

Evaluation of
Multidisciplinary Optimization (MDO)

Techniques Applied to a
Reusable Launch Vehicle

Nichols Brown

AE 8900 Special Project Report
April 29, 2004

FINAL DRAFT

School of Aerospace Engineering
Space Systems Design Laboratory
Georgia Institute of Technology

Atlanta, GA 30332-0150

Advisor: Dr. John R. Olds

Evaluation of
Multidisciplinary Optimization (MDO)

Techniques Applied to a
Reusable Launch Vehicle

Nichols Brown

AE 8900 Special Project Report
April 29, 2004

School of Aerospace Engineering
Space Systems Design Laboratory
Georgia Institute of Technology

Atlanta, GA 30332-0150

Advisor: Dr. John R. Olds

Abstract

 Optimization of complex engineering systems has always been an integral part of

design. Due to the size and complexity of aerospace systems the design of a whole

system is broken down into multiple disciplines. Traditionally these disciplines have

developed local design tools and computer codes (legacy codes) allowing them to

perform optimization with respect to some aspect of their local discipline. Unfortunately,

this approach can produce sub-optimal systems as the disciplines are not optimizing with

respect to a consistent global objective. Multidisciplinary design optimization (MDO)

techniques have been developed to allow for multidisciplinary systems to reach a global

optimum. The industry accepted All-at-Once (AAO) technique has practical limitations

and is confined to only small, conceptual level problems.

 New multi-level MDO techniques have been proposed which may allow for the

global optimization of the large, complex systems involved in higher levels of design.

Three of the most promising multi-level MDO techniques, Bi-Level Integrated System

Synthesis (BLISS), Collaborative Optimization (CO) and Modified Collaborative

Optimization (MCO) are applied, evaluated and compared in this study.

 The techniques were evaluated by applying them to the optimization of a next

generation Reusable Launch Vehicle (RLV). The RLV model was composed of three

loosely coupled disciplines, Propulsion, Performance, and Weights & Sizing, composed

of stand-alone, legacy codes not originally intended for use in a collaborative

environment.

Results from the multi-level MDO techniques will be verified through the use of

the AAO approach and their benefits measured against the traditional approach where the

multiple disciplines are converged using the fixed point iteration (FPI) process.

All the techniques applied will be compared against each other and rated

qualitatively on such metrics as formulation and implementation difficulty, optimization

deftness and convergence errors.

 ii

Table of Contents

ABSTRACT .. ii
TABLE OF CONTENTS.. iii
TABLE OF FIGURES .. vi
TABLE OF TABLES ... vii
ACRONYMS AND SYMBOLS ... viii
1 INTRODUCTION ... 1
2 STUDY OBJECTIVES ... 3

2.1 BENEFITS OF MDO .. 3
2.2 AUTHENTICITY OF TEST PROBLEM.. 4
2.3 COMPARISON BETWEEN CO, MCO & BLISS.. 5

3 MULTI-LEVEL MDO TECHNIQUES .. 7
3.1 MDO BACKGROUND... 7
3.2 MDO POSSIBLE BENEFITS ... 8
3.3 MDO POSSIBLE DRAWBACKS .. 9
3.4 MDO CONCLUSIONS ... 10

4 TEST PROBLEM.. 11
4.1 BASE LAUNCH VEHICLE CONFIGURATION.. 11

5 COMPUTATIONAL TOOLS.. 13
5.1 PROPULSION TOOL ... 13
5.2 PERFORMANCE TOOL .. 15
5.3 WEIGHTS & SIZING TOOL.. 16
5.4 COMPUTATIONAL FRAMEWORK .. 17
5.5 RESPONSE SURFACE MODELING TOOL... 19

6 CONVERGENCE ERRORS.. 20
7 FPI: FIXED POINT ITERATION... 22

7.1 FPI: BACKGROUND ... 22
7.2 FPI: FORMAL PROBLEM STATEMENT .. 23

7.2.1 FPI: PROPULSION STANDARD FORM.. 25
7.2.2 FPI: PERFORMANCE STANDARD FORM.. 26
7.2.3 FPI: WEIGHTS & SIZING STANDARD FORM.. 26

7.3 FPI: DATA FLOW.. 26
7.3.1 FPI: DESIGN STRUCTURE MATRIX... 27
7.3.2 FPI: VARIABLE TABLE .. 28

7.4 FPI: RESULTS .. 29
7.4.1 FPI: CONFIGURATION RESULTS .. 30
7.4.2 FPI: CONVERGENCE ERROR... 32

7.5 FPI: DISCUSSION & QUALITATIVE RATINGS.. 33
7.5.1 FPI: OPTIMIZATION CONCLUSIONS .. 33
7.5.2 FPI: LESSONS LEARNED .. 33
7.5.3 FPI: QUALITATIVE RATINGS ... 34

 iii

8 AAO: ALL-AT-ONCE.. 36
8.1 AAO: BACKGROUND .. 36
8.2 AAO: FORMAL PROBLEM STATEMENT.. 38

8.2.1 AAO: SYSTEM STANDARD FORM .. 38
8.3 AAO: DATA FLOW ... 39

8.3.1 AAO: DESIGN STRUCTURE MATRIX ... 39
8.3.2 AAO: VARIABLE TABLE... 40

8.4 AAO: RESULTS ... 40
8.4.1 AAO: CONFIGURATION RESULTS... 41
8.4.2 AAO: CONVERGENCE ERROR ... 43

8.5 AAO: DISCUSSION & QUALITATIVE RATINGS ... 44
8.5.1 AAO: OPTIMIZATION CONCLUSIONS... 44
8.5.2 AAO: LESSONS LEARNED... 45
8.5.3 AAO: QUALITATIVE RATINGS.. 46

9 BLISS: BI-LEVEL INTEGRATED SYSTEM SYNTHESIS .. 48
9.1 BLISS: BACKGROUND .. 48
9.2 BLISS: FORMAL PROBLEM STATEMENT ... 50

9.2.1 BLISS: SYSTEM STANDARD FORM .. 50
9.2.2 BLISS: PROPULSION STANDARD FORM .. 51
9.2.3 BLISS: PERFORMANCE STANDARD FORM.. 51
9.2.4 BLISS: WEIGHTS AND SIZING STANDARD FORM ... 52

9.3 BLISS: DATA FLOW... 52
9.3.1 BLISS: DESIGN STRUCTURE MATRIX... 53
9.3.2 BLISS: VARIABLE TABLE .. 53

9.4 BLISS: RESULTS... 54
9.4.1 BLISS: CONFIGURATION RESULTS... 54
9.4.2 BLISS: CONVERGENCE ERROR ... 55

9.5 BLISS: DISCUSSION & QUALITATIVE RATINGS... 57
9.5.1 BLISS: OPTIMIZATION CONCLUSIONS .. 57
9.5.2 BLISS: LESSONS LEARNED... 57
9.5.3 BLISS: QUALITATIVE RATINGS.. 59

10 CO: COLLABORATIVE OPTIMIZATION.. 61
10.1 CO: BACKGROUND.. 61
10.2 CO: FORMAL PROBLEM STATEMENT... 63

10.2.1 CO: SYSTEM STANDARD FORM... 63
10.2.2 CO: PROPULSION STANDARD FORM... 64
10.2.3 CO: PERFORMANCE STANDARD FORM .. 64
10.2.4 CO: WEIGHTS AND SIZING STANDARD FORM ... 65

10.3 CO: DATA FLOW .. 65
10.3.1 CO: DESIGN STRUCTURE MATRIX ... 66
10.3.2 CO: VARIABLE TABLE... 67

10.4 CO: RESULTS .. 67
10.4.1 CO: CONFIGURATION RESULTS... 68
10.4.2 CO: CONVERGENCE ERROR.. 69

10.5 CO: DISCUSSION & QUALITATIVE RATINGS .. 73
10.5.1 CO: OPTIMIZATION CONCLUSIONS... 73
10.5.2 CO: LESSONS LEARNED ... 74
10.5.3 CO: QUALITATIVE RATINGS.. 75

 iv

11 MCO: MODIFIED COLLABORATIVE OPTIMIZATION .. 77
11.1 MCO: BACKGROUND.. 77
11.2 MCO: FORMAL PROBLEM STATEMENT ... 78

11.2.1 MCO: SYSTEM STANDARD FORM ... 79
11.2.2 MCO: PROPULSION STANDARD FORM ... 79
11.2.3 MCO: PERFORMANCE STANDARD FORM... 80
11.2.4 MCO: WEIGHTS AND SIZING STANDARD FORM .. 81

11.3 MCO: DATA FLOW... 81
11.3.1 MCO: DESIGN STRUCTURE MATRIX.. 82
11.3.2 MCO: VARIABLE TABLE ... 83

11.4 MCO: RESULTS... 83
11.5 MCO: DISCUSSION & QUALITATIVE RATINGS... 86

11.5.1 MCO: OPTIMIZATION CONCLUSIONS ... 86
11.5.2 MCO: LESSONS LEARNED.. 87
11.5.3 MCO: QUALITATIVE RATINGS... 87

12 CONCLUSIONS.. 89
12.1 BENEFITS OF MDO .. 89
12.2 AUTHENTICITY OF TEST PROBLEM.. 90
12.3 COMPARISONS BETWEEN CO, MCO AND BLISS .. 91

 v

Table of Figures

FIGURE 1: VEHICLE CONFIGURATION ACRE-92. .. 12
FIGURE 5: MODELCENTER USER INTERFACE. ... 18
FIGURE 6: DSM FOR FPI OPTION 1. .. 27
FIGURE 7: DSM FOR FPI OPTION 2. .. 27
FIGURE 8: DSM FOR AAO WITH PARTIAL OBD. .. 39
FIGURE 9: DSM FOR BLISS. ... 53
FIGURE 10: DSM FOR CO. .. 66
FIGURE 11: SPRING ANALOGY OF SINGULAR JACOBIAN PHENOMENON. ... 70
FIGURE 12: EXAMPLE OF OPPORTUNE ERROR DIRECTION EFFECT, ISPVAC. .. 71
FIGURE 13: % ERROR AND DIRECTION WITH RESPECT TO SYSTEM TARGETS FOR CO CONFIGURATION. 72
FIGURE 14: DSM FOR MCO.. 82
FIGURE 15: RESULTANT WDRY VS. PENALTY PARAMETER (RP)... 84

 vi

Table of Tables

TABLE 1: CONCEPT DESCRIPTION ACRE-92... 12
TABLE 2: TECHNOLOGY REDUCTION FACTORS. .. 16
TABLE 3: EXAMPLE OF CONVERGED VARIABLES, HINSERTION & AE... 20
TABLE 4: PROPULSION DESIGN SPACES INVESTIGATED FOR FPI... 24
TABLE 5: VARIABLE TABLE FOR FPI OPTION 1. .. 28
TABLE 6: VARIABLE TABLE FOR FPI OPTION 2. .. 29
TABLE 7: FINAL CONFIGURATION TABLE FOR FPI OPTION 1. ... 30
TABLE 8: FINAL CONFIGURATION TABLE FOR FPI OPTION 2. ... 31
TABLE 9: CONVERGENCE ERROR FOR BEST FPI CONFIGURATION. .. 32
TABLE 10: QUALITATIVE RATINGS FOR FPI. ... 34
TABLE 11: VARIABLE TABLE FOR AAO. ... 40
TABLE 12: FINAL CONFIGURATION TABLE FOR AAO. .. 42
TABLE 13: CONVERGENCE ERROR FOR AAO, REDUCED CONFIGURATION. .. 43
TABLE 14: QUALITATIVE RATINGS FOR AAO. .. 46
TABLE 15: CCD PROPERTIES FOR BLISS.. 50
TABLE 16: VARIABLE TABLE FOR BLISS.. 53
TABLE 17: FINAL CONFIGURATION TABLE FOR BLISS. .. 55
TABLE 18: CONVERGENCE ERROR FOR BLISS CONFIGURATION. ... 56
TABLE 19: QUALITATIVE RATINGS FOR BLISS... 59
TABLE 20: VARIABLE TABLE FOR CO. .. 67
TABLE 21: FINAL CONFIGURATION TABLE FOR CO. ... 68
TABLE 22: CONVERGENCE ERROR FOR CA CONFIGURATION.. 69
TABLE 23: CCD PROPERTIES FOR CO. .. 74
TABLE 24: QUALITATIVE RATINGS FOR CO. ... 75
TABLE 25: NORMALIZATION CONSTANTS FOR MCO EQUALITY CONSTRAINTS. ... 78
TABLE 26: VARIABLE TABLE FOR MCO.. 83
TABLE 27: QUALITATIVE RATINGS FOR MCO... 87
TABLE 28: QUALITATIVE REPORT CARD, ALL TECHNIQUES. .. 92

 vii

Acronyms and Symbols

A Area
AAO All-at-Once
BLISS Bi-Level Integrated System Synthesis
BTU British Thermal Unit
c* Characteristic exhaust velocity
CA Disciplinary Contributing Analysis
cF Thrust coefficient
CO Collaborative Optimization
DOE Design of Experiments
DOF Degree of Freedom
DSM Design Structure Matrix
ETO Earth to Orbit
FPI Fixed Point Iteration
ft Feet
g Inequality constraint
h Enthalpy / Equality constraint / Altitude
HRST Highly Reusable Space Transportation
INC Incomplete
Isp Specific impulse
ISS International Space Station
klb Kilo pounds
KSC Kennedy Space Center
LH2 Liquid Hydrogen
LOX Liquid Oxygen
MCO Modified Collaborative Optimization
MDA Multidisciplinary Analysis
MDO Multidisciplinary Design Optimization
MER Mass Estimating Relationship
MoFD Method of Feasible Directions
MR Mass Ratio (=Wgross/Winsertion)
nmi Nautical mile
OBD Optimizer Based Decomposition
OMS Orbital Maneuvering System
P Power
p Pressure
Perf Performance

 viii

POST Program to Optimize Simulated Trajectories
Prop Propulsion
psia Pounds per square inch absolute
r Fuel to oxidizer ratio (propellant mixture ratio)
RCS Reaction Control System
REDTOP Rocket Engine Design Tool for Optimal Performance
RLV Reusable Launch Vehicle
RSE Response Surface Equation
RSM Response Surface Model
S Wing area
s Seconds
SAND Simultaneous Analysis and Design
SLP Sequential Linear Programming
SQP Sequential Quadratic Programming
SSTO Single Stage to Orbit
T Thrust
TRF Technology Reduction Factor
W Weight
w Weighting factor (BLISS only)
W&S Weights & Sizing
X Design or input variable
Y Output or behavior variable
∆V Change in velocity
ε Nozzle expansion ratio
θ Pitch angle rate
Φ Design objective

Subscripts
c combustor
e exit
eng engine
loc local
o optimized
ref reference
req required
sh shared input in multiple CA’s but not calculated by any (for BLISS)
SL sea-level
sys system

 ix

t throat
vac vacuum
veh vehicle

Superscripts
* Output passed to a CA (for BLISS)
^ Output from a CA to system (for BLISS)
pf Performance (for CO and MCO)
pp Propulsion (for CO and MCO)
t Target from system optimizer (for CO and MCO)
ws Weights & Sizing (for CO and MCO)

 x

1 Introduction

Optimization of complex engineering systems has always been an integral part of

design. Man has never created anything which he then didn’t wonder how he could make

better. This is true in the aerospace industry dating back to wind tunnel studies conducted

by the Wright bothers to study wing shapes. Originally those that created aerospace

vehicles were responsible for every aspect from wing shape to propulsion. As the size

and complexity of aerospace systems grew, though, it became apparent that the design of

such enormously complex problems would have to be broken down into disciplines with

groups concentrating only on their own part of the whole.

While breaking apart the overall problem into different contributing analyses

(CA’s) made it humanly possible to design inhumanly complex systems, the ability for all

designers to see how their specific changes would affect the overall goodness of the

whole was lost. Communicating between disciplines became increasingly difficult and

thus each discipline developed metrics to which to optimize their own individual part of

the total system or vehicle. Unfortunately, no discipline is an island as every discipline

will affect another and vice versa. If they don’t agree as to what the coupling variable

values should be across disciplines then the system is not converged or valid.

To solve this multidisciplinary analysis (MDA) problem engineers have

traditionally used an iterative process known as Fixed Point Iteration (FPI). FPI, though,

is just a method to converge the MDA problem and does not perform overall system

optimization or the configuring of the whole system such as to reach an optimum

according to one global design objective. The conventional design approach is to try

several configurations and solve the MDA convergence problem for each using FPI. The

best configuration according to the global variable is then selected.

Multidisciplinary optimization (MDO) is when, instead of just arriving at the best

or a good vehicle via multiple trials, a methodology is applied which actively changes the

design variables to find the configuration that produces the optimal system.

All-at-Once (AAO) the most basic and accepted MDO method is insufficient as it

cannot be applied to large engineering problems. Recently multi-level MDO algorithms

have been proposed with the expectation that they might efficiently solve large, complex

 1

MDO problems. Their purported benefits are still under inspection as is the question of

which one will produce the greatest benefits with the least amount of effort or cost.

Three multi-level MDO methods are evaluated in this study: Collaborative

Optimization (CO) 1, its derivative Modified Collaborative Optimization (MCO)2, and Bi-

Level Integrated System Synthesis (BLISS)3 which has multiple derivatives most notably

BLISS-20004.

 2

2 Study Objectives

Three main goals were explored during the course of this study:

1) Determine the benefits of MDO versus using multiple trials of iterative optimizers

using FPI convergence.

2) Create a realistic test problem which will add to a growing field of research trying

to evaluate novel MDO techniques: CO, MCO and BLISS.

3) Allow for across the board comparison of the MDO techniques by using the

statistical method of blocking to remove external variability when comparing

between techniques.

2.1 Benefits of MDO

The first goal is to understand the overall benefit of using an MDO method to

optimize the RLV test problem versus a few trials converged using a fixed point iteration

process (FPI). For this purpose several FPI models of the next generation RLV were

created in order to offer some insight as to what is the best vehicle that could be designed

without using MDO. The results achieved using FPI will be compared to the techniques

mentioned in order to better understand the benefits derived from MDO.

FPI is not an MDO method it is merely a way to converge a multidisciplinary

analysis (MDA) process. It does not perform any global optimization to find the optimum

system configuration. In discipline a designer will try several configurations and

converges each one using FPI. Then one of the configurations is deemed the best and

selected for further study. Thus, FPI usually results in the best configuration for the

options tested, but does guarantee that the true optimum will be found.

The argument for using FPI to test a limited number of configurations versus

applying an MDO process are practical or “real world” in nature. FPI has been the

method of choice in the aerospace industry. Thus there are already legacy tools and

design practices developed by many individuals over time. Changing this structure would

require a large initial investment. Also, the experts performing each analysis have been

trained and are experienced in solving the problem as it is currently formulated for FPI.

 3

Application of other methods may require new training and will take time to gain full

acceptance.

Eight RLV analysis models were tested and converged using FPI during this study.

The vehicle configuration producing the lowest test problem global objective, Wdry, was

selected as the best FPI configuration. For the application any MDO to be worthwhile,

the method must show improvement in the global objective or produce project time

savings in order to offset its application cost.

2.2 Authenticity of Test Problem

It is intended that the test problem, the optimization of a next generation RLV,

have enough realism that it can add to a growing body of work attempting to evaluate

some of the most novel and promising MDO algorithms: CO, MCO and BLISS.5,6,7,8

These MDO techniques were “crafted” as opposed to “rigorously derived.”9 They lack a

general mathematical proof showing for which MDO problems they are suited. Thus, the

algorithms require that they be validated via a statistically significant number of test

cases of realistic, complex system applications.9

To ensure realism in the test problem, legacy tools were employed which are the

same or very similar to those used in industry. Also, one of the tools selected, POST,

while being the industry standard code is known to be very troublesome to work with.

This will add the realism of the problem as in the “real world” one often has to work with

the tools available and cannot just select tools, such as using all Microsoft spreadsheets,

that are usually well behaved.

There are some practical obstacles to the goal of reaching a high level of realism.

First, since it is proposed that the AAO method be used to validate the newer, unproven

MDO techniques. This limits test problems to those that can still be handled by AAO

which does not scale well with the system size and complexity. Secondly, it is intended

that the same developer create all the models applying each technique. The developer

though has external constraints limiting the time he can spend on this project; if the

problem is too large then the work may never be completed to some degree of

satisfaction.

 4

It is the author’s belief that that a convincingly high degree of realism was

achieved and this study does produce statistically significant data.

2.3 Comparison between CO, MCO & BLISS

There are some deficiencies in the currently accepted design methods used in

industry, namely discipline optimization with FPI does not do system-level optimization

and AAO cannot be applied to large, complex engineering problems. New multi-level

MDO techniques, of which CO, MCO and BLISS are three of the most promising, are

attempting to overcome some of these deficiencies. The work presented intends to some

add insight as to which of the most novel techniques, CO, MCO or BLISS, showed the

most promise when applied to the RLV test problem.

It is difficult to draw any conclusions between, CO, MCO and BLISS, using the

current literature available.5,6,7,8,11 Test applications that have produced varying degrees

of success, but it is difficult to determine if this is due to differences in the algorithms or

other factors. The statistical reasons making it difficult to compare between competing

MDO algorithms are:

1) Variability in the level of success with which each of the three competing MDO

techniques has been applied can be attributed to external variances.

2) There are still too few data points to draw any statistically significant conclusions.

In order to address the external variance issue, this study will use the statistical

practice of “blocking” to “help eliminate the variation due to extraneous sources so that a

more sensitive comparison can be made”10 (page 567) between CO, MCO and BLISS.

The blocking effect helps to “eliminate variation due to blocking variables” which in this

case are developer or user capacity and difficulty of the test problem selected. Blocking is

achieved in this study by having the same developer create all of the RLV models for

each of the MDO techniques in question and by applying all of them to the same test

problem.

 5

While this study will not settle the question of which is better, CO, MCO or

BLISS, as it is but one data point (see item 2 above), it is one of the very first attempts at

addressing the external variance problem when trying to compare the benefit, validity and

implementation cost of the new multi-level MDO techniques. To date the author is not

aware of any other attempt.

 6

3 Multi-level MDO Techniques

 This section is an introduction to multi-level MDO techniques and discusses some

of the possible benefits and disadvantages common to all the multi-level techniques

applies in this study, CO, MCO and BLISS.

3.1 MDO Background

 Aerospace system analysis and design is usually broken down into multiple

disciplines due to their enormous complexity. This impedes MDO as the local-level

disciplines lose knowledge of how their local design affects the system as a whole. AAO

can be used to solve the MDO problem, but it takes away all design responsibilities from

the discipline experts and AAO does not perform well in higher fidelity applications with

a lot of design variables (See 8 AAO: All-at-Once pg 36). Multi-level MDO techniques

attempt to correct this problem by allowing some form of local-level design optimization

while adding a system-level optimizer guide the process to a globally optimized solution.

One of the greatest impediments in the acceptance of multi-level MDO techniques

is the fact that they have to date been “crafted” as opposed to “rigorously derived.”9 They

lack a general mathematical proof showing for which MDO problems they are suitable.

Thus, the algorithms require that they be validated via a statistically significant number of

test cases of realistic, complex system applications.9 Program managers or designers are

reluctant to implement the new techniques to a “real world”, industry application as they

cannot be confident that the multi-level MDO algorithm will indeed arrive at the global

optimum. This creates a Catch-22 scenario for multi-level MDO techniques as the only

way to gain acceptance is to show success in a statistically significant number of “real

world”, industry-sized test problems; paradoxically not many application attempts are

made as program managers are not willing to risk their projects on an unproven method.

This contradiction means that acceptance of any multi-level MDO technique may be a

slow one.

 7

If multi-level MDO techniques can be proven to work efficiently for a range of

engineering problems, then they would provide several advantages over the presently

accepted MDA and MDO methods, FPI and AAO.

3.2 MDO Possible Benefits

 First, two-level MDO algorithms closely resemble the conventional work

structure of the aerospace industry. In industry the local-level design is performed by

discipline experts who have a high degree of design freedom within their own discipline.

The system-level optimization is analogous to a chief engineer or program manager who

is in charge of making sure that the disciplines work with each other to solve the overall

system problem. At the same time the disciplines get to keep the local discipline design

roles they are accustomed to. Thus it may be easier to implement and gain acceptance of

a two-level MDO architecture than the AAO technique which removes all design

responsibilities from the disciplines.

Next, it is expected that multi-level MDO techniques will perform better as the

scale of the MDO problem grows. AAO is severely limited by the optimization deftness

of the system-level optimizer, which is charged with the exceedingly difficult task of

optimizing all design variables simultaneously subject to a series of constraints. Two-

level MDO techniques split up the design and optimization responsibilities so that the

system-level and local-level sub-problems share the load. This decreases the probability

that one group or optimizer will fail because the problem given was too difficult to solve.

Lastly, many multi-level MDO techniques including the three investigated in this

study, CO, MCO and BLISS, can potentially allow for parallel or simultaneous execution

of the local-level disciplines. In parallel execution, the system-level optimizer will

provide all the local-level disciplines a set of inputs which they can use to perform the

local-level optimization. With this information disciplines can perform their analysis at

the same time. This contrasts to a sequential execution where each discipline must go in

order so that it can pass its outputs to other disciplines down the line. Parallel execution,

if efficient, could result in large time savings for the entire optimization process. This

savings is expected to be most significant for large problems where several of the

 8

disciplines involved take a lot of time and effort to execute their local-level sub-problem

design and optimization.

3.3 MDO Possible Drawbacks

While novel multi-level MDO techniques may offer some significant benefits

they often have some drawbacks which may offset any potential gains over the

established FPI and AAO methods.

First, in order to perform global, system-level optimization while still allowing

local-level optimization, new design variables are introduced to the problem. These new

variables must be added to either the local or system-level optimizer. This increases the

size and complexity of one or more of the optimization sub-problems.

Second, the system-level problem complexity may grow rapidly if a lot of

coupling variables exist between the disciplines. This is because coupling variables are

usually controlled or coordinated by the system optimizer.

Third, the need for coordinating the local-level sub-problem optimizations for the

betterment of a global objective often results in changing the way the each discipline has

traditionally been analyzed. The local-level objective may need to be changed to

composite objective composed in some form of two or more variables or outputs. Also,

this objective may keep changing with each system-level iteration. This can cause

problems especially in “real world” applications where the computational analysis and

optimization of the local-level sub-problems is performed using legacy codes with

internal tolerances. If the source code of these legacy tools needs to be altered that may

require a considerable amount of time. Also whenever codes are altered it increases the

probability of encountering problems due to human errors. It would be ideal for any

MDO technique to be able to use the legacy tools originally written for the FPI process

without altering them.

Finally, the complexity and novel nature of multi-level MDO methods means that

the successful application of these techniques is more susceptible to user inexperience.

Multi-level MDO techniques are complex and the problem formulation and

decomposition require careful planning. They are not as straight forward as FPI or AAO

 9

and may be very sensitive to the conditioning of optimization parameters such as

optimization methods used (direct vs. indirect methods, SQP vs. MoFD, etc.), numerical

gradient estimation methods and steps, normalization methods, and allowable tolerances.8

A range of problems from model developer inexperience to difficulties when trying to

take numerical gradients may cause unsuccessful results. There have been cases where

attempts at MDO applications, including in RLV test problems11, have been fruitless.

In an attempt to differentiate external variance in application results to those

caused by differences in the MDO algorithms, this study uses the statistical method of

blocking to remove unwanted external variance (see page 5).

3.4 MDO Conclusions

 No multi-level MDO technique has been embraced by industry. Without a

mathematical proof the only way to gain acceptance is through a statistically significant

number of test applications. Paradoxically most are unwilling to bank their projects on an

unproven method and thus MDO applications have been few and mostly relegated to

academia. In order to determine which one(s) of the promising multi-level MDO

techniques may best make the transition from theory to practice, a number of realistic test

studies must be performed that use blocking effects to isolate the differences between

techniques. Without blocking it is difficult to determine if an unsuccessful attempt at

applying a MDO technique is due to the algorithm itself or other unrelated issues.

 10

4 Test Problem

 In order to evaluate the MDO techniques a test problem had to be selected on

which to apply them. For the methodology evaluation goals of this study, though, the test

problem is just a vessel. It is not of critical issue what problem was selected, just as long

as it a realistic problem that resembles one that may be used in “real world” applications.

The test problem selected is the optimization of a next generation single-stage-to-

orbit (SSTO) earth-to-orbit (ETO) RLV. Launching from Kennedy Space Center (KSC),

the RLV must be capable of delivering a 25 klb payload to the International Space

Station (orbiting at 220 nmi x 220 nmi x 51.6° inclination). To accomplish this goal a

base vehicle configuration, ACRE-92, will be optimized via the use of three disciplines,

Propulsion, Performance and Weights and Sizing.

The goal of this study is not to answer what a next generation RLV might look

like or how much it might weigh but instead to evaluate how well the MDO techniques

performed when applied to the problem.

4.1 Base Launch Vehicle Configuration

 The ACRE-92 RLV 12 is an HRST-class SSTO designed and documented by

SpaceWorks Engineering, Inc.15 It is based upon a NASA Langley concept dubbed WB-

003 Single Stage Shuttle. 13 Employing five LOX/LH2 main engines the baseline

configuration is able of transporting about 25 klb, 70% of the payload capability of the

current Space Shuttle (34.4 klb)14, to the ISS. The five main propulsion engines will

insert the RLV into ISS insertion orbit (50 nmi x 100 n mi x 51.6° inclination) and then

let the orbital maneuvering system (OMS) raise the orbit to a circular orbit at 220 nmi

altitude.

In order to increase the realism of this study, adjustments were made during the

vehicle analysis to account for technological improvements expected for a next

generation vehicle (see page 16).

 11

The base vehicle characteristics and configuration are shown below.

Table 1: Concept Description ACRE-92.

Figure 1: Vehicle Configuration ACRE-92.

 The base vehicle was photographically scaled to meet sizing requirements of the

test problem and its aerodynamic data served for the models created in this project.

 12

5 Computational Tools

 This section describes the legacy codes and other computational tools used for all

MDO and MDA technique applications.

5.1 Propulsion Tool

 Rocket Engine Design Tool for Optimal Performance (REDTOP) was used to

analyze and predict the rocket engine propulsion system. Developed by SpaceWorks

Engineering, Inc.15 the code allows quick analysis of propulsion systems and is suitable

for conceptual level design.

 REDTOP models the rocket engine by first determining the chemical reactions

occurring in the combustion chamber and then analyzing the expansion of the hot gasses

as they travel through a convergent-divergent nozzle. The combustion is modeled

adiabatically and at constant pressure. Additional accuracy in the prediction of the engine

performance is reached through a built-in engine efficiency database. It will make

performance corrections due to engine cycle type, nozzle flow losses, degree of reaction,

and combustor efficiency.

To execute REDTOP the user must specify the propellant characteristics, chamber

pressure, nozzle expansion ratio, mixture ratio and sizing criteria. Sizing could be

executed to meet a required thrust at a given ambient pressure, desired mass flow rate, or

to meet a specific engine throat area. REDTOP will then output general performance

metrics, efficiencies used, exhaust characteristics, and species mole fractions at inlet,

throat and exhaust.

 A high-fidelity estimate of the engine thrust to weight (T/Weng) for the propulsion

system is not provided by REDTOP, but is required as an input when estimating the

vehicle weight. Thus a low-fidelity estimate of T/Weng was calculated based on historical

data16 of rocket engine power to weight ratio (P/W). This calculation is as follows:

 13

 Equation 1: Engine Power)(ec hhmP −=
•

 k
PWeng = Equation 2: Engine Weight

eng

SL

eng W
T

W
T = Equation 3: Sea Level Thrust to Engine Weight

The parameter “k” is a sizing parameter that varies with technology level. The

historical average value of “k” based on data from 28 rocket engines is k = 520

BTU/s/lbf.16 This number is therefore representative of state of the art technologies. A

value of k = 600 BTU/s/lbf was used for this study, this represents the use of advanced

technologies in the engines for a next generation RLV.

The propulsion inputs and outputs used for the course of this study are shown

below.

Propellant Data
Inlet Temp, h, r

REDTOP

Engine Characteristics
Cycle, Fuel, Oxidizer, pc

Nozzle Geometry
ε

Sizing Requirement
At or TSL or m

Outputs
T/Weng, T, Isp, Ae, pe,

Exhaust Characteristics

T/Weng
Calculation

Propellant Data
Inlet Temp, h, r

REDTOP

Engine Characteristics
Cycle, Fuel, Oxidizer, pc

Nozzle Geometry
ε

Sizing Requirement
At or TSL or m

Outputs
T/Weng, T, Isp, Ae, pe,

Exhaust Characteristics

T/Weng
Calculation

Figure 2: REDTOP Inputs and Outputs.

 14

5.2 Performance Tool

 Program to Optimize Simulated Trajectories (POST)17 was used to simulate the

trajectories of the RLV. Originally developed in 1970 by Lockheed Martin as a Space

Shuttle Trajectory Optimization Program, POST is one of the most commonly used codes

for trajectory analysis and optimization. It is a multi-phase simulation program which

numerically integrates the equations of motion and provides the capability to target and

optimize point mass trajectories for generalized vehicles and planets.

 POST was selected not only due to the fact that it is often the tool of choice for

trajectory optimization throughout the aerospace industry, but also because it is a

fastidious code which will often present trouble during analysis. This increases the

realism of the RLV problem as in “real world” or practical application of MDO

methodologies one will often have to deal with codes that are difficult to use. Legacy

tools like POST are very old by aerospace industry standards, but replacing them would

incur large costs.

To execute POST the user must provide planetary and vehicle characteristics,

define any trajectory constraints, select appropriate guidance algorithms to be used for

each phase of the trajectory, and define the objective variable to be used for optimization.

The inputs and outputs used for the course of this study are shown below.

Vehicle Characteristics
Sref, Wgross, Aerodynamics

POST

Propulsion Inputs
Tvac, Ispvac, Ae

Planetary Inputs (Earth)
Atmospheric Model
Gravitational Model

Trajectory Constraints
Insertion orbit
Maximum Acceleration

Outputs
MR, Performance

Final Orbit

Vehicle Characteristics
Sref, Wgross, Aerodynamics

POST

Propulsion Inputs
Tvac, Ispvac, Ae

Planetary Inputs (Earth)
Atmospheric Model
Gravitational Model

Trajectory Constraints
Insertion orbit
Maximum Acceleration

Outputs
MR, Performance

Final Orbit

Figure 3: POST Inputs and Outputs.

 15

 While newer versions of POST can calculate 6 degree of freedom (DOF)

trajectories, for this project a 3 DOF simulation was executed. POST is written in

FORTRAN and has been compiled for use in batch mode for both the UNIX and PC

platforms. Both platforms were used during the course of this study.

5.3 Weights & Sizing Tool

 Weights & Sizing analysis is performed via a set of Space Shuttle derived mass

estimating relationships (MER’s) developed by NASA Langley 18 . The MER’s are

calculated using a Microsoft Excel spreadsheet created for this project. The MER’s

represent mass relationships using technology levels commensurate with the Space

Shuttle, thus they must be altered in order to more realistically model a next generation

RLV. The MER’s are broken down by system and subsystem, thus technology reduction

factors (TRF’s) can be implemented to represent technological advancements (the

majority in materials) that will allow for mass savings in next generation RLV’s. Table 2

shows the reduction factors used for this project.

Table 2: Technology Reduction Factors.

To execute the Weights & Sizing tool, one must provide a base vehicle to

photographically scale, propulsion characteristics, performance requirements, a dry mass

 16

contingency (15% for this study), and TRF’s. The Weights & Sizing tool will then

calculate the vehicle’s available mass ratio (MRavail), Wgross, Wdry and create a weight

breakdown by subsystem. The tool is designed to photographically scale the vehicle via a

scale factor (SF) until the MRavail = MRreq. The inputs and outputs used in Weights &

Sizing are below.

Base Vehicle Characteristics
Areas, Dimensions, Volumes

Weights

Propulsion Inputs
TSL/Wgross, Ae, r, TSL/Weng

Performance inputs
MRreq, Payload, Mission
Time, OMS ∆V, RCS ∆V

Tech. Reduction Factors
% Weight reductions per use
of advanced technologies

Outputs
MRavail, SF, Wdry, Wgross,

Weight breakdown

Base Vehicle Characteristics
Areas, Dimensions, Volumes

Weights

Propulsion Inputs
TSL/Wgross, Ae, r, TSL/Weng

Performance inputs
MRreq, Payload, Mission
Time, OMS ∆V, RCS ∆V

Tech. Reduction Factors
% Weight reductions per use
of advanced technologies

Outputs
MRavail, SF, Wdry, Wgross,

Weight breakdown

Figure 4: Weights & Sizing Inputs and Outputs.

5.4 Computational Framework

 Phoenix Integration’s ModelCenter 19 software was used to communicate and

coordinate between tools. ModelCenter is a process integration and design optimization

package. It was used to integrate all the discipline codes into a single interface without

having to actually combine the source codes of each tool.

Framework integration is done by writing a wrapping script for each discipline

that will automatically send inputs, execute and retrieve the outputs for any discipline

codes. It allows for codes written in different languages and located in different

computers within a network to be accessed from a single user interface. For this study

REDTOP, written in JAVA, POST, written in FORTRAN, and the Microsoft Excel

Weights & Sizing tool were all wrapped while Phoenix Integration’s Analysis Server

software allowed for each to be accessed using ModelCenter. Once the discipline codes

are wrapped, one can easily link and transfer data between them. Also, ModelCenter

 17

allows for scripts to be easily written within the integrated frmaework and linked to the

other codes.

Along with integration ModelCenter also provides optimization capabilities

through the use of the DOT optimizer which is incorporated in the ModelCenter software

package. DOT can perform gradient-based optimization through the use of both direct

methods (SLP, MoFD, SQP) and unconstrained methods (Variable Metric and Conjugate

Gradient).20 It also records and organizes data for each iteration when performing an

optimization routine; this greatly facilitates to understand model behavior and to fix any

bugs. This data can then be saved for further analysis.

A screen shot showing the ModelCenter user interface is shown below.

Figure 5: ModelCenter User Interface.

The use of ModelCenter or a program like it greatly facilitated the application and

execution of the MDO techniques studied for this project. If no such software is available

then it would have been necessary to manually run and exchange data between each

 18

discipline code. This would have been an extremely intensive procedure and would have

greatly slowed down the creation and running of RLV models. The breadth of work

shown in this report would not have been realizable without a computational framework

tool.

5.5 Response Surface Modeling Tool

 Pi Blue’s ProbWorks 21 software package, specifically its Response Surface

Equation (RSE) Generator component, was used to create response surface models

(RSM’s) of the discipline codes. ProbWorks components are coded in JAVA and can

easily be incorporated into ModelCenter’s computational frameworks.

The RSE Generator is capable of automatically creating different types of design

of experiments (DOE) given a number of design variables (2nd Order Central Composite

Design was used throughout this project) and then producing a wrapper containing all the

RSE’s of the response variables which make up an RSM.

RSM’s were used in this study to create fast and accurate models of each of the

discipline tools only when called for by an MDO technique.

 19

6 Convergence Errors
 Whenever a complex system is decomposed into discipline sub-problems one

needs to make sure that any final configuration is converged. Convergence occurs when

all disciplines or contributing analyses agree on the values for the coupling variables

while meeting any constraints required by the test problem.

For example, Table 3 shows that the insertion orbit altitude (hinsertion) and nozzle

exit area (Ae) are both converged with errors very close to zero or within problem

requirement tolerances.

Table 3: Example of Converged Variables, hinsertion & Ae.

The RLV test problem requires that the vehicle be capable of reaching ISS

insertion orbit (see page 11). To fulfill this requirement the orbit hinsertion must reach

303805 ft within a tolerance of ±100 ft. Here the performance estimated value for hinsertion

is within acceptable tolerance. Ae does not have to match a value set by the test problem

requirements, but for convergence the value of Ae that is used or calculated between all

disciplines and levels must be the same.

In practical applications there will usually be some convergence error.

Throughout the course of this study a universal error threshold was not required when

attempting to converge the all the MDA and MDO techniques, but instead the user

conditioned model’s optimization parameters until it appeared convergence would not

improved using the computational tools available.

This study differentiates between two types of convergence error:

intradisciplinary and interdisciplinary.

Interadisciplinary convergence errors occur during internal convergence within a

discipline in order to meet local optimization equality constraints (hloc). For example, the

 20

performance legacy tool, POST, performs local optimization to maximize the MRreq but

must do so while reaching ISS insertion orbit. In practical applications POST will meet

the desired orbit within user defined tolerances. Tolerances were set as small as could be

efficiently reached by the legacy tools to minimize intradisciplinary errors.

Interdisciplinary convergence errors are when the value for a coupling variable is

not exactly the same between two disciplines.

 21

7 FPI: Fixed Point Iteration

Fixed Point Optimization (FPI) or the Iterative procedure20 is the traditional way

of solving or converging a multidisciplinary analysis (MDA) problem. It is not, though, a

multidisciplinary optimization (MDO) technique. While applying FPI will produce a

converged model it does not attempt to optimize the model to a global objective as is the

aim of MDO. In this procedure each discipline may perform local optimization on some

aspect of their discipline, but no global system-level optimization is executed. Therefore,

since only local optimization based on local objectives is perfomed FPI solutions are

expected to produce sub-optimal RLV’s with respect to a global objective.

This section will provide some background information about FPI and its

relevance to this study; show the formulation when it is applied to the RLV problem,

present the results gathered and discuss findings. There were two different FPI

formulations applied, Option 1 and 2, which differed in which discipline owned design

control over the fuel mixture ratio (r). Also, it was attempted to more accurately represent

industry practice by having an expert set the design space used for the propulsion design

variables.

7.1 FPI: Background

 When aerospace systems grew too complex to be designed by one group or

individual, the system analysis was broken down into multiple disciplines that dealt with

only part of the problem. Unfortunately there is coupling between the disciplines and thus

one discipline could not complete their design without inputs from another and vice versa.

This creates a multidisciplinary analysis (MDA) problem where in order to design the

vehicle each group must a first guess what the other discipline’s input is going to be and

then see how close their guess was to the actual value. The MDA problem is solved when

all the inputs and outputs shared between disciplines converge at the same values. FPI

has traditionally been the method of choice for solving or converging MDA problems.

 22

 In FPI each discipline optimizes their part of the entire system with respect to a

local variable, for example the Structures group may try to make a plane as strong as

possible while the Aerodynamics group will try to reduce drag. It is expected, though,

that this approach will provide solutions that are sub-optimal in the system-level as it

does not exploit multi-discipline interactions. For example if Aerodynamics makes wings

that are really thin to reduce drag, this may negatively affect Structures as now the wings

are weak and may break. Also, lost in the shuffle is the bottom line. The customer for

such a system does not care about discipline level goals but is more interested in global

metrics relating to cost or weight of the entire system.

 FPI is the standard design practice used for solving MDA problems in the design

of aerospace systems and vehicles. The creation of an FPI model, thus, will create a basis

with which to judge the purported benefits of applying MDO to the design of a next

generation RLV.

7.2 FPI: Formal Problem Statement

 While in FPI there is no system-level optimization, there is local-level or

disciplinary optimization. A general problem statement for each of the three disciplines

involved in the RLV design, Propulsion, Performance, and Weights & Sizing, is shown in

this section.

 The FPI approach is unique in that a total of 8 different models that each provided

a converged vehicle solution using FPI were created. The different models were a result

of: 1) allowing mixture ratio (r) to be controlled by Propulsion (Option 1) or by Weights

& Sizing (Option 2), 2) the local-level objective for the Propulsion discipline (ΦProp) was

allowed to vary between Ispvac and TSL/Weng and 3) two different design spaces were

applied to the design variables for the Propulsion analysis.

 Varying the control of mixture ratio (r) between the Propulsion and Weights &

Sizing disciplines was performed in order to investigate how changing the ownership of

shared input variables could affect the overall design of an RLV. Ideally, no matter who

has ownership of a shared input variable, the overall vehicle design should not be

 23

affected. This is not true in FPI due to each discipline optimizing only at the local-level.

In industry, the general practice is to give ownership of “r” to the Propulsion discipline.

 Next, while maximizing Ispvac is the most common ΦProp used in industry, it is not

self-evident why the objective could not be to maximize TSL/Weng. Due to the strictly

local nature of optimization in FPI changing ΦProp will result in different converged

vehicle configurations.

 Lastly, the design space was altered in order to give a better representation of

what occurs in industry practice. The overall vehicle design was found to be very

sensitive to the side constraints applied to the local design variables in the Propulsion

analysis. In industry, this sensitivity is well known thus an expert is used to set the design

space at an appropriate range for a specific system. This is fine, except that a new or

radical design might be incorrectly influenced or constrained by the designer’s

experiences. It would be ideal for a design technique to allow for the widest design space

possible for a given set of tools and let the tools determine the correct values. That way

the design is ruled solely by physics and not by human bias.

For this study the two Propulsion design spaces were evaluated as shown below:

Expert Design Space: Side constraints are determined by a propulsion expert. This

design space reflects the suggested values from Tim Kokan, space

propulsion graduate specialist at Georgia Institutes of Technology’s Space

Systems Design Lab22.

Large Design Space: Side constraints are maximized so as to not limit the

optimization of the system to preconceived notions.

Table 4: Propulsion Design Spaces Investigated for FPI.

 24

The 8 different FPI formulations investigated for this study were:

I. Option 1: Mixture ratio (r) controlled by Propulsion

 A. Expert Design Space

 i. ΦProp = TSL/Weng (1)

 ii. ΦProp = Ispvac (2, Industry Standard)

 B. Large Design Space

 i. ΦProp = TSL/Weng (3)

 ii. ΦProp = Ispvac (4)

II. Option 2: Mixture ratio (r) controlled by Performance

 A. Expert Design Space

 i. ΦProp = TSL/Weng (5)

 ii. ΦProp = Ispvac (6)

 B. Large Design Space

 i. ΦProp = TSL/Weng (7)

 ii. ΦProp = Ispvac (8)

The resulting configuration with the lowest Wdry was selected as the best FPI

configuration. Each MDO technique application model was initialized using the best FPI

configuration.

7.2.1 FPI: Propulsion Standard Form

Minimize: ΦProp -(Ispvac) or -(TSL/Weng)

Subject to: g pe ≥ 5 psia
 h TSL,avail = TSL,req
 Side 4 ≤ r ≤ 10 or 5 ≤ r ≤ 7
 30 ≤ ε ≤ 100 or 50 ≤ ε ≤ 90
 200 ≤ pc ≤ 3100 psia or 1500 ≤ pc ≤ 3100 psia

By Changing: Xloc ε, pc, At, r (r only for Option 1)

 25

7.2.2 FPI: Performance Standard Form

Minimize: ΦPerf MRreq

Subject to: h hinsertion = 303805 ft
 iinsertion = 51.6 °
 γinsertion = 0 °

By Changing: Xloc θAzimuth, θPitch1, θPitch2, θPitch3, θPitch4

7.2.3 FPI: Weights & Sizing Standard Form

Minimize: ΦW&S Wdry

Subject to: h MRavail = MRreq
 Side TSL/Wgross ≥ 1.2

By Changing: Xloc SFveh, TSL/Wgross, r (r only for Option 2)

7.3 FPI: Data Flow

 In order to better understand the coupling of shared variables the design structure

matrices (DSM’s) for both FPI Option 1 and 2 are provided. Also provided are variable

tables which help to quickly observe the important variables for each local-level

discipline.

 26

7.3.1 FPI: Design Structure Matrix

Option 1: Mixture ratio (r) controlled by Propulsion

Figure 6: DSM for FPI Option 1.

Option 2: Mixture ratio (r) controlled by Weights & Sizing

Figure 7: DSM for FPI Option 2.

 Note that both FPI DSM’s have feed forward and feed back loops. This means

that tightly coupled disciplines or contributing analyses (CA’s) must iterate between them

several times. This could be costly if the CA’s are expensive or time consuming. If the

feed back loops are not needed then the disciplines can just be run one time in sequential

 27

order from left to right. If forward loops between disciplines are broken, then the CA’s

could execute in parallel or simultaneously.

7.3.2 FPI: Variable Table

Option 1: Mixture ratio (r) controlled by Propulsion

Table 5: Variable Table for FPI Option 1.

 28

Option 2: Mixture ratio (r) controlled by Weights & Sizing

Table 6: Variable Table for FPI Option 2.

 Note that both FPI variable tables have the Xsys empty. This shows that for FPI

there is not a system optimizer. All variables are controlled at the local-level, Xloc.

7.4 FPI: Results

 This section shows final configuration results for RLV’s converged using the FPI

method.

 29

7.4.1 FPI: Configuration Results

Option 1: Mixture ratio (r) controlled by Propulsion

Table 7: Final Configuration Table for FPI Option 1.

 30

Option 2: Mixture ratio (r) controlled by Weights & Sizing

Table 8: Final Configuration Table for FPI Option 2.

 The column highlighted represents the best FPI model, selected with the desire to

minimize the Wdry of the system.

 31

7.4.2 FPI: Convergence Error

Convergence error analysis was done only on the best FPI model with respect to

the global objective, Wdry. The best FPI model was [Option 2, Expert Design Space,

Φ,Prop = Ispvac].

Table 9: Convergence Error for best FPI Configuration.

 The intradisciplinary convergence error in the best FPI model is very low, never

above 0.03%. This low error is thanks to the great time and effort spent to improve the

precision of the legacy codes used in this study. The legacy codes were created with the

FPI process in mind and are thus highly evolved to solve the FPI problem with the

greatest efficiency and accuracy possible.

 Also, the interdisciplinary convergence error is very low thanks to the fact that

there are virtually no numerical errors in the FPI procedure as there are never any design

space gradients taken.

 Note that the “system” column is empty. This is due to the lack of a system-level

optimizer when performing the FPI process.

 32

7.5 FPI: Discussion & Qualitative Ratings

 This section will address FPI optimization conclusions, lessons learned when

implementing the method and provide qualitative ratings with discussion for each.

7.5.1 FPI: Optimization Conclusions

 FPI is not an MDO method, thus it does not optimize to achieve a global objective.

FPI, though, is often employed in industry to solve an MDA problem and then variable

sweeps are used to manually find what the globally optimized configuration is. This is

not ideal as iteration may have to be performed many times for the variable sweeps and

the design may be limited by the preconceived notions of the designer.

 Of the 8 different FPI models generated, the best solution was reached by the

combination [Option 2, Expert Design Space, ΦProp = Ispvac] which converged the RLV

problem at Wdry ≈ 317 klb. This best combination, though, is not the industry standard

practice ([Option 1, Expert Design Space, ΦProp = Ispvac] with Wdry ≈ 356 klb) thus it can

be surmised that alternating which discipline has ownership of critical shared variables

can significantly affect the best resulting design converged using FPI.

7.5.2 FPI: Lessons Learned

 Lessons learned in the implementation of the FPI process are few as FPI is the

method for which all the legacy tools were designed. As expected, FPI models were easy

straight forward to create and the tools behaved well when applied. Nevertheless, some

lessons learned are:

1) The order in which CA’s are excecuted is critical for the model to run smoothly. In

this case the POST – Weights & Sizing loop, see Figure 6 on page 27, needed to be

iterated last. If not the POST – Weights & Sizing loop would often converge at a

 33

vehicle weight so high that the thrust provided by the Propulsion analysis was not

enough to lift the RLV off the launch pad.

2) The use of relaxation to perform the vehicle system convergence was able to

slightly increase the range of starting points from which the model could be

initialized and still find a converged solution. Its use, though, could greatly increase

convergence time.

7.5.3 FPI: Qualitative Ratings

 It is very difficult to qualitatively assess the experience of implementing a given

MDA or MDO technique without first comparing it to other the other techniques being

evaluated. Therefore these ratings were assigned after all the techniques had been applied.

Table 10: Qualitative Ratings for FPI.

Criteria Grade Discussion
Implementation
Difficulty

A Virtually all legacy tools were created for an iterative
environment. This gives the implementation of the FPI
process a big advantage. One could run into more difficulty
if codes cannot be readily modified to allow for ownership
of internal design variables by different codes. Thus it
could be difficult to vary the discipline that has control
over a shared variable.

Total Execution
Time

A (5 to 20 minutes)
Varied with the amount of relaxation used & initialization
point.

Robustness

A Model converged for a wide range of initialization points.
Relaxation could be used to converged otherwise unstable
sections of the model.

Formulation
Difficulty

A The formulation is straight forward and is usually evident
from the legacy tools themselves.

Optimization
Deftness

D FPI will not, by itself find a globally optimized solution. It
requires a human to make a sweep of possible design
spaces or configurations to find the global optimum.
Though multiple configurations were tried, the best FPI
solution was still found to be a sub-optimal solution.

 34

Convergence
Error

A There is no gradient taking. Convergence is limited solely
on the convergence tolerance of the legacy codes used.
These codes usually converge with very tight tolerances
thanks to time invested in conditioning their optimization
to the specific problem.

Issues 1) If control of coupling variables is not varied between
disciplines then FPI may result in very poor results. In this
study, when the industry standard of having Propulsion
control the mixture ratio (r) and maximize Ispvac was used;
the FPI solution converged with a vehicle 15-20% heavier
than the true optimum.
2) This is not an MDO technique thus vehicle optimization
is dependent on human intervention. Varying optimization
parameters (such as propulsion design space) can greatly
affect the resulting vehicle configuration.

Unique Benefits 1) Makes use of the legacy code’s original optimizer which
has already been conditioned to best handle the discipline’s
local-level problem.
2) Virtually no legacy code modifications were needed.

 35

8 AAO: All-at-Once

All-at-Once (AAO) is the most basic of MDO techniques and has wide industry

acceptance although it is restricted to small design problems. It takes all local-level

optimization away and gives control of all the design variables to one, system-level

optimizer. It ensures that MDO is performed and a global objective is met by in essence

doing away with all the disciplines (except with respect to straight forward analysis) and

having only one designer control the entire vehicle system design.

This section will provide some background information about AAO and its

relevance to this study; show the formulation when it is applied to the RLV problem,

present the results gathered and discuss findings. The major drawback to AAO is that it

does not scale well with increasing complexity. This became apparent during this study

as it seemed that the system-level optimizer had some difficulty precisely reaching the

most optimized design due to the large number of design variables. Therefore, there are

two AAO results presented, one where all the local-level variables were transformed to

the system-level design variables and one where two variables, TSL/Wgross and pc, were set

as parameters at known “preferred” values.

8.1 AAO: Background

 Aerospace systems are broken down into multiple disciplines that deal with only

part of the problem. This makes MDO difficult as when each discipline is optimizing

their part of the system to meet a local objective it becomes impossible to optimize the

whole to reach a more desired global objective.

AAO is the most basic solution available to solve the global MDO problem. It

moves all the local-level design variables and constraints away from the each discipline

and gives them to a new system-level optimizer which is entrusted with optimizing the

vehicle to meet a global objective. The disciplines remain but they are but a shell of their

old selves as all design freedom is taken away and they are entrusted solely with doing

analysis, no design. The system-level optimizer will vary all the design variables and

 36

passes inputs to each discipline so that they can perform local-level disciplinary analysis

and design.

The great benefit of AAO is that all the design variables are controlled by a single

user that can immediately see how changes to a particular part of the vehicle affect the

vehicle as a whole. AAO with Optimizer Based Decomposition (OBD) breaks the

feedback loops between CA’s in a DSM. Thus whenever the system makes a change in

the vehicle configuration, each discipline only needs to run one time. This may save total

execution time versus FPI where tightly coupled CA’s may have to iterate and converge

before the rest of the analysis can continue.

While AAO is the most straight forward way to solve an MDO problem it has

great drawbacks that makes it inapplicable to the detailed design of aerospace systems.

First, taking the design responsibilities completely away from the disciplines

means that discipline experts are no longer involved in design. For decades people have

specialized their studies and research amassing a great deal of knowledge related to the

design of a particular discipline. The depth of knowledge that all the discipline experts

hold together cannot possibly be recreated by a single human being. Thus, if all design

control is given to a single system-level optimizer, one loses the knowledge that has been

accumulated.

Secondly, the vehicle design was originally broken up into disciplines because the

problem was so big and intricate that no single human or optimizer was able to handle the

complexity. This is still true of aerospace systems and AAO cannot change that. Thus,

unless simplified, the design of an aerospace system is too complex for a single user or

system-level optimizer to handle. While AAO may be able to solve the MDO problem for

conceptual level design (which has a limited number of design variables) it does not scale

well with complexity and is not used during detailed design.

 Despite limitations, if an MDO problem can be solved via AAO, there is a high

degree of confidence that the final configuration produced will be the true global

optimum. The resultant AAO configuration will be used to validate the solutions

produced by applying CO, MCO and BLISS.

 37

8.2 AAO: Formal Problem Statement

 AAO does not have any local-level optimization, thus the MDO problem is

strictly a system-level problem. AAO is composed of one system-level formulation which

handles all the design variables for the entire RLV across all disciplines.

8.2.1 AAO: System Standard Form

Minimize: ΦSys Wdry

Subject to: g pe ≥ 5 psia
 TSL/Wgross ≥ 1.2
 h γinsertion = 0°
 iinsertion = 51.6°
 hinsertion = 303805 ft
 MRreq = MRavail
 Sref,guess = Sref,actual
 Wgross, actual = Wgross, guess
 TSL,avail = TSL,req
 Side 40.29 ≤ θAzimuth ≤ 44.53 °/s
 -1.533 ≤ θPitch1 ≤ -1.386 °/s
 0.04191 ≤ θPitch2 ≤ 0.05431 °/s
 -0.2696 ≤ θPitch3 ≤ -0.2440 °/s
 -0.1421 ≤ θPitch4 ≤ - 0.1285 °/s
 6.3 ≤ r ≤ 7.7
 45 ≤ ε ≤ 60
 4.705 ≤ At ≤ 5.750 ft2
 2790 ≤ pc ≤ 3100 psia
 0.9913 ≤ SF ≤ 1.21169
 1.2 ≤ TSL/Wgross ≤ 1.5
 4368 ≤ Sref,guess ≤ 5339 ft2
 2936 ≤ Wgross,guess ≤ 3559 klb

By Changing: Xsys θAzimuth, θPitch1, θPitch2, θPitch3, θPitch4, r, ε, At, pc, SF,

TSL/Wgross, Sref,guess, Wgross,guess

 38

8.3 AAO: Data Flow

 In order to better understand the coupling of design variables the design structure

matrix (DSM) for AAO is provided. Also provided is a variable table which helps to

quickly observe the important variables for each local-level discipline.

8.3.1 AAO: Design Structure Matrix

Figure 8: DSM for AAO with Partial OBD.

 Note that backward loops between the CA’s have been broken. Now all feedback

from the disciplines goes directly to the system optimizer. This is achieved through

Optimizer Based Decomposition.

 OBD or Simultaneous Analysis and Design (SAND) is a method of breaking the

feed-back loops in a DSM that has a system-level optimizer. Guess or intermediate copies

of the feed-back coupling variables are created and these are used by the system-level

optimizer as design variables. Also, compatibility constraints are added at the system-

level which ensures that the guess or intermediate variables are equal to the actual values

fed back by the CA’s.

 39

8.3.2 AAO: Variable Table

Table 11: Variable Table for AAO.

 Note that the AAO variable table have the Xloc column empty. This shows that for

AAO there is no local optimization. All variables are controlled by the system optimizer,

Xsys.

8.4 AAO: Results

 This section shows final configuration results for the RLV test problem solved

using the AAO method and describes the convergence errors resulting from this method.

 40

8.4.1 AAO: Configuration Results

As previously discussed on page 36, AAO does not scale well as many optimizers

have trouble handling problems that are complex and have a lot of design variables. This

scalability problem is not due to the theory of AAO, but to practical limitations with

optimizers.

Scalability difficulty was encountered during the course of this study when the

system optimizer tried to simultaneously optimize all of the vehicle’s design variables.

While the optimizer did a good job at approaching the optimal configuration, numerical

errors and insufficient optimizer robustness did not allow for the optimum to be reached

as precisely as desired. To fix this problem, two of the original design variables,

TSL/Wgross and pc, were changed to system-level parameters at the constraint values that

each seemed to be approaching. Thus the final configuration table has two columns:

1) AAO, Full: Indicates stringent application of the AAO procedure as described in

theory. All of the design variables moved from the local-level to the system-level

are handled as system design variables.

2) AAO, Reduced: Indicates the use of manual overrides to set pc and TSL/Wgross as

parameters. All other variables are still handled as system design variables.

 41

Table 12: Final Configuration Table for AAO.

 The column highlighted represents the best AAO model, selected with the desire

to minimize the Wdry of the system.

 One can observe that when AAO, Full was used TSL/Wgross seemed to approach its

constrained minimum (1.2) while pc approached its constrained maximum (3100 psia). In

practical application, though, the optimizer was unable to exactly reach the constrained

limits. Unfortunately, this is common in engineering models where the legacy tools have

a lot of numerical errors and make it very hard to determine the system derivatives

necessary for the system-level optimization process. This can be helped by reducing the

number of design variables in the system optimizer. When the values of TSL/Wgross and pc

are manually set at the limits and held constant (parameters), the optimizer had an easier

time reaching the true optimum solution for the test RLV problem.

 42

8.4.2 AAO: Convergence Error

 AAO has no local-level optimization and the only type of convergence error is

interdisciplinary error. Even the ISS insertion orbit requirement is now calculated by

Performance but the variables affecting it and making sure the requirement is met are a

responsibility of the system optimizer.

Compatibility error analysis was done on the best AAO model with respect to Wdry; AAO,

Reduced.

Table 13: Convergence Error for AAO, Reduced Configuration.

 While the compatibility error of AAO is low, it is not as low as that reached using

the FPI method (see Table 9 on page 32). This is a result of the larger size of the system-

level optimization problem.

 For this study optimization parameter conditioning was performed in order to

minimize errors observed in the model. Due to internal tolerances within the legacy tools,

though, a point was reached where seemingly errors could not be driven any lower with

the available computational tools. It is possible that there is some set of optimization

parameters that would have produced somewhat lower errors.

 43

8.5 AAO: Discussion & Qualitative Ratings

 This section will address AAO optimization conclusions, lessons learned when

implementing the method and provide qualitative ratings with discussion for each.

8.5.1 AAO: Optimization Conclusions

 AAO is not a multi-level MDO optimization technique since all the vehicle

optimization is contained at the system-level. AAO, though, is the MDO method that is

accepted in industry to solve conceptual level MDO problems. While in theory it will

reach a globally optimized configuration, in practice limitations in system-level

optimizers and legacy tools severely limit the level of MDO complexity that can be

solved with the AAO method. This is not a fault with the AAO methodology, but simply

“real world” limitations.

 Indeed a precise convergence using the full application of AAO to the RLV test

problem, which is still a conceptual level problem, was not reached with the tools and

optimizers used for this study. Once the problem was simplified (see page 41), though,

the true optimum was reached at Wdry ≈ 305 klb. This is a 4% improvement over the best

FPI configuration (see Table 8 page 31).

 A 4% improvement in the global objective over the best FPI configuration is a

noticeable but modest improvement in the design optimization of the RLV. AAO, as are

most MDO optimization algorithms, are often very difficult to apply due to “real world”

limitation present in the legacy codes and reconditioning of the optimizers used.

Therefore one must weigh the predicted objective benefits of applying an MDO

technique versus the cost of implementing it. In fairness to the MDO techniques, though,

the best FPI solution was already an unconventional application of the FPI process. If FPI

had only been applied as is most common in industry today, then the FPI method would

have resulted in a vehicle with Wdry ≈ 356 klb (see page 33). In this case MDO resulted in

a 14% improvement over the industry standard FPI method.

 44

8.5.2 AAO: Lessons Learned

 Lessons learned in the implementation of the AAO process are as follows:

1) Most legacy tools will allow one to easily turn off all local optimization which turns

the computational code into a strictly analysis tool. This was beneficial in the AAO

application as it was unnecessary to alter the internal code of any of the legacy tools

which may have been a time consuming endeavor.

2) Even for a small design space, POST would crash often. It could be shown that

POST would work for most configurations within a given design range. Even so, it

was often the case that a design configuration point would be called for during

optimization that would cause POST to crash. Thus there were gaps or holes where

POST would crash within a generally valid design space. Thus, after the

optimization problem was initialized and started moved toward the optimum, it

might hit a gap in the design space that would cause POST to crash and the

optimization to fail. This problem was overcome by varying the initialization point

until the optimizer happened to take a path that did not hit any gaps.

 45

8.5.3 AAO: Qualitative Ratings

 It is very difficult to qualitatively assess the experience of implementing a given

MDA or MDO technique without first comparing it to other the other techniques to be

evaluated. Therefore these ratings were assigned after all the techniques had been applied.

Table 14: Qualitative Ratings for AAO.

Criteria Grade Discussion
Implementation
Difficulty

C Often the internal optimizer can be switched off easily,
facilitating implementation. Conditioning the system
optimizer to simultaneously optimize all the design
variables proved difficult. A problem slightly larger or
more complex may be beyond the capability of most
optimizers.

Total Execution
Time

A- (40 to 50 minutes)

Robustness

D The optimizer would not converge if the design space was
not relatively small, stable and almost centered around the
eventual optimized values. Also, there were problems in
that the legacy tools would crash in points within the
design space. This is a problem with the legacy tool but
shows some of the problems that can be encountered in
“real world” applications.

Formulation
Difficulty

A The formulation is straight forward as one can just
automatically move all the variables from the local-level to
the system-level without having to add any variables.

Optimization
Deftness

A- A full application of AAO did not precisely converge at the
true optimum due to numerical difficulties with the legacy
codes that impaired the system-level optimizer. The true
optimum was precisely obtained by reducing the size of the
problem by setting two at the constrained minimum they
were approaching. The difficulties encountered show the
scalability problems with AAO even when applied to a
relatively small, conceptual level problem.

 46

Convergence
Error

A- Simultaneous optimization of all variables by a single
optimizer will generally not have compatibility error as
low as FPI unless a long time used to carefully condition
the optimizer. This is because the local-level optimizers are
free to use the optimization method most suitable for their
specific problem, while a system optimizer has to be
general enough to optimize all parts simultaneously.

Issues 1) Numerical difficulties from the legacy codes may make
it very difficulty to condition optimizer to converge tightly.
2) Lack of robustness in the legacy codes caused crashes
even when in a region well within the code’s capability.

Unique Benefits It can be mathematically proven that in theory AAO should
reach the true system-level optimum. Thus, if AAO can be
successfully applied, there is a high degree of confidence
in its result.

 47

9 BLISS: Bi-Level Integrated System Synthesis

Bi-Level Integrated System Synthesis (BLISS) is a two-level optimization

algorithm originally developed by Dr. Jaroslaw Sobieszczanski-Sobieski, et al., of NASA

Langley. Being a multi-level optimization algorithm there is optimization in more than

one level of the entire RLV design, as opposed to FPI which only has local optimization

or AAO which only has system-level optimization.

This section will provide some background information about BLISS and its

relevance to this study, show the formulation when it is applied to the RLV problem,

present the results gathered and discuss findings.

9.1 BLISS: Background

 BLISS, along with CO and MCO, is one of the most promising multi-level MDO

techniques. The first version of BLISS3 was developed in 1998 with the most recent

derivative, BLISS-20004, introduced in 2002. BLISS is a two-level MDO technique with

both local and system-level optimization. Only the BLISS-2000 algorithm will be applied

for this study as it is anticipated by the BLISS developer, Dr. Sobieszczanski-Sobieski, to

the best derivative published to date.

As with other multi-level MDO algorithms proposed, one of the greatest obstacle

to the acceptance of BLISS is the fact that it was “crafted” as opposed to “rigorously

derived.”9 Thus it requires studies applying it to realistic test problems, like the one

presented here, to gain industry acceptance.

BLISS intends to allow for large MDO problems to be solved while at the same

time minimizing the amount of changes that need to be made to current design practices.

BLISS, like CO and MCO, is a two-level MDO technique and thus is believed to be well

suited for the conventional disciplinary structure used in industry. It also lets experts have

most of the control over the local discipline design taking advantage of their advanced

knowledge. Since it does not add any new local-level design variables, CA’s can be

performed similarly to current practices developed for use with an FPI process in mind.

 48

In order to be able to successfully coodinate between disciplines and arrive at a

global optimum, BLISS needs to introduce new design variables to the system-level

optimizer. BLISS uses weighting factors (w’s) on local-level outputs to produce an

overall system-level MDO solution. The system-level optimizer is now in charge of

handling all the shared inputs or coupling variables for the system as well as the new

weighting factors. These weighting factors are used to dynamically control each

discipline’s local-level objective. Due to the addition of new variables, which have the

potential to complicate the system-level optimization, it is expected that BLISS, like CO

and MCO, is best suited for MDO problems with low dimensionality coupling.

A feature added to BLISS in the BLISS-2000 derivative is the creation RSM’s of

all the CA’s and applying the bi-level optimization scheme directly to the RSM’s instead

of the original legacy tools. Substituting for the original legacy codes is an attempt to

avoid the numerical integration and stability problems that are often present when using

troublesome legacy tools. The RSM’s, since they are just curve fits, will provide clean

consistent gradients for the system-level optimizer. They will also run much faster than

the original legacy tools; providing execution time savings.

RSM’s, though, require that the original CA’s must be run in a design of

experiments (DOE) to create the data to which the RSM’s will be fitted. This could be a

costly endeavor if there are a lot of local-level design variables. On the other hand, using

parallel execution to distribute this process over a computer network means that, in

theory, this could be done in the amount of time required to execute the most time

consuming CA just once. If the RSM is not an accurate fit of the original tools, then

additional DOE’s may need to be run until the design space is small enough to bring RSE

error within desired tolerance. Each time that the design space is decreased around the

previous configuration, new RSM’s are created and used to solve the MDO problem is

considered a BLISS iteration.4

For this study a 2nd Order Central Composite DOE was used to create all the

discipline RSM’s. The number of variables to be fitted, resulting number of CA runs

needed, and the total execution time called for by the DOE’s needed in BLISS, are shown

in Table 15. Note, execution of all CA’s was performed on the same Pentium 4, 2.25 Ghz,

512 MB RAM machine.

 49

Table 15: CCD Properties for BLISS.

9.2 BLISS: Formal Problem Statement

 BLISS-2000 has both system and local-level optimization.

9.2.1 BLISS: System Standard Form

Minimize: ΦSys Wdry

Subject to: h Y* = Y^o(Xsys)

By Changing: Xsys Xsh r
 Y* Ispvac, Tvac, Ae, TSL/Weng, Sref, Wgross, TSL,req,

MRreq
w w1[Ispvac], w2[Tvac], w3[Ae], w4[TSL/Weng],

w5[Wdry], w6[Sref], w7[Wgross], w8[TSL,Req]

Note: for w1…w8 the []’s show the variable to which the weighting factor corresponds

 50

9.2.2 BLISS: Propulsion Standard Form

Minimize: ΦProp w1(Ispvac) + w2(Tvac) + w3(Ae) + w4(TSL/Weng)

Subject to: g pe ≥ 5 psia
 h TSL,avail = TSL,req
 Side 4 ≤ r ≤ 10
 30 ≤ ε ≤ 100
 200 ≤ pc ≤ 3100 psia

Given as Parameter: Xsh r
 Y* TSL,req
 w w1, w2, w3, w4

Find: Y^o Ispvac, Tvac, Ae, TSL/Weng

By Changing: Xloc ε, pc, At

9.2.3 BLISS: Performance Standard Form

Minimize: ΦPerf MRreq

Subject to: h hinsertion = 303805 ft
 iinsertion = 51.6 °
 γinsertion = 0 °

Given as Parameter: Y* Ispvac, Tvac, Ae, Sref, Wgross

Find: Y^o MRreq

By Changing: Xloc θAzimuth, θPitch1, θPitch2, θPitch3, θPitch4

 51

9.2.4 BLISS: Weights and Sizing Standard Form

Minimize: ΦW&S w5(Wdry) + w6(Sref) + w7(Wgross) + w8(TSL,req)

Subject to: h MRavail = MRreq
 Side TSL/Wgross ≥ 1.2

Given as Parameter: Xsh r
 Y* TSL/Weng, Ae, MRreq

 w w5, w6, w7, w8

Find: Y^o Wdry, Sref, Wgross, TSL,req

By Changing: Xloc SF, TSL/Wgross

9.3 BLISS: Data Flow

 In order to better understand the coupling of design variables the design structure

matrix (DSM) for BLISS is provided. Also provided is a variable table, proposed by Dr.

Sobieski of NASA Langley, which helps to quickly observe the important variables for

each local-level discipline.

 52

9.3.1 BLISS: Design Structure Matrix

Figure 9: DSM for BLISS.

 Note that forward and backward loops between the discipline CA’s have been

broken. This allows for parallel execution of the CA’s.

9.3.2 BLISS: Variable Table

Table 16: Variable Table for BLISS.

 53

9.4 BLISS: Results

 This section shows the final configuration results for the RLV test problem solved

using the BLISS-2000 method and describes the convergence errors resulting from this

model.

9.4.1 BLISS: Configuration Results

As previously mentioned, the BLISS-2000 algorithm calls for RSM’s to be

created for each CA and then for the RSM’s to be the ones actually used when solving

the MDO problem.

The RSM’s though do not include internal variables used within the disciplines

but not passed on to others, thus, once the RSM’s found the correct configuration, each of

the tools was run one more time to get internal values and also as a quick check on the

fidelity of the RSM fits used.

 54

Table 17: Final Configuration Table for BLISS.

 One can see that the RSM models created were of high fidelity. Also, the

optimum Wdry calculated by the RSM’s was virtually identical to the actual value output

by the original legacy codes.

9.4.2 BLISS: Convergence Error

BLISS has both local and system-level optimization thus there is both

intradisciplinary and interdisciplinary convergence error.

Convergence error analysis was performed using the actual values as outputted by

the legacy tools, not those estimated via RSM’s. This ensures that the errors due to RSE

fits are accounted in the convergence error.

 55

Table 18: Convergence Error for BLISS Configuration.

 While the compatibility error of BLISS is not as low as that resulting from

application of the FPI method (see Table 9 page 32) or AAO (see Table 13 page 43) it is

still sufficiently low.

The acceptable level of this error is determined by the sensitivity of down-stream

analysis to the specific variable. In this case the largest error was TSL/Weng which is used

as an input in the Weights & Sizing analysis. Weights & Sizing, though, is not very

sensitive the error in TSL/Weng and showed negligible effects when the TSL/Weng value

was changed by 2.4%, the error observed.

 For this study optimization parameter conditioning was performed in order to

minimize errors observed in the model. Due to internal tolerances within the legacy tools

and errors in the RSM fit, though, a point was reached where seemingly errors could not

be driven any lower with the available computational tools. It is possible that there is

some set of optimization parameters that would have produced somewhat lower errors.

 56

9.5 BLISS: Discussion & Qualitative Ratings

 This section will address BLISS optimization conclusions, lessons learned when

implementing the method and provide qualitative ratings with discussion for each.

9.5.1 BLISS: Optimization Conclusions

 BLISS is a multi-level MDO optimization technique and thus has not gained wide

acceptance within industry. The work presented here, though, found that BLISS could

successfully find the global optimum of the test RLV problem with similar convergence

accuracy compared to the more accepted AAO. There is still to little data available,

though, to claim BLISS a viable alternative to AAO but the observations made during

this study were promising.

 BLISS found the RLV’s optimum at Wdry ≈ 305 klb. This is virtually identical to

the value found using AAO* (see Table 1 page 12). This is a 4% improvement over the

best FPI configuration (see Table 8 page 31).

9.5.2 BLISS: Lessons Learned

 Lessons learned in the implementation of the BLISS-2000 process are as follows:

1) There is a need to improve current framework integration tools so that future BLISS

models can evaluate the parallel execution benefits of the algorithm. If simultaneous

execution of all the CA runs needed for the DOE’s were possible, this would lead to

big time savings.

* A small 0.1% discrepancy between the two Wdry values resulting from AAO and BLISS can be accounted
by POST internal tolerances. AAO’s insertion orbit (303,706 ft) was near the tolerance minimum allowed
by the user in POST (303,805±100 ft) while in the BLISS orbit was slightly above (303,824 ft) the required
orbit. This is not a discrepancy between algorithms, it is entirely an intradisciplinary convergence error
within performance.

 57

2) BLISS showed a very significant implementation advantage in the RLV test problem

due to the fact that the most troublesome legacy tool, POST, had only one coupling

output variable (MRreq). This meant that the POST legacy tool be used completely

unaltered without so much as having to add the weighting factors usually needed fo

the system-level optimization process.

3) It was comparatively simple to make CA alterations needed to include the new

composite objectives that included weighting factors. This is because, besides

changing the local objective, analysis was performed in the same way as before.

There were still the same local design variables and none were added.

4) The creation of RSM’s could be facilitated through the use of software that

automatically creates them within the framework tool. Such a tool, ProbWork’s RSE

Generator, was used in this project (page 19). This eliminated the need to transfer

data between to statistical software to make the RSE’s and avoided errors due to data

transfer.

5) It is important to allow both negative and positive values for the weighting factors

(w’s). This allows for the system optimizer to choose if a local output should be

minimized or maximized.

6) There is a system design space singularity when all w’s equal zero. This is because all

local outputs are multiplied by zero and the local objectives vanish. Good results were

obtained when all but one w was initialized with a value of zero. This was

circumvented by initializing the w’s in the system-level optimizer to all zeroes except

one. Then the variable that received an initial w value was varied to ensure that the

true minimum was being reached. When this is done, it is highly unlikely that the

system optimizer will encounter the all w = 0 singularity.

 58

9.5.3 BLISS: Qualitative Ratings

 It is very difficult to qualitatively assess the experience of implementing a given

MDA or MDO technique without first comparing it to the other techniques to be

evaluated. Therefore these ratings were assigned after all the techniques had been applied.

Table 19: Qualitative Ratings for BLISS.

Criteria Grade Discussion
Implementation
Difficulty

B+ While use of composite local-level objectives may require
the legacy codes to be modified, the changes are small and
relatively easy to implement.

Total Execution
Time

B+

(2 to 3 hours) (10 to 20 minutes possible)
Due to software limitations, the benefits of parallel
computing described in the BLISS literature were not
realized. This reality is reflected in the 2 to 3 hour
convergence time. If the capacity for parallel execution of
the RSM’s while solving the MDO problem was added the
process would only see a marginal benefit due to the rapid
execution of the RSM’s. If the capacity for parallel
execution were added during the data gathering part of the
DOE, though, a very large time savings would incur. If this
capability were available, then the convergence time would
be about 10 to 20 minutes.

Robustness

B+ Converged adequately from given initialization point (best
FPI configuration), but if the RSM’s are a poor fit
problems may incur. Also, does have vanishing local
objective when all weighting factors (w’s) are equal to
zero.

Formulation
Difficulty

B+ Not as straight forward as FPI or AAO but still changes are
not very large. It does, though, require a separate
formulation for each discipline and the system.

Optimization
Deftness

A May be able to handle more complex problems than AAO,
but still may run into constraints if a lot of weighting
variables are needed or there are a lot of shared variables.
This was the only MDO technique which solved the “real
world” RLV MDO problem with the accuracy and
efficiency predicted in theory.

 59

Convergence
Error

B+ Letting local optimizers control local design variables
improves convergence of those variables. There may be
increased error, though, due to the RSM fit and parallel
execution.

Issues 1) If one legacy tool takes a lot longer to create an RSM
than others, then parallelization is of little help
2) Every CA should not be made into an RSM. Some
codes may run quickly and do not have numerical
problems.
3) It may take several BLISS iterations to converge and
have a good RSE fit. In this study the RSM fit was good
and the data points were accurate thus it only required two
BLISS iterations to reach a tightly converged system with
little error.

Unique Benefits 1) If a discipline has only one shared output, then that
discipline’s formulation is the same as FPI and the original
legacy tool can be used unaltered.
2) Use of RSM’s eliminates numerical problems present in
the legacy codes. This allows for high accuracy when
taking numerical derivatives.
3) May allow use of the legacy code’s original optimizer
which has already been conditioned to best handle the
discipline’s given problem.

 60

10 CO: Collaborative Optimization

Collaborative Optimization (CO) is a two-level MDO algorithm originally

developed by Dr. Robert Braun for his Ph.D. dissertation at Stanford University.1 Being a

multi-level optimization algorithm there is optimization in more than one level of the

entire RLV design, as opposed to FPI which only has local optimization or AAO which

only has system-level optimization.

This section will provide some background information about CO and its

relevance to this study; show the formulation when it is applied to the RLV problem,

present the results gathered and discuss findings.

10.1 CO: Background

 CO, along with BLISS and MCO, is one of the most promising multi-level MDO

techniques. CO was proposed in 1996 as a technique best suited for “large scale

distributed design.” Thus, like BLISS, it is expected to scale better than AAO as the size

and complexity of an MDO problem increases.

As with other multi-level MDO algorithms proposed, one of the greatest

impediments in the acceptance of CO is the fact that it was “crafted” as opposed to

“rigorously derived.”9 Thus it requires studies applying it to realistic test problems, like

the one presented here, to gain industry acceptance.

CO, like other multi-level MDO techniques, is expected to offer the benefits of

removing large iteration loops, allowing the expert disciplinary design teams to have a

large amount of design freedom and parallel execution of the disciplinary analysis. Also,

like BLISS, CO’s two-level structure is similar to conventional disciplinary structures

currently used in industry.

In order to be able to coordinate between disciplines and arrive at an optimum

MDO solution, CO creates copies of all the interdisciplinary coupling variables at the

system-level. The system-level optimizer then uses these copies to send out design targets

to each discipline. There may not exist sufficient local degrees of freedom to satisfy all

the targets while meeting local constraints, therefore the local-level subspaces are

 61

allowed to depart from the targets but this departure is to be minimized. In theory, if there

are enough local-level degrees of freedom, the variable targets and disciplinary values

will converge or match. Of course, in practical applications there may be some error

when trying to converge these values.

In CO, as in MCO, the system-level sends variable targets to any CA’s that deal

with the variable either as inputs or calculate their actual values as part of their analysis.

For example, in the original FPI DSM (see page 27) the variable Ae was an output

calculated by the Propulsion and an input used by both Performance and Weights &

Sizing. In CO, the system would set a target value for Ae. Propulsion would optimize its

input variables to match as closely as possible the Ae target along with any other

discipline target (Ispvac, TSL, etc.). Both Performance and Weights & Sizing will optimize

their input variables (including the local version of Ae) so as to match as closely as

possible the Ae target along with their other discipline target (Wgross, MR, etc.).

In CO the local objectives (ΦProp, ΦPerf and ΦW&S) are formulated so as the local-

level optimizer moves closer to matching their targets the local objective function

decreases. Two different formulations for reaching this goal are were considered as

follows:

2targets#

1

1∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=Φ

i
t
i

loc
i

loc X
X

 Equation 4: Φloc formulation without normalization constant

2targets#

1
∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=Φ

i i

loc
i

t
i

loc C
XX

 Equation 5: Φloc formulation with a normalization constant

Ci = user defined normalization constant for ith coupling variable

 While both equations above have similar local convergence in that Φloc will

minimize to value of zero when all the targets are met, the normalization is a little

different. Equation 4 divides the local value of the design variable (Xloc) by the given

target value (Xt) when their ratio is 1 (they are equal) then the equation is zero. In

Equation 5, the difference between Xloc and Xt calculated and constant (C) is used for

normalization purposes. The value for C is set by the model developer during the initial

 62

problem formulation. The value for Ci should be something with the same order of

magnitude as the anticipated value of Xi.

10.2 CO: Formal Problem Statement

 CO has both system and local-level optimization.

10.2.1 CO: System Standard Form

Minimize: Φsys Wdry

Subject to:* h ΦProp + ΦPerf + ΦW&S = 0

By Changing: Xsys

r tt

SL
t
gross

t
ref

t
engSL

t
e

t
vac

t
vac

t MR ,T , W,S ,)W(T ,A ,T ,Isp ,

* Note: Often the system equality constraint (h) could separated for each discipline (Φloc,i = 0) instead of the
single constraint formulation used here (∑Φloc,i = 0). During the course of this study both formulations were
applied. Both formulations are fine as they both accomplish the same goals. During this study both
formulations were tried; the single formulation was found to give better converged results for this test
problem.

 63

10.2.2 CO: Propulsion Standard Form

Minimize: ΦProp

2pp
eSL

t
eSL

2pp
e

t
e

2pp
vac

t
vac

2pp
vac

t
vac

2pp
SL

t
SL

2ppt

50
/WT/WT

250
AA

4000000
TT

400
IspIsp

3500000
TT

6 ⎟
⎠

⎜
⎝

rr

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+⎟

⎞
⎜
⎛ −

Subject to: g pe ≥ 5 psia
 Side 4 ≤ r ≤ 10
 30 ≤ ε ≤ 100
 200 ≤ pc ≤ 3100 psia

Given as Target: Xsys tr t

SL
t

engSL
t
e

t
vac

t
vac T ,)W(T ,A ,T ,Isp ,

Find: Yloc

pp
SL

pp
engSL

pp
e

pp
vac

pp
vac T ,)W(T ,A ,,Isp T

By Changing: Xloc rpp, ε, pc, At

10.2.3 CO: Performance Standard Form

Minimize: ΦPerf

2

t

pf
2

t
gross

pf
gross

2

t
ref

pf
ref

2

t
e

pf
e

2

t
vac

pf
vac

2

t
vac

pf
vac

MR
MR1

W
W

1

S
S1

A
A1

T
T1

Isp
Isp1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

Subject to: h hinsertion = 303805 ft
 iinsertion = 51.6 °
 γinsertion = 0 °

Given as Target: Xsys tt

gross
t
ref

t
e

t
vac

t
vac MR , W,S ,A ,T ,Isp

Find: Yloc MRpf

By Changing: Xloc , θAzimuth, θPitch1, θPitch2,
 θPitch3, θPitch4

pf
gross

pf
ref

pf
e

pf
vac

pf
vac W,S ,A ,T ,Isp

 64

10.2.4 CO: Weights and Sizing Standard Form

Minimize: ΦW&S

2

t

ws2

t
SL

ws
SL

2

t
gross

ws
gross

2

t
ref

ws
ref

2

t

ws2

t
eSL

ws
eSL

2

t
e

ws
e

MR
MR1

T
T1

W
W

1

S
S1

r
r

1
/WT
/WT1

A
A

⎜⎜
⎛
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞

⎝
−

Subject to: Side TSL/Wgross ≥ 1.2

Given as Target: Xsys t ,r tt

SL
t
gross

t
ref

t
engSL

t
e

Find: Yloc

MR ,T , W,S ,)W(T ,A

 W wsws
SL

ws
gross

ws
ref MR ,T,,S

By Changing: Xloc r grossSL
ws

engSL
ws
e

ws WT SF, ,WT ,A ,

10.3 CO: Data Flow

 In order to better understand the coupling of design variables the design structure

matrix (DSM) for CO is provided. Also provided is a variable table which helps to

quickly observe the important variables for each local-level discipline.

 65

10.3.1 CO: Design Structure Matrix

Figure 10: DSM for CO.

From the DSM, one can see that local versions (Xpp, Xpf or Xws) of each target

variable is not directly inputted to the DSM, but only the Φloc,i is looped back to the

system-level. Thus, like in BLISS, parallel execution of the CA’s is possible.

 66

10.3.2 CO: Variable Table

Table 20: Variable Table for CO.

10.4 CO: Results

 This section shows the final configuration results for the RLV test problem solved

using the CO method and describes the convergence errors resulting from this model.

 67

10.4.1 CO: Configuration Results

Table 21: Final Configuration Table for CO.

 One can see the MDO solution obtained through applying CO does not activate

the constraints for pc and pe, this is different than MDO solutions obtained by applying

AAO (see Table 12 page 42) and BLISS (see Table 1 page 55). Also of interest is that the

value of the global objective obtained by applying CO, Wdry ≈ 303 klb, is somewhat

lower than the value arrived at both by AAO and BLISS, Wdry ≈ 305 klb. At first one

might think that CO did a slightly better job than the previous two, actually this lower

value is due to large convergence error in the CO model.

 68

10.4.2 CO: Convergence Error

In CO there is both local and system-level optimization; thus there is both

intradisciplinary and interdisciplinary convergence error.

Table 22: Convergence Error for CA Configuration.

 The convergence in CO is not as tight as that achieved with FPI, AAO nor BLISS.

There are large interdisciplinary errors reaching almost 4%. More troubling is larger error

in coupling variables to which the system is highly sensitive such as Ispvac.

 One of the well known causes for this loose convergence in CO is due to the sum-

of-squares formulation of the Φloc used for this MDO technique. The use of a quadratic

form for the formulation of Φloc means that the CA’s local optimizers approach their

desired solution (local values = targets), it loses its ability to compute gradients and

cannot tell how to vary the design variables to minimize the local objective. As Xloc

approaches Xt the gradient of Φloc approaches zero meaning that the Jacobian matrix built

to calculate local gradients vanishes.

This vanishing Jacobian effect is analogous to a the behavior of a tension spring.

When the difference between Xloc and Xt is high (left side of Figure 11) the spring

(analogous to the local optimizer) is stretched and has a high tension driving the design

variable values down to the Φloc minimum. Here there is a large Φloc gradient thus

 69

gradient optimizers can easily tell which direction to go in order to minimize the function.

As the optimizer gets closer to the desired target values the difference between Xloc and

Xt decreases (right side of Figure 11). Using the spring analogy one can see that as this

happens the tension of the spring quickly drops and it is not able to drive the function to

the minimum as well as before. Here there is a small Φloc gradient thus gradient

optimizers have a harder time telling which direction to go in order to minimize the

function. How well the optimizer finds the exact minimum depends on how robust the

optimizer is and how much noise there is in the model.

Figure 11: Spring Analogy of Singular Jacobian Phenomenon.

 The vanishing Jacobian effect was noticed in the early days of CO. Later

derivatives of CO, like Modified Collaborative Optimization (MCO), have attempted to

avoid or ameliorate errors caused by this effect.

Besides the vanishing Jacobian effect, another phenomenon, an “opportune error

direction effect”, was observed and explains why the optimum value of Wdry obtained

using CO was less than that obtained through the application of both AAO and BLISS.

The “opportune error direction effect” observed occurs when the system-level

optimizer chooses the direction of local convergence errors with respect to variable

targets such as to artificially benefit its global objective.

 In CO each local-level optimization tries to match all its coupling variables to

system targets. But while the target is the same for any given variable (for example Isp),

each local optimization tries to match the targets independently. This independence may

 70

result in the CA’s involved to all have a different value for their local version for the

same coupling variable.

 The system optimizer takes advantage that the local optimizers can have different

errors with respect to given targets and chooses the most opportune error directions such

as to benefit the system-level goal of minimizing Wdry.

 Figure 12 below shows an example of the “opportune error direction effect”

encountered during this study.*

 In the diagram above, Ispvac is calculated by Propulsion and used by Performance

to do its trajectory analysis. The system optimizer sends out a target value for Isp (440 in

the example above). Because of the vanishing Jacobian effect, numerical errors, etc.,

there will be a convergence error between the system target and the value used by the

local discipline. This system-discipline error is only 0.9% for Propulsion, (440-436)/440,

and 1.1% for Performance, (445-440)/440. Since local convergence error is inevitable

(due to internal tolerances, software limitations, etc.), the system optimizer takes

advantage of them. It chooses the most opportune error directions to help with the

minimization of Wdry. This means that propulsion will actually arrive at an Isp below the

target and performance above. In reality, though, it means that the two disciplines have a

* The values for Ispvac in Fi are notional and while they show the tendencies observed in this study
the exact values are not meant to be representative of those viewed during CO or MCO applications.

gure 12

Figure 12: Example of Opportune Error Direction Effect, Ispvac.

 71

larger convergence error between them (2%) that what they had versus the target the local

optimizers were trying to match.

 The percent errors and directions observed with respect to their desired targets for

the CO configuration can be observed in Figure 13 below.

Figure 13: % Error and Direction with Respect to System Targets for CO Configuration.

 For this study optimization parameter conditioning was performed in order to

minimize errors observed in the model. Due to internal tolerances within the legacy tools

and the vanishing Jacobian effect a point was reached where seemingly convergence

errors could not be driven any lower with the available computational tools. It is possible

that there is some set of optimization parameters that would have produced lower errors.

More time was spent trying to drive down the convergence errors in CO than was used in

 72

BLISS, yet the BLISS algorithm yielded smaller converged error. It also appeared that

CO was more sensitive to optimizer parameter conditioning than BLISS.

10.5 CO: Discussion & Qualitative Ratings

 This section will address CO optimization conclusions, lessons learned when

implementing the method and provide qualitative ratings with discussion for each.

10.5.1 CO: Optimization Conclusions

 CO is a multi-level MDO optimization technique and like other such techniques

has not gained wide acceptance within industry. The results of this study found that due

to the vanishing or singular Jacobian effect it was very difficult to very tightly converge

the coupling variable local values to the system-level target values. Also, this study

observed an “opportune error direction effect” which led to CO producing artificially

optimistic values for Wdry.

 One possible way to mitigate convergence problems is to reformulate the local

objective functions such as to increase their smoothness and remove the Jacobian

singularity. This is one of the goals of MCO, which reformulates the local objective

functions. Of course another option that may result in reduced convergence errors is the

use a different optimizer. In practice different optimizers will have different levels of

success when trying to precisely match the given targets. Throughout this study all the

MDO techniques evaluated, AAO, CO, BLISS, and MCO, used the either the optimizer

built into the legacy tools or the DOT optimizer. This was done to remove external

variance that may affect the performance of different MDO techniques. Consistent tools

allowed this study to use the blocking effect to remove external variances when trying to

make comparisons between MDO techniques.

 Using RSM’s to model each discipline of legacy code has also been suggested as

a possible method to mitigate some of the convergence problems.8 Like in BLISS-2000,

RSM’s may be used with CO to reduce execution time and lessen numerical integration

 73

problems. The CO algorithm does not call for the making of RSM’s but had they been

made the number of runs needed to create these RSE’s would have been very comparable

to those needed in BLISS (see Table 15 page 50). The number of variables to be fitted,

resulting number of CA runs needed, and the total execution time called for by the DOE’s

using a Central Composite Design needed in CO, are shown in Table 23 below.

Table 23: CCD Properties for CO.

Using RSM’s should allow for less numerical error and much faster execution of

the local-level discipline calculations when solving the MDO problem with the CO

technique. This, though, assumes that the RSM fits points which are accurate. If

convergence problems due to the vanishing Jacobian effect cannot be overcome within

the CA’s, then the RSM will be fitting to points which themselves have a lot of error.

10.5.2 CO: Lessons Learned

 Lessons learned in the implementation of the CO process are as follows:

1) There is a need to improve current framework integration tools so that future CO

models can evaluate the parallel execution benefits of the algorithm. Should it be

attempted to create RSM’s of the disciplines before executing the CO algorithm, the

ability to simultaneously calculate all the CA points needed for the DOE would result

in large time savings.

2) The modifications to the original legacy codes called for by CO can be hard to

implement. CO changes local-level inputs that were originally given parameters into

local-level design variables. This entails that besides optimizing to a different local

objective the local-level optimizer must now vary an increased number of design

variables. The addition of new local design variables increased the difficulty in

 74

conditioning the local-level optimizers. Conditioning of the local optimizers so that

they produced reasonably reliable, consistent results was challenging. More time was

spent trying to condition the CO model than was spent on BLISS yet convergence

never reached the accuracy shown by BLISS.

10.5.3 CO: Qualitative Ratings

 It is very difficult to qualitatively assess the experience of implementing a given

MDA or MDO technique without first comparing it to other the other techniques to be

evaluated. Therefore these ratings were assigned after all the techniques had been applied.

Table 24: Qualitative Ratings for CO.

Criteria Grade Discussion
Implementation
Difficulty

C+ Every local-level, discipline optimizer had to be
reconditioned due to poor performance after changing the
local objective and increasing the number of local
variables. Reconditioning each local optimizer was very
time consuming. Also, due to the vanishing Jacobian effect
optimization parameter conditioning was even more
difficult.

Total Execution
Time

B- (3 to 4 hours) (1 to 2 hours possible)
Due to software limitations, the benefits of parallel
computing described in the CO literature were not realized.
If the capacity for parallel execution the CA’s was added
there would be a significant time savings.

Robustness

B It is difficult to converge each local optimization problem
due to the vanishing Jacobian. Acceptable local-level
optimization is difficult to achieve over a wide range of
inputs.

Formulation
Difficulty

B- Not as straight forward as FPI or AAO or BLISS. Changes
required were greater than BLISS. Both BLISS, CO and
MCO require a separate formulation for each discipline
and the system.

 75

Optimization
Deftness

B The “opportune error direction effect” creates an
artificially optimistic answer. If there were zero error at the
discipline level then this would not be an issue. If error is
present, the system optimizer uses the local target
convergence error to improve the global optimum.

Convergence
Error

C+ The combination of the vanishing Jacobian and more
difficult optimizer conditioning caused the method to be
harder to converge than FPI, AAO or BLISS.

Issues 1) Discipline level convergence errors were never
successfully reduced to a level where convergence using
CO was comparable to that of AAO or BLISS. This was
true even though more time was spent trying to reduce
convergence errors than was spent for BLISS.
2) Assuming that perfect convergence is impossible in
practical applications, CO will take advantage of local-
level errors to provide an artificially optimistic optimum
solution. This underestimating the system mass could
prove more problematic to engineering programs than if
the optimum had been slightly pessimistic.

Unique Benefits None observed.

 76

11 MCO: Modified Collaborative Optimization

Modified Collaborative Optimization (MCO) is a two-level MDO algorithm

developed by Angel Victor DeMiguel and Walter Murray at Stanford University.2

This section will provide some background information about MCO and its

relevance to this study; show the formulation when it is applied to the RLV problem,

present the results gathered and discuss findings.

11.1 MCO: Background

 MCO, is a derivative of CO, suggested in 1998 as way to “surmount some deep

technical challenges”2 present in the original formulation of CO. The developers of MCO

noted the lack of a proof of convergence for CO and practical application difficulties due

to the vanishing Jacobian effect.

The MCO architecture is very similar to that of CO, thus if MCO was shown to be

efficient and overcome CO’s vanishing Jacobian effect, it would have the same inputs

and outputs as CO. Also, like CO or BLISS, MCO is most ideal for large problem with

costly discipline analysis but relatively few coupling variables.

The first difference between MCO and CO is that MCO uses an “exact”2 penalty

function as the system-level objective. MCO uses the local-level sub-problem objective

functions as penalty terms for the system-level objective function creating an

unconstrained system-level problem. This contrasts CO which imposed constraints at the

system-level to enforce that the local-level sub-problem objective functions reach their

expected minimums at zero.

The second difference is that at the MCO does away with the quadratic form of

the local objectives and replaces it with a format similar to linear programming called

Individual Discipline Feasible (IDF) formulation. As in CO, during the system-level

optimization the system may call for an infeasible set of targets. For these cases, the

local-level disciplines will find it impossible to match their given targets. IDF solves this

problem by the introduction of additional local-level variables and constraints. In IDF, if

the set of targets was infeasible, elastic variables (s and t) are added to make up the

 77

difference between the local-level values and the given targets. The local-level objective

is now to minimize the amount of corrections that must be performed using the new

elastic variables. All variables in the IDF formulation are required to have positive values

thus elastic variables must be introduce for both when the local variable is less than (s) or

greater than (t) the target value. In the IDF formulation there can only be equality

constraints, thus inequality disciplinary constraints in the CA’s must be changed to

equality constraints by adding another elastic variable.

11.2 MCO: Formal Problem Statement

 MCO has both system and local-level optimization.

Note: normalization was used for all the equality constraints used in the local-level

formulations but is not shown for the sake of brevity. The format shown is Xloc+sx-tx=Xt

but the normalized format used for the MCO application was (Xloc/C)+sx-tx=(Xt/C). The

normalization constants used for each variable are shown below.

Table 25: Normalization Constants for MCO Equality Constraints.

 78

11.2.1 MCO: System Standard Form

Minimize: Φsys Wdry + rp*(ΦProp + ΦPerf + ΦW&S)

Subject to:

By Changing: Xsys r tt

SL
t
gross

t
ref

t
engSL

t
e

t
vac

t
vac

t MR ,T , W,S ,WT ,A ,T ,Isp ,

 Note: rp is a penalty parameter that can be used by the developer to alter the

acceptable level of error in the CA’s.

11.2.2 MCO: Propulsion Standard Form

Minimize: ΦProp (sr+tr) + (sIspv+tIspv) + (sTvac+tTvac) + (sAe+tAe)
 + (sTsl/Weng+tTsl/Weng) + (sTsl+tTsl)

Subject to: h

 Side 4 ≤ r ≤ 10

t
SLTslTsl

pp
SL

t
engSLTsl/WengTsl/Weng

pp
engSL

t
eAeAe

pp
e

t
vacTvacTvac

pp
vac

t
vacIspvIspv

pp
vac

t
rr

pp
pe

pp
e

T tsT
)W(T ts)W(T

A tsA
T tsT
Isp

 30 ≤ ε ≤ 100
 200 ≤ pc ≤ 3100 psia

Given as Target: Xsys

Find: Yloc

By Changing: Xloc

tsIsp −+
r

0 5psia

=−+
=−+

=−+
=−+
=

=
=−sp −

tsr −+

0 t,s , t,s
 , t,s , t,s , t,s , t,s ,s

TslTslTsl/WengTsl/Weng

AeAeTvacTvacIspvIspvrrpe

≥

tr t
SL

t
engSL

t
e

t
vac

t
vac

pp
SL

pp
engSL

pp
e

pp
vac

pp
vac T ,)WT(,A ,,Isp T

T ,)W(T ,A ,T ,Isp ,

TslTslTsl/WengTsl/Weng

AeAeTvacTvacIspvIspvrrpetc
pp ε

 t,s , t,s
 , t,s , t,s , t,s , t,s ,s ,A ,p , ,r

 79

11.2.3 MCO: Performance Standard Form

Minimize: ΦPerf (sIspv+tIspv) + (sTvac+tTvac) + (sAe+tAe) + (sSref+tSref)
 + (sWgross+tWgross) + (sMR+tMR)

Subject to: h hinsertion = 303805 ft
 iinsertion = 51.6 °
 γinsertion = 0 °

t
MRMR

pf

t
grossWgrossWgross

pf
gross

t
refSrefSref

pf
ref

t
eAeAe

pf
e

t
vacTvacTvac

pf
vac

t
vacIspvIspv

pf
vac

MR tsMR
 W tsW

S tsS
A tsA

T tsT
Isp tsIsp

=−+
=−+

=−+
=−+
=−+
=−+

0 t,s , t,s
, t,s , t,s , t,s, t,s

MRMRWgrossWgross

SrefSrefAeAeTvacTvacIspvIspv

≥

Given as Target: Xsys Isp tt

gross
t
ref

t
e

t
vac

t
vac MR , W,S ,A ,T ,

Find: Yloc MRpf

By Changing: Xloc ,Isp

MRMRWgrossWgrossSrefSrefAeAe

TvacTvacIspvIspvPitch4Pitch3Pitch2

Pitch1Azimuth
pf
gross

pf
ref

pf
e

pf
vac

pf
vac

 t,s , t,s , t,s , t,s
 , t,s, t,s ,θ ,θ ,θ

,θ ,θ ,W, S A ,T ,

 80

11.2.4 MCO: Weights and Sizing Standard Form

Minimize: ΦW&S (sAe+tAe) + (sTsl/Weng+tTsl/Weng) + (sr+tr) + (sSref+tSref)
 + (sWgross+tWgross) + (sTsl+tTsl) + (sMR+tMR)

Subject to: h

 Side TSL/Wgross ≥ 1.2

Given as Target: Xsys

Find: Yloc

By Changing: Xloc

11.3 MCO: Data Flow

 In order to better understand the coupling of design variables the design structure

matrix (DSM) for MCO is provided. Also provided is a variable table which helps to

quickly observe the important variables for each local-level discipline.

tt
SL

t
gross

t
ref

t
engSL

t
e

t ,r MR ,T , W,S ,)W(T ,A

wsws
SL

ws
gross

ws
ref MR ,T, W,S

MRMR

TslTslWgrossWgrossSrefSrefrrTsl/Weng

Tsl/WengAeAegrossSL
ws

engSL
ws
e

wsr

 t,s
, t,s , t,s , t,s , t,s ,t

 ,s , t,s ,WT SF, ,)W(T ,A ,

t
MRMR

ws

t
SLTslTsl

ws
SL

t
grossWgrossWgross

ws
gross

t
refSrefSref

ws
ref

t
rr

ws

t
engSLTsl/WengTsl/Weng

ws
engSL

t
eAee

MR tsMR
T tsT

 W tsW
S tsS

r tsr
)W(T ts)WT(

A s

=−+
=−+

=−+
=−+

=−+
=−+

=− Ae
ws tA +

0 t,s , t,s ,t
 ,s , t,s , t,s , t,s , t,s

MRMRTslTslWgross

WgrossSrefSrefrrTsl/WengTsl/WengAeAe

≥

 81

11.3.1 MCO: Design Structure Matrix

Figure 14: DSM for MCO.

The MCO DSM looks identical to the CO DSM. This is because MCO does not

change the general architecture of CO but just reformulates the objective functions in

both the system and local-level.

 82

11.3.2 MCO: Variable Table

Table 26: Variable Table for MCO.

11.4 MCO: Results

 The main differences between the CO and MCO algorithms are that MCO uses

the IDF formulation for the local objective function and it removes the equality

constraints at the system-level, replacing them with a penalty function. While the IDF

formulation seemed to offer some advantages when applied to the CA’s, the penalty

 83

function formulation appeared to give inconsistent results depending on the value of the

penalty parameter (rp).

 The first MCO modification was to use the local-level objective functions as

penalty terms for the system-level objective function. Previously CO had imposed

equality constraints to ensure that the local-level penalty function were zero. This new

penalty function formulation that appeared to cause problems in the RLV model using the

MCO technique. The resulting configuration varied greatly with the selected value of the

penalty parameter (rp), see Figure 15.

Figure 15: Resultant Wdry vs. Penalty Parameter (rp).

 Note: the bue line in Figure 15 is not a calculated regression line for the data
plotted. It is hand drawn trend line to accentuate the general tendency of the data.

 Figure 15 shows that the resulting value for Wdry using the MCO model had a step

function relation with rp. If rp was too high, then the MCO model would conclude that it

could not improve its initialization point (the best FPI configuration, Wdry ≈ 317 klbf) and

the optimizer would not move. If rp was too low, then the MCO configuration would

move from its initial point and drive the value of Wdry down to around Wdry ≈ 287 klbf.

These low results though had very poor convergences with errors often above 5%.

 84

 The value of Wdry jumps somewhere around 88,000 ≤ rp ≤ 90,000. It was

attempted to determine if there was actually a singular value of rp that would produce a

Wdry similar to the value found using AAO and BLISS (W dry ≈ 305 klbf). Unfortunately,

isolating any single value of rp that would produce the expected Wdry was not realizable

as the there was not a smooth relationship between the value Wdry and the rp in the 88,000

≤ rp ≤ 90,000 range.

 Also, the MCO model was not consistent and identical MCO runs could produce

very different results. Some of the MCO trials, shown in Figure 15, outputted resultant

Wdry values somewhat close to the W dry ≈ 305 klbf expected (the closes run at 308.5 klbf).

When it was attempted to verify these results by re-running the exact same trial, the

second trial never reproduced the first results. Often times when a trial was re-tried, the

second try resulted in the optimizer either never moving or falling down the Wdry ≈ 287

klbf range.

The resultant inconsistencies observed in the MCO model made it impossible to

draw any conclusions from the test trials run. Unless one already knew what the true

optimum was, there would be no way to distinguish why any of the test trials run should

be deemed worthier than another.

 Despite problems due to the use of a penalty function in the system-level

objective, the MCO algorithm was able to mitigate some of the local-level convergence

problems present in CO due to the vanishing Jacobian effect.

 MCO’s second modification to CO is replacing the sum-of-squares formulation

of the Φloc with the IDF formulation. This is proposed as a way to mitigate the vanishing

Jacobian effect observed in the original CO algorithm. When the IDF formulation was

applied to each individual CA, it appeared to provide tighter local-level convergence

versus variable targets than the CO quadratic formulation. Test target sets were tried

using both the CO and MCO formulation and it appeared that the new MCO was able to

more closely match the desired target values. When tested independently, it appeared

MCO’s new IDF formulation was able to resolve some of the local-level convergence

problems that had been accentuated in CO due to the vanishing Jacobian effect.

 85

11.5 MCO: Discussion & Qualitative Ratings

 This section will address CO optimization conclusions, lessons learned when

implementing the method and provide qualitative ratings with discussion for each.

11.5.1 MCO: Optimization Conclusions

 While MCO was able to ameliorate the vanishing Jacobian problems that CO

encountered due the quadratic local-level objective formulation, inconsistencies in the

overall model impeded a global optimum to be found.

 While several test trials of the RLV model using the MCO technique were tried,

never was any pattern identified that would allow the user to confidently determine what

the MCO resultant optimum was. The resulting value for any trial was too erratically

dependent of the penalty parameter used to allow the user to draw conclusions.

 It is still possible, though, that the MCO formulation will provide consistent and

clear results through further conditioning of optimization parameters. The amount of time

and effort spent during this study trying to bring the MCO application to a successful

conclusion was commensurate with the effort put forward for the other MDO techniques

applied. Nevertheless, a solution using the MCO model was not found. It is possible that

should more time be spent that MCO could come to a successful conclusion, but the

amount of time required to do so seems to be greater than that needed for any of the other

MDO techniques.

 86

11.5.2 MCO: Lessons Learned

 Lessons learned in the implementation of the MCO process are as follows:

1) The IDF formulation for the local-level objectives, while complicated, did seem to

provide better convergence in the local-level over CO’s original sum-of-squares

formulation.

2) Optimization parameter conditioning for MCO proved to be the most difficult of all

MDO techniques applied. There were a lot more local-level constraints and the value

with which each variable was normalized could change convergence error at the

local-level.

3) It was observed that the solution using MCO varied greatly with the value of the

penalty parameter (rp).

11.5.3 MCO: Qualitative Ratings

 It is very difficult to qualitatively assess the experience of implementing a given

MDA or MDO technique without first comparing it to other the other techniques to be

evaluated. Therefore these ratings were assigned after all the techniques had been applied.

Table 27: Qualitative Ratings for MCO.

Criteria Grade Discussion
Implementation
Difficulty

INC MCO seemed to be more difficult to apply than any of the
other MDO techniques simply by the fact that after a
similar time spent for each, only was the MCO model not
brought to a successful conclusion. Since, it was not
successfully applied, though; it is difficult to tell exactly
how hard it really is to implement.

Total Execution
Time

C (4 to 8 hours)
Execution time varied with the value of the penalty
parameter and other optimization parameters.

 87

Robustness

INC MCO was never brought to a successful conclusion, thus it
is difficult to judge its robustness.

Formulation
Difficulty

C- MCO had the most complex formulation of all the MDO
techniques applied. MCO required a separate formulation
for each discipline and the system. There were a lot of
additional variables and constraints at the local-level.

Optimization
Deftness

INC MCO was never brought to a successful conclusion, thus it
is difficult to judge its optimization deftness.

Convergence
Error

B Convergence at the local-level was improved over CO, but
it was not as tightly converged as results from FPI, AAO or
BLISS.

Issues 1) There was a strong relationship between the resulting
optimum value of the Wdry and the rp used during a trial
run. In the region where the Wdry jump the relation
between Wdry and rp was inconsistent.
2) Many MCO executions had to be performed to try and
condition the model to provide consistent and convincingly
converged solutions, a goal that was never reached. More
time was spent trying to condition the MCO model than
any other application except AAO yet reproducible results
were never reached.

Unique Benefits The IDF formulation for the local-level objectives did
appear to provide better local-level convergence than the
original CO formulation.

 88

12 Conclusions

At the start of this study three objectives were listed:

1) Determine the benefits of MDO versus using multiple trials of iterative optimizers

using FPI convergence.

2) Create a realistic test problem which will add to a growing field of research trying

to evaluate novel MDO techniques: CO, MCO and BLISS.

3) Allow for across the board comparison of the MDO techniques by using the

statistical method of blocking to remove external variability when comparing

between techniques.

 This section will describe some of the findings with respect to these goals and

attempt to evaluate how successfully the goals were met.

12.1 Benefits of MDO

 The results presented in this study found that RLV optimization employing MDO

techniques did show some improvement over the results obtained using strictly the FPI

process. This confirms that without human intervention the traditional method using FPI

does not provide optimum results. While use of MDO showed only a modest

improvement in the global objective, this benefit would probably increase for the large,

complex problems for which the MDO methods were designs.

The best FPI model resulted in a vehicle dry weight (Wdry) of 317 klb, this was

greater than the 305 klb value successfully determined with MDO via both the AAO and

BLISS technique. This is only a 4% improvement in the global objective and it would

have probably been possible to match the MDO results through the use of carpet plots

and other techniques with FPI. For small, conceptual level problems where the CA’s

execute quickly and inexpensively, it would probably be faster and easier to perform

parameter sweeps to arrived at a globally optimized vehicle than to apply an MDO

 89

methodology. This is because the large implementation cost of MDO techniques would

probably not be offset by any subsequent reduction in the number of CA executions

needed.

If the size of the MDO problem to be solved is small and the execution of the

CA’s involved is not very costly, then traditional methods using FPI will probably be the

best choice. For these cases the benefits of MDO do not warrant the upfront cost of

implementing the MDO technique. For problems of large size with costly CA’s the

implementation cost of MDO will be more likely to be offset by the efficiency benefits of

MDO.

12.2 Authenticity of Test Problem

 While there were limitations to the size and complexity of test problem that could

be tried, it is believed that the next generation RLV problem did show enough “real

world” characteristics to provide a realistic test problem.

 The test problem tried could not be too large and complex for two reasons: 1) it

was proposed that the AAO method be used to validate the results of the multi-level

MDO techniques and 2) if the complexity of the test problem was too large then the time

allowed for this project could easily have proven insufficient to allow for multiple

applications to be realized. While using the AAO technique to solve and MDO problem

is widely accepted, this technique is constrained to smaller, conceptual level problems.

Thus test problems were limited in size to those for which AAO might still be applicable.

The test problem used for this study seemed to be bordering the size and complexity that

was still solvable using AAO. The AAO size constraint is unfortunate, but necessary so

that results from the newer multi-level MDO techniques can be validated.

 Despite size restrictions, the RLV test problem selected for this project did have a

series of characteristics that increased its likeness to “real world” problems. First, the

coupling disciplines were broken down along the conventional lines of Propulsion,

Performance and Weights & Sizing. The disciplines kept their independence and were

not merged into on single code or analysis. Secondly, technology reduction factors were

 90

added to the analysis and design of the RLV to provide a more realistic scenario of what

might be encountered in the real world. Also, the base vehicle was a real concept studied

both by NASA and in industry. Lastly and most importantly, is that widely used legacy

codes were used for the design and analysis of each of the disciplines. This study used

software like POST which, while problematic, is the industry standard code for trajectory

analysis. It was of interest to see which algorithms would best handle using codes that

were not always well behaved and might produce numerical errors.

12.3 Comparisons between CO, MCO and BLISS

 Historical attempts at making comparisons between CO, MCO and BLISS have

been ineffective because there have been too many external factors present to effectively

isolate variance caused by differences in the algorithms and because there are too few test

cases available with which to make any statistically significant conclusions.

 It was known from the start that this study would be unable to conclude if CO,

MCO or BLISS showed greater promise than any other simply because it is but one study

from which it is impossible to draw any statistically significant conclusions.

On the other hand, this study was successful in using the Blocking Effect to

reduce the number of external factors that could make it difficult to tell any variance

between the multi-level MDO techniques. External factors were removed by:

1) having the same user apply all the MDO techniques evaluated

2) using the same analysis and optimization tools for all techniques

3) solving the same multi-disciplinary test problem

 While the blocking method is necessary if external variances are to be removed it

makes it even harder to collect a statistically significant number of data points. First, in

most industry applications few are going to solve an MDO technique with one method

and then try to solve the exact same problem again using another MDO technique. This

would most likely be viewed as time wasted when the goal is to get an answer for the

MDO problem; not to determine which technique solved it more efficiently. Second,

 91

since the same user must be used in order to block out variance due to user competency, a

study like this can take a very long time. Implementation of some of the multi-level MDO

techniques can be a time consuming process, fewer will have the amount of time

necessary to make multiple applications. If it was hard to persuade people to try one

application of an MDO technique, it will be even harder to persuade people to try several

applications on the same problem.

 Drawing on the experience of performing multiple applications of different MDO

techniques on the same problem and verifying the results and benefits against the more

traditional techniques, Table 28 shows a qualitative report card made for all the

techniques applied. Grading is only accurate with relation to each other for this specific

study.

Table 28: Qualitative Report Card, All Techniques.

While a model of the next generation RLV was created for each of the candidate

multi-level MDO techniques selected at the start of the study, the MCO model was never

able to reach enough behavioral consistency for any conclusions to be made.

The report card above shows that for this test study FPI seems to win in most

categories, this is to be expected as FPI has been the design method traditionally

employed and the legacy tools used to make the models are the same or very similar to

ones widely used. One can notice, though, that FPI has a very poor optimization deftness

 92

score. This reflects the fact that FPI will result in sub-optimal design configurations. This,

depending on the problem, can be a critical deficiency.

For the MDO techniques, AAO and BLISS appear to be the best performers. This

study applied the techniques to a conceptual, level problem due to known limitation of

the AAO technique. The test problem was intentionally kept small due to a desire to

validate the new multi-level techniques against the more accepted AAO technique. The

size of this test problem may actually be approaching the limit of what can be

successfully solved with AAO. It had to be helped a little bit by reducing the size of the

problem before AAO converged at the true optimum.

BLISS, on the other hand, was able to locate at the true system-level optimum

without any user guidance. Of the new multi-level MDO techniques, it was the one which

required the fewest changes to be made from the traditional FPI approach. Also, the

local-level alterations only consisted of changing the local objective to a composite

objective and didn’t introduce any new design variables at the local-level. In the case

where there was only one local output, the original discipline formulation could be used

unaltered. In the system-level, BLISS did introduce weighting factors, but the problem

was still easily solved by the system optimizer.

While it is tempting to believe that BLISS is the most promising multi-level MDO

technique applied, is but one data point. It is statistically impossible to declare BLISS the

winner with any degree of certainty unless more studies employing the blocking effect

are conducted and show similar results between the multi-level MDO methods.

 93

References

1 Braun, R.D., Collaborative Architecture for Large-Scale Distributed Design, PhD Thesis, Stanford

University, Sanford, CA, June 1996.

2 DeMiguel, A. V., Murray, W., An Analysis of Collaborative Optimization Methods, 8th

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long
Beach, CA, Sept. 2000, AIAA-2000-4720.

3 Sobieszanski-Sobieski, J., Agte, J, Sandusky, R., Bi-Level Integrated System Synthesis, 7th

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis,
MO, Sept. 1998, AIAA 1998-4916.

4 Sobieszanski-Sobieski, J., Altus, T., Phillips, M., Sandusky, R., Bi-Level Integrated System Synthesis

(BLISS) for Concurrent and Distributed Processing, 9th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, Atlanta, GA, Sept. 2002, AIAA 2002-5409.

5 Alexandrov, N.M., Comparative Properties of Collaborative Optimization and Other Approaches to

MDO, Institute for Computer Applications in Science and Engineering, NASA Langley Research
Center, Hampton, VA, July 1999, NASA/CR-1999-209354, ICASE Report No. 99-24.

6 Alexandrov, N.M, Lewis, R.M., Analytical and Computational Properties of Distributed Approaches

to MDO, 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Long Beach, CA, Sept. 2000, AIAA-2000-4718.

7 Budianto, I., Olds, J., A Collaborative Optimization Approach to Design and Deployment of a Space

Based Infrared System Constellation, 2000 IEEE Aerospace Conference, Big Sky, MT, March 2000,
IEEE P335E.

8 Kroo, I., Manning, V., Collaborative Optimization: Status and Directions, 8th

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long
Beach, CA, Sept. 2000, AIAA-2000-4721.

9 Personal communication, J. Sobieski 10/28/2003.

10 Hayter, A.J., Probability and Statistics for Engineers and Scientists, 2nd Ed., Duxbury Thompson

Learning, 2002, ISBN: 0-534-38669-5.

11 Cormier, T., Scott, A., Ledsinger, L., McCromick, D., Way, D., Olds, J., “Comparison of Collaborative

Optimization to Conventional Design techniques for a Conceptual RLV”, 8th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long
Beach, CA, Sept. 2000, AIAA-2000-4885.

12 Olds, J., Crocker, A., Bradford, J., Charania, A.C., Concept Overview and Model Operation: Reduced

Order Simulation for Evaluating Technologies and Transport Architechtures (ROSETTA),
SpaceWorks Engineering, Inc., Atlanta, GA, Apr. 2001,
http://www.sei.aero/downloads/SEI_ACRE92_09Apr01.pdf (Last visited 4/26/2004).

13 MacConochie, I.O., Characterization of Subsystems for a WB-003 Single Stage Shuttle, NASA

Langley Research Center, Hampton, VA, Feb. 2002, NASA/CR-2002-211249.

 94

14 Isakowitz, S. J., Hopkins, J.P., Hopkins, J.B., International Refernce Guide to Space Launch Systems,

3rd Ed., AIAA, Reston, VA, 1999.

15 SpaceWorks Engineering, Inc., URL: http://www.sei.aero (Last visited 4/26/2004).

16 Way, D.W., Olds, J.R., “SCORES: Web-Based Rocket Propulsion Analysis Tool for Space

Transportation System Design”, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Los
Angeles, CA, June 1999, AIAA 99-2353.

17 Powell, R.W., Striepe, A., Desai, P.N., Braun, R.D., Brauer, G.L., Cornick, D.E., Olson, D.W.,

Petersen, F.M., Stevenson, R., Program to Optimize Simulated Trajectories (POST): Volume II
Utilization Manual Version 5.2, Oct. 1997.

18 Talay, T., “ME250 Launch Vehicle Design Class Notes”, George Washington University, 1992.

19 Phoenix Integration, Inc., URL: http://www.phoenix-int.com.

20 Vanderplaats, G.N., Numerical Optimization Techniques for Engineering and Design, 3rdEd.,

McGraw-Hill Companies, 1984, ISBN: 0-944956-01-7, URL: http://www.vrand.com (Last visited
4/26/2004).

21 Pi Blue Software, Inc., URL: http://www.piblue.com (Last visited 4/26/2004).

22 Space Systems Design Lab, Georgia Institute of Technology, URL: http://www.ssdl.ae.gatech.edu

(Last visited 4/26/2004).

 95

	Abstract
	Table of Contents
	Table of Figures
	Table of Tables
	Acronyms and Symbols
	1 Introduction
	2 Study Objectives
	2.1 Benefits of MDO
	2.2 Authenticity of Test Problem
	2.3 Comparison between CO, MCO & BLISS

	3 Multi-level MDO Techniques
	3.1 MDO Background
	3.2 MDO Possible Benefits
	3.3 MDO Possible Drawbacks
	3.4 MDO Conclusions

	4 Test Problem
	4.1 Base Launch Vehicle Configuration

	5 Computational Tools
	5.1 Propulsion Tool
	5.2 Performance Tool
	5.3 Weights & Sizing Tool
	5.4 Computational Framework
	5.5 Response Surface Modeling Tool

	6 Convergence Errors
	7 FPI: Fixed Point Iteration
	7.1 FPI: Background
	7.2 FPI: Formal Problem Statement
	7.2.1 FPI: Propulsion Standard Form
	7.2.2 FPI: Performance Standard Form
	7.2.3 FPI: Weights & Sizing Standard Form

	7.3 FPI: Data Flow
	7.3.1 FPI: Design Structure Matrix
	7.3.2 FPI: Variable Table

	7.4 FPI: Results
	7.4.1 FPI: Configuration Results
	7.4.2 FPI: Convergence Error

	7.5 FPI: Discussion & Qualitative Ratings
	7.5.1 FPI: Optimization Conclusions
	7.5.2 FPI: Lessons Learned
	7.5.3 FPI: Qualitative Ratings

	8 AAO: All-at-Once
	8.1 AAO: Background
	8.2 AAO: Formal Problem Statement
	8.2.1 AAO: System Standard Form

	8.3 AAO: Data Flow
	8.3.1 AAO: Design Structure Matrix
	8.3.2 AAO: Variable Table

	8.4 AAO: Results
	8.4.1 AAO: Configuration Results
	8.4.2 AAO: Convergence Error

	8.5 AAO: Discussion & Qualitative Ratings
	8.5.1 AAO: Optimization Conclusions
	8.5.2 AAO: Lessons Learned
	8.5.3 AAO: Qualitative Ratings

	9 BLISS: Bi-Level Integrated System Synthesis
	9.1 BLISS: Background
	9.2 BLISS: Formal Problem Statement
	9.2.1 BLISS: System Standard Form
	9.2.2 BLISS: Propulsion Standard Form
	9.2.3 BLISS: Performance Standard Form
	9.2.4 BLISS: Weights and Sizing Standard Form

	9.3 BLISS: Data Flow
	9.3.1 BLISS: Design Structure Matrix
	9.3.2 BLISS: Variable Table

	9.4 BLISS: Results
	9.4.1 BLISS: Configuration Results
	9.4.2 BLISS: Convergence Error

	9.5 BLISS: Discussion & Qualitative Ratings
	9.5.1 BLISS: Optimization Conclusions
	9.5.2 BLISS: Lessons Learned
	9.5.3 BLISS: Qualitative Ratings

	10 CO: Collaborative Optimization
	10.1 CO: Background
	10.2 CO: Formal Problem Statement
	10.2.1 CO: System Standard Form
	10.2.2 CO: Propulsion Standard Form
	10.2.3 CO: Performance Standard Form
	10.2.4 CO: Weights and Sizing Standard Form

	10.3 CO: Data Flow
	10.3.1 CO: Design Structure Matrix
	10.3.2 CO: Variable Table

	10.4 CO: Results
	10.4.1 CO: Configuration Results
	10.4.2 CO: Convergence Error

	10.5 CO: Discussion & Qualitative Ratings
	10.5.1 CO: Optimization Conclusions
	10.5.2 CO: Lessons Learned
	10.5.3 CO: Qualitative Ratings

	11 MCO: Modified Collaborative Optimization
	11.1 MCO: Background
	11.2 MCO: Formal Problem Statement
	11.2.1 MCO: System Standard Form
	11.2.2 MCO: Propulsion Standard Form
	11.2.3 MCO: Performance Standard Form
	11.2.4 MCO: Weights and Sizing Standard Form

	11.3 MCO: Data Flow
	11.3.1 MCO: Design Structure Matrix
	11.3.2 MCO: Variable Table

	11.4 MCO: Results
	11.5 MCO: Discussion & Qualitative Ratings
	11.5.1 MCO: Optimization Conclusions
	11.5.2 MCO: Lessons Learned
	11.5.3 MCO: Qualitative Ratings

	12 Conclusions
	12.1 Benefits of MDO
	12.2 Authenticity of Test Problem
	12.3 Comparisons between CO, MCO and BLISS

