, and could help tackle
the assumptions made on the dataset and noise. Future studies
focusing on training the GP models will be required to further
reduce the mean square errors and negative log-likelihood.
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Table 2. GP Model Summary

Parameter / Function Time-Between-Events Recovery Duration
Noise Parameter 0.1 days 1 hour
Training Ratio 70% 80%
Covariance Function Maternard: ν = 3/2 Maternard: ν = 3/2
Mean Function Constant: 200 days (initial) Constant: 35 hours (initial)
Likelihood Function Gauss Gauss
Inference Function Gaussian Gaussian
MSEmean 69365 1261
MSEvar 202028 12869
nlml 865 514

Testing the GP Model

Once a model is trained, plots are generated to show how
well the testing data is predicted by the GP model. A discrete
number of testing points are evaluated by the GP model,
which represented the 1−TrainingRatio of the full dataset.
The x-axis shows those training points numerically ordered
on a linear scale; however, each point is actually a multi-
dimensional representation of the input space (7 categori-
cal/25 binary inputs). The rise and fall to the mean line shows
how the GP model reacts to changes in particular inputs. The
2σ boundary shows the tail-end of the normal distribution
centered around the mean; if the boundary is smaller, then
the model has greater confidence in its prediction since it may
have seen such testing data during training. Also, since the 2σ
boundary encompasses 95.5% of all data when it is normally
distributed, it is possible certain TBE or RD testing points
would lie outside of that boundary.

The outputs of GP model at a particular testing data point
are the predicted mean and variance. In order to make a
prediction, a single random value from a normal distribution
using the computed mean and variance is generated. Since
the testing data y-axis is in units of time, it is not realistic to
predict negative times. If the 2σ boundary can be negative
and a prediction made is negative, then new predictions are
made until a positive value is obtained. While this method-
ology may invalidate one sided tail of the distribution, the
likelihood of obtaining a negative value remains low because
the distribution is skewed towards positive values with a
positive mean. Quantifiable estimates of the percentage mass
of negative predictions is difficult to generate deterministic
values since it varies on many parameters such as the inputs
and testing data used. Implementation of the Gamma or
Weibull likelihood function is necessary to tackle this draw-
back of the currently trained GP model to eliminate prediction
of negative numbers.

Figure 5 shows a plot of testing dataset used for time-
between-events comparing the actual output versus the pre-
dicted. The mean line significantly varies between 150 -
600 days elapsed between events as it is perturbed by the
inputs the testing data contains. This indicates that the TBE
is sensitive to the inputs, which is the desired effect of using
a GP model. For certain test data, the variance grows and
shrinks based on whether or not the GP model can make an
accurate prediction based on its training data and covariance
weights. There are a few points that lie outside of the 2σ
boundary, but as mentioned, two standard deviations only
contain 95.5% of all data. A Monte Carlo analysis would
be required to better quantify how many points outside the
2σ are not sufficiently captured.

Figure 6 shows a plot of testing dataset used for recovery
duration for safing events. The observed mean value ranges
from 40 hours up to 130 hours as the testing data changes
the predictions of the model. While there is sensitivity to the
inputs, the predicted RD has a large variance and thus uncer-

tainty that can be attributed to the high noise parameter used
during training. Note that for a few testing data points, the
recovery duration is close to zero, and the mean predictions
also shift closer to those values. The RD model as compared
with the TBE model predicts fewer changes to the mean but
with a greater relative variance for each point.

Figure 5. Time-Between-Events GP Model using Testing
Data

Figure 6. Recovery Duration GP Model using Testing
Data

4. WEIBULL DISTRIBUTION MODEL
Similar to the GP model implementation section, this section
explores the formulation, adaptation, training, and assump-
tions for the Weibull model. While the Weibull model
architecture discussed in a previous section is generalized
for any type of Weibull distribution to be adapted into the
simulation framework, a total of three types of Weibull dis-
tributions are considered for this paper. Distributions can be
sub-classified based on the number of parameters used. In
this case, Weibull distributions defined by two parameters,
Single Weibull, and five parameters, Weibull Mixture, are
considered. Distributions can also be sub-classified based
on what dataset is used for parametric representation. The
Single and Mixed Weibull distributions assume the full use of
any valid entries from the time-between-events and recovery
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durations datasets. The Binned Weibull is a single Weibull
distribution that only uses the entries for a particular mission,
input, or other category that is a subset of the total dataset.

Definitions & Theory

A Weibull distribution is commonly used in reliability analy-
ses due to its flexibility in being able to model a dataset with
just two parameters: the shape, β, and scale, θ. The shape
parameter is a dimensionless, positive parameter and the scale
parameter is in the units of time and also positive. Equation
8 shows the reliability function and Equation 9 shows the
cumulative distribution function (CDF) [12].

R(t) = exp

[
−
(
t

θ

)β]
(8)

F (t;β, θ) = 1−R(t), ∀ t ≥ 0 (9)

A single Weibull distribution can only show a single trend
from the dataset whereas more complex fits may represent
interior trends in the data better, at the risk of overfitting and
losing qualitative insight. Hence, a finite mixture distribution,
which is a linear combination of multiple distributions, can be
used.

In this analysis, a combination of two Weibull distributions
with weights for each distribution are considered. This is
done to understand if the data exhibited bi-modal behavior
and is a better fit than a single Weibull distribution. This paper
will henceforth reference the single Weibull distribution as
the ‘1-Weibull’ or ‘Single Weibull’ and the two Weibull mix-
ture distribution as ‘2-Weibull’ or ‘Mixed Weibull’. Equation
10 shows the reliability function for the 2-Weibull distribu-
tion; the CDF remains the same as in Equation 9.

R(t) = (α) exp

[
−
(
t

θ1

)β1
]

+ (1− α) exp

[
−
(
t

θ2

)β2
]

(10)
where: 0 ≤ α ≤ 1, θj > 0, βj > 0, all t ≥ 0.

Optimal Parameters

There are multiple ways to determine whether a certain scale
and shape parameter of a Weibull distribution fits the data
as best as possible. A Weibull plot is one that linearizes the
axes such that the data fits the estimated Weibull reliability
R̂(t), in a linear manner. Data aligned along the R̂(t) line
in the [ln(t); ln(-ln(R(t)))] space is considered an appropriate
fit for a Weibull distribution using this graphical estimation
technique.

However, a more rigorous test that is able to deduce optimal
parameters is the maximum likelihood estimation (MLE)
methodology. The basic concept involves formulating a like-
lihood function and then finding parameter(s) that maximizes
that likelihood function. Saleh and Castet define the likeli-
hood function as,“the probability of obtaining or generating
the observed data from the chosen parametric distribution”
[12]. The full derivation is detailed in Chapter 3 of Saleh and
Castet’s book [12]. For convenience, the likelihood functions
formulated for the 1-Weibull and 2-Weibull are shown in the
equations below. The natural logarithm of the likelihood
function is taken to yield the log-likelihood equation for the

1-Weibull distribution, seen in Equation 11.

l(θ) = l(u, b) = lnL(θ) = −

(
n∑
n=1

δi

)
ln b+

n∑
n=1

(δizi−ezi)

(11)
where:yi = ln ti, u = lnθ, b = β−1, zi = (yi − u)/b
The log-likelihood equation for the 2-Weibull is then defined
as a linear combination of where a weighting parameter, α,
as factored into the PDF (f ) and reliability (R) functions as
seen in Equation 12.

l(θ) =

n∑
i=1

[(δi) ln f(yi,θ) + (1− δi) lnR(yi,θ)] (12)

f(yi,θ) = (α)f1(yi, u1, b1) + (1− α)f2(yi, u2, b2) (13)

R(yi,θ) = (α)R1(yi, u1, b1) + (1− α)R2(yi, u2, b2) (14)

where: yi = ln ti, uj = ln θj , bj = β−1
j , zi = (yi − u)/b.

The optimal parameters, θ̂, can be computed using traditional
optimization methods. Maximizing l(θ), or equivalently
minimizing −l(θ), is done using a quasi-Newtonian op-
timization algorithm − Broyden-Fletcher-Goldfarb-Shanno
(BFGS), which does not require an explicit gradient formula-
tion. The built-in MATLAB function fminunc is able to per-
form this unconstrained minimization of the log-likelihood
function. Certain convergence issues can arise such as finding
local minima or not converging if the initial guess is in an
unstable region. The initial parameters used in the optimizer
are found using trial-and-error and best-judgment. Future
methodologies could include more robust ways such as shift-
ing and scaling the data to compute initial parameters. This
would improve upon convergence properties and help to find
global optimal solutions.

As used in Equations 8 to 10, each t value corresponds to
either TBE or RD. Thus, there are four reliability functions
formulated: two for when t = TBE and two for when t =
RD. Figures 7 and 8 show the CDF, Weibull probability
plots, and optimal parameters for the 1-Weibull & 2-Weibull
distributions for TBE and RD, respectively. The first and third
subplot of each figure show the CDF; that is the cumulative
probability that either a safing event will occur or if a safing
event recovery is completed. The maximum likelihood es-
timation (MLE) methodology outlined in the theory section
is utilized to compute the optimal model parameters for each
CDF. The TBE CDFs show that there is a 80% probability us-
ing the 1-Weibull and a 78% probability using the 2-Weibull
that the next event will have occurred in 400 days or fewer
after the previous safing event or start of mission. Similarly,
the RD CDFs show that there is a 71.5% probability using
the 1-Weibull and a 74.5% probability using the 2-Weibull
that the recovery duration of a spacecraft in safe mode will
end in 72 hours or fewer. Since the 1-Weibull and 2-Weibull
CDFs generally have similar predictions, certain criteria are
explored in later sections to evaluate a preference between
these CDFs.

The second and fourth subplots show probability plots for
a 1-Weibull and 2-Weibull distribution respectively. Proba-
bility plots are used to graphically highlight how well data
fits against each model. Since the Weibull distribution is
linearized across its axes, if the data also is linear with the
same slope, then the Weibull distribution is a good match. If
there is curvature in the data away from the Weibull model
line, then the probability plot indicates either a different
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Figure 7. 1-Weibull & 2-Weibull Optimized Parameters, CDFs, and Probability Plots for Time-Between-Events

Figure 8. 1-Weibull & 2-Weibull Optimized Parameters, CDFs, and Probability Plots for Recovery Duration
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distribution may fit better or a mixed distribution may be
more ideal. Thus, for both 2-Weibull probability plots, the
mixed distribution is better able to capture the curvature in
the data from the first and second half due to the added
degree of freedom. By looking at corresponding CDFs, from
a graphical perspective, the 2-Weibull distributions fits the
empirical CDF better. This behavior is expected since more
degrees of freedom mean a better fit within the data bounds.

Verification of the 1-Weibull and 2-Weibull MLE implemen-
tation in MATLAB is conducted by using the Weibull++
software by Reliasoft Corporation. This industry standard
software was chosen as it specializes in the analysis of
reliability data. The percent difference between each pa-
rameter computed is no greater than 5% for all except one
parameter, which had a 10% difference. This difference
is not considered significant because the other goodness-
of-fit parameters define how well these values fit the data.
Thus, the optimal Weibull distribution parameters for both
the 1-Weibull and 2-Weibull validated from the Weibull++
software give confidence in the results that the MATLAB
implementation of maximizing a log-likelihood function is
correct.

Goodness of Fit

Once the optimal parameters are found for both the 1-Weibull
and 2-Weibull distributions as described above, a criteria is
necessary in order to evaluate whether either distribution is
a good fit both in an absolute and relative manner. Two
criteria are used to determine the goodness of the fit to the
empirical data: Mean Square Error and Akaike Information
Criteria. The MSE of a predictor Ŷ is defined as the average
of the square of errors/deviations. However, in order to
accurately judge the level of overfitting the model, a different
criteria than MSE is needed. When estimating finite Weibull
mixture distributions for reliability purposes, Elmahdy and
Aboutahoun used the Akaike’s Information Criteria (AIC) as
a goodness-of-fit criterion [13]. AIC estimates the relative
information lost in a given model that is derived from the data
and trades off fit versus simplicity; the AIC value is penalized
if more parameters are added to a given distribution. AIC
also only reports the relative quality of one model to another
but gives no warning of absolute fit. A goodness-of-fit
metric is important to perform a parametric analysis because
it describes how well that model fits the set of data in a
statistically rigorous manner.

From Figure 9 for the time-between-events, both the 1-
Weibull and 2-Weibull CDFs remain reasonably bounded to
each other. Although harder to tell from the CDF plots,
the probability plots show how the slope of the 2-Weibull
is initially lower than that of the 1-Weibull, but also curves
upwards near the end of the dataset to better approximate
it. The dispersion of the residual around the empirical CDF
shows that the 2-Weibull distribution is a better fit than the 1-
Weibull since the 2-Weibull MSE is 3.6 times better than that
of the 1-Weibull. However, computation of the relative AIC
shows that the 2-Weibull distribution overfits the TBE data.
Even though the MSE and AIC values produce opposing
conclusions, the drawbacks of MSE hinder it from prevailing
over the conclusion from AIC. Furthermore, this indicates
that while the data may have some, bi-modal behavior in
the data, it comes at a cost of overfitting the model and thus
loses validity when choosing the 2-Weibull distribution for
representing the TBE dataset.

Figure 9. 1-Weibull & 2-Weibull Distributions
Comparison for Time-Between-Events

Figure 10. 1-Weibull & 2-Weibull Distributions
Comparison for Recovery Durations
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While not as close together as TBE, Figure 10 for the re-
covery duration dataset shows each CDF within reasonable
bounds of the empirical dataset. The probability plot shows
how the 2-Weibull is able to capture the bi-modal behavior in
the data since it contains varying slopes to better fit the data.
The residual subplot shows how the 2-Weibull has a more
symmetric distribution of the residuals and smaller variance
around 0 versus the 1-Weibull which has multiple peaks.
From the goodness-of-fit computation, both the MSE ratio is
greater than 1 and the AIC difference is positive, indicating
that the 2-Weibull is a better representation of the recovery
duration data and that it does not overfit the data. Thus, for
future prediction purposes, mixed 2-Weibull distribution to
predict recovery durations should yield more accurate results.

Summary of Weibull Models

Given the definitions & theory of the three types of Weibull
models, how the optimal parameters were computed for each
model type, and the evaluating the goodness-of-fit on the
dataset, a summary of each of the three optimized Weibull
Distribution models is shown below. Since this analysis
constitutes the ‘training’ portion of the models before the
first run, a random number can be generated using the known
optimal Weibull parameters as discussed in the architecture.
Note that these fits are subject to change as new data is added
and current records refined.

Single Weibull Distribution Model—The optimal Weibull pa-
rameters computed for the time-between-events and recovery
duration datasets for the 1-Weibull are used in the Single
Weibull mode. These parameters can be seen in Table 3.

Table 3. Single Weibull Distribution Model Parameters

Dataset Shape (β) Scale (θ)
TBE (days) 0.86737 227.8951

RD (hrs) 1.144 59.0168

Mixed Weibull Distribution Model—Recall that for a dataset
that a MSE ratio greater than 1 and a positive AIC difference
implies that the 2-Weibull is a better fit than the 1-Weibull dis-
tribution. This case was true for the recovery duration dataset
but not for the time-between-events dataset. Therefore, the
optimal Weibull parameters for the Mixed Weibull model
are computed for the time-between-events dataset from the
1-Weibull and for the recovery duration dataset from the 2-
Weibull. These parameters can be seen in Table 4.

Table 4. Mixed Weibull Distribution Model Parameters

Dataset β1 θ1 β2 θ2 α
TBE (days) 0.86737 227.8951 N/A N/A N/A

RD (hrs) 15.5662 220.7258 1.2923 51.5517 0.05127

Binned Weibull Distribution Model—A binned Weibull model
is a sub-case of the Single Weibull model. What differentiates
the binned model is the fact that it uses a subset of the
dataset rather than the entire dataset. This subset can be
defined as a particular mission or other mission classifier for
comparison purposes, which is left up to the user. For the
purpose of this paper and the case study for the Next Mars
Orbiter mission concept, a similar Mars Orbiter mission’s
time-between-events and recovery durations are used in order
to find the optimal 1-Weibull parameters. For the sake of
mission anonymity, these values are not presented here.

5. SIMULATION RESULTS
The simulation and models’ architectures & implementation
have been developed agnostic to the mission for which safing
events are being predicted. The framework has remained
generalized such that future mission planners can use this
as a starting point for various mission concepts. In order
to investigate the fidelity and trends of each model from the
mission simulator, the proposed Next Mars Orbiter mission
concept was chosen as a case study. Thus, the results pre-
sented in this section focus on the inputs, assumptions, results
of the modeled safing events for NeMO and the potential
implications on the design of the spacecraft.

Inputs & Assumptions

The set of simulation parameters assumed for the proposed
NeMO mission tested in this paper are shown in Table 5. The
justifications for choosing these values can be found in the
paper by Imken et al. [3].

Table 5. Simulation Parameters

Metric Value
Discovery Delay / Cruise Pass Cadence Pass every 3 days

Pass Length 4 hours
Time to restore nominal operations 12 hours
Time-of-flight function increase,
relative to inoperability period none

The Next Mars Orbiter mission concept is assumed to have
a total mission length of 6 years, the same used by Imken et
al. to enable comparisons. For this case study, no extended
missions phases are incorporated. Thus, the primary cruise
duration lasts 2/3 of a year, and it is assumed that for the
remaining mission length, NeMO is in its primary orbit phase.
The remaining categorical inputs that the GP model needs for
the NeMO mission concept are as follows:

(1) Mission Class: Medium;
(2) Mission Destination: Mars;
(3) Mission Duration [years]: 5 - 10; and
(4) Solar Electric Propulsion: Yes.

Gaussian Process Model Predictions

Since the GP model framework only requires the mission
elapsed percent as an external input, 25 MEP values are
randomly selected from a uniform distribution, and time-
between-events and recovery durations are predicted fusing
the same categorical inputs as defined in the earlier section
for NeMO. Figures 11 and 12 show the posterior Gaussian
distributions for each MEP; this includes the mean and vari-
ance computed by the GP model. Most of the 2σ boundaries
are predicted to be positive, while only certain tail ends
are below the threshold. Recall that any negative values
predicted are not considered, and are re-predicted from a
normal distribution with the given mean and variance.

For the TBE results, it is interesting to see how the mean
changes based on the mission elapsed percent. There is no
clear trend that for NeMO, time-between-events increase or
decrease as a function of the mission time, but there are
periods where the mean predictions may be higher or lower.
The volatility in the predictions is due to the type of training
data the model received and how the weights are formulated.
For the RD results, there is far less change in the mean values
as a function of the mission elapsed percent. It seems that
there are really two modes to the mean value where most
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values are predicted within: 55 and 101 hours. For either TBE
or RD, the validity of the results stems from the confidence
achieved from the testing data, which was a subset of the full
dataset. However, future work is necessary to understand how
each input shapes the results. This is difficult to deduce with
a machine learning algorithm due to its black-box nature.

Figure 11. NeMO Sample Predictions using Trained GP
Model for Time-Between-Events

Figure 12. NeMO Sample Predictions using Trained GP
Model for Recovery Durations

Monte Carlo Results

Once the training and implementation for the time-between-
event and recovery duration models are complete in the
simulation framework, a safing event Monte Carlo simulation
for NeMO is conducted for 1 million runs. This Monte Carlo
simulation is run three separate times, each with a different
model: the Single Weibull Distribution model, the Mixed
Weibull Distribution model, and the Gaussian Process model.
The results from each Monte Carlo simulation on mission
inoperability rates for the three models are listed in Table 6.

The similarity across all three models at the 99.7 percentile

shows that the Monte Carlo results are within the family
of one another. Assuming a 99.7% likelihood, the total
number of safing events for the GP model compared to two
Weibull distribution models decreases from 19 to 11 events.
This result of a sharp decrease in the number of safing
events implies that the simulated time-between-safing-events
from the GP model is larger than what is simulated from
the 1-Weibull distribution, which used by both the Single
and Mixed Weibull models. Due to the TBE training data
utilized as well as the covariance optimal weights, the mean
predictions for the Weibull distribution models are lower than
most of the mean predictions by the GP model for mission
elapsed percentages. For both Weibull distribution models of
a TBE, the mean is computed as 245 days between each event
and the mean TBE simulated by the GP model ranges from
50 to 700 days as seen in Figure 11. Thus, the differences in
the models lend to the significant difference in the simulated
number of safing events for NeMO.

The simulations for each recovery duration are larger for the
GP model than modeled by both Weibull distribution models.
Again, in this case for the Weibull distribution models, the
mean recovery duration simulated by the Weibull models
is approximately 56 hours compared with the observed bi-
modal result of 55 and 101 hours from the GP RD model, as
seen in Figure 12. Thus, the average recovery duration for the
entire mission duration simulated by a GP model is higher
than what is simulated by the Weibull distribution models.
Since the mixture Weibull model uses a 2-Weibull for the
recovery duration as opposed to the 1-Weibull for the single
Weibull model, the outage times simulated vary. The mean
recovery duration simulated for the single Weibull of 56.25
hours is slightly larger than simulated by the mixture model of
56.17 hours. Thus, it makes sense at the 99.7 percentile, that
each outage time simulated by the mixture model is slightly
lower.

Another way to understand the results of the GP model is
to compare its results with a binned Weibull model that has
similar mission classifiers as itself. Since the GP model
uses weights on each input to generate a predicted value,
comparing those to a mission that has similar inputs may
provide insight into how the supervised learning algorithm
generates predictions. A total of seven categorical inputs
exist for the GP model; three of those are mission agnostic,
and four are mission specific. Thus, a Mars mission where
three out of the four classifiers are the same as for NeMO was
selected as the underlying dataset used in the binned Weibull
model.

Averaging the recovery durations from the binned Weibull
yields a result of 76 hours. This is longer than the simulated
mean values from either Weibull distribution of ˜55 hours and
falls very close to the median of GP model’s simulated RD of
78 hours. And after a Monte Carlo analysis with many runs,
the outage time simulated by the GP model would be larder
due to the significant impact from a NeMO-like existing
mission. This comparison assumes that the data from the
existing Mars mission has the greatest impact on predicting
safing events for NeMO, since many of the mission classifiers
are the same.

For time-between-events, the average TBE for the existing
Mars mission binned Weibull is 186 days compared to the
average value simulated by the Weibull models as 245 days.
Since this existing Mars mission does not have a SEP system
on-board, a different mission was used to compare the binned
Weibull to the results, a mission that currently uses SEP. The
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Table 6. NeMO 99.7% Mission Inoperability Rates, Outage Times, and Number of Safing Events for a 1 million run
Monte Carlo Simulation for 3 Models

Metric Units Single Weibull
Distribution Model

Mixed Weibull
Distribution Model

Gaussian Process
Model

MIR % 3.74 3.77 3.89
Total Outage Time days 81.9 82.6 85.1
Each Outage Time days 12.9 12.57 17.71
Total Safing Events # 19 19 11

mean TBE for that SEP mission is 276 days compared to
245 days, as simulated by the two Weibull models. Thus, a
longer mean TBE indicates a fewer safing events throughout
the mission, as is shown by the GP model’s predictions.
This could indicate that the TBE GP model is more sensitive
towards the solar electric propulsion classifier than others
inputs and significantly impact the predictions. Further work
is necessary to understand the sensitivities and intricacies
of the GP model’s wide array inputs on predicted TBE and
RD. While the Single and Mixed Weibull models assume
every mission as equal, creating and comparing a Binned
Weibull for a mission similar to the NeMO concept enables
to understand and compare the results presented by the GP
model.

Combining the total number of events and each outage time,
the total outage time simulated by each model is around
80 days for the NeMO mission concept. The GP model
predicts a slightly higher total outage time than both Weibull
models, and the mixture Weibull model predicts a day higher
total outage time during the mission than the single Weibull
model. Thus, it makes sense that the MIR computed for the
three models fall in that order: the GP model predicts the
highest value, the mixture model predicts the median MIR,
and the single Weibull predicts the lowest. Each maximum
inoperability rate value with a 99.7% probability is within the
same percentage point. The maximum differences in MIR
values corresponds to 0.15%, or equivalently for a 6 year
mission, about 3.2 days of extra inoperability simulated by
the GP model compared with the single Weibull model. This
corresponds to 12 hours extra per year for the NeMO mission
concept.

The results obtained from the GP model are similar to the
Weibull model but shows certain nuanced behavior in its
simulated MIR. With a result this close, it may simulate
better or worse MIRs depending on the mission scenario.
Validating these models against past missions and simulating
other mission concepts are avenues for creating a generalized
safing event prediction tool.

Implications for NeMO

There are a few implications on the design, margins, and
requirements for the Next Mars Orbiter mission concept that
the safing event models provide in order to reduce risk. First,
the GP model predicts that recovery times for NeMO would
be longer when various mission inputs are factored in. More
time spent recovering the spacecraft out of safe mode means a
longer percentage of time that the mission is inoperable. This
may motivate the development of greater autonomy on-board
NeMO such that the spacecraft bus may be able to better
diagnose certain events and provide more informative health
data to ground operators. It would shape the requirements
on NeMO to include an increased fault checking capability
and/or better data management on-board. Additionally, the
pass cadence assumptions for this simulation is one DSN pass

every 3 days. The maximum outage time simulated to 3σ
is predicted to be 17 days; an increase in the pass cadence
could decrease that outage time. Moreover, the recovery
urgency based on mission risk posture per safing event could
increase such that the recovery period can shorten. While
the cost to the mission, from DSN time, personnel, and other
resources, would increase, the resulting increased operability
of the spacecraft could be worth it for the mission’s success.
Furthermore, new requirements could be placed on the oper-
ations team such that greater confidence and faster response
time dealing with fault scenarios are implemented.

Another impact from the overall increase in MIR simulated
by the GP model is the missed thrust periods. Currently, there
is no time-of-flight increase implemented in the simulation;
however, a 3.9% mission inoperability could affect when the
mission reaches its destination. Moreover, the consequence
of missing thrust maneuvers during certain segments of the
trajectory may significantly lengthen the mission. Those
missed thrust periods may correspond to correlations greater
than 1:1 for each period. Extensions to the mission due to
missing critical thrusting periods could significantly influence
how margins are computed for a low-thrust mission. An
increase in propellant margin would impact other margins
such as mass and power, which would influence the spacecraft
design considerably. In order to reduce the maximum inoper-
ability simulated, spacecraft and operational capabilities may
need to increase for the Next Mars Orbiter mission concept.

The mission inoperability rates, number of safing events, and
outage times presented are mission specific to NeMO; as the
inputs are changed for new missions, the results would also
vary. Thus, it is up to the user to choose which model based
on the given set of assumptions and confidence to predict
safing events. To accommodate multiple mission inputs, the
GP model enables users to factor the predictions made for the
frequency and recovery duration of a safing event. The GP
model results presented in this section show that the output
MIRs are in family with the Weibull models’ predictions.
Through the simulation, mission designers would be able to
quantify the likelihood of realizing the worst-case inoperabil-
ity rates, and make design and operational decisions based on
the results.

6. RECOMMENDATIONS & FUTURE WORK
The assumptions, analyses, and modeling reported in this
paper provide a methodology for future mission planners
looking to model the overall impact of safing events for a
certain mission architecture. First, the user must decide
what set of assumptions placed on the dataset and simplifi-
cations are acceptable for modeling purposes. Next, a safing
event process model such as the Single Weibull distribution
model, Mixed Weibull distribution model, or Gaussian Pro-
cess model for safing event predictions is selected. When
utilizing the GP model, the user must be aware of its ‘black-
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box’ nature that occurs during the training process and that
re-training may be necessary. While the models developed
and implemented in this paper verify the end-to-end flow of
the simulating safing events, improvements during training,
tackling some of the assumptions, and validating the models
can still be made.

One of the first set of simplifications is that subsets of the
dataset are created using commonly defined mission classi-
fiers. While these classifiers are made using categories that
would be reasonable for a mission planner, future work could
involve creating categories based on statistical significance
between the data. In order to rigorously find how to split the
safing time-between-events and recovery durations based on
the inherent divisions within the data rather than ‘arbitrary’
categories, more historical mission data statistical analysis is
needed. Methodologies such as classification or hypothesis
tests could be useful in finding these natural boundaries in the
dataset. These new categories may lend to better predictions
since the weights that the GP model ‘learns’ would have a
more statistically significant backing.

Training the GP model is the most important step to effec-
tively utilizing a supervised learning algorithm as a predictive
model. The current method of computing the mean square
error for deviations from the mean and variance estimates
for the testing data is a good preliminary method. However,
other metrics such as mean absolute error, sum absolute error,
and others can be used for evaluation purposes. Furthermore,
cross-validation is another methodology during training that
allows to evaluate performance on a portion of the data that is
not training and testing. Subject matter experts in supervised
learning algorithms could lend guidance on the selection of
the noise parameters and relevant functions (e.g. covariance,
likelihood, etc.) for the GP model. Greater intuition from
mathematical theory on the selection of certain functions
could enable better training of the model.

Based on the trained GP model from this paper, negative
outputs are possible within predictions for TBE and RD. One
facet of this could be due to the inherent assumption that
given the multi-dimensional input space of mission classi-
fiers, the posterior distribution is Gaussian. The successful
implementation of a Weibull likelihood in the GP model is
one possible way to predict non-negative values. Another
possibility is constructing a new optimization problem for a
GP if the Gaussian distribution assumption holds such that a
positive data constraint is applied.

The lack of a large dataset for safing events inhibits the effec-
tiveness of machine learning algorithms. One way to further
infer about a population from a small dataset is by employing
bootstrapping - sampling with replacement. Optimal Weibull
parameters could be obtained for subsets of data by re-
sampling the given subset and computing average parameters
that would yield estimates to the true probability distribution.
Bootstrapping could also be used in GP model estimation
as a means to increase the size of the training, validation,
and testing datasets. Statistical consideration must be given
when employing bootstrapping on the posterior distribution
the model creates.

While only parametric analyses are considered in this paper,
nonparametric analysis techniques such as the Kaplan-Meir
estimator can be considered to understand the true nature of
the data. One key aspect of nonparametric models is the
censoring of data - when failure data is incomplete. When
a mission reaches the end-of-life, one could apply right-

censoring since that time should not be modeled as another
safing event and would be stochastic across many missions.
While initial thoughts were formulated, no sufficient conclu-
sions are made on how best to censor data. The parametric
framework developed to compute 1-Weibull and 2-Weibull
distributions has censoring included in the formulation; thus,
it should be easy to implement and obtain new optimal
Weibull distributions.

Validating the GP model and Weibull models against the past
mission data is necessary to begin to understand and bound
prediction errors. This validation process could attempt to
calculate the actual MIR for each of the 21 missions in the
database to provide a baseline for model comparisons. The
initial methodology would be to remove one missions data
from the dataset, recalculate the model parameters for time-
between-events and recovery duration, simulate the mission
profile of the removed mission, and compare the simulations
outputs with the removed missions data. These comparisons
could also guide which percentiles should be targeted on the
MIR CDFs.

Challenges remain in architecting this validation process.
Nearly every mission in the database has an event with
incomplete recovery timeline data and the precise MIR may
be indeterminable. While some data may be able to be
located through further data mining, non-locatable records
will require a new set of assumptions to be derived on how
to effectively represent the missing data when calculating
the MIR. The model validation process and comparison of
several safing event models will be the subject of a future
paper.

Finally, regardless of how accurate a model is developed, it
is still limited by the data by which it is defined. As more
interplanetary mission safing events occur, it is imperative to
continue to collect data and store this additional information
in the database. Then, when a ‘significant’ amount of data is
added, re-training of the models may be useful to incorporate
new information and re-weight accordingly.

7. CONCLUSION
Building on the work done by Imken et al., this paper lays
out the architecture for multiple models to be used within the
mission simulation framework, implements different predic-
tive models, and uses the NeMO mission concept as a case
study for simulating mission inoperability rates and exploring
their implications. Missions that utilize solar electric propul-
sion such as the NeMO concept can benefit from accurately
modeling safing events since long periods of continuous
operations are vital for their missions.

With the collection of the safing events dataset, subsets are
created based on common mission classifiers; a total of seven
categories are created. To assess mission inoperability, a
generalized Monte Carlo simulation is implemented to quan-
tify the likelihood of realizing the worst-case inoperability
rates. While the simulation is flexible to any type of model, a
Gaussian Process model and two Weibull Distribution models
are incorporated in order to simulate time-between-events
and recovery durations. The architecture established for
both the simulation and the models maintains simplicity for
integration and a level of generality such that future enhance-
ments are possible.

The Weibull Distribution model parametrically represents the
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complete safing event database through the use of single
Weibull distributions and mixtures of two-Weibull distribu-
tions. Using the maximum likelihood estimation algorithms,
optimal Weibull distribution parameters are computed for the
full dataset. The results indicate that the 1-Weibull is a better
predictor for the time-between-events dataset while the 2-
Weibull is a better model for the recovery duration dataset;
this selection is used for the Mixed Weibull model. The
advantage of employing Weibull distributions for modeling
is the ease of implementation as it is defined by just a few
parameters.

However, in order to generate predictions of safing events
based on multiple user-defined inputs, a new approach for
predictions is required. A Gaussian Process model met this
criteria; it is a type of supervised learning algorithm that
is trained and tested using the existing safing event dataset.
By modeling time-between-events and recovery durations
through a GP model, a posterior probability distribution can
be obtained for multivariate inputs.

The GP and Weibull models presented in this paper have been
verified to work with the safing event simulation architecture.
Using the Next Mars Orbiter mission concept as a case study,
the developed single Weibull distribution, 2-Weibull mixture
distribution, and the Gaussian Process model act as predic-
tive models, generating the likelihood of inoperability rates,
outage times, and number of safing events for its simulated
mission life. The binned Weibull comparisons demonstrate
how certain past missions with similar classifiers as the
mission of interest provide insight into the weighting that the
GP model places on inputs during training. Furthermore, the
results show that within a few tenths of a percent in mission
inoperability rate, all three predictive models give results
within the family of one another. Recommendations made
for the NeMO concept include increasing spacecraft margins
for missed-thrust periods as well as increasing operational
and on-board fault management capabilities if the simulated
inoperability is assumed to be too large.

In the area of predictive analytics, this paper uses standard
statistical methodologies and supervised learning algorithms
to develop, train, and test predictive models for a sample
mission scenario - the Next Mars Orbiter. Not only is this
work a step towards creating a more complete tool for safing
event analysis and prediction, but also the results could help
mission designers to consider the effects of safing events on
spacecraft margins and requirements.
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APPENDIX

Table 7 shows all of the missions that are contained in the
safing event database. It lists how the missions are classified
for the mission class, destination, duration, and solar electric
propulsion categories. Tables are presented on the next page.
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Table 7. Mission Classifier Inputs

Mission Name Class Destination Duration [years] Electric Propulsion
Dawn Small Asteroid/Comet 10-15 Yes

Deep Impact Small Asteroid/Comet 5-10 Yes
Deep Space 1 Small Asteroid/Comet 0-5 No

Genesis Small Heliophysics/Exoplanet 0-5 No
Lunar Reconnaissance Orbiter Small Moon 5-10 No

Mars Atmosphere and Volatile Evolution Small Mars 0-5 No
Mars Climate Orbiter 1 Small Mars 0-5 No
Mars Global Surveyor Small Mars 5-10 No

Mars Odyssey Small Mars 15-20 No
Mars Polar Lander 1 Small Mars 0-5 No

Phoenix Mars Lander 1 Small Mars 0-5 No
Stardust Small Asteroid/Comet 10-15 No

Juno Medium Jupiter 5-10 No
Kepler Medium Heliophysics/Exoplanet 5-10 No

Mars Reconnaissance Orbiter Medium Mars 10-15 No
New Horizons Medium Kuiper Belt Object 10-15 No
OSIRIS-REx Medium Asteroid/Comet 0-5 No

Spitzer Medium Heliophysics/Exoplanet 5-10 No
Cassini Large Saturn 15-20 No
Galileo Large Jupiter 10-15 No

Mars Science Laboratory 1 Large Mars 0-5 No
1Cruise phase of mission only

BIOGRAPHY[

Swapnil R. Pujari received a B.S. and
M.S. in Aerospace Engineering from the
Georgia Institute of Technology in 2016
and 2018 respectively. He currently is
a systems engineer at The Boeing Com-
pany working on the SES O3b mPOWER
and ViaSat-3 programs. He is involved
with thermal analyses as well as ther-
mal/vacuum testing. At his time at Geor-
gia Tech, Swapnil was involved in small

satellite missions. He was the mechanical lead and chief
systems engineer of the Prox-1 Microsatellite mission, the
payload lead to the Tether and Ranging (TARGIT) CubeSat
Mission, and the electrical power subsystem lead on MicroN-
imbus, a 3U radiometer CubeSat Mission. He has interned
twice with the Jet Propulsion Laboratory under the Mars
Formulation Office working on the Next Mars Orbiter and
Mars Sample Return Lander concept missions.

Travis Imken received a M.S. in
Aerospace Engineering from the Univer-
sity of Texas at Austin in 2014 and is
in the JPL Project Systems Engineering
and Formulation Section. He serves as
a Deployment Phase Systems Engineer
for the InSight Lander, overseeing place-
ment of the missions payloads on the
Martian surface. Travis also supports
the RainCube mission as the Project Sys-

tems Engineer. Past projects include Mars Sample Return,
ARRM, and the Lunar Flashlight and NEA Scout deep space
CubeSats. He is also involved with JPLs Innovation Foundry,
serving as a systems engineer on Team X/Xc as well as a small
satellite expert with the A Team.

E. Glenn Lightsey is a Professor
in the Daniel Guggenheim School of
Aerospace Engineering at the Georgia
Institute of Technology. He received his
Ph.D. from Stanford University in 1997.
He is the Director of the Space Systems
Design Lab at Georgia Tech. His re-
search program focuses on the technol-
ogy of satellites, including: guidance,
navigation, and control systems; attitude

determination and control; formation flying, satellite swarms,
and satellite networks; cooperative control; proximity op-
erations and unmanned spacecraft rendezvous; space based
Global Positioning System receivers; radio navigation; visual
navigation; propulsion; satellite operations; and space sys-
tems engineering. He has written more than 140 technical
publications. He is an AIAA Fellow, and he serves as
Associate Editor-in-Chief of the Journal of Small Satellites
and Associate Editor of the AIAA Journal of Spacecraft and
Rockets.

17


