Early Collision and Fragmentation Detection of Space
Objects without Orbit Determination

Lyndy E. Axon*

This paper demonstrates that from using the hypothesized constraint of the admissible
regions it is possible to determine if a combination of new uncorrelated debris objects have
a common origin that also intersects with a known catalog object orbit, thus indicating a
collision or fragmentation has occurred. Admissible region methods are used to bound the
feasible orbit solutions of multiple observations using constraints on energy and radius of
periapsis, propagating them to a common epoch in the past, and using sequential quadratic
programming optimization to find a set of solution states that minimize the Euclidean
distance between the observations at that time. If this given this set of solutions intersects
with a catalog object orbit, then that object is the probabilistic source of the debris objects.
This proposed method is demonstrated on an example of a low-earth object observation.

I. Introduction

A problem of constant concern for the future of space operations, especially as massive thousand-satellite
constellations are in the design phase, is the tracking, orbit determination, and cataloging of all space objects
in orbit around Earth. The U.S. Air Force Space command utilizes the Space Surveillance Network (SSN) to
make approximately 80,000 daily observations to track which make an estimated population of over 300,000
objects with a diameter of over 1 cm, 17,000 known catalog objects greater than 10 cm in diameter, and 1300
active satellites'2.? In over 50 years of space missions, over 5000 satellites have gone into orbit, of which less
than 1300 are still operational today.* Many of the remaining satellites have deorbited successfully, or were
put into designated storage orbits prior to end-of-life, however, a large number of them are dormant orbiting
the Earth.® In addition to defunct satellites, debris from collisions, fragmentations, and launch litter the
operational orbit environments from LEO to GEO. Not all the SSN’s daily observations, or uncorrelated
tracks, can be used to create actionable information.

Extracting actionable information from an initial UCT, is not a simple task, for with a single UCT it is
not possible to uniquely identify the state of the object, or how useful it would be to immediately prioritize
additional observations.?> On a daily basis, thousands observations of space objects from the SSN take
place over short time periods and do not posses enough observation data geometric diversity to initiate a
well-posed classical initial orbit determination (IOD) problem, such as angles-only IOD. Traditional orbit
determination methods rely on the curvature of the measurements in order to produce a state estimate.
However, measurements obtained from a short observation or a very short sequence of observations have
linear dynamics and traditional methods fail as the observation time decreases.® Optical sensors measure
state information as either a series of angle measurements over time or from streaks formed during a single
observation; these angular measurements form a tracklet, but the range and range-rate of the SO are not
observable. Therefore, the SO state is underdetermined and for any given tracklet, a continuum of range
and range-rate solutions are possible which define the admissible region for a given observation.”

In an operational environment when UCT's cannot be correlated with known objects in the Space Object
Catalog (SOC), operators must have a method to quickly determine if a potential threat exists. Extreme
examples of potential threats include a decreased capability due to a breakup of an asset, or a debris field
created by a collision. These debris objects must have had an origin, and it is currently computationally
difficult and time consuming to solve this problem with real-time accuracy, and as a result collisions and
fragmentations of smaller space objects have occurred. To accurately correlate new UCTs with a known
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catalog object’s orbit as an origin, multiple orbits must occur for LEO cases, and hours of continuous
tracking is required for GEO cases. In this situation, it is more efficient to take a collection of UCTs and
propagate them back over a designated period of time to determine if any of the possible states shared the
same position at the same epoch, which would indicate that the observed UCTs were disparate debris from
a known catalog object. Using admissible regions to initiate this approach allows the tasks of initial orbit
determination and tracking to be foregone, which allows for faster actionable information. This would allow
operators to track incoming UCTs and assign them as fragments or debris from a past event with a tracked
catalog object, and allow for tasking of Space Surveillance Network assets to observe the catalog object as
well as characterize the current state and future risks that these debris objects may pose.

Admissible region (&) methods are methods to constrain undetermined states using a priori constraint
hypotheses, and have been proposed to support data association and track-initiation tasks. Many have
extended the applicability of AR methods to space situational awareness (SSA) since Milani et. al. first
proposed applying these methods to the detection of asteroids too-short arc (TSA) problems.® The AR
approach has been applied by Tommei et. al. to SO detection and discrimination by using radar and optical
measurements.’ Optimization methods to identify a best-fitting orbit solution are proposed by Siminski et.
al.!1% Existing admissible region methods can be used discretizing the admissible region and considering the
solutions at discrete points, which would allow for a particle filter approach.! Additionally, an optimization
scheme can be used to identify the best fitting orbits within and admissible region eliminating the need to
discretize the whole region.'® Fujimoto and Scheeres work shows that observations can be associated by
applying Bayes’ rule to an admissible region generated from two epochs, where a nonzero result indicates
that the observations are correlated.!'’ In addition, a solution technique for correlating multiple optical
observations by computing the overlap between their admissible regions, as well as using highly constrained
probability distributions in Poincare orbit element space has been proposed by Fujimoto and Scheeres by.!2
Worthy et. al. has developed an observation association method which uses an optimization based approach
to identify local Mahalonobis distance minima in state space between two uncertain admissible regions.!3
A limitation of these methods using the intersection of the AR volumes is that a feasible orbit can only
be constructed if the observations are the same object, otherwise these iterative solution methods will fail.
The proposed methodology in this paper seeks to demonstrate that given multiple new debris objects, that
cannot be associated with any known catalog catalog object, determine if a collision or fragmentation event
has occurred, and from what origin, in near real-time as new UCTs become available.

This paper proposes a methodology for applying AR methods to bound the feasible orbit solutions of
multiple observations using constraints on energy and radius of periapsis, propagating them to a common
epoch in the past, and using sequential quadratic programming optimization to find a set of solution states
that minimize the Euclidean distance between the observations at that time. This numerical zero-finding
approach demonstrates that given two uncorrelated observations, and corresponding admissible regions,
a line of feasible solutions exist that minimize the distance between the objects. In summary, this paper
demonstrates that from using the hypothesized constraint of the admissible regions it is possible to determine
if a combination of new uncorrelated debris objects have a common origin that also intersects with a known
catalog object orbit, thus indicating a collision or fragmentation has occurred.

II. Approach and Methodology

The goal of this methodology is to detect collisions and fragmentations by observing disparate debris
without requiring the computational and time burden of using orbit determination. This approach can
be used for a variety of orbit types and observation lengths. Given two uncorrelated observations, at two
different times, t; and to, the proposed method will determine if a common origin exists for these objects at
a selected epoch ty. Figure 1 shows the orbital path in R® orbit element space of a known catalog object as a
function of time, until at some ¢y a break-up event occurs that results in a discrete number of debris objects.
Each observation at t; and t5 are of different debris from what is hypothesized to be a common origin.
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Figure 1. Catalog Object Break-up at a given Epoch as a function of time

Given independent observations of multiple debris objects, a continuum of range and range-rate com-
binations define the admissible region. These range and range-rate solutions make up the undetermined
portion of a potential full state; each full-state (determined or observable information combined with unob-
servable) correspond to a given position and velocity solution. These solutions can be propagated back to an
arbitrary estimated epoch %, at which a solution manifold can be constructed by using sequential quadratic
programming and selected constraint criteria to minimize the Euclidean distance between the positions of
the two observed objects at ty. The solution manifold represents a line of possible common origins that goes
through RS; if it intersects with the catalog object orbit then the observed have spawned from a break-up
event involving that known object. Figure 1 is a three dimensional illustration of the previous figure, but at
a particular time. Notice this figure that the solution manifold will cross the orbit of the catalog object at
the hypothesized epoch tg.

Debris «— Solution
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Figure 2. Catalog Object Break-Up and Observation of Debris Objects from Ground Station

Optical measurements generate angle and angle rates of objects tracked using a streak or sequence of angle
measurements of right ascension, «, and declination, §. Te parameters associated with optical measurements
include the observer position and velocity, o and 6, respectively, as well as the times at which the observations
are made. Using this information, the position, r, and velocity, v of the object are given by

r=o+pl (1)
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where p is the range to the target, p is the range-rate, and 1, ia, and Is are given by

v =0+ pl+ pil, + pdl; (2)
coSacosd
1= |sinacosd (3)
sind
[~ sinacoss |
l, = | cosacosd (4)
L O -
[ cosasind]
Is = | —sinasind (5)
| cosd
For this system, the states x, the observations k, and parameters p are defined as
xT:_adéépp} (6)
k' =[a1 ... ag 01 ... 6,07 &7 (7)
p” = [o” 6] 0

where ¢ and § are the angle rates which are generated using Lagrange Interpolation shown in Equation 9,
and ¢ is the number of observations. In order to limit the inherent error associated with using Lagrange
interpolation from point values, streak observations are used in this methodology. The rate estimations from
the center of each streak are used for further calculations as this provides a better estimate of the rate than
the beginning of the streak.

(t—ta)+(t—t3)+ -+ (t—ty)
(t1 —ta)(t — t3) ... (t1 — t,)

+-+alt)

t—to)+ (t—t3)+ -+ (t—t
+ Oé(tg)( 2) ( 3) ( q)
(ta —t1)(t2 —t3) ... (t2 — tg)
(t—ta)+(t—t3)+---+ (t—t4 1)
(tr—t)(tr —t3) ... (& — tg—1)
For an observation with two measurements, the combined measurement and parameter vector, y? € R1? is
given by

a(t) = alty)
(9)

yT = [041 [6%) 51 52 t1 tg OT 6T] (10)

Given y and solving for the angle rates using Equation 9, four of the six states in x can be observed
or determined; these four states, known henceforth as x4 are shown in Equation 11. The remaining two
undetermined states, known as x,,, are given by Equation 12.

.
«

Xq = 11

a= [ (1)
5— 4x1

x, = |” (12)
p-2><1

To limit the realm of possible solutions for x,, constraint hypotheses are imposed on the admissible
regions. These constraints can be based on a priori information about the observation (e.g. is the object
LEO or GEO), as well as reasonable constraints for objects in orbit around Earth can be imposed. For the
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purpose of this paper, the primary assumption is that of 2-body motion, which allows the use of a constraint
on the specific orbital energy equation. This constraint, x requires that the space object is in Earth’s orbit,
and therefore excludes hyperbolic orbit solutions. To constrain these solutions for x,, the admissible region
set AR can be defined as {x, € R?|e(r,V) = 0}, which is the solution to Equation 13.% The solutions to this
polynomial define the two dimensional boundary of the admissible region.
.9 . 2/L
K(Xy,y) =2e(r,v) = p° +wip+T(p) — =0 (13)
S(p)
Farnocchia, et. al. and Tommei et. al. define T'(p), S(p), and coefficients wy through ws as Equations 14
and 15149

T(p) = wap® +wyp +wa, S(p) = p* +wsp +wo (14)

.1>
wy = d2cos®s + 52, w3 = 2 <() 1,
wa = 6|2, ws =2(o-1)

To further constrain the realm of possible state solutions, a periapsis radius constraint is used to exclude
parabolic and potentially re-entering space objects that will impact the Earth in less than one revolution.
For the purpose of this paper, the minimum radius of periapsis 7, is set at 6378 km plus hq¢m, where hgm
is 200 km. A form of this constraint, r, = a(1 —e) > r,,in was proposed by Maruskin et. al.! The periapsis
constraint 7., — 7, (p, p) was analytically developed by Farnocchia et. al. to bel*

wo = |||, w =2(6

>+25 <()~i§> (15)

(rin — IDI*)A* = P(p)p = U(p) + 17,5, T(p) — —22= < 0 (16)
VS(p)
with

P(p) =2D-Ep*+2D -Fp+2D-G — 12, w (17)
U(p) = |E| p* + 2E-Fp’ + 2E- G + |F||*)p* + 2F - Gp + ||G|* = 2rminpt (18)

given the following

D =o x1, E =1x (dl, + 41

( 5) (19)

F=o0x(dl,+dl;)+1x06, G=0x6

Additional constraints may be relevant depending on available a priori information about the space
object. For example, eccentricity would be an appropriate constraint to apply to GEO observations.! For
the purpose of this paper, only energy and radius of periapsis constraints will be imposed. Imposing these
constraints on an observation y results in a two dimensional space of solutions to x, that could possibly
complete the state x of the observed space object.

Given two observations of an object, such as shown in Equation 10, admissible regions can be determined
for each observation, &; and AR,. Each of these have a set of possible undermined states x, that satisfy
the aforementioned constraints. By combining these into a single variable, into a single variable z

f1

7 — Xu,1 — f1 (20)
Xu,2 P2
po

It is possible to conduct a random uniform sampling of both &; and AR to collect a set of z solutions that
satisfy the constraints. Each x, ; and x, 2, combined with x4; and x4 2, respectively, create a possible full
state solution mathbfx, andmathbfzs for the observed space object. Each of these states can be converted
into Cartesian position r and velocity v by using Equations 1 and 2. Propagating these states back to some
common time ¢ in the past, the resulting vectors are defined as
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ri(t) = []1 0} (t, Xu,1,Xa,1,t1)
(21)

ra(t) = {]I 0} O(t, Xu,2,Xd,2,t2)

From this, the goal is to determine if there is a set of solutions for z that minimize the Euclidean distance

between the position vectors corresponding to each observation time. The cost function J(z) and gradient
are as follows

T#) = e —r)"(r1 —x2) (22)
o = [ 2] = [t =T [10] g, (n - )T 0] 22 2] (23)

Algorithm 1: Algorithm to Determine Solution Manifold

Result: Minimize Eq. 22

1 initialization of givens, observables, and parameter settings;
2 compute GS Vectors and observer unit vectors with Eq. 3, 4, & 5;
3 compute AR boundaries for each Obs. by solving the quadratic equation for p given a continuous set

of p values using Eq. 13;

4 uniformly sample from A interiors by selecting a random p & p based on the min and max values
and satisfying the energy (Eq. 13) and radius of periapsis constraints (Eq. 16);

5 construct z (Eq. 20) by stacking the sample values from R; & Ro;

6 for i = I:length(z) do

7 Establish current z ”guess” value (z = z(:,14)) ;

8 while J(z) > Tolerance do

9 Use fmincon to estimate the gradient (Eq. 23) and step z in that direction using nonlinear

constraints in Eqs. 13 & 16;
10 Update z value to reflect step towards minimum,;
11 Evaluate constraints (Eq. 13 and Eq. 16) given current z value to ensure solution still falls
within &;

12 if current z not within R (does not meet constraints);

13 then

14 ‘ Get new ”guess” for z from fmincon by continuing;

15 else

16 Convert z to cartesian using Eq. 1 & 2 to get z;

17 Propagate z to ty and calculate distance using Eq. 22;

18 end

19 end

20 save z solution value that minimize J(z) (Eq. 22)
21 end

III. Results
The goal of this methodology is to detect collisions and fragmentations by observing disparate debris.

To demonstrate the initial effectiveness of this approach, two independent optical observations of the same

object where used. The observations were made for one second exposures 5 minutes (300 seconds) apart
based on an observation taken March 1, 2014 at 02:01:36 UTC. The measurement values for the tested LEO
case are given in Table 1.The observations were made using an equatorial mounted telescope from Deerlick
Astronomy Village, the observer parameters are given in Table 2. Error in observation measurements were
assumed to have a zero angle mean noise and approximately 0.5 arcsecond standard deviation of the noise
on the angle observations (right ascension and declination).The standard deviation is approximated at this
value due to the type of mount the observations were made from, as well as the exposure time.

6 of 12

American Institute of Aeronautics and Astronautics



Table 1. LEO Optical Observation Measurements

Time ‘ a (rad) ‘ 0 (rad) ‘ Exposure (sec)

02:01:36 | 1.4007 | 0.5556 1
02:06:36 | 1.3504 | -0.6931 1

Table 2. Observer Parameters for Deerlick Astronomy Village, GA

Latitude ‘ Longitude ‘Altitude (m)

33.561deg N | 82.764deg W |  176.8

From these observations, admissible regions were constructed using a radius of periapsis constraint of 6578
km (radius of Earth plus 200km), an energy constraint of less than zero (Earth orbiting), and eccentricity
constraint of less than 0.7. A set m particle pairs x,’s that meet these constraints were then created by
randomly uniformly sampling the interiors of each admissible region. Then set from the observation at tq,
Xy,1, is combined with x,, o from the observation at t, it results in z being a 4 x n matrix (Equation 20).
Figure 3 shows the admissible regions corresponding to each observation as well as the sampled points from
each interior.

Admissible Regions for Observation 1 and 2

— AR, Boundary
- AR, Sampled Points

AR, Boundary
AR, Sampled Points

$ (km/s)

0 1000 2000 3000 4000 5000 6000
» (km)

Figure 3. Admissible Region boundaries for Observation 1 & 2

Using this test case, two different epoch times were selected: 100 seconds and 1 hour (3600 seconds) in
the past. In each of these scenarios, each column in mathbf z is then stepped towards a minimum solution for
the cost function J(z) at time tg by using the MATLAB function fmincon from the optimization toolbox to
solve for the minimum of Equation 22 given the nonlinear constraints and functions. Fmincon is a gradient-
based method that is designed to work on problems where the objective and constraint functions are both
continuous and have continuous first derivatives.

A. Epoch Time = -100 Seconds

In this scenario, 5000 particles were sampled from the admissible regions, resulting in a 4 x 5000 matrix for
z. Each of the 5000 columns of z was propagated backwards 100 seconds using a two-body propagator in
Ode45. The solution values for z, that correspond to each observation, that minimize the Euclidean distance
between the observed objects are shown in Figures 4 and 5. At an epoch that is only 100 seconds before the
first observation, the solution manifold appears to have very limited curvature.
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Figure 4. Admissible Region for Observation 1 with minimized solutions and truth for ¢y = —100sec

Observation 2

AR Boundary
Sampled Points
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Figure 5. Admissible Region for Observation 2 with minimized solutions and truth for ¢y = —100sec

The solution manifold line in the first observation’s admissible region is much longer than the correspond-
ing line in the second observation’s admissible region. This result was to be expected, as the first observation
was taken at a minimum range to the ground station, which means that a set of possible solution orbits with
larger variation are possible. Conversely, the second observation was taken at a much lower elevation, thus
increasing the slant range to the object from the ground station. This provides a smaller amount of variation
in the solution states. The 3D plots shown in Figures 6 and 7 show the solution manifold in the position
and velocity space. In these figures, the first observation is indicated with a blue arrow, the second with an
orange arrow, and the ground station with a green arrow. The solution manifold is a short line made up of
red (observation 1) and blue (observation 2) position solutions that clearly intersects with the shown known
object truth orbit at the given epoch. This indicates that the observed debris objects have the same origin
and it is possible that they spawned from an event involving the shown known object orbit.
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Figure 6. 3D Plot Earth Hemisphere with Solution Manifold and True Catalog Orbit for tg = —100sec
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Figure 7. Solution Manifold and True Catalog Orbit Intersection for ¢ty = —100sec

B. Epoch Time = -1 Hour

In this scenario, 1100 particles were sampled from the admissible regions, resulting in a 4 x 1100 matrix
for z. Each of the 1100 columns of mathbfz was propagated backwards one hour (3600 seconds) using a
two-body propagator in Ode45. The solution values for mathbfz, that correspond to each observation, that
minimize the Euclidean distance between the observed objects are shown in Figures 4 and 5. At an epoch
that is one hour prior to the first observation, the solution manifold appears to have an increased amount of
curvature when compared with the corresponding results form the previous scenario. This is especially true
of the solution manifold in Observation 2’s admissible region.
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Figure 8. Admissible Region for Observation 1 with minimized solutions and truth for ¢y = —3600sec
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Figure 9. Admissible Region for Observation 2 with minimized solutions and truth for ¢y = —3600sec

Just as was shown with the first scenario, the solution manifold line in the first observation’s admissible
region is much longer than the corresponding line in the second observation’s admissible region. However, for
an epoch of one hour prior to the first observation, the solution manifolds display much more curvature than
the 100 second scenario. This is especially evident in the solution manifold corresponding to observation 2
in Figure 9. The 3D plots shown in Figure 10 show the solution manifold in the position and velocity space.
In this figure, the first observation is indicated with a blue arrow, the second with an orange arrow, and the
ground station with a green arrow. The solution manifold is a short line made up of red (observation 1) and
blue (observation 2) position solutions that clearly intersects with the shown known object truth orbit at
the given epoch. This indicates that the observed debris objects have the same origin and it is possible that
they spawned from an event involving the shown known object orbit. The solution manifold displays much
more interesting characteristics and curvature in this scenario, as it extends well beyond the known object
orbit.
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Figure 10. 3D Plot Earth Hemisphere with Solution Manifold and True Catalog Orbit for tg = —3600sec

C. Error and Challenges

Error in observation measurements were assumed to have a zero angle mean noise and approximately 0.5
arcsecond standard deviation of the noise on the angle observations (right ascension and declination). The
standard deviation is approximated at this value due to the type of mount the observations were made from,
as well as the exposure time. Error also is inherrent with any numerical propagation method, such as Ode45.
The relative and absolute tolerances were set to le™'2 to limit error throughout this process. Additional
sources of error can be found from using Lagrangian interpolation in order to estimate the angle rates of
each observation. As aforementioned, to minimize this error source, streaks were used and the observation
information from the center of the streak was used and the rates were estimated using the beginning and the
end of the streak. For future work, the rates will be fed in as part of the 4-state x4 and not estimated based
on the right ascension and declination of the observations. This approach is computationally slow because
implementing fmincon, which estimates the gradient, instead of using a gradient based approach like steepest
descent. A limitation of the method described here is that the epoch time, ¢ is arbitrary, and may be based
on a priori information (e.g. last known observation, etc.), but would require an iterative ” guessing” process
to select a good estimate for ¢y which increases computational cost.

IV. Conclusions

The results in this paper, though there are limitations, illustrate that it is possible to detect fragmen-
tations and collisions much sooner than current capabilities that rely on orbit determination. The current
state-of-the-art relies on orbit determination, which requires multiple observations over at least two orbits
for a LEO object and continual observation over hours for a GEO object. The approach outlined in this
paper requires only independent observations of two debris orbits and to answer the same hypothesis, with
the cost largely in computation. The problem reduces to a 4-dimensional particle swarm optimization, which
can easily be solved using a gradient-based method. By using the hypothesized constraint of the admissible
regions it was demonstrated that it is possible to determine if a combination of new uncorrelated debris ob-
jects have a common origin that also intersects with a known catalog object orbit, thus indicating break-up
of that known object has occurred.
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V. Future Work

This paper reflects a very initial endeavour into understanding the limitations and applications of this
methodology. Additional test cases, including one on a GEO break up as well as another using LEO collision
path, will need to be done, as this paper only demonstrates that if you have two observations of the same
object that that a zero-finding problem is possible. Other phenomonenology should also be considered, such
as radar observations. LEO observations are not typically made using optical or electro-optical hardware;
conversely, GEO observations are almost exclusively made with these methods. Radar observations have
different admissible region structure, as they provide a different set of observable, or determined states. In
this scenario, x4 is a 2 x 1 matrix, whereas in optical it is 4 x 1 matrix. Therefore, to use radar information
in the methodology described in this paper, additional observations would need to be included to create a
closed solution.
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