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Abstract  
 

 Optimization of complex engineering systems has always been an integral part of 

design. Due to the size and complexity of aerospace systems the design of a whole 

system is broken down into multiple disciplines. Traditionally these disciplines have 

developed local design tools and computer codes (legacy codes) allowing them to 

perform optimization with respect to some aspect of their local discipline. Unfortunately, 

this approach can produce sub-optimal systems as the disciplines are not optimizing with 

respect to a consistent global objective. Multidisciplinary design optimization (MDO) 

techniques have been developed to allow for multidisciplinary systems to reach a global 

optimum. The industry accepted All-at-Once (AAO) technique has practical limitations 

and is confined to only small, conceptual level problems.  

 New multi-level MDO techniques have been proposed which may allow for the 

global optimization of the large, complex systems involved in higher levels of design.  

Three of the most promising multi-level MDO techniques, Bi-Level Integrated System 

Synthesis (BLISS), Collaborative Optimization (CO) and Modified Collaborative 

Optimization (MCO) are applied, evaluated and compared in this study. 

 The techniques were evaluated by applying them to the optimization of a next 

generation Reusable Launch Vehicle (RLV).  The RLV model was composed of three 

loosely coupled disciplines, Propulsion, Performance, and Weights & Sizing, composed 

of stand-alone, legacy codes not originally intended for use in a collaborative 

environment. 

Results from the multi-level MDO techniques will be verified through the use of 

the AAO approach and their benefits measured against the traditional approach where the 

multiple disciplines are converged using the fixed point iteration (FPI) process. 

All the techniques applied will be compared against each other and rated 

qualitatively on such metrics as formulation and implementation difficulty, optimization 

deftness and convergence errors. 
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1 Introduction 
 

Optimization of complex engineering systems has always been an integral part of 

design. Man has never created anything which he then didn’t wonder how he could make 

better. This is true in the aerospace industry dating back to wind tunnel studies conducted 

by the Wright bothers to study wing shapes. Originally those that created aerospace 

vehicles were responsible for every aspect from wing shape to propulsion. As the size 

and complexity of aerospace systems grew, though, it became apparent that the design of 

such enormously complex problems would have to be broken down into disciplines with 

groups concentrating only on their own part of the whole.  

While breaking apart the overall problem into different contributing analyses 

(CA’s) made it humanly possible to design inhumanly complex systems, the ability for all 

designers to see how their specific changes would affect the overall goodness of the 

whole was lost. Communicating between disciplines became increasingly difficult and 

thus each discipline developed metrics to which to optimize their own individual part of 

the total system or vehicle. Unfortunately, no discipline is an island as every discipline 

will affect another and vice versa. If they don’t agree as to what the coupling variable 

values should be across disciplines then the system is not converged or valid.  

To solve this multidisciplinary analysis (MDA) problem engineers have 

traditionally used an iterative process known as Fixed Point Iteration (FPI). FPI, though, 

is just a method to converge the MDA problem and does not perform overall system 

optimization or the configuring of the whole system such as to reach an optimum 

according to one global design objective. The conventional design approach is to try 

several configurations and solve the MDA convergence problem for each using FPI. The 

best configuration according to the global variable is then selected. 

Multidisciplinary optimization (MDO) is when, instead of just arriving at the best 

or a good vehicle via multiple trials, a methodology is applied which actively changes the 

design variables to find the configuration that produces the optimal system. 

All-at-Once (AAO) the most basic and accepted MDO method is insufficient as it 

cannot be applied to large engineering problems. Recently multi-level MDO algorithms 

have been proposed with the expectation that they might efficiently solve large, complex 
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MDO problems. Their purported benefits are still under inspection as is the question of 

which one will produce the greatest benefits with the least amount of effort or cost.  

Three multi-level MDO methods are evaluated in this study: Collaborative 

Optimization (CO) 1, its derivative Modified Collaborative Optimization (MCO)2, and Bi-

Level Integrated System Synthesis (BLISS)3 which has multiple derivatives most notably 

BLISS-20004.  
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2 Study Objectives 
 

Three main goals were explored during the course of this study: 

1)   Determine the benefits of MDO versus using multiple trials of iterative optimizers 

using FPI convergence. 

2)  Create a realistic test problem which will add to a growing field of research trying 

to evaluate novel MDO techniques: CO, MCO and BLISS.  

3)  Allow for across the board comparison of the MDO techniques by using the 

statistical method of blocking to remove external variability when comparing 

between techniques. 

 

2.1 Benefits of MDO 
 

The first goal is to understand the overall benefit of using an MDO method to 

optimize the RLV test problem versus a few trials converged using a fixed point iteration 

process (FPI). For this purpose several FPI models of the next generation RLV were 

created in order to offer some insight as to what is the best vehicle that could be designed 

without using MDO. The results achieved using FPI will be compared to the techniques 

mentioned in order to better understand the benefits derived from MDO. 

FPI is not an MDO method it is merely a way to converge a multidisciplinary 

analysis (MDA) process. It does not perform any global optimization to find the optimum 

system configuration. In discipline a designer will try several configurations and 

converges each one using FPI. Then one of the configurations is deemed the best and 

selected for further study. Thus, FPI usually results in the best configuration for the 

options tested, but does guarantee that the true optimum will be found. 

The argument for using FPI to test a limited number of configurations versus 

applying an MDO process are practical or “real world” in nature. FPI has been the 

method of choice in the aerospace industry. Thus there are already legacy tools and 

design practices developed by many individuals over time. Changing this structure would 

require a large initial investment. Also, the experts performing each analysis have been 

trained and are experienced in solving the problem as it is currently formulated for FPI. 
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Application of other methods may require new training and will take time to gain full 

acceptance.  

Eight RLV analysis models were tested and converged using FPI during this study. 

The vehicle configuration producing the lowest test problem global objective, Wdry, was 

selected as the best FPI configuration. For the application any MDO to be worthwhile, 

the method must show improvement in the global objective or produce project time 

savings in order to offset its application cost. 

 

2.2 Authenticity of Test Problem 
 

It is intended that the test problem, the optimization of a next generation RLV, 

have enough realism that it can add to a growing body of work attempting to evaluate 

some of the most novel and promising MDO algorithms: CO, MCO and BLISS.5,6,7,8 

These MDO techniques were “crafted” as opposed to “rigorously derived.”9 They lack a 

general mathematical proof showing for which MDO problems they are suited. Thus, the 

algorithms require that they be validated via a statistically significant number of test 

cases of realistic, complex system applications.9  

To ensure realism in the test problem, legacy tools were employed which are the 

same or very similar to those used in industry. Also, one of the tools selected, POST, 

while being the industry standard code is known to be very troublesome to work with. 

This will add the realism of the problem as in the “real world” one often has to work with 

the tools available and cannot just select tools, such as using all Microsoft spreadsheets, 

that are usually well behaved. 

There are some practical obstacles to the goal of reaching a high level of realism.  

First, since it is proposed that the AAO method be used to validate the newer, unproven 

MDO techniques. This limits test problems to those that can still be handled by AAO 

which does not scale well with the system size and complexity. Secondly, it is intended 

that the same developer create all the models applying each technique. The developer 

though has external constraints limiting the time he can spend on this project; if the 

problem is too large then the work may never be completed to some degree of 

satisfaction. 
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It is the author’s belief that that a convincingly high degree of realism was 

achieved and this study does produce statistically significant data. 

 

2.3 Comparison between CO, MCO & BLISS 
 

There are some deficiencies in the currently accepted design methods used in 

industry, namely discipline optimization with FPI does not do system-level optimization 

and AAO cannot be applied to large, complex engineering problems. New multi-level 

MDO techniques, of which CO, MCO and BLISS are three of the most promising, are 

attempting to overcome some of these deficiencies. The work presented intends to some 

add insight as to which of the most novel techniques, CO, MCO or BLISS, showed the 

most promise when applied to the RLV test problem.  

It is difficult to draw any conclusions between, CO, MCO and BLISS, using the 

current literature available.5,6,7,8,11 Test applications that have produced varying degrees 

of success, but it is difficult to determine if this is due to differences in the algorithms or 

other factors. The statistical reasons making it difficult to compare between competing 

MDO algorithms are: 

 

1) Variability in the level of success with which each of the three competing MDO 

techniques has been applied can be attributed to external variances.  

2) There are still too few data points to draw any statistically significant conclusions. 

 

In order to address the external variance issue, this study will use the statistical 

practice of “blocking” to “help eliminate the variation due to extraneous sources so that a 

more sensitive comparison can be made”10 (page 567) between CO, MCO and BLISS. 

The blocking effect helps to “eliminate variation due to blocking variables” which in this 

case are developer or user capacity and difficulty of the test problem selected. Blocking is 

achieved in this study by having the same developer create all of the RLV models for 

each of the MDO techniques in question and by applying all of them to the same test 

problem. 
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While this study will not settle the question of which is better, CO, MCO or 

BLISS, as it is but one data point (see item 2 above), it is one of the very first attempts at 

addressing the external variance problem when trying to compare the benefit, validity and 

implementation cost of the new multi-level MDO techniques. To date the author is not 

aware of any other attempt. 
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3 Multi-level MDO Techniques 
 

 This section is an introduction to multi-level MDO techniques and discusses some 

of the possible benefits and disadvantages common to all the multi-level techniques 

applies in this study, CO, MCO and BLISS. 

 

3.1 MDO Background 
 
 Aerospace system analysis and design is usually broken down into multiple 

disciplines due to their enormous complexity. This impedes MDO as the local-level 

disciplines lose knowledge of how their local design affects the system as a whole. AAO 

can be used to solve the MDO problem, but it takes away all design responsibilities from 

the discipline experts and AAO does not perform well in higher fidelity applications with 

a lot of design variables (See 8 AAO: All-at-Once pg 36). Multi-level MDO techniques 

attempt to correct this problem by allowing some form of local-level design optimization 

while adding a system-level optimizer guide the process to a globally optimized solution. 

One of the greatest impediments in the acceptance of multi-level MDO techniques 

is the fact that they have to date been “crafted” as opposed to “rigorously derived.”9 They 

lack a general mathematical proof showing for which MDO problems they are suitable. 

Thus, the algorithms require that they be validated via a statistically significant number of 

test cases of realistic, complex system applications.9 Program managers or designers are 

reluctant to implement the new techniques to a “real world”, industry application as they 

cannot be confident that the multi-level MDO algorithm will indeed arrive at the global 

optimum. This creates a Catch-22 scenario for multi-level MDO techniques as the only 

way to gain acceptance is to show success in a statistically significant number of “real 

world”, industry-sized test problems; paradoxically not many application attempts are 

made as program managers are not willing to risk their projects on an unproven method. 

This contradiction means that acceptance of any multi-level MDO technique may be a 

slow one. 
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If multi-level MDO techniques can be proven to work efficiently for a range of 

engineering problems, then they would provide several advantages over the presently 

accepted MDA and MDO methods, FPI and AAO. 

 

3.2 MDO Possible Benefits 
 

 First, two-level MDO algorithms closely resemble the conventional work 

structure of the aerospace industry. In industry the local-level design is performed by 

discipline experts who have a high degree of design freedom within their own discipline. 

The system-level optimization is analogous to a chief engineer or program manager who 

is in charge of making sure that the disciplines work with each other to solve the overall 

system problem. At the same time the disciplines get to keep the local discipline design 

roles they are accustomed to. Thus it may be easier to implement and gain acceptance of 

a two-level MDO architecture than the AAO technique which removes all design 

responsibilities from the disciplines. 

Next, it is expected that multi-level MDO techniques will perform better as the 

scale of the MDO problem grows. AAO is severely limited by the optimization deftness 

of the system-level optimizer, which is charged with the exceedingly difficult task of 

optimizing all design variables simultaneously subject to a series of constraints. Two-

level MDO techniques split up the design and optimization responsibilities so that the 

system-level and local-level sub-problems share the load. This decreases the probability 

that one group or optimizer will fail because the problem given was too difficult to solve. 

Lastly, many multi-level MDO techniques including the three investigated in this 

study, CO, MCO and BLISS, can potentially allow for parallel or simultaneous execution 

of the local-level disciplines. In parallel execution, the system-level optimizer will 

provide all the local-level disciplines a set of inputs which they can use to perform the 

local-level optimization. With this information disciplines can perform their analysis at 

the same time. This contrasts to a sequential execution where each discipline must go in 

order so that it can pass its outputs to other disciplines down the line. Parallel execution, 

if efficient, could result in large time savings for the entire optimization process. This 

savings is expected to be most significant for large problems where several of the 

 8



disciplines involved take a lot of time and effort to execute their local-level sub-problem 

design and optimization. 

 

3.3 MDO Possible Drawbacks 
 

While novel multi-level MDO techniques may offer some significant benefits 

they often have some drawbacks which may offset any potential gains over the 

established FPI and AAO methods. 

First, in order to perform global, system-level optimization while still allowing 

local-level optimization, new design variables are introduced to the problem. These new 

variables must be added to either the local or system-level optimizer. This increases the 

size and complexity of one or more of the optimization sub-problems. 

Second, the system-level problem complexity may grow rapidly if a lot of 

coupling variables exist between the disciplines. This is because coupling variables are 

usually controlled or coordinated by the system optimizer. 

Third, the need for coordinating the local-level sub-problem optimizations for the 

betterment of a global objective often results in changing the way the each discipline has 

traditionally been analyzed. The local-level objective may need to be changed to 

composite objective composed in some form of two or more variables or outputs. Also, 

this objective may keep changing with each system-level iteration. This can cause 

problems especially in “real world” applications where the computational analysis and 

optimization of the local-level sub-problems is performed using legacy codes with 

internal tolerances. If the source code of these legacy tools needs to be altered that may 

require a considerable amount of time. Also whenever codes are altered it increases the 

probability of encountering problems due to human errors. It would be ideal for any 

MDO technique to be able to use the legacy tools originally written for the FPI process 

without altering them. 

Finally, the complexity and novel nature of multi-level MDO methods means that 

the successful application of these techniques is more susceptible to user inexperience. 

Multi-level MDO techniques are complex and the problem formulation and 

decomposition require careful planning. They are not as straight forward as FPI or AAO 
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and may be very sensitive to the conditioning of optimization parameters such as 

optimization methods used (direct vs. indirect methods, SQP vs. MoFD, etc.), numerical 

gradient estimation methods and steps, normalization methods, and allowable tolerances.8 

A range of problems from model developer inexperience to difficulties when trying to 

take numerical gradients may cause unsuccessful results. There have been cases where 

attempts at MDO applications, including in RLV test problems11, have been fruitless. 

In an attempt to differentiate external variance in application results to those 

caused by differences in the MDO algorithms, this study uses the statistical method of 

blocking to remove unwanted external variance (see page 5). 

 

3.4 MDO Conclusions 
 

 No multi-level MDO technique has been embraced by industry. Without a 

mathematical proof the only way to gain acceptance is through a statistically significant 

number of test applications. Paradoxically most are unwilling to bank their projects on an 

unproven method and thus MDO applications have been few and mostly relegated to 

academia. In order to determine which one(s) of the promising multi-level MDO 

techniques may best make the transition from theory to practice, a number of realistic test 

studies must be performed that use blocking effects to isolate the differences between 

techniques. Without blocking it is difficult to determine if an unsuccessful attempt at 

applying a MDO technique is due to the algorithm itself or other unrelated issues. 
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4 Test Problem 
 

 In order to evaluate the MDO techniques a test problem had to be selected on 

which to apply them. For the methodology evaluation goals of this study, though, the test 

problem is just a vessel. It is not of critical issue what problem was selected, just as long 

as it a realistic problem that resembles one that may be used in “real world” applications. 

The test problem selected is the optimization of a next generation single-stage-to-

orbit (SSTO) earth-to-orbit (ETO) RLV. Launching from Kennedy Space Center (KSC), 

the RLV must be capable of delivering a 25 klb payload to the International Space 

Station (orbiting at 220 nmi x 220 nmi x 51.6° inclination). To accomplish this goal a 

base vehicle configuration, ACRE-92, will be optimized via the use of three disciplines, 

Propulsion, Performance and Weights and Sizing.  

The goal of this study is not to answer what a next generation RLV might look 

like or how much it might weigh but instead to evaluate how well the MDO techniques 

performed when applied to the problem. 

 

4.1 Base Launch Vehicle Configuration 

 

 The ACRE-92 RLV 12  is an HRST-class SSTO designed and documented by 

SpaceWorks Engineering, Inc.15 It is based upon a NASA Langley concept dubbed WB-

003 Single Stage Shuttle. 13  Employing five LOX/LH2 main engines the baseline 

configuration is able of transporting about 25 klb,  70% of the payload capability of the 

current Space Shuttle (34.4 klb)14, to the ISS. The five main propulsion engines will 

insert the RLV into ISS insertion orbit (50 nmi x 100 n mi x 51.6° inclination) and then 

let the orbital maneuvering system (OMS) raise the orbit to a circular orbit at 220 nmi 

altitude. 

In order to increase the realism of this study, adjustments were made during the 

vehicle analysis to account for technological improvements expected for a next 

generation vehicle (see page 16).  

 11



The base vehicle characteristics and configuration are shown below. 

Table 1: Concept Description ACRE-92. 

 
 

 

Figure 1: Vehicle Configuration ACRE-92. 

 

 The base vehicle was photographically scaled to meet sizing requirements of the 

test problem and its aerodynamic data served for the models created in this project. 
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5 Computational Tools 
  
 This section describes the legacy codes and other computational tools used for all 

MDO and MDA technique applications. 

 

5.1 Propulsion Tool 
 

 Rocket Engine Design Tool for Optimal Performance (REDTOP) was used to 

analyze and predict the rocket engine propulsion system. Developed by SpaceWorks 

Engineering, Inc.15 the code allows quick analysis of propulsion systems and is suitable 

for conceptual level design.  

 REDTOP models the rocket engine by first determining the chemical reactions 

occurring in the combustion chamber and then analyzing the expansion of the hot gasses 

as they travel through a convergent-divergent nozzle. The combustion is modeled 

adiabatically and at constant pressure. Additional accuracy in the prediction of the engine 

performance is reached through a built-in engine efficiency database. It will make 

performance corrections due to engine cycle type, nozzle flow losses, degree of reaction, 

and combustor efficiency.  

To execute REDTOP the user must specify the propellant characteristics, chamber 

pressure, nozzle expansion ratio, mixture ratio and sizing criteria. Sizing could be 

executed to meet a required thrust at a given ambient pressure, desired mass flow rate, or 

to meet a specific engine throat area. REDTOP will then output general performance 

metrics, efficiencies used, exhaust characteristics, and species mole fractions at inlet, 

throat and exhaust. 

 A high-fidelity estimate of the engine thrust to weight (T/Weng) for the propulsion 

system is not provided by REDTOP, but is required as an input when estimating the 

vehicle weight. Thus a low-fidelity estimate of T/Weng was calculated based on historical 

data16 of rocket engine power to weight ratio (P/W). This calculation is as follows: 
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The parameter “k” is a sizing parameter that varies with technology level.  The 

historical average value of “k” based on data from 28 rocket engines is k = 520 

BTU/s/lbf.16 This number is therefore representative of state of the art technologies. A 

value of k = 600 BTU/s/lbf was used for this study, this represents the use of advanced 

technologies in the engines for a next generation RLV. 

The propulsion inputs and outputs used for the course of this study are shown 

 

below. 

 

Propellant Data
Inlet Temp, h, r

REDTOP

Engine Characteristics
Cycle, Fuel, Oxidizer, pc

Nozzle Geometry
ε

Sizing Requirement
At or TSL or m

Outputs
T/Weng, T, Isp, Ae, pe, 

Exhaust Characteristics

T/Weng
Calculation

Propellant Data
Inlet Temp, h, r

REDTOP

Engine Characteristics
Cycle, Fuel, Oxidizer, pc

Nozzle Geometry
ε

Sizing Requirement
At or TSL or m

Outputs
T/Weng, T, Isp, Ae, pe, 

Exhaust Characteristics

T/Weng
Calculation

Figure 2: REDTOP Inputs and Outputs. 
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5.2 Performance Tool 

 

 Program to Optimize Simulated Trajectories (POST)17 was used to simulate the 

trajectories of the RLV. Originally developed in 1970 by Lockheed Martin as a Space 

Shuttle Trajectory Optimization Program, POST is one of the most commonly used codes 

for trajectory analysis and optimization. It is a multi-phase simulation program which 

numerically integrates the equations of motion and provides the capability to target and 

optimize point mass trajectories for generalized vehicles and planets. 

 POST was selected not only due to the fact that it is often the tool of choice for 

trajectory optimization throughout the aerospace industry, but also because it is a 

fastidious code which will often present trouble during analysis. This increases the 

realism of the RLV problem as in “real world” or practical application of MDO 

methodologies one will often have to deal with codes that are difficult to use. Legacy 

tools like POST are very old by aerospace industry standards, but replacing them would 

incur large costs.  

To execute POST the user must provide planetary and vehicle characteristics, 

define any trajectory constraints, select appropriate guidance algorithms to be used for 

each phase of the trajectory, and define the objective variable to be used for optimization. 

The inputs and outputs used for the course of this study are shown below. 

Vehicle Characteristics
Sref, Wgross, Aerodynamics

POST

Propulsion Inputs
Tvac, Ispvac, Ae

Planetary Inputs (Earth)
Atmospheric Model
Gravitational Model

Trajectory Constraints
Insertion orbit 
Maximum Acceleration

Outputs
MR, Performance

Final Orbit

Vehicle Characteristics
Sref, Wgross, Aerodynamics

POST

Propulsion Inputs
Tvac, Ispvac, Ae

Planetary Inputs (Earth)
Atmospheric Model
Gravitational Model

Trajectory Constraints
Insertion orbit 
Maximum Acceleration

Outputs
MR, Performance

Final Orbit

Figure 3: POST Inputs and Outputs. 
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 While newer versions of POST can calculate 6 degree of freedom (DOF) 

trajectories, for this project a 3 DOF simulation was executed. POST is written in 

FORTRAN and has been compiled for use in batch mode for both the UNIX and PC 

platforms. Both platforms were used during the course of this study. 

 

5.3 Weights & Sizing Tool 

 

 Weights & Sizing analysis is performed via a set of Space Shuttle derived mass 

estimating relationships (MER’s) developed by NASA Langley 18 . The MER’s are 

calculated using a Microsoft Excel spreadsheet created for this project. The MER’s 

represent mass relationships using technology levels commensurate with the Space 

Shuttle, thus they must be altered in order to more realistically model a next generation 

RLV.  The MER’s are broken down by system and subsystem, thus technology reduction 

factors (TRF’s) can be implemented to represent technological advancements (the 

majority in materials) that will allow for mass savings in next generation RLV’s. Table 2 

shows the reduction factors used for this project. 

Table 2: Technology Reduction Factors. 

 
 

To execute the Weights & Sizing tool, one must provide a base vehicle to 

photographically scale, propulsion characteristics, performance requirements, a dry mass 

 16



contingency (15% for this study), and TRF’s. The Weights & Sizing tool will then 

calculate the vehicle’s available mass ratio (MRavail), Wgross, Wdry and create a weight 

breakdown by subsystem. The tool is designed to photographically scale the vehicle via a 

scale factor (SF) until the MRavail = MRreq. The inputs and outputs used in Weights & 

Sizing are below. 

 

Base Vehicle Characteristics
Areas, Dimensions, Volumes

Weights

Propulsion Inputs
TSL/Wgross, Ae, r, TSL/Weng

Performance inputs
MRreq, Payload, Mission 
Time, OMS ∆V, RCS ∆V

Tech. Reduction Factors
% Weight reductions per use 
of advanced technologies

Outputs
MRavail, SF, Wdry, Wgross, 

Weight breakdown

Base Vehicle Characteristics
Areas, Dimensions, Volumes

Weights

Propulsion Inputs
TSL/Wgross, Ae, r, TSL/Weng

Performance inputs
MRreq, Payload, Mission 
Time, OMS ∆V, RCS ∆V

Tech. Reduction Factors
% Weight reductions per use 
of advanced technologies

Outputs
MRavail, SF, Wdry, Wgross, 

Weight breakdown

Figure 4: Weights & Sizing Inputs and Outputs. 

 

5.4 Computational Framework 

 Phoenix Integration’s ModelCenter 19  software was used to communicate and 

coordinate between tools. ModelCenter is a process integration and design optimization 

package. It was used to integrate all the discipline codes into a single interface without 

having to actually combine the source codes of each tool.  

Framework integration is done by writing a wrapping script for each discipline 

that will automatically send inputs, execute and retrieve the outputs for any discipline 

codes. It allows for codes written in different languages and located in different 

computers within a network to be accessed from a single user interface. For this study 

REDTOP, written in JAVA, POST, written in FORTRAN, and the Microsoft Excel 

Weights & Sizing tool were all wrapped while Phoenix Integration’s Analysis Server 

software allowed for each to be accessed using ModelCenter. Once the discipline codes 

are wrapped, one can easily link and transfer data between them. Also, ModelCenter 
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allows for scripts to be easily written within the integrated frmaework and linked to the 

other codes. 

Along with integration ModelCenter also provides optimization capabilities 

through the use of the DOT optimizer which is incorporated in the ModelCenter software 

package. DOT can perform gradient-based optimization through the use of both direct 

methods (SLP, MoFD, SQP) and unconstrained methods (Variable Metric and Conjugate 

Gradient).20 It also records and organizes data for each iteration when performing an 

optimization routine; this greatly facilitates to understand model behavior and to fix any 

bugs. This data can then be saved for further analysis. 

A screen shot showing the ModelCenter user interface is shown below. 

 

Figure 5: ModelCenter User Interface. 

 
The use of ModelCenter or a program like it greatly facilitated the application and 

execution of the MDO techniques studied for this project. If no such software is available 

then it would have been necessary to manually run and exchange data between each 
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discipline code. This would have been an extremely intensive procedure and would have 

greatly slowed down the creation and running of RLV models. The breadth of work 

shown in this report would not have been realizable without a computational framework 

tool.  

 

5.5 Response Surface Modeling Tool 

 Pi Blue’s ProbWorks 21  software package, specifically its Response Surface 

Equation (RSE) Generator component, was used to create response surface models 

(RSM’s) of the discipline codes.  ProbWorks components are coded in JAVA and can 

easily be incorporated into ModelCenter’s computational frameworks.  

The RSE Generator is capable of automatically creating different types of design 

of experiments (DOE) given a number of design variables (2nd Order Central Composite 

Design was used throughout this project) and then producing a wrapper containing all the 

RSE’s of the response variables which make up an RSM. 

RSM’s were used in this study to create fast and accurate models of each of the 

discipline tools only when called for by an MDO technique.  
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6 Convergence Errors 
 Whenever a complex system is decomposed into discipline sub-problems one 

needs to make sure that any final configuration is converged. Convergence occurs when 

all disciplines or contributing analyses agree on the values for the coupling variables 

while meeting any constraints required by the test problem.   

For example, Table 3 shows that the insertion orbit altitude (hinsertion) and nozzle 

exit area (Ae) are both converged with errors very close to zero or within problem 

requirement tolerances.  

Table 3: Example of Converged Variables, hinsertion & Ae. 

 

The RLV test problem requires that the vehicle be capable of reaching ISS 

insertion orbit (see page 11). To fulfill this requirement the orbit hinsertion must reach 

303805 ft within a tolerance of ±100 ft. Here the performance estimated value for hinsertion 

is within acceptable tolerance. Ae does not have to match a value set by the test problem 

requirements, but for convergence the value of Ae that is used or calculated between all 

disciplines and levels must be the same.  

In practical applications there will usually be some convergence error. 

Throughout the course of this study a universal error threshold was not required when 

attempting to converge the all the MDA and MDO techniques, but instead the user 

conditioned model’s optimization parameters until it appeared convergence would not 

improved using the computational tools available.  

This study differentiates between two types of convergence error: 

intradisciplinary and interdisciplinary. 

Interadisciplinary convergence errors occur during internal convergence within a 

discipline in order to meet local optimization equality constraints (hloc). For example, the 
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performance legacy tool, POST, performs local optimization to maximize the MRreq but 

must do so while reaching ISS insertion orbit. In practical applications POST will meet 

the desired orbit within user defined tolerances. Tolerances were set as small as could be 

efficiently reached by the legacy tools to minimize intradisciplinary errors. 

Interdisciplinary convergence errors are when the value for a coupling variable is 

not exactly the same between two disciplines.  
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7 FPI: Fixed Point Iteration  
 

Fixed Point Optimization (FPI) or the Iterative procedure20 is the traditional way 

of solving or converging a multidisciplinary analysis (MDA) problem. It is not, though, a 

multidisciplinary optimization (MDO) technique. While applying FPI will produce a 

converged model it does not attempt to optimize the model to a global objective as is the 

aim of MDO. In this procedure each discipline may perform local optimization on some 

aspect of their discipline, but no global system-level optimization is executed. Therefore, 

since only local optimization based on local objectives is perfomed FPI solutions are 

expected to produce sub-optimal RLV’s with respect to a global objective.  

This section will provide some background information about FPI and its 

relevance to this study; show the formulation when it is applied to the RLV problem, 

present the results gathered and discuss findings. There were two different FPI 

formulations applied, Option 1 and 2, which differed in which discipline owned design 

control over the fuel mixture ratio (r). Also, it was attempted to more accurately represent 

industry practice by having an expert set the design space used for the propulsion design 

variables. 

 

7.1 FPI: Background 
 
 When aerospace systems grew too complex to be designed by one group or 

individual, the system analysis was broken down into multiple disciplines that dealt with 

only part of the problem. Unfortunately there is coupling between the disciplines and thus 

one discipline could not complete their design without inputs from another and vice versa. 

This creates a multidisciplinary analysis (MDA) problem where in order to design the 

vehicle each group must a first guess what the other discipline’s input is going to be and 

then see how close their guess was to the actual value. The MDA problem is solved when 

all the inputs and outputs shared between disciplines converge at the same values. FPI 

has traditionally been the method of choice for solving or converging MDA problems.  
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 In FPI each discipline optimizes their part of the entire system with respect to a 

local variable, for example the Structures group may try to make a plane as strong as 

possible while the Aerodynamics group will try to reduce drag. It is expected, though, 

that this approach will provide solutions that are sub-optimal in the system-level as it 

does not exploit multi-discipline interactions. For example if Aerodynamics makes wings 

that are really thin to reduce drag, this may negatively affect Structures as now the wings 

are weak and may break. Also, lost in the shuffle is the bottom line. The customer for 

such a system does not care about discipline level goals but is more interested in global 

metrics relating to cost or weight of the entire system. 

 FPI is the standard design practice used for solving MDA problems in the design 

of aerospace systems and vehicles. The creation of an FPI model, thus, will create a basis 

with which to judge the purported benefits of applying MDO to the design of a next 

generation RLV. 

  

7.2 FPI: Formal Problem Statement 
 

 While in FPI there is no system-level optimization, there is local-level or 

disciplinary optimization. A general problem statement for each of the three disciplines 

involved in the RLV design, Propulsion, Performance, and Weights & Sizing, is shown in 

this section. 

 The FPI approach is unique in that a total of 8 different models that each provided 

a converged vehicle solution using FPI were created. The different models were a result 

of: 1) allowing mixture ratio (r) to be controlled by Propulsion (Option 1) or by Weights 

& Sizing (Option 2), 2) the local-level objective for the Propulsion discipline (ΦProp) was 

allowed to vary between Ispvac and TSL/Weng and 3) two different design spaces were 

applied to the design variables for the Propulsion analysis. 

 Varying the control of mixture ratio (r) between the Propulsion and Weights & 

Sizing disciplines was performed in order to investigate how changing the ownership of 

shared input variables could affect the overall design of an RLV. Ideally, no matter who 

has ownership of a shared input variable, the overall vehicle design should not be 
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affected. This is not true in FPI due to each discipline optimizing only at the local-level. 

In industry, the general practice is to give ownership of “r” to the Propulsion discipline. 

 Next, while maximizing Ispvac is the most common ΦProp used in industry, it is not 

self-evident why the objective could not be to maximize TSL/Weng. Due to the strictly 

local nature of optimization in FPI changing ΦProp will result in different converged 

vehicle configurations. 

 Lastly, the design space was altered in order to give a better representation of 

what occurs in industry practice. The overall vehicle design was found to be very 

sensitive to the side constraints applied to the local design variables in the Propulsion 

analysis. In industry, this sensitivity is well known thus an expert is used to set the design 

space at an appropriate range for a specific system. This is fine, except that a new or 

radical design might be incorrectly influenced or constrained by the designer’s 

experiences. It would be ideal for a design technique to allow for the widest design space 

possible for a given set of tools and let the tools determine the correct values. That way 

the design is ruled solely by physics and not by human bias. 

For this study the two Propulsion design spaces were evaluated as shown below: 

Expert Design Space: Side constraints are determined by a propulsion expert. This 

design space reflects the suggested values from Tim Kokan, space 

propulsion graduate specialist at Georgia Institutes of Technology’s Space 

Systems Design Lab22. 

Large Design Space: Side constraints are maximized so as to not limit the 

optimization of the system to preconceived notions. 

 

Table 4: Propulsion Design Spaces Investigated for FPI. 
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The 8 different FPI formulations investigated for this study were:  

I.   Option 1: Mixture ratio (r) controlled by Propulsion 

 A.   Expert Design Space 

  i.  ΦProp = TSL/Weng   (1)  

  ii. ΦProp = Ispvac  (2, Industry Standard) 

 B.   Large Design Space 

  i.  ΦProp = TSL/Weng  (3) 

  ii. ΦProp = Ispvac  (4) 

II.  Option 2: Mixture ratio (r) controlled by Performance 

 A.   Expert Design Space 

  i.  ΦProp = TSL/Weng  (5) 

  ii. ΦProp = Ispvac  (6) 

 B.   Large Design Space 

  i.  ΦProp = TSL/Weng  (7) 

  ii. ΦProp = Ispvac  (8) 

The resulting configuration with the lowest Wdry was selected as the best FPI 

configuration. Each MDO technique application model was initialized using the best FPI 

configuration. 

 

7.2.1 FPI: Propulsion Standard Form 

  

Minimize:  ΦProp  -(Ispvac)    or   -(TSL/Weng) 
 
Subject to:  g  pe ≥ 5 psia 
   h  TSL,avail = TSL,req 
   Side  4 ≤ r ≤ 10  or 5 ≤ r ≤ 7 
     30 ≤ ε ≤ 100  or 50 ≤ ε ≤ 90 
     200 ≤ pc ≤ 3100 psia or  1500 ≤ pc ≤ 3100 psia 
 
By Changing:  Xloc  ε, pc, At, r   ( r only for Option 1) 
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7.2.2 FPI: Performance Standard Form 

 

Minimize:  ΦPerf  MRreq  
 
Subject to:  h  hinsertion = 303805 ft 
     iinsertion = 51.6 ° 
     γinsertion = 0 ° 
 
By Changing:  Xloc  θAzimuth, θPitch1, θPitch2, θPitch3, θPitch4 
 

7.2.3 FPI: Weights & Sizing Standard Form 

 

Minimize:  ΦW&S  Wdry  
 
Subject to:  h  MRavail = MRreq  
   Side   TSL/Wgross ≥ 1.2 
 
By Changing:  Xloc  SFveh, TSL/Wgross, r   ( r only for Option 2) 
 
 
 

7.3 FPI: Data Flow 

 

 In order to better understand the coupling of shared variables the design structure 

matrices (DSM’s) for both FPI Option 1 and 2 are provided. Also provided are variable 

tables which help to quickly observe the important variables for each local-level 

discipline. 
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7.3.1 FPI: Design Structure Matrix 

 

Option 1: Mixture ratio (r) controlled by Propulsion 

 

 
Figure 6: DSM for FPI Option 1. 

 

Option 2: Mixture ratio (r) controlled by Weights & Sizing 

 

 
Figure 7: DSM for FPI Option 2. 

 

 Note that both FPI DSM’s have feed forward and feed back loops. This means 

that tightly coupled disciplines or contributing analyses (CA’s) must iterate between them 

several times. This could be costly if the CA’s are expensive or time consuming. If the 

feed back loops are not needed then the disciplines can just be run one time in sequential 
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order from left to right. If forward loops between disciplines are broken, then the CA’s 

could execute in parallel or simultaneously. 

 

7.3.2 FPI: Variable Table 

 

Option 1: Mixture ratio (r) controlled by Propulsion 

 

Table 5: Variable Table for FPI Option 1. 
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Option 2: Mixture ratio (r) controlled by Weights & Sizing 

 

Table 6: Variable Table for FPI Option 2. 

 

 

 Note that both FPI variable tables have the Xsys empty. This shows that for FPI 

there is not a system optimizer. All variables are controlled at the local-level, Xloc. 

 

7.4 FPI: Results 

 

 This section shows final configuration results for RLV’s converged using the FPI 

method. 
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7.4.1 FPI: Configuration Results 
 
Option 1: Mixture ratio (r) controlled by Propulsion 

 
Table 7: Final Configuration Table for FPI Option 1. 
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Option 2: Mixture ratio (r) controlled by Weights & Sizing 

Table 8: Final Configuration Table for FPI Option 2. 

 
 

 The column highlighted represents the best FPI model, selected with the desire to 

minimize the Wdry of the system. 
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7.4.2 FPI: Convergence Error 

  

Convergence error analysis was done only on the best FPI model with respect to 

the global objective, Wdry. The best FPI model was [Option 2, Expert Design Space, 

Φ,Prop = Ispvac].   

  

 

Table 9: Convergence Error for best FPI Configuration. 

 

 The intradisciplinary convergence error in the best FPI model is very low, never 

above 0.03%. This low error is thanks to the great time and effort spent to improve the 

precision of the legacy codes used in this study. The legacy codes were created with the 

FPI process in mind and are thus highly evolved to solve the FPI problem with the 

greatest efficiency and accuracy possible. 

 Also, the interdisciplinary convergence error is very low thanks to the fact that 

there are virtually no numerical errors in the FPI procedure as there are never any design 

space gradients taken. 

 Note that the “system” column is empty. This is due to the lack of a system-level 

optimizer when performing the FPI process. 
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7.5 FPI: Discussion & Qualitative Ratings 

 

 This section will address FPI optimization conclusions, lessons learned when 

implementing the method and provide qualitative ratings with discussion for each. 

 

7.5.1 FPI: Optimization Conclusions 

  

 FPI is not an MDO method, thus it does not optimize to achieve a global objective. 

FPI, though, is often employed in industry to solve an MDA problem and then variable 

sweeps are used to manually find what the globally optimized configuration is. This is 

not ideal as iteration may have to be performed many times for the variable sweeps and 

the design may be limited by the preconceived notions of the designer. 

 Of the 8 different FPI models generated, the best solution was reached by the 

combination [Option 2, Expert Design Space, ΦProp = Ispvac] which converged the RLV 

problem at Wdry ≈ 317 klb. This best combination, though, is not the industry standard 

practice ([Option 1, Expert Design Space, ΦProp = Ispvac] with Wdry ≈ 356 klb) thus it can 

be surmised that alternating which discipline has ownership of critical shared variables 

can significantly affect the best resulting design converged using FPI.  

 

7.5.2 FPI: Lessons Learned 

 

 Lessons learned in the implementation of the FPI process are few as FPI is the 

method for which all the legacy tools were designed. As expected, FPI models were easy 

straight forward to create and the tools behaved well when applied. Nevertheless, some 

lessons learned are: 

1)  The order in which CA’s are excecuted is critical for the model to run smoothly. In 

this case the POST – Weights & Sizing loop, see Figure 6 on page 27, needed to be 

iterated last. If not the POST – Weights & Sizing loop would often converge at a 
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vehicle weight so high that the thrust provided by the Propulsion analysis was not 

enough to lift the RLV off the launch pad. 

2)  The use of relaxation to perform the vehicle system convergence was able to 

slightly increase the range of starting points from which the model could be 

initialized and still find a converged solution. Its use, though, could greatly increase 

convergence time. 

7.5.3 FPI: Qualitative Ratings 
 

 It is very difficult to qualitatively assess the experience of implementing a given 

MDA or MDO technique without first comparing it to other the other techniques being 

evaluated. Therefore these ratings were assigned after all the techniques had been applied.  

 

Table 10: Qualitative Ratings for FPI. 

Criteria Grade Discussion 
Implementation 
Difficulty 

A Virtually all legacy tools were created for an iterative 
environment. This gives the implementation of the FPI 
process a big advantage. One could run into more difficulty 
if codes cannot be readily modified to allow for ownership 
of internal design variables by different codes. Thus it 
could be difficult to vary the discipline that has control 
over a shared variable. 
 

Total Execution 
Time 
 

A (5 to 20 minutes) 
Varied with the amount of relaxation used & initialization 
point. 
 

Robustness 
 

A Model converged for a wide range of initialization points. 
Relaxation could be used to converged otherwise unstable 
sections of the model. 
 

Formulation 
Difficulty 

A The formulation is straight forward and is usually evident 
from the legacy tools themselves. 
 

Optimization 
Deftness 

D FPI will not, by itself find a globally optimized solution. It 
requires a human to make a sweep of possible design 
spaces or configurations to find the global optimum. 
Though multiple configurations were tried, the best FPI 
solution was still found to be a sub-optimal solution. 
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Convergence 
Error 

A There is no gradient taking. Convergence is limited solely 
on the convergence tolerance of the legacy codes used. 
These codes usually converge with very tight tolerances 
thanks to time invested in conditioning their optimization 
to the specific problem.  
 

Issues  1) If control of coupling variables is not varied between 
disciplines then FPI may result in very poor results. In this 
study, when the industry standard of having Propulsion 
control the mixture ratio (r) and maximize Ispvac was used; 
the FPI solution converged with a vehicle 15-20% heavier 
than the true optimum. 
2) This is not an MDO technique thus vehicle optimization 
is dependent on human intervention. Varying optimization 
parameters (such as propulsion design space) can greatly 
affect the resulting vehicle configuration. 
 

Unique Benefits  1) Makes use of the legacy code’s original optimizer which 
has already been conditioned to best handle the discipline’s 
local-level problem. 
2) Virtually no legacy code modifications were needed. 
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8 AAO: All-at-Once 
 

All-at-Once (AAO) is the most basic of MDO techniques and has wide industry 

acceptance although it is restricted to small design problems. It takes all local-level 

optimization away and gives control of all the design variables to one, system-level 

optimizer. It ensures that MDO is performed and a global objective is met by in essence 

doing away with all the disciplines (except with respect to straight forward analysis) and 

having only one designer control the entire vehicle system design.  

This section will provide some background information about AAO and its 

relevance to this study; show the formulation when it is applied to the RLV problem, 

present the results gathered and discuss findings. The major drawback to AAO is that it 

does not scale well with increasing complexity. This became apparent during this study 

as it seemed that the system-level optimizer had some difficulty precisely reaching the 

most optimized design due to the large number of design variables. Therefore, there are 

two AAO results presented, one where all the local-level variables were transformed to 

the system-level design variables and one where two variables, TSL/Wgross and pc, were set 

as parameters at known “preferred” values. 

 

8.1 AAO: Background 
 
 Aerospace systems are broken down into multiple disciplines that deal with only 

part of the problem. This makes MDO difficult as when each discipline is optimizing 

their part of the system to meet a local objective it becomes impossible to optimize the 

whole to reach a more desired global objective.  

AAO is the most basic solution available to solve the global MDO problem. It 

moves all the local-level design variables and constraints away from the each discipline 

and gives them to a new system-level optimizer which is entrusted with optimizing the 

vehicle to meet a global objective. The disciplines remain but they are but a shell of their 

old selves as all design freedom is taken away and they are entrusted solely with doing 

analysis, no design. The system-level optimizer will vary all the design variables and 
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passes inputs to each discipline so that they can perform local-level disciplinary analysis 

and design. 

The great benefit of AAO is that all the design variables are controlled by a single 

user that can immediately see how changes to a particular part of the vehicle affect the 

vehicle as a whole. AAO with Optimizer Based Decomposition (OBD) breaks the 

feedback loops between CA’s in a DSM. Thus whenever the system makes a change in 

the vehicle configuration, each discipline only needs to run one time. This may save total 

execution time versus FPI where tightly coupled CA’s may have to iterate and converge 

before the rest of the analysis can continue. 

While AAO is the most straight forward way to solve an MDO problem it has 

great drawbacks that makes it inapplicable to the detailed design of aerospace systems.  

First, taking the design responsibilities completely away from the disciplines 

means that discipline experts are no longer involved in design. For decades people have 

specialized their studies and research amassing a great deal of knowledge related to the 

design of a particular discipline. The depth of knowledge that all the discipline experts 

hold together cannot possibly be recreated by a single human being. Thus, if all design 

control is given to a single system-level optimizer, one loses the knowledge that has been 

accumulated.  

Secondly, the vehicle design was originally broken up into disciplines because the 

problem was so big and intricate that no single human or optimizer was able to handle the 

complexity. This is still true of aerospace systems and AAO cannot change that. Thus, 

unless simplified, the design of an aerospace system is too complex for a single user or 

system-level optimizer to handle. While AAO may be able to solve the MDO problem for 

conceptual level design (which has a limited number of design variables) it does not scale 

well with complexity and is not used during detailed design. 

 Despite limitations, if an MDO problem can be solved via AAO, there is a high 

degree of confidence that the final configuration produced will be the true global 

optimum. The resultant AAO configuration will be used to validate the solutions 

produced by applying CO, MCO and BLISS.  
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8.2 AAO: Formal Problem Statement 
 

 AAO does not have any local-level optimization, thus the MDO problem is 

strictly a system-level problem. AAO is composed of one system-level formulation which 

handles all the design variables for the entire RLV across all disciplines. 

8.2.1 AAO: System Standard Form 

  

Minimize:  ΦSys  Wdry 
 
Subject to:  g  pe ≥ 5 psia 
   TSL/Wgross ≥ 1.2 
   h  γinsertion = 0° 
     iinsertion = 51.6° 
     hinsertion = 303805 ft 
     MRreq = MRavail 
     Sref,guess = Sref,actual 
     Wgross, actual =  Wgross, guess 
     TSL,avail = TSL,req 
   Side  40.29 ≤ θAzimuth ≤ 44.53  °/s 
     -1.533 ≤ θPitch1 ≤ -1.386 °/s 
     0.04191 ≤ θPitch2 ≤ 0.05431 °/s 
     -0.2696 ≤ θPitch3 ≤ -0.2440 °/s 
     -0.1421 ≤ θPitch4 ≤ - 0.1285 °/s 
     6.3 ≤ r ≤ 7.7 
      45 ≤ ε ≤ 60 
      4.705 ≤ At ≤ 5.750  ft2 
     2790 ≤ pc ≤ 3100  psia  
     0.9913 ≤ SF ≤ 1.21169  
     1.2 ≤ TSL/Wgross ≤ 1.5 
     4368 ≤ Sref,guess ≤ 5339  ft2 
     2936 ≤ Wgross,guess ≤ 3559  klb    
 
 
By Changing: Xsys θAzimuth, θPitch1, θPitch2, θPitch3, θPitch4, r, ε, At, pc, SF, 

TSL/Wgross, Sref,guess, Wgross,guess 
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8.3 AAO: Data Flow 

 

 In order to better understand the coupling of design variables the design structure 

matrix (DSM) for AAO is provided. Also provided is a variable table which helps to 

quickly observe the important variables for each local-level discipline. 

 

8.3.1 AAO: Design Structure Matrix 

 

 

Figure 8: DSM for AAO with Partial OBD. 

 

 Note that backward loops between the CA’s have been broken. Now all feedback 

from the disciplines goes directly to the system optimizer. This is achieved through 

Optimizer Based Decomposition. 

 OBD or Simultaneous Analysis and Design (SAND) is a method of breaking the 

feed-back loops in a DSM that has a system-level optimizer. Guess or intermediate copies 

of the feed-back coupling variables are created and these are used by the system-level 

optimizer as design variables. Also, compatibility constraints are added at the system-

level which ensures that the guess or intermediate variables are equal to the actual values 

fed back by the CA’s.  
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8.3.2 AAO: Variable Table 

 

Table 11: Variable Table for AAO. 

 

 

 Note that the AAO variable table have the Xloc column empty. This shows that for 

AAO there is no local optimization. All variables are controlled by the system optimizer, 

Xsys. 

  

8.4 AAO: Results 

 

 This section shows final configuration results for the RLV test problem solved 

using the AAO method and describes the convergence errors resulting from this method. 

 

 40



8.4.1 AAO: Configuration Results 
 

As previously discussed on page 36, AAO does not scale well as many optimizers 

have trouble handling problems that are complex and have a lot of design variables. This 

scalability problem is not due to the theory of AAO, but to practical limitations with 

optimizers.  

Scalability difficulty was encountered during the course of this study when the 

system optimizer tried to simultaneously optimize all of the vehicle’s design variables. 

While the optimizer did a good job at approaching the optimal configuration, numerical 

errors and insufficient optimizer robustness did not allow for the optimum to be reached 

as precisely as desired. To fix this problem, two of the original design variables, 

TSL/Wgross and pc, were changed to system-level parameters at the constraint values that 

each seemed to be approaching. Thus the final configuration table has two columns: 

1) AAO, Full: Indicates stringent application of the AAO procedure as described in 

theory. All of the design variables moved from the local-level to the system-level 

are handled as system design variables. 

2)  AAO, Reduced: Indicates the use of manual overrides to set pc and TSL/Wgross as 

parameters. All other variables are still handled as system design variables. 
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Table 12: Final Configuration Table for AAO. 

 
  

 The column highlighted represents the best AAO model, selected with the desire 

to minimize the Wdry of the system.  

 One can observe that when AAO, Full was used TSL/Wgross seemed to approach its 

constrained minimum (1.2) while pc approached its constrained maximum (3100 psia). In 

practical application, though, the optimizer was unable to exactly reach the constrained 

limits. Unfortunately, this is common in engineering models where the legacy tools have 

a lot of numerical errors and make it very hard to determine the system derivatives 

necessary for the system-level optimization process. This can be helped by reducing the 

number of design variables in the system optimizer. When the values of TSL/Wgross and pc 

are manually set at the limits and held constant (parameters), the optimizer had an easier 

time reaching the true optimum solution for the test RLV problem. 
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8.4.2 AAO: Convergence Error 
 

 AAO has no local-level optimization and the only type of convergence error is 

interdisciplinary error. Even the ISS insertion orbit requirement is now calculated by 

Performance but the variables affecting it and making sure the requirement is met are a 

responsibility of the system optimizer.  

Compatibility error analysis was done on the best AAO model with respect to Wdry; AAO, 

Reduced. 

 

Table 13: Convergence Error for AAO, Reduced Configuration. 

 

 While the compatibility error of AAO is low, it is not as low as that reached using 

the FPI method (see Table 9 on page 32). This is a result of the larger size of the system-

level optimization problem.  

 For this study optimization parameter conditioning was performed in order to 

minimize errors observed in the model. Due to internal tolerances within the legacy tools, 

though, a point was reached where seemingly errors could not be driven any lower with 

the available computational tools. It is possible that there is some set of optimization 

parameters that would have produced somewhat lower errors. 
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8.5 AAO: Discussion & Qualitative Ratings 

 

 This section will address AAO optimization conclusions, lessons learned when 

implementing the method and provide qualitative ratings with discussion for each. 

 

8.5.1 AAO: Optimization Conclusions 

  

 AAO is not a multi-level MDO optimization technique since all the vehicle 

optimization is contained at the system-level. AAO, though, is the MDO method that is 

accepted in industry to solve conceptual level MDO problems. While in theory it will 

reach a globally optimized configuration, in practice limitations in system-level 

optimizers and legacy tools severely limit the level of MDO complexity that can be 

solved with the AAO method. This is not a fault with the AAO methodology, but simply 

“real world” limitations. 

 Indeed a precise convergence using the full application of AAO to the RLV test 

problem, which is still a conceptual level problem, was not reached with the tools and 

optimizers used for this study.  Once the problem was simplified (see page 41), though, 

the true optimum was reached at Wdry ≈ 305 klb. This is a 4% improvement over the best 

FPI configuration (see Table 8 page 31). 

 A 4% improvement in the global objective over the best FPI configuration is a 

noticeable but modest improvement in the design optimization of the RLV. AAO, as are 

most MDO optimization algorithms, are often very difficult to apply due to “real world” 

limitation present in the legacy codes and reconditioning of the optimizers used. 

Therefore one must weigh the predicted objective benefits of applying an MDO 

technique versus the cost of implementing it. In fairness to the MDO techniques, though, 

the best FPI solution was already an unconventional application of the FPI process. If FPI 

had only been applied as is most common in industry today, then the FPI method would 

have resulted in a vehicle with Wdry ≈ 356 klb (see page 33). In this case MDO resulted in 

a 14% improvement over the industry standard FPI method. 
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8.5.2 AAO: Lessons Learned 

 

 Lessons learned in the implementation of the AAO process are as follows: 

1)  Most legacy tools will allow one to easily turn off all local optimization which turns 

the computational code into a strictly analysis tool. This was beneficial in the AAO 

application as it was unnecessary to alter the internal code of any of the legacy tools 

which may have been a time consuming endeavor. 

2)  Even for a small design space, POST would crash often. It could be shown that 

POST would work for most configurations within a given design range. Even so, it 

was often the case that a design configuration point would be called for during 

optimization that would cause POST to crash. Thus there were gaps or holes where 

POST would crash within a generally valid design space. Thus, after the 

optimization problem was initialized and started moved toward the optimum, it 

might hit a gap in the design space that would cause POST to crash and the 

optimization to fail. This problem was overcome by varying the initialization point 

until the optimizer happened to take a path that did not hit any gaps.  
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8.5.3 AAO: Qualitative Ratings 
 

 It is very difficult to qualitatively assess the experience of implementing a given 

MDA or MDO technique without first comparing it to other the other techniques to be 

evaluated. Therefore these ratings were assigned after all the techniques had been applied. 

 

Table 14: Qualitative Ratings for AAO. 

Criteria Grade Discussion 
Implementation 
Difficulty 

C Often the internal optimizer can be switched off easily, 
facilitating implementation. Conditioning the system 
optimizer to simultaneously optimize all the design 
variables proved difficult. A problem slightly larger or 
more complex may be beyond the capability of most 
optimizers. 
 

Total Execution 
Time 
 

A- (40 to 50 minutes) 
 

Robustness 
 

D The optimizer would not converge if the design space was 
not relatively small, stable and almost centered around the 
eventual optimized values. Also, there were problems in 
that the legacy tools would crash in points within the 
design space. This is a problem with the legacy tool but 
shows some of the problems that can be encountered in 
“real world” applications. 
 

Formulation 
Difficulty 

A The formulation is straight forward as one can just 
automatically move all the variables from the local-level to 
the system-level without having to add any variables. 
 

Optimization 
Deftness 

A- A full application of AAO did not precisely converge at the 
true optimum due to numerical difficulties with the legacy 
codes that impaired the system-level optimizer. The true 
optimum was precisely obtained by reducing the size of the 
problem by setting two at the constrained minimum they 
were approaching. The difficulties encountered show the 
scalability problems with AAO even when applied to a 
relatively small, conceptual level problem. 
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Convergence 
Error 

A- Simultaneous optimization of all variables by a single 
optimizer will generally not have compatibility error as 
low as FPI unless a long time used to carefully condition 
the optimizer. This is because the local-level optimizers are 
free to use the optimization method most suitable for their 
specific problem, while a system optimizer has to be 
general enough to optimize all parts simultaneously. 
 

Issues  1) Numerical difficulties from the legacy codes may make 
it very difficulty to condition optimizer to converge tightly. 
2) Lack of robustness in the legacy codes caused crashes 
even when in a region well within the code’s capability.  
 

Unique Benefits  It can be mathematically proven that in theory AAO should 
reach the true system-level optimum. Thus, if AAO can be 
successfully applied, there is a high degree of confidence 
in its result. 
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9 BLISS: Bi-Level Integrated System Synthesis 
 

Bi-Level Integrated System Synthesis (BLISS) is a two-level optimization 

algorithm originally developed by Dr. Jaroslaw Sobieszczanski-Sobieski, et al., of NASA 

Langley. Being a multi-level optimization algorithm there is optimization in more than 

one level of the entire RLV design, as opposed to FPI which only has local optimization 

or AAO which only has system-level optimization.  

This section will provide some background information about BLISS and its 

relevance to this study, show the formulation when it is applied to the RLV problem, 

present the results gathered and discuss findings.  

 

9.1 BLISS: Background 
 
 BLISS, along with CO and MCO, is one of the most promising multi-level MDO 

techniques. The first version of BLISS3 was developed in 1998 with the most recent 

derivative, BLISS-20004, introduced in 2002. BLISS is a two-level MDO technique with 

both local and system-level optimization. Only the BLISS-2000 algorithm will be applied 

for this study as it is anticipated by the BLISS developer, Dr. Sobieszczanski-Sobieski, to 

the best derivative published to date.  

As with other multi-level MDO algorithms proposed, one of the greatest obstacle 

to the acceptance of BLISS is the fact that it was “crafted” as opposed to “rigorously 

derived.”9 Thus it requires studies applying it to realistic test problems, like the one 

presented here, to gain industry acceptance. 

BLISS intends to allow for large MDO problems to be solved while at the same 

time minimizing the amount of changes that need to be made to current design practices. 

BLISS, like CO and MCO, is a two-level MDO technique and thus is believed to be well 

suited for the conventional disciplinary structure used in industry. It also lets experts have 

most of the control over the local discipline design taking advantage of their advanced 

knowledge. Since it does not add any new local-level design variables, CA’s can be 

performed similarly to current practices developed for use with an FPI process in mind. 
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In order to be able to successfully coodinate between disciplines and arrive at a 

global optimum, BLISS needs to introduce new design variables to the system-level 

optimizer. BLISS uses weighting factors (w’s) on local-level outputs to produce an 

overall system-level MDO solution. The system-level optimizer is now in charge of 

handling all the shared inputs or coupling variables for the system as well as the new 

weighting factors. These weighting factors are used to dynamically control each 

discipline’s local-level objective. Due to the addition of new variables, which have the 

potential to complicate the system-level optimization, it is expected that BLISS, like CO 

and MCO, is best suited for MDO problems with low dimensionality coupling. 

A feature added to BLISS in the BLISS-2000 derivative is the creation RSM’s of 

all the CA’s and applying the bi-level optimization scheme directly to the RSM’s instead 

of the original legacy tools. Substituting for the original legacy codes is an attempt to 

avoid the numerical integration and stability problems that are often present when using 

troublesome legacy tools. The RSM’s, since they are just curve fits, will provide clean 

consistent gradients for the system-level optimizer. They will also run much faster than 

the original legacy tools; providing execution time savings.  

RSM’s, though, require that the original CA’s must be run in a design of 

experiments (DOE) to create the data to which the RSM’s will be fitted. This could be a 

costly endeavor if there are a lot of local-level design variables. On the other hand, using 

parallel execution to distribute this process over a computer network means that, in 

theory, this could be done in the amount of time required to execute the most time 

consuming CA just once. If the RSM is not an accurate fit of the original tools, then 

additional DOE’s may need to be run until the design space is small enough to bring RSE 

error within desired tolerance. Each time that the design space is decreased around the 

previous configuration, new RSM’s  are created and used to solve the MDO problem is 

considered a BLISS iteration.4 

For this study a 2nd Order Central Composite DOE was used to create all the 

discipline RSM’s. The number of variables to be fitted, resulting number of CA runs 

needed, and the total execution time called for by the DOE’s needed in BLISS, are shown 

in Table 15. Note, execution of all CA’s was performed on the same Pentium 4, 2.25 Ghz, 

512 MB RAM machine. 
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Table 15: CCD Properties for BLISS. 

 
  

9.2 BLISS: Formal Problem Statement 
 

 BLISS-2000 has both system and local-level optimization.  

9.2.1 BLISS: System Standard Form 

  

Minimize:  ΦSys  Wdry 
 
Subject to:  h  Y* = Y^o(Xsys) 
 
By Changing:  Xsys  Xsh  r  
     Y* Ispvac, Tvac, Ae, TSL/Weng, Sref, Wgross, TSL,req,  

MRreq 
w w1[Ispvac], w2[Tvac], w3[Ae], w4[TSL/Weng], 

w5[Wdry], w6[Sref], w7[Wgross], w8[TSL,Req]  
      
Note: for w1…w8 the [ ]’s show the variable to which the weighting factor corresponds 
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9.2.2 BLISS: Propulsion Standard Form 
 
Minimize: ΦProp  w1(Ispvac) + w2(Tvac) + w3(Ae) + w4(TSL/Weng)  
 
Subject to: g  pe ≥ 5 psia 
 h  TSL,avail = TSL,req 
 Side  4 ≤ r ≤ 10 
   30 ≤ ε ≤ 100 
   200 ≤ pc ≤ 3100 psia 
 
Given as Parameter: Xsh  r 
 Y*  TSL,req 
 w  w1, w2, w3, w4 
 
Find: Y^o  Ispvac, Tvac, Ae, TSL/Weng  
      
By Changing: Xloc  ε, pc, At 
 

      

9.2.3 BLISS: Performance Standard Form 
 
Minimize: ΦPerf  MRreq 
 
Subject to: h  hinsertion = 303805 ft 
     iinsertion = 51.6 ° 
     γinsertion = 0 ° 
 
Given as Parameter: Y*  Ispvac, Tvac, Ae, Sref, Wgross 
 
Find: Y^o  MRreq  
      
By Changing: Xloc  θAzimuth, θPitch1, θPitch2, θPitch3, θPitch4 
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9.2.4 BLISS: Weights and Sizing Standard Form 
 
Minimize: ΦW&S w5(Wdry) + w6(Sref) + w7(Wgross) + w8(TSL,req) 
 
Subject to: h  MRavail = MRreq 
 Side  TSL/Wgross ≥ 1.2 
 
Given as Parameter: Xsh  r 
 Y*  TSL/Weng, Ae, MRreq  
 
 w  w5, w6, w7, w8 
 
Find: Y^o  Wdry, Sref, Wgross, TSL,req  
      
By Changing: Xloc  SF, TSL/Wgross  
 
 
 
 

9.3 BLISS: Data Flow 

 

 In order to better understand the coupling of design variables the design structure 

matrix (DSM) for BLISS is provided. Also provided is a variable table, proposed by Dr. 

Sobieski of NASA Langley, which helps to quickly observe the important variables for 

each local-level discipline. 
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9.3.1 BLISS: Design Structure Matrix 

 

Figure 9: DSM for BLISS. 

 

 Note that forward and backward loops between the discipline CA’s have been 

broken. This allows for parallel execution of the CA’s. 

9.3.2 BLISS: Variable Table 

 

Table 16: Variable Table for BLISS. 
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9.4 BLISS: Results 

 

 This section shows the final configuration results for the RLV test problem solved 

using the BLISS-2000 method and describes the convergence errors resulting from this 

model. 

 

9.4.1 BLISS: Configuration Results 
 

As previously mentioned, the BLISS-2000 algorithm calls for RSM’s to be 

created for each CA and then for the RSM’s to be the ones actually used when solving 

the MDO problem. 

The RSM’s though do not include internal variables used within the disciplines 

but not passed on to others, thus, once the RSM’s found the correct configuration, each of 

the tools was run one more time to get internal values and also as a quick check on the 

fidelity of the RSM fits used. 
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Table 17: Final Configuration Table for BLISS. 

 
  

 One can see that the RSM models created were of high fidelity. Also, the 

optimum Wdry calculated by the RSM’s was virtually identical to the actual value output 

by the original legacy codes. 

 

9.4.2 BLISS: Convergence Error 
  

BLISS has both local and system-level optimization thus there is both 

intradisciplinary and interdisciplinary convergence error. 

Convergence error analysis was performed using the actual values as outputted by 

the legacy tools, not those estimated via RSM’s. This ensures that the errors due to RSE 

fits are accounted in the convergence error. 
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Table 18: Convergence Error for BLISS Configuration. 

 

 While the compatibility error of BLISS is not as low as that resulting from 

application of the FPI method (see Table 9 page 32) or AAO (see Table 13 page 43) it is 

still sufficiently low. 

The acceptable level of this error is determined by the sensitivity of down-stream 

analysis to the specific variable. In this case the largest error was TSL/Weng which is used 

as an input in the Weights & Sizing analysis. Weights & Sizing, though, is not very 

sensitive the error in TSL/Weng and showed negligible effects when the TSL/Weng value 

was changed by 2.4%, the error observed. 

 For this study optimization parameter conditioning was performed in order to 

minimize errors observed in the model. Due to internal tolerances within the legacy tools 

and errors in the RSM fit, though, a point was reached where seemingly errors could not 

be driven any lower with the available computational tools. It is possible that there is 

some set of optimization parameters that would have produced somewhat lower errors. 
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9.5 BLISS: Discussion & Qualitative Ratings 

 

 This section will address BLISS optimization conclusions, lessons learned when 

implementing the method and provide qualitative ratings with discussion for each. 

 

9.5.1 BLISS: Optimization Conclusions 

  

 BLISS is a multi-level MDO optimization technique and thus has not gained wide 

acceptance within industry. The work presented here, though, found that BLISS could 

successfully find the global optimum of the test RLV problem with similar convergence 

accuracy compared to the more accepted AAO. There is still to little data available, 

though, to claim BLISS a viable alternative to AAO but the observations made during 

this study were promising. 

 BLISS found the RLV’s optimum at Wdry ≈ 305 klb. This is virtually identical to 

the value found using AAO* (see Table 1  page 12). This is a 4% improvement over the 

best FPI configuration (see Table 8 page 31). 

 

9.5.2 BLISS: Lessons Learned 

 

 Lessons learned in the implementation of the BLISS-2000 process are as follows: 

1)  There is a need to improve current framework integration tools so that future BLISS 

models can evaluate the parallel execution benefits of the algorithm. If simultaneous 

execution of all the CA runs needed for the DOE’s were possible, this would lead to 

big time savings. 

                                                 
* A small 0.1% discrepancy between the two Wdry values resulting from AAO and BLISS can be accounted 
by POST internal tolerances. AAO’s insertion orbit (303,706 ft) was near the tolerance minimum allowed 
by the user in POST (303,805±100 ft) while in the BLISS orbit was slightly above (303,824 ft) the required 
orbit. This is not a discrepancy between algorithms, it is entirely an intradisciplinary convergence error 
within performance. 
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2)  BLISS showed a very significant implementation advantage in the RLV test problem 

due to the fact that the most troublesome legacy tool, POST, had only one coupling 

output variable (MRreq). This meant that the POST legacy tool be used completely 

unaltered without so much as having to add the weighting factors usually needed fo 

the system-level optimization process. 

3)  It was comparatively simple to make CA alterations needed to include the new 

composite objectives that included weighting factors. This is because, besides 

changing the local objective, analysis was performed in the same way as before. 

There were still the same local design variables and none were added. 

4)  The creation of RSM’s could be facilitated through the use of software that 

automatically creates them within the framework tool. Such a tool, ProbWork’s RSE 

Generator, was used in this project (page 19). This eliminated the need to transfer 

data between to statistical software to make the RSE’s and avoided errors due to data 

transfer. 

5)  It is important to allow both negative and positive values for the weighting factors 

(w’s). This allows for the system optimizer to choose if a local output should be 

minimized or maximized. 

6)  There is a system design space singularity when all w’s equal zero. This is because all 

local outputs are multiplied by zero and the local objectives vanish. Good results were 

obtained when all but one w was initialized with a value of zero.  This was 

circumvented by initializing the w’s in the system-level optimizer to all zeroes except 

one. Then the variable that received an initial w value was varied to ensure that the 

true minimum was being reached. When this is done, it is highly unlikely that the 

system optimizer will encounter the all w = 0 singularity. 
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9.5.3 BLISS: Qualitative Ratings 
 

 It is very difficult to qualitatively assess the experience of implementing a given 

MDA or MDO technique without first comparing it to the other techniques to be 

evaluated. Therefore these ratings were assigned after all the techniques had been applied. 

 

Table 19: Qualitative Ratings for BLISS. 

Criteria Grade Discussion 
Implementation 
Difficulty 

B+ While use of composite local-level objectives may require 
the legacy codes to be modified, the changes are small and 
relatively easy to implement. 
 

Total Execution 
Time 
 

B+ 
 
 

(2 to 3 hours) (10 to 20 minutes possible) 
Due to software limitations, the benefits of parallel 
computing described in the BLISS literature were not 
realized. This reality is reflected in the 2 to 3 hour 
convergence time. If the capacity for parallel execution of 
the RSM’s while solving the MDO problem was added the 
process would only see a marginal benefit due to the rapid 
execution of the RSM’s. If the capacity for parallel 
execution were added during the data gathering part of the 
DOE, though, a very large time savings would incur. If this 
capability were available, then the convergence time would 
be about 10 to 20 minutes. 
 

Robustness 
 

B+ Converged adequately from given initialization point (best 
FPI configuration), but if the RSM’s are a poor fit 
problems may incur. Also, does have vanishing local 
objective when all weighting factors (w’s) are equal to 
zero. 
 

Formulation 
Difficulty 

B+ Not as straight forward as FPI or AAO but still changes are 
not very large. It does, though, require a separate 
formulation for each discipline and the system. 
 

Optimization 
Deftness 

A May be able to handle more complex problems than AAO, 
but still may run into constraints if a lot of weighting 
variables are needed or there are a lot of shared variables. 
This was the only MDO technique which solved the “real 
world” RLV MDO problem with the accuracy and 
efficiency predicted in theory. 
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Convergence 
Error 

B+ Letting local optimizers control local design variables 
improves convergence of those variables. There may be 
increased error, though, due to the RSM fit and parallel 
execution. 
 

Issues  1) If one legacy tool takes a lot longer to create an RSM 
than others, then parallelization is of little help 
2) Every CA should not be made into an RSM.  Some 
codes may run quickly and do not have numerical 
problems.  
3) It may take several BLISS iterations to converge and 
have a good RSE fit. In this study the RSM fit was good 
and the data points were accurate thus it only required two 
BLISS iterations to reach a tightly converged system with 
little error. 
 

Unique Benefits  1) If a discipline has only one shared output, then that 
discipline’s formulation is the same as FPI and the original 
legacy tool can be used unaltered. 
2) Use of RSM’s eliminates numerical problems present in 
the legacy codes. This allows for high accuracy when 
taking numerical derivatives. 
3) May allow use of the legacy code’s original optimizer 
which has already been conditioned to best handle the 
discipline’s given problem. 
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10 CO: Collaborative Optimization 
 

Collaborative Optimization (CO) is a two-level MDO algorithm originally 

developed by Dr. Robert Braun for his Ph.D. dissertation at Stanford University.1 Being a 

multi-level optimization algorithm there is optimization in more than one level of the 

entire RLV design, as opposed to FPI which only has local optimization or AAO which 

only has system-level optimization.  

This section will provide some background information about CO and its 

relevance to this study; show the formulation when it is applied to the RLV problem, 

present the results gathered and discuss findings.  

 

10.1 CO: Background 
 
 CO, along with BLISS and MCO, is one of the most promising multi-level MDO 

techniques. CO was proposed in 1996 as a technique best suited for “large scale 

distributed design.” Thus, like BLISS, it is expected to scale better than AAO as the size 

and complexity of an MDO problem increases. 

As with other multi-level MDO algorithms proposed, one of the greatest 

impediments in the acceptance of CO is the fact that it was “crafted” as opposed to 

“rigorously derived.”9 Thus it requires studies applying it to realistic test problems, like 

the one presented here, to gain industry acceptance. 

CO, like other multi-level MDO techniques, is expected to offer the benefits of 

removing large iteration loops, allowing the expert disciplinary design teams to have a 

large amount of design freedom and parallel execution of the disciplinary analysis. Also, 

like BLISS, CO’s two-level structure is similar to conventional disciplinary structures 

currently used in industry. 

In order to be able to coordinate between disciplines and arrive at an optimum 

MDO solution, CO creates copies of all the interdisciplinary coupling variables at the 

system-level. The system-level optimizer then uses these copies to send out design targets 

to each discipline. There may not exist sufficient local degrees of freedom to satisfy all 

the targets while meeting local constraints, therefore the local-level subspaces are 
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allowed to depart from the targets but this departure is to be minimized. In theory, if there 

are enough local-level degrees of freedom, the variable targets and disciplinary values 

will converge or match. Of course, in practical applications there may be some error 

when trying to converge these values. 

In CO, as in MCO, the system-level sends variable targets to any CA’s that deal 

with the variable either as inputs or calculate their actual values as part of their analysis. 

For example, in the original FPI DSM (see page 27) the variable Ae was an output 

calculated by the Propulsion and an input used by both Performance and Weights & 

Sizing. In CO, the system would set a target value for Ae. Propulsion would optimize its 

input variables to match as closely as possible the Ae target along with any other 

discipline target (Ispvac, TSL, etc.). Both Performance and Weights & Sizing will optimize 

their input variables (including the local version of Ae) so as to match as closely as 

possible the Ae target along with their other discipline target (Wgross, MR, etc.).  

In CO the local objectives (ΦProp, ΦPerf and ΦW&S) are formulated so as the local-

level optimizer moves closer to matching their targets the local objective function 

decreases. Two different formulations for reaching this goal are were considered as 

follows: 
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       Equation 4: Φloc formulation without normalization constant 
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  Equation 5: Φloc formulation with a normalization constant 

Ci = user defined normalization constant for ith coupling variable

 

 While both equations above have similar local convergence in that Φloc will 

minimize to value of zero when all the targets are met, the normalization is a little 

different. Equation 4 divides the local value of the design variable (Xloc) by the given 

target value (Xt) when their ratio is 1 (they are equal) then the equation is zero. In 

Equation 5, the difference between Xloc and Xt calculated and constant (C) is used for 

normalization purposes. The value for C is set by the model developer during the initial 
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problem formulation. The value for Ci should be something with the same order of 

magnitude as the anticipated value of Xi. 

 

10.2 CO: Formal Problem Statement 
 

 CO has both system and local-level optimization.  

10.2.1 CO: System Standard Form 

  

Minimize:  Φsys  Wdry 
 
Subject to:*  h  ΦProp + ΦPerf + ΦW&S = 0 
      
By Changing:  Xsys   

      
r tt

SL
t
gross

t
ref

t
engSL

t
e

t
vac

t
vac

t MR ,T , W,S ,)W(T ,A ,T ,Isp ,

 

                                                 
* Note: Often the system equality constraint (h) could separated for each discipline (Φloc,i = 0) instead of the 
single constraint formulation used here (∑Φloc,i = 0). During the course of this study both formulations were 
applied. Both formulations are fine as they both accomplish the same goals. During this study both 
formulations were tried; the single formulation was found to give better converged results for this test 
problem. 
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10.2.2 CO: Propulsion Standard Form 
 
 
Minimize: ΦProp 
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Subject to: g  pe ≥ 5 psia 
 Side  4 ≤ r ≤ 10 
   30 ≤ ε ≤ 100 
   200 ≤ pc ≤ 3100 psia 
 
Given as Target: Xsys   tr t
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By Changing: Xloc  rpp, ε, pc, At 
 

      

10.2.3 CO: Performance Standard Form 
 
 
Minimize: ΦPerf   
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Subject to: h  hinsertion = 303805 ft 
     iinsertion = 51.6 ° 
     γinsertion = 0 ° 
 
Given as Target: Xsys   tt

gross
t
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t
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t
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t
vac MR , W,S ,A ,T ,Isp 

 
Find: Yloc  MRpf  
      
By Changing: Xloc          , θAzimuth, θPitch1, θPitch2, 
   θPitch3, θPitch4 
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e
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vac  W,S ,A ,T ,Isp
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10.2.4 CO: Weights and Sizing Standard Form 
 
 
Minimize: ΦW&S  
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Subject to: Side  TSL/Wgross ≥ 1.2 
 
Given as Target: Xsys    t ,r tt
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10.3 CO: Data Flow 

 

 In order to better understand the coupling of design variables the design structure 

matrix (DSM) for CO is provided. Also provided is a variable table which helps to 

quickly observe the important variables for each local-level discipline. 
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10.3.1 CO: Design Structure Matrix 

 

 
Figure 10: DSM for CO. 

  

From the DSM, one can see that local versions (Xpp, Xpf or Xws) of each target 

variable is not directly inputted to the DSM, but only the Φloc,i is looped back to the 

system-level. Thus, like in BLISS, parallel execution of the CA’s is possible. 
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10.3.2 CO: Variable Table 

 

Table 20: Variable Table for CO. 

 

 

 

10.4 CO: Results 

 

 This section shows the final configuration results for the RLV test problem solved 

using the CO method and describes the convergence errors resulting from this model. 
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10.4.1 CO: Configuration Results 
 

 
Table 21: Final Configuration Table for CO. 

 
  

 One can see the MDO solution obtained through applying CO does not activate 

the constraints for pc and pe, this is different than MDO solutions obtained by applying  

AAO (see Table 12 page 42) and BLISS (see Table 1 page 55). Also of interest is that the 

value of the global objective obtained by applying CO, Wdry ≈ 303 klb, is somewhat 

lower than the value arrived at both by AAO and BLISS, Wdry ≈ 305 klb. At first one 

might think that CO did a slightly better job than the previous two, actually this lower 

value is due to large convergence error in the CO model. 
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10.4.2 CO: Convergence Error 
  

In CO there is both local and system-level optimization; thus there is both 

intradisciplinary and interdisciplinary convergence error. 

 
Table 22: Convergence Error for CA Configuration. 

 

 The convergence in CO is not as tight as that achieved with FPI, AAO nor BLISS. 

There are large interdisciplinary errors reaching almost 4%. More troubling is larger error 

in coupling variables to which the system is highly sensitive such as Ispvac. 

 One of the well known causes for this loose convergence in CO is due to the sum-

of-squares formulation of the Φloc used for this MDO technique. The use of a quadratic 

form for the formulation of Φloc means that the CA’s local optimizers approach their 

desired solution (local values = targets), it loses its ability to compute gradients and 

cannot tell how to vary the design variables to minimize the local objective. As Xloc  

approaches Xt the gradient of Φloc approaches zero meaning that the Jacobian matrix built 

to calculate local gradients vanishes.  

This vanishing Jacobian effect is analogous to a the behavior of a tension spring. 

When the difference between Xloc and Xt is high (left side of Figure 11) the spring 

(analogous to the local optimizer) is stretched and has a high tension driving the design 

variable values down to the Φloc minimum. Here there is a large Φloc gradient thus 
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gradient optimizers can easily tell which direction to go in order to minimize the function. 

As the optimizer gets closer to the desired target values the difference between Xloc and 

Xt decreases (right side of Figure 11). Using the spring analogy one can see that as this 

happens the tension of the spring quickly drops and it is not able to drive the function to 

the minimum as well as before. Here there is a small Φloc gradient thus gradient 

optimizers have a harder time telling which direction to go in order to minimize the 

function. How well the optimizer finds the exact minimum depends on how robust the 

optimizer is and how much noise there is in the model. 

 

 

Figure 11: Spring Analogy of Singular Jacobian Phenomenon. 

 

 The vanishing Jacobian effect was noticed in the early days of CO. Later 

derivatives of CO, like Modified Collaborative Optimization (MCO), have attempted to 

avoid or ameliorate errors caused by this effect. 

Besides the vanishing Jacobian effect, another phenomenon, an “opportune error 

direction effect”, was observed and explains why the optimum value of Wdry obtained 

using CO was less than that obtained through the application of both AAO and BLISS. 

The “opportune error direction effect” observed occurs when the system-level 

optimizer chooses the direction of local convergence errors with respect to variable 

targets such as to artificially benefit its global objective. 

 In CO each local-level optimization tries to match all its coupling variables to 

system targets. But while the target is the same for any given variable (for example Isp), 

each local optimization tries to match the targets independently. This independence may 
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result in the CA’s involved  to all have a different value for their local version for the 

same coupling variable. 

 The system optimizer takes advantage that the local optimizers can have different 

errors with respect to given targets and chooses the most opportune error directions such 

as to benefit the system-level goal of minimizing Wdry.  

 Figure 12 below shows an example of the “opportune error direction effect” 

encountered during this study.*  

 

 

 In the diagram above, Ispvac is calculated by Propulsion and used by Performance 

to do its trajectory analysis. The system optimizer sends out a target value for Isp (440 in 

the example above). Because of the vanishing Jacobian effect, numerical errors, etc., 

there will be a convergence error between the system target and the value used by the 

local discipline. This system-discipline error is only 0.9% for Propulsion, (440-436)/440, 

and 1.1% for Performance, (445-440)/440. Since local convergence error is inevitable 

(due to internal tolerances, software limitations, etc.), the system optimizer takes 

advantage of them. It chooses the most opportune error directions to help with the 

minimization of Wdry. This means that propulsion will actually arrive at an Isp below the 

target and performance above. In reality, though, it means that the two disciplines have a 

                                                 
*  The values for Ispvac in Fi  are notional and while they show the tendencies observed in this study 
the exact values are not meant to be representative of those viewed during CO or MCO applications. 

gure 12

Figure 12: Example of Opportune Error Direction Effect, Ispvac. 
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larger convergence error between them (2%) that what they had versus the target the local 

optimizers were trying to match. 

  

 The percent errors and directions observed with respect to their desired targets for 

the CO configuration can be observed in Figure 13 below. 

 

Figure 13: % Error and Direction with Respect to System Targets for CO Configuration. 

 

 

 

 For this study optimization parameter conditioning was performed in order to 

minimize errors observed in the model. Due to internal tolerances within the legacy tools 

and the vanishing Jacobian effect a point was reached where seemingly convergence 

errors could not be driven any lower with the available computational tools. It is possible 

that there is some set of optimization parameters that would have produced lower errors. 

More time was spent trying to drive down the convergence errors in CO than was used in 
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BLISS, yet the BLISS algorithm yielded smaller converged error. It also appeared that 

CO was more sensitive to optimizer parameter conditioning than BLISS. 

10.5 CO: Discussion & Qualitative Ratings 

 

 This section will address CO optimization conclusions, lessons learned when 

implementing the method and provide qualitative ratings with discussion for each. 

 

10.5.1 CO: Optimization Conclusions 

  

 CO is a multi-level MDO optimization technique and like other such techniques 

has not gained wide acceptance within industry. The results of this study found that due 

to the vanishing or singular Jacobian effect it was very difficult to very tightly converge 

the coupling variable local values to the system-level target values. Also, this study 

observed an “opportune error direction effect” which led to CO producing artificially 

optimistic values for Wdry. 

 One possible way to mitigate convergence problems is to reformulate the local 

objective functions such as to increase their smoothness and remove the Jacobian 

singularity. This is one of the goals of MCO, which reformulates the local objective 

functions. Of course another option that may result in reduced convergence errors is the 

use a different optimizer. In practice different optimizers will have different levels of 

success when trying to precisely match the given targets. Throughout this study all the 

MDO techniques evaluated, AAO, CO, BLISS, and MCO, used the either the optimizer 

built into the legacy tools or the DOT optimizer. This was done to remove external 

variance that may affect the performance of different MDO techniques. Consistent tools 

allowed this study to use the blocking effect to remove external variances when trying to 

make comparisons between MDO techniques. 

 Using RSM’s to model each discipline of legacy code has also been suggested as 

a possible method to mitigate some of the convergence problems.8 Like in BLISS-2000, 

RSM’s may be used with CO to reduce execution time and lessen numerical integration 
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problems. The CO algorithm does not call for the making of RSM’s but had they been 

made the number of runs needed to create these RSE’s would have been very comparable 

to those needed in BLISS (see Table 15 page 50). The number of variables to be fitted, 

resulting number of CA runs needed, and the total execution time called for by the DOE’s 

using a Central Composite Design needed in CO, are shown in Table 23 below.  

 
Table 23: CCD Properties for CO. 

 
 

Using RSM’s should allow for less numerical error and much faster execution of 

the local-level discipline calculations when solving the MDO problem with the CO 

technique. This, though, assumes that the RSM fits points which are accurate. If 

convergence problems due to the vanishing Jacobian effect cannot be overcome within 

the CA’s, then the RSM will be fitting to points which themselves have a lot of error.  

 

10.5.2 CO: Lessons Learned 

 

 Lessons learned in the implementation of the CO process are as follows: 

1)  There is a need to improve current framework integration tools so that future CO 

models can evaluate the parallel execution benefits of the algorithm. Should it be 

attempted to create RSM’s of the disciplines before executing the CO algorithm, the 

ability to simultaneously calculate all the CA points needed for the DOE would result 

in large time savings. 

2)  The modifications to the original legacy codes called for by CO can be hard to 

implement. CO changes local-level inputs that were originally given parameters into 

local-level design variables. This entails that besides optimizing to a different local 

objective the local-level optimizer must now vary an increased number of design 

variables. The addition of new local design variables increased the difficulty in 
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conditioning the local-level optimizers. Conditioning of the local optimizers so that 

they produced reasonably reliable, consistent results was challenging. More time was 

spent trying to condition the CO model than was spent on BLISS yet convergence 

never reached the accuracy shown by BLISS. 

 

10.5.3 CO: Qualitative Ratings 
 

 It is very difficult to qualitatively assess the experience of implementing a given 

MDA or MDO technique without first comparing it to other the other techniques to be 

evaluated. Therefore these ratings were assigned after all the techniques had been applied. 

 

Table 24: Qualitative Ratings for CO. 

Criteria Grade Discussion 
Implementation 
Difficulty 

C+ Every local-level, discipline optimizer had to be 
reconditioned due to poor performance after changing the 
local objective and increasing the number of local 
variables. Reconditioning each local optimizer was very 
time consuming. Also, due to the vanishing Jacobian effect 
optimization parameter conditioning was even more 
difficult.  
 

Total Execution 
Time 
 

B- (3 to 4 hours) (1 to 2 hours possible) 
Due to software limitations, the benefits of parallel 
computing described in the CO literature were not realized. 
If the capacity for parallel execution the CA’s was added 
there would be a significant time savings.  
 

Robustness 
 

B It is difficult to converge each local optimization problem 
due to the vanishing Jacobian. Acceptable local-level 
optimization is difficult to achieve over a wide range of 
inputs. 
  

Formulation 
Difficulty 

B- Not as straight forward as FPI or AAO or BLISS. Changes 
required were greater than BLISS. Both BLISS, CO and 
MCO require a separate formulation for each discipline 
and the system. 
 

 75



Optimization 
Deftness 

B The “opportune error direction effect” creates an 
artificially optimistic answer. If there were zero error at the 
discipline level then this would not be an issue. If error is 
present, the system optimizer uses the local target 
convergence error to improve the global optimum. 
 

Convergence 
Error 

C+ The combination of the vanishing Jacobian and more 
difficult optimizer conditioning caused the method to be 
harder to converge than FPI, AAO or BLISS. 
  

Issues  1) Discipline level convergence errors were never 
successfully reduced to a level where convergence using 
CO was comparable to that of AAO or BLISS. This was 
true even though more time was spent trying to reduce 
convergence errors than was spent for BLISS. 
2) Assuming that perfect convergence is impossible in 
practical applications, CO will take advantage of local-
level errors to provide an artificially optimistic optimum 
solution. This underestimating the system mass could 
prove more problematic to engineering programs than if 
the optimum had been slightly pessimistic. 
 

Unique Benefits  None observed. 
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11 MCO: Modified Collaborative Optimization 
 

Modified Collaborative Optimization (MCO) is a two-level MDO algorithm 

developed by Angel Victor DeMiguel and Walter Murray at Stanford University.2  

This section will provide some background information about MCO and its 

relevance to this study; show the formulation when it is applied to the RLV problem, 

present the results gathered and discuss findings.  

 

11.1 MCO: Background 
 
 MCO, is a derivative of CO, suggested in 1998 as way to “surmount some deep 

technical challenges”2 present in the original formulation of CO. The developers of MCO 

noted the lack of a proof of convergence for CO and practical application difficulties due 

to the vanishing Jacobian effect. 

The MCO architecture is very similar to that of CO, thus if MCO was shown to be 

efficient and overcome CO’s vanishing Jacobian effect, it would have the same inputs 

and outputs as CO. Also, like CO or BLISS, MCO is most ideal for large problem with 

costly discipline analysis but relatively few coupling variables. 

The first difference between MCO and CO is that MCO uses an “exact”2 penalty 

function as the system-level objective. MCO uses the local-level sub-problem objective 

functions as penalty terms for the system-level objective function creating an 

unconstrained system-level problem. This contrasts CO which imposed constraints at the 

system-level to enforce that the local-level sub-problem objective functions reach their 

expected minimums at zero.  

The second difference is that at the MCO does away with the quadratic form of 

the local objectives and replaces it with a format similar to linear programming called 

Individual Discipline Feasible (IDF) formulation. As in CO, during the system-level 

optimization the system may call for an infeasible set of targets. For these cases, the 

local-level disciplines will find it impossible to match their given targets. IDF solves this 

problem by the introduction of additional local-level variables and constraints. In IDF, if 

the set of targets was infeasible, elastic variables (s and t) are added to make up the 
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difference between the local-level values and the given targets. The local-level objective 

is now to minimize the amount of corrections that must be performed using the new 

elastic variables. All variables in the IDF formulation are required to have positive values 

thus elastic variables must be introduce for both when the local variable is less than (s) or 

greater than (t) the target value. In the IDF formulation there can only be equality 

constraints, thus inequality disciplinary constraints in the CA’s must be changed to 

equality constraints by adding another elastic variable. 

 

11.2 MCO: Formal Problem Statement 
 

 MCO has both system and local-level optimization.  

Note: normalization was used for all the equality constraints used in the local-level 

formulations but is not shown for the sake of brevity. The format shown is Xloc+sx-tx=Xt 

but the normalized format used for the MCO application was (Xloc/C)+sx-tx=(Xt/C). The 

normalization constants used for each variable are shown below. 

 

Table 25: Normalization Constants for MCO Equality Constraints. 
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11.2.1 MCO: System Standard Form 

  

Minimize:  Φsys  Wdry + rp*(ΦProp + ΦPerf + ΦW&S) 
 
Subject to: 
       
By Changing:  Xsys   r tt
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 Note: rp is a penalty parameter that can be used by the developer to alter the 

acceptable level of error in the CA’s.      

 

11.2.2 MCO: Propulsion Standard Form 
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11.2.3 MCO: Performance Standard Form 
 
 
Minimize: ΦPerf  (sIspv+tIspv) + (sTvac+tTvac) + (sAe+tAe) + (sSref+tSref)  
   + (sWgross+tWgross) + (sMR+tMR) 
 
Subject to: h  hinsertion = 303805 ft 
     iinsertion = 51.6 ° 
     γinsertion = 0 ° 
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11.2.4 MCO: Weights and Sizing Standard Form 
 
 
Minimize: ΦW&S (sAe+tAe) + (sTsl/Weng+tTsl/Weng) + (sr+tr) + (sSref+tSref) 
   + (sWgross+tWgross) + (sTsl+tTsl) + (sMR+tMR) 
 
Subject to: h   
 
 
 
 
 
 
 
 Side  TSL/Wgross ≥ 1.2 
 
 
 
Given as Target: Xsys    
 
Find: Yloc    
      
By Changing: Xloc    
 
 
 
 

11.3 MCO: Data Flow 

 

 In order to better understand the coupling of design variables the design structure 

matrix (DSM) for MCO is provided. Also provided is a variable table which helps to 

quickly observe the important variables for each local-level discipline. 
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11.3.1 MCO: Design Structure Matrix 

 

Figure 14: DSM for MCO. 

  

The MCO DSM looks identical to the CO DSM. This is because MCO does not 

change the general architecture of CO but just reformulates the objective functions in 

both the system and local-level. 
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11.3.2 MCO: Variable Table 

 

Table 26: Variable Table for MCO. 

 

 

 

11.4 MCO: Results 

 

 The main differences between the CO and MCO algorithms are that MCO uses 

the IDF formulation for the local objective function and it removes the equality 

constraints at the system-level, replacing them with a penalty function. While the IDF 

formulation seemed to offer some advantages when applied to the CA’s, the penalty 
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function formulation appeared to give inconsistent results depending on the value of the 

penalty parameter (rp).  

 The first MCO modification was to use the local-level objective functions as 

penalty terms for the system-level objective function. Previously CO had imposed 

equality constraints to ensure that the local-level penalty function were zero. This new 

penalty function formulation that appeared to cause problems in the RLV model using the 

MCO technique. The resulting configuration varied greatly with the selected value of the 

penalty parameter (rp), see Figure 15.  

 

 
Figure 15: Resultant Wdry vs. Penalty Parameter (rp). 

  
 Note: the bue line in Figure 15 is not a calculated regression line for the data 
plotted. It is hand drawn trend line to accentuate the general tendency of the data.  
 

 Figure 15 shows that the resulting value for Wdry using the MCO model had a step 

function relation with rp. If rp was too high, then the MCO model would conclude that it 

could not improve its initialization point (the best FPI configuration, Wdry ≈ 317 klbf) and 

the optimizer would not move. If rp was too low, then the MCO configuration would 

move from its initial point and drive the value of Wdry down to around Wdry ≈ 287 klbf. 

These low results though had very poor convergences with errors often above 5%. 
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 The value of Wdry jumps somewhere around 88,000 ≤ rp ≤ 90,000. It was 

attempted to determine if there was actually a singular value of rp that would produce a 

Wdry similar to the value found using AAO and BLISS (W dry ≈ 305 klbf). Unfortunately, 

isolating any single value of rp that would produce the expected Wdry was not realizable 

as the there was not a smooth relationship between the value Wdry and the rp in the 88,000 

≤ rp ≤ 90,000 range. 

 Also, the MCO model was not consistent and identical MCO runs could produce 

very different results. Some of the MCO trials, shown in Figure 15, outputted resultant 

Wdry values somewhat close to the W dry ≈ 305 klbf expected (the closes run at 308.5 klbf). 

When it was attempted to verify these results by re-running the exact same trial, the 

second trial never reproduced the first results. Often times when a trial was re-tried, the 

second try resulted in the optimizer either never moving or falling down the Wdry ≈ 287 

klbf range. 

The resultant inconsistencies observed in the MCO model made it impossible to 

draw any conclusions from the test trials run. Unless one already knew what the true 

optimum was, there would be no way to distinguish why any of the test trials run should 

be deemed worthier than another.  

 Despite problems due to the use of a penalty function in the system-level 

objective, the MCO algorithm was able to mitigate some of the local-level convergence 

problems present in CO due to the vanishing Jacobian effect.  

  MCO’s second modification to CO is replacing the sum-of-squares formulation 

of the Φloc with the IDF formulation. This is proposed as a way to mitigate the vanishing 

Jacobian effect observed in the original CO algorithm. When the IDF formulation was 

applied to each individual CA, it appeared to provide tighter local-level convergence 

versus variable targets than the CO quadratic formulation. Test target sets were tried 

using both the CO and MCO formulation and it appeared that the new MCO was able to 

more closely match the desired target values. When tested independently, it appeared 

MCO’s new IDF formulation was able to resolve some of the local-level convergence 

problems that had been accentuated in CO due to the vanishing Jacobian effect.  
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11.5 MCO: Discussion & Qualitative Ratings 

 

 This section will address CO optimization conclusions, lessons learned when 

implementing the method and provide qualitative ratings with discussion for each. 

 

11.5.1 MCO: Optimization Conclusions 

  

 While MCO was able to ameliorate the vanishing Jacobian problems that CO 

encountered due the quadratic local-level objective formulation, inconsistencies in the 

overall model impeded a global optimum to be found. 

 While several test trials of the RLV model using the MCO technique were tried, 

never was any pattern identified that would allow the user to confidently determine what 

the MCO resultant optimum was. The resulting value for any trial was too erratically 

dependent of the penalty parameter used to allow the user to draw conclusions. 

 It is still possible, though, that the MCO formulation will provide consistent and 

clear results through further conditioning of optimization parameters. The amount of time 

and effort spent during this study trying to bring the MCO application to a successful 

conclusion was commensurate with the effort put forward for the other MDO techniques 

applied. Nevertheless, a solution using the MCO model was not found. It is possible that 

should more time be spent that MCO could come to a successful conclusion, but the 

amount of time required to do so seems to be greater than that needed for any of the other 

MDO techniques. 
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11.5.2 MCO: Lessons Learned 

 

 Lessons learned in the implementation of the MCO process are as follows: 

1)  The IDF formulation for the local-level objectives, while complicated, did seem to 

provide better convergence in the local-level over CO’s original sum-of-squares 

formulation. 

2)  Optimization parameter conditioning for MCO proved to be the most difficult of all 

MDO techniques applied. There were a lot more local-level constraints and the value 

with which each variable was normalized could change convergence error at the 

local-level.  

3) It was observed that the solution using MCO varied greatly with the value of the 

penalty parameter (rp). 

 

11.5.3 MCO: Qualitative Ratings 
 

 It is very difficult to qualitatively assess the experience of implementing a given 

MDA or MDO technique without first comparing it to other the other techniques to be 

evaluated. Therefore these ratings were assigned after all the techniques had been applied. 

 

Table 27: Qualitative Ratings for MCO. 

Criteria Grade Discussion 
Implementation 
Difficulty 

INC MCO seemed to be more difficult to apply than any of the 
other MDO techniques simply by the fact that after a 
similar time spent for each, only was the MCO model not 
brought to a successful conclusion. Since, it was not 
successfully applied, though; it is difficult to tell exactly 
how hard it really is to implement.  
 

Total Execution 
Time 
 

C (4 to 8 hours)  
Execution time varied with the value of the penalty 
parameter and other optimization parameters.  
 

 87



Robustness 
 

INC MCO was never brought to a successful conclusion, thus it 
is difficult to judge its robustness. 
  

Formulation 
Difficulty 

C- MCO had the most complex formulation of all the MDO 
techniques applied. MCO required a separate formulation 
for each discipline and the system. There were a lot of 
additional variables and constraints at the local-level. 
 

Optimization 
Deftness 

INC MCO was never brought to a successful conclusion, thus it 
is difficult to judge its optimization deftness.  
 

Convergence 
Error 

B Convergence at the local-level was improved over CO, but 
it was not as tightly converged as results from FPI, AAO or 
BLISS. 
  

Issues  1) There was a strong relationship between the resulting 
optimum value of the Wdry and the rp used during a trial 
run. In the region where the Wdry jump the relation 
between Wdry and rp was inconsistent. 
2) Many MCO executions had to be performed to try and 
condition the model to provide consistent and convincingly 
converged solutions, a goal that was never reached. More 
time was spent trying to condition the MCO model than 
any other application except AAO yet reproducible results 
were never reached.  
 

Unique Benefits  The IDF formulation for the local-level objectives did 
appear to provide better local-level convergence than the 
original CO formulation. 
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12 Conclusions 
 

At the start of this study three objectives were listed: 

 
1)   Determine the benefits of MDO versus using multiple trials of iterative optimizers 

using FPI convergence. 

2)  Create a realistic test problem which will add to a growing field of research trying 

to evaluate novel MDO techniques: CO, MCO and BLISS.  

3)  Allow for across the board comparison of the MDO techniques by using the 

statistical method of blocking to remove external variability when comparing 

between techniques. 

 

 This section will describe some of the findings with respect to these goals and 

attempt to evaluate how successfully the goals were met. 

 

12.1 Benefits of MDO 

 

 The results presented in this study found that RLV optimization employing MDO 

techniques did show some improvement over the results obtained using strictly the FPI 

process. This confirms that without human intervention the traditional method using FPI 

does not provide optimum results. While use of MDO showed only a modest 

improvement in the global objective, this benefit would probably increase for the large, 

complex problems for which the MDO methods were designs.  

The best FPI model resulted in a vehicle dry weight (Wdry) of 317 klb, this was 

greater than the 305 klb value successfully determined with MDO via both the AAO and 

BLISS technique. This is only a 4% improvement in the global objective and it would 

have probably been possible to match the MDO results through the use of carpet plots 

and other techniques with FPI. For small, conceptual level problems where the CA’s 

execute quickly and inexpensively, it would probably be faster and easier to perform 

parameter sweeps to arrived at a globally optimized vehicle than to apply an MDO 
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methodology. This is because the large implementation cost of MDO techniques would 

probably not be offset by any subsequent reduction in the number of CA executions 

needed.  

If the size of the MDO problem to be solved is small and the execution of the 

CA’s involved is not very costly, then traditional methods using FPI will probably be the 

best choice. For these cases the benefits of MDO do not warrant the upfront cost of 

implementing the MDO technique. For problems of large size with costly CA’s the 

implementation cost of MDO will be more likely to be offset by the efficiency benefits of 

MDO.  

 

12.2 Authenticity of Test Problem 

 

 While there were limitations to the size and complexity of test problem that could 

be tried, it is believed that the next generation RLV problem did show enough “real 

world” characteristics to provide a realistic test problem. 

 The test problem tried could not be too large and complex for two reasons: 1) it 

was proposed that the AAO method be used to validate the results of the multi-level 

MDO techniques and 2) if the complexity of the test problem was too large then the time 

allowed for this project could easily have proven insufficient to allow for multiple 

applications to be realized. While using the AAO technique to solve and MDO problem 

is widely accepted, this technique is constrained to smaller, conceptual level problems. 

Thus test problems were limited in size to those for which AAO might still be applicable. 

The test problem used for this study seemed to be bordering the size and complexity that 

was still solvable using AAO. The AAO size constraint is unfortunate, but necessary so 

that results from the newer multi-level MDO techniques can be validated. 

 Despite size restrictions, the RLV test problem selected for this project did have a 

series of characteristics that increased its likeness to “real world” problems. First, the 

coupling disciplines were broken down along the conventional lines of Propulsion, 

Performance and Weights & Sizing. The disciplines kept their independence and were 

not merged into on single code or analysis. Secondly, technology reduction factors were 
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added to the analysis and design of the RLV to provide a more realistic scenario of what 

might be encountered in the real world. Also, the base vehicle was a real concept studied 

both by NASA and in industry. Lastly and most importantly, is that widely used legacy 

codes were used for the design and analysis of each of the disciplines. This study used 

software like POST which, while problematic, is the industry standard code for trajectory 

analysis. It was of interest to see which algorithms would best handle using codes that 

were not always well behaved and might produce numerical errors.  

 

12.3 Comparisons between CO, MCO and BLISS 

 

 Historical attempts at making comparisons between CO, MCO and BLISS have 

been ineffective because there have been too many external factors present to effectively 

isolate variance caused by differences in the algorithms and because there are too few test 

cases available with which to make any statistically significant conclusions. 

 It was known from the start that this study would be unable to conclude if CO, 

MCO or BLISS showed greater promise than any other simply because it is but one study 

from which it is impossible to draw any statistically significant conclusions.  

On the other hand, this study was successful in using the Blocking Effect to 

reduce the number of external factors that could make it difficult to tell any variance 

between the multi-level MDO techniques. External factors were removed by:  

1) having the same user apply all the MDO techniques evaluated 

2) using the same analysis and optimization tools for all techniques  

3) solving the same multi-disciplinary test problem 

 

 While the blocking method is necessary if external variances are to be removed it 

makes it even harder to collect a statistically significant number of data points. First, in 

most industry applications few are going to solve an MDO technique with one method 

and then try to solve the exact same problem again using another MDO technique. This 

would most likely be viewed as time wasted when the goal is to get an answer for the 

MDO problem; not to determine which technique solved it more efficiently. Second, 
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since the same user must be used in order to block out variance due to user competency, a 

study like this can take a very long time. Implementation of some of the multi-level MDO 

techniques can be a time consuming process, fewer will have the amount of time 

necessary to make multiple applications. If it was hard to persuade people to try one 

application of an MDO technique, it will be even harder to persuade people to try several 

applications on the same problem. 

 Drawing on the experience of performing multiple applications of different MDO 

techniques on the same problem and verifying the results and benefits against the more 

traditional techniques, Table 28 shows a qualitative report card made for all the 

techniques applied. Grading is only accurate with relation to each other for this specific 

study. 

 

Table 28: Qualitative Report Card, All Techniques. 

 
 

While a model of the next generation RLV was created for each of the candidate 

multi-level MDO techniques selected at the start of the study, the MCO model was never 

able to reach enough behavioral consistency for any conclusions to be made. 

The report card above shows that for this test study FPI seems to win in most 

categories, this is to be expected as FPI has been the design method traditionally 

employed and the legacy tools used to make the models are the same or very similar to 

ones widely used. One can notice, though, that FPI has a very poor optimization deftness 
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score. This reflects the fact that FPI will result in sub-optimal design configurations. This, 

depending on the problem, can be a critical deficiency. 

For the MDO techniques, AAO and BLISS appear to be the best performers. This 

study applied the techniques to a conceptual, level problem due to known limitation of 

the AAO technique. The test problem was intentionally kept small due to a desire to 

validate the new multi-level techniques against the more accepted AAO technique. The 

size of this test problem may actually be approaching the limit of what can be 

successfully solved with AAO. It had to be helped a little bit by reducing the size of the 

problem before AAO converged at the true optimum. 

BLISS, on the other hand, was able to locate at the true system-level optimum 

without any user guidance. Of the new multi-level MDO techniques, it was the one which 

required the fewest changes to be made from the traditional FPI approach. Also, the 

local-level alterations only consisted of changing the local objective to a composite 

objective and didn’t introduce any new design variables at the local-level. In the case 

where there was only one local output, the original discipline formulation could be used 

unaltered. In the system-level, BLISS did introduce weighting factors, but the problem 

was still easily solved by the system optimizer. 

While it is tempting to believe that BLISS is the most promising multi-level MDO 

technique applied, is but one data point. It is statistically impossible to declare BLISS the 

winner with any degree of certainty unless more studies employing the blocking effect 

are conducted and show similar results between the multi-level MDO methods. 
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