

Georgia Tech Small Satellite Real-Time Hardware-in-

the-Loop Simulation Environment: SoftSim6D

Sean B. Chait

Advisor: Dr. David Spencer

AE 8900: Special Problems

Fall 2015

Georgia Institute of Technology

School of Aerospace Engineering

Space Systems Design Lab

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 1 of

80

THIS PAGE IS INTENTIONALY LEFT BLANK

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 2 of

80

“Well, actually, we have a lot better rockets than the coyote.”

-Dan Truman, Armageddon

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 3 of

80

Acknowledgements

To my fiancé, Jessica, for her unwavering support while enduring

the many late nights, long hours, and extended trips in pursuit of rockets.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 4 of

80

Abstract

The capabilities of small satellites produced by the university and small business community have

seen a sharp rise in recent years. With this growth in capabilities has come an increase in mission

complexity to encompass those architectures previously only found in well-funded government

programs, including proximity operations. The inherent complexity of proximity operations-based

missions introduces a great deal of risk to the mission’s success. The low-budget nature of the

small satellite community has limited the development of relevant testing infrastructure to match

the pace of mission complexity increase to adequately mitigate risk. This research will leverage

the standardization of CubeSat components to develop a highly adaptable hardware-in-the-loop

testing capability for the verification and validation of small satellite avionics boards and flight

software. MATLAB© Simulink Real-Time will be utilized to create a user friendly framework that

can easily be adapted to support a wide range of small satellite mission architectures. This

architecture, known as SoftSim6D, has been designed to thoroughly exercise the robustness of a

satellite with the primary aim of minimizing mission risk to ensure full mission success. An

examination of the overall framework, verified capabilities, and current variants will be discussed.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 5 of

80

Acronyms

6DOF
Six degrees of

freedom

ADACS
Analog to Digital

Acquisition System

ADC
analog to digital

converter

CML
Communication

Management Layer

COTS
Commercial-off-

the-Shelf

CPM
Communication

Processing Module

DBM
Data Buffer

Module

DDOS
Distributed Denial

of Service

DPL
Data Preparation

Layer

DTL
Data Transmission

Layer

ECEF
Earth Centered

Earth Fixed

ECI
Earth Centered

Inertial

EGSE
Electrical ground

support equipment

ENV
Environment data

bus

FIFO First In First Out

FOV Field of view

GB Gigabyte

GN&C

Guidance,

navigation, and

control

GPS
Global Positioning

System

HWITL
Hardware-in-the-

Loop

I/O Input/output

IBLE
Integrated Base

Level Environment

IMU
Inertial

measurement unit

INIT
Initialization data

bus

LEO Low Earth Orbit

LOS Line of sight

LSB
Least Significant

Bit

MADS

Modular Attitude

Determination

System

MEO Middle Earth Orbit

MSFC
Marshall Space

Flight Center

PCI

Peripheral

Component

Interconnect

RAM
Random access

memory

SSF Sensor fixed frame

SICD
Software interface

control document

SSIP

Spacecraft and

Simulation

Initialization File

STATE State data bus

STK Systems Tool Kit

TAB Test avionics board

UART

Universal

asynchronous

receiver/transmitter

VDF
Variant Definition

File

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 6 of

80

Table of Contents

Acknowledgements ... 3

Abstract ... 4

Acronyms .. 5

Table of Contents .. 6

Table of Figures .. 9

Table of Tables ... 11

1. Introduction ... 12

1.1. The Growing Need of HWITL Testing .. 12

1.2. Previous Approaches .. 13

2. Methodology .. 15

2.1. Approach Selection .. 15

2.2. Framework Requirements .. 16

2.3. System Architecture ... 17

3. Simulink Real-Time Implementation .. 19

3.1. Overview .. 19

3.2. Data Bus Formulation .. 20

3.3. Variable Models ... 21

3.4. Data Visualization and Storage .. 23

3.5. Adaptability and Expansion ... 26

3.6. Target Machine and Hardware IO .. 27

4. System Modelling .. 29

4.1. Simulation Layer .. 29

 Overview ... 29

 Environment Models ... 29

 Dynamic Modelling .. 30

 Perturbation Models .. 32

4.1.4.1. Third Body Effects .. 33

4.1.4.2. Atmospheric Drag.. 33

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 7 of

80

4.1.4.3. Solar Radiation Pressure .. 35

4.1.4.4. Gravity Gradient Torques .. 36

4.2. Emulation Layer ... 36

 Overview ... 36

 Sensor Models ... 37

4.2.2.1. Magnetometer Models ... 38

4.2.2.2. Gyro Models .. 38

4.2.2.3. Sun Sensor Models .. 39

4.2.2.4. Accelerometer Models ... 39

4.2.2.5. Inertial Measurement Units ... 40

4.2.2.6. Global Positioning System .. 40

4.2.2.7. Star Trackers .. 40

 Actuator Models.. 40

4.2.3.1. Reaction Wheel .. 41

4.2.3.2. Magnetic Torque Rods .. 42

4.3. Interface Layer ... 42

 Overview ... 42

 Data Preparation Layer ... 43

 Communication Management Layer... 44

4.3.3.1. Data Buffer Module ... 45

4.3.3.2. Communication Processing Module .. 46

 Data Transmission Layer .. 49

 MATLAB and Simulink Algorithm Testing... 50

5. Integrated Base Level Environment .. 51

5.1. Overview .. 51

5.2. Configuring a Simulation ... 52

 Simulation Layer ... 52

5.3. Support Software .. 54

 ExecuteTest ... 55

 ConfigExec ... 56

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 8 of

80

 IO_Killer ... 57

 PlotRun ... 59

5.4. Validation ... 60

6. Hardware-in-the-Loop Testing .. 62

6.1. Overview .. 62

6.2. Verifying HWITL IO Capability ... 62

6.3. Test Case: Modular Attitude Determination System ... 63

 Overview ... 63

 Configured Emulation Layer .. 63

 Configured Interface Layer ... 64

 Hardware Set-Up .. 66

 Testing Results .. 68

7. Proximity Operations Scenario Mission Simulation ... 72

7.1. Updated Capabilities .. 72

7.2. Testing and Expandability Limitations .. 74

8. Current Development and Forward Work ... 76

8.1. Martian System Simulation: SoftSim6D-Mars .. 76

8.2. Generic Central Body Implementation: SoftSim6D-Universal 76

8.3. Additional IO Capability .. 77

9. Conclusion ... 78

References ... 79

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 9 of

80

Table of Figures

Figure 1: DART Concept Visualization [13] .. 12

Figure 2: Prox-1 Mission Visualization .. 13

Figure 3: ITU-PSAT II Test Setup [5] .. 13

Figure 4: High Level Architecture Overview ... 18

Figure 5: Framework Hardware Implementation ... 19

Figure 6: Variant Subsystem Example: Spherical Harmonics .. 22

Figure 7: File Scope Example: HWITL Testing ... 23

Figure 8: Host Scope Implementation Example ... 24

Figure 9: File Scope Implementation Example .. 25

Figure 10: Generic Model Variant: Magnetic Field Model Example ... 26

Figure 11: Georgia Tech Target Machine ... 27

Figure 12: Target Machine PCI Expansion Bus ... 28

Figure 13: Environment Model Simulink Implementation ... 30

Figure 14: Dynamics Model Implementation ... 32

Figure 15: Perturbation Model Implementation ... 33

Figure 16: Example Sensor Model Implementation: DaVID CubeSat ... 38

Figure 17: Sensor Interface Layer Work Flow ... 42

Figure 18: Data Preparation Layer Example: EPSON MG350 IMU ... 44

Figure 19: Communication Management Layer Example: EPSON MG350 IMU 45

Figure 20: Data Buffer Module Example: EPSON MG350 IMU .. 46

Figure 21: Command Processing Module Example: EPSON MG350 IMU 48

Figure 22: Data Transmission Layer Example: Honeywell HMR2300 .. 49

Figure 23: Algorithms Only Interface Layer Work Flow ... 50

Figure 24: Standard IBLE for Single Spacecraft Mission Development 52

Figure 25: Spacecraft and Simulation Initialization File .. 53

Figure 26: Variant Definition File .. 54

Figure 27: ExecuteTest User Interface ... 56

Figure 28: IO_Killer Simulink Implementation ... 58

Figure 29: IO_Killer Settings Prompt ... 58

Figure 30: Results Data Structure ... 59

Figure 31: PlotRun Generated State Time-Histories .. 60

Figure 32: MADS Emulation Layer Implementation ... 64

Figure 33: MADS Data Preparation and Communication Layer Implementation 65

Figure 34: MADS Data Transmission Layer Implementation .. 66

Figure 35: MADS HWITL Test Set Up .. 67

Figure 36: MADS Calculated Solution Output ... 68

Figure 37: MADS Inertial Translational State Estimation Results ... 69

file:///C:/Users/Sean/Dropbox/AE%208900/draft4.docx%23_Toc436738001
file:///C:/Users/Sean/Dropbox/AE%208900/draft4.docx%23_Toc436738002
file:///C:/Users/Sean/Dropbox/AE%208900/draft4.docx%23_Toc436738003

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 10 of

80

Figure 38: MADS Angular Velocity Estimation Test Results.. 70

Figure 39: MADS Attitude Estimation Test Results .. 70

Figure 40: Proximity Operations SoftSim6D Implementation ... 72

Figure 41: Proximity Operations Relative Motion Calculation Subsystem 73

Figure 42: Proximity Operations Test Case: Spacecraft 1 Inertial State 74

Figure 43: Proximity Operations Test Case: Spacecraft 2 Inertial State 75

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 11 of

80

Table of Tables

Table 1: Current IO Capabilities of Target Machine .. 28

Table 2: STK Verification Position Testing Results... 61

Table 3: STK Verification Velocity Testing Results .. 61

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 12 of

80

1. Introduction

1.1. The Growing Need of HWITL Testing

Throughout the history of spaceflight, relative proximity operations and rendezvous have

undergone a significant evolution from human-in-the-loop to ground-in-the-loop to varying levels

of autonomy. Due to the inherent complexity of automated proximity operations, the development

of such a system presents a high operational and cost risk to developing organizations. Errors in

algorithms or flight coding that are not caught through testing have the potential to result in a

mission failure. This reality is what makes it difficult for mission designers to truly remove the

ground from on-orbit maneuver planning and allow the system complete autonomy. The only way

to guarantee the system is robust enough to be able to operate on a completely autonomous basis

is to have a comprehensive ground test program designed specifically to exercise the system in

such a way that faults in the system (if any) will present themselves in a laboratory environment

as opposed to during mission critical operations.

Autonomous proximity operations-based missions are by

definition inherently risk prone as they involve at least one

spacecraft maneuvering in close quarters to another space

object. A slight miscalculation or incorrect reaction can

create the potential for a collision resulting in a mission

failure and possibly result in the loss of both space assets.

This inherent risk further backs the needs for a system

dedicated to the comprehensive check out of a satellite’s

guidance, navigation, and control (GN&C) system so as to

verify the robustness of the system. Multi-million dollar

class missions often undergo extensive testing regimes but

without a system independently designed to reach these testing goals, mission failure is still a

possibility. This was shown in the NASA DART mission (illustrated in Figure 1) where inadequate

software requirements and software failures resulted in a collision with the MUBLCOM spacecraft

and the loss of a $110 million mission [1]. The MUBLCOM spacecraft was not critically damaged

by the collision, but loss of the DART mission shows the risk involved in autonomous relative

operations even for well-funded programs. The high profile Orbital Express mission was also

plagued with failures due to incorrect software implementation. Although the mission was

recovered through on-orbit software updates, it further stresses the potential for these types of

failures even in the best-funded situations [2]. The possibility of failure is not an option if such

autonomous systems wish to be used to service high-value assets or in support of manned

spaceflight.

Figure 1: DART Concept Visualization

Invalid source specified.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 13 of

80

With the rising popularity of CubeSats and small satellite platforms, the cost of producing these

spacecraft has decreased drastically allowing complicated missions to be developed on the scale

of hundreds of thousands of dollars as opposed to tens of millions. This has resulted in the addition

of large numbers of universities and start-up

companies to the small satellite community. As

these organizations operate on very restricted

budgets, they often do not have in-house test

capabilities that are capable of fully testing complex

GN&C systems. Although they do not have this

capability, it has not deterred them from developing

proximity operations-based missions such as Tyvak

Nano-Satellite Systems CubeSat Proximity

Operations Demonstration (CPOD) and Georgia

Tech’s Prox-1 mission [3] (see Figure 2), [4]. These missions, by design, are high-risk operations

but these risks are further increased by limited capability and funding to perform extensive testing

prior to operations. It is thus desirable for there to exist a highly adaptable test capability to reduce

operational risk but also at minimal expense such that low-budget missions can still afford to adopt

more in depth test programs.

1.2. Previous Approaches

There are several universities and organizations that

have developed various levels of such a capability

but there are limitations to many of these

approaches. One prevalent method is the physical

augmentation of an integrated spacecraft to measure

system performance. This involves the use of rate

tables, Helmholtz cages, image simulators, as well

as other devices to emulate the on-orbit spacecraft

performance. A prime example of this is MIT’s

testing system designed for testing the attitude

determination and control system used with the

ITU-PSAT II mission which utilized an air bearing

table and Helmholtz cage [5] (shown in Figure 3). Although it has been proven to verify certain

portions of ITU-PSAT II’s ACS system, it is limited in scope and not easily reconfigurable for

additional scenarios. Similar approaches can be found at other institutions, but they all present the

issue that they cannot be easily reconfigured for additional scenarios without extensive time and

cost [6], [7], [8], [9].

Figure 2: Prox-1 Mission Visualization

Figure 3: ITU-PSAT II Test Setup [5]

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 14 of

80

Another approach removes hardware actuation from the loop and focusses on software emulation

of sensors and actuators [10], [11], [12]. This approach has been successfully utilized in the

development in Marshall Space Flight Center’s SPRITE tool for HWITL testing of CubeSats. Here

the plant dynamics of a spacecraft are simulated and resulting sensor readings are generated to be

fed into a spacecraft’s flight computer [11]. The benefit to this approach is that the primary

adaptations required between different testing scenarios are software based, not hardware, and thus

reduce the complexity and cost of a reconfiguration. In the small satellite community, this is

desirable as cost and schedule are often limiting factors in the extent of testing which will be

conducted. Although this approach does not verify individual sensor and actuator performance and

rather focusses on the spacecraft’s avionics, it can be argued that this approach is highly valuable.

Multiple approaches have been used in the past in order to tackle the problem of thoroughly testing

complicated mission architectures. However, capabilities that have been developed have either

been limited in scope or lacked the capability to be easily adapted for other mission architectures.

The need clearly exists for the development of a reconfigurable system that can test a wide range

of mission profiles for different spacecraft while still remaining cost effective for the small satellite

community.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 15 of

80

2. Methodology

2.1. Approach Selection

After conducting a survey of pre-existing testing environments it was determined that a framework

which would achieve the most utility throughout the entire lifecycle of the mission and provide

the greatest platform for fully exercising a spacecraft’s avionics system should focus on the

avionics of the spacecraft. Physical actuation of an integrated spacecraft was considered as a

possible option, however it was decided that this would only have limited utility in fully verifying

the system. Physical actuation (rate tables, Helmholtz cage’s, etc.) would provide the ability to

partially test nominal mission performance but would not give testing engineers the ability to

adequately introduce off-nominal scenarios to fully characterize the system. These systems also

often require significant modification between spacecraft which introduce large cost and schedule

implications making the system less desirable. However, a testing environment based on integrated

avionics testing can both fully exercise the system’s performance and be adaptable enough to make

it a viable “generic” testing environment.

In the small satellite community, the vast majority of sensors and actuators used on-board satellites

originate from commercial vendors as opposed to custom-designed, mission-specific solutions. As

these Commercial-Off-The-Shelf (COTS) components gain more flight heritage, the validity of

the performance specifications for these units has increased dramatically. It is for this reason that

oftentimes it is safe to take these specifications at “face” value and not invest extensive resources

in verifying individual sensor performance. This is especially the case for university-based and

other low-budget missions where this sort of testing is not within the budgetary allowances of the

program. Since these components have a high probability of meeting performance specification

during operation, it is possible to remove them from the testing chain. This fact allows us to now

formulate the main methodology behind the HWITL test bed.

As previously discussed, the largest risk to a successful mission lies with the successful

implementation of the hardware/software interface as well as adequate definition and

implementation of flight software requirements. The software interface with hardware can often

prove to be a complicated interface to design for nominal conditions. Without proper requirements

and extensive testing, this software interface may not be able to properly function should the

hardware malfunction. In university-class missions, requirements concerning off-nominal

hardware communication are often not adequately defined, thus requiring further testing to verify

functionality. A major cause of mission failure also lies with the definition of flight software

requirements rather than their implementation. Requirements may be developed, implemented,

and successfully tested, but if those requirements do not adequately encompass the true needs of

the mission, failure is still possible. For instance, one of the causes for the failure of the DART

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 16 of

80

mission was a GPS velocity error bias of 0.6 m/s. The design requirements stated that the measured

velocity error must be within ±2 m/s (meaning this error fell within requirements). However, as

the failure of the mission proved, this requirement was not properly defined and thus contributed

to the mission failure [1]. A key ability of the HWITL platform will be to rigorously test the

spacecraft avionics in a system realistic enough such that potential in-flight errors caused by poor

requirements definition will be revealed.

To replace the physical simulators and actuators that we have removed from the testing chain, the

HWITL platform will instead mimic the low level output of each of these components. As opposed

to many testing schemes where this data would be fed into the flight computer via an electrical

ground support equipment (EGSE) connection, this approach would feed the emulated component

I/O directly into the hardware connections on the avionics boards where the actual component

would be connected. Introducing component signals at this level would therefore allow the

complete verification of the entire avionics hardware and software chain while still allowing the

test engineer a great deal of control over the system. This capability is especially important in

distributed architectures where information passes through multiple levels of signal and data

processing before reaching the primary flight processor. EGSE connections typically bypass all

lower level hardware/software and pass data directly to the flight computer. Although this form of

testing may verify performance of software on the primary flight computer, it does not provide

any verification for the multiple lower levels of hardware/software that in reality sensor data would

need to pass through before it reaches the flight computer. Therefore the EGSE methodology

would effectively be ignoring a large number of potential fault locations and not truly validating

the robustness of the system.

The resulting environment will therefore need to be a full avionics in the loop test bed, capable of

exercising all of the avionics electronics of the spacecraft, from low-level serial communication

and associated basic electronics such as logic level converters to subsystem level microprocessors

to the fully integrated avionics system with the primary flight computer in the loop.

2.2. Framework Requirements

The scope of the HWITL framework has already been defined as an avionics-in-the-loop test bed

capable of fully exercising a spacecraft’s flight avionics system. From here three primary driving

requirements have been defined. From this point forward, the framework will be known as

SoftSim6D.

Requirement 1

The test bed shall be a robust Hardware-in-the-Loop avionics testing environment with primary

emphasis on supporting the development, verification, and validation of autonomous proximity

operations based mission systems

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 17 of

80

Requirement 2

The system shall be capable of supporting spacecraft projects throughout the mission lifetime,

from initial development, to engineering and flight unit testing to flight anomaly mitigation during

on-orbit operation.

Requirement 3

The system shall be highly adaptable such that it can be rapidly configured for a new mission with

no to minimal simulation development required.

2.3. System Architecture

Initial requirements definition of the SoftSim6D framework determined that the framework was

to be both highly adaptable for specific mission requirements and capable for use during all phases

of a spacecraft design lifecycle. SoftSim6D was designed with the intention that it can be used for

development of MATLAB/Simulink control algorithms and mission design, testing of flight C

code, and Hardware-in-the-Loop (HWITL) testing of flight avionics boards. In support of this, a

framework was developed with three distinct layers: simulation, emulation, and interface.

The simulation layer is the primary engine of the environment, consisting of a series of high fidelity

environmental, perturbation, and dynamics models. Environmental models generate the Earth-

centric ephemerides of the spacecraft, sun, and moon. Perturbations caused by atmospheric drag,

solar radiation pressure, spherical gravity harmonics, and third body effects are modeled.

Accelerations and moments caused by these phenomena are fed into translational and rotational

dynamic plants along with physical characteristics of the spacecraft to create a high fidelity six

degrees-of-freedom environment.

The emulation layer is responsible for the simulation of spacecraft components and consists of two

parts: spacecraft sensors and actuators. The spacecraft sensor block takes the true spacecraft state

as determined by the simulation layer and generates the corresponding sensor readings for a suite

of generic spacecraft sensors. The actuator block acts upon commands received from the test article

and generates the resulting forces and moments to be fed back into the simulation level for

propagation of the spacecraft state.

For a given spacecraft or flight program, once components are selected, the only modifications

that will be required to interface with a given test article will be the interface layer. For basic

testing of MATLAB/Simulink algorithms, this layer will simply generate data buses to be fed

directly into the provided MATLAB code. For testing of flight C code and HWITL testing, the

interface layer will act as the interpreter between the simulation and test module, generating

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 18 of

80

realistic low-level input/output (IO) to model flight hardware conditions as realistically as possible.

The layered architecture is illustrated in Figure 4: High Level Architecture OverviewFigure 4.

Figure 4: High Level Architecture Overview

A key attribute of this architecture is that it is highly adaptable and configurable such that it is able

to accommodate a wide range of mission profiles, sensors, and testing requirements. As such, a

standardized plant framework has been developed for all models to allow for new models to be

“plugged” into the simulation, minimizing rework between each satellite. Generic models have

also been developed for “standard” classes of COTS components such as reaction wheels, cold gas

thrusters, inertial measurement units (IMU’s), etc. with easily changeable configuration

parameters to allow the plant models to be updated for different versions of hardware.

Different mission profiles can call for different fidelities in their environments models based on

mission requirements. For example a spacecraft with a deployable boom operating in LEO would

have greater concern about the effect of atmospheric drag on system performance than a

communications satellite in MEO. It is for this reason that environment models such as

atmospheric density, solar radiation pressure, and Earth’s magnetic field will also be treated as

interchangeable components within the overall framework. For example, the testing of a specific

satellite may call for the use of a specific high fidelity magnetic field model not included in the

standard HWITL framework libraries. To prevent the need for substantial code change to

accommodate a new model, the specific model utilized by a simulation run will be another

configuration parameter with a standard interface format.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 19 of

80

3. Simulink Real-Time Implementation

3.1. Overview

This architecture has been implemented using MATLAB© Simulink Real-Time via a real-time

target machine. Using this framework, the test environment will have three primary components;

the host machine, the target machine, and the test article. The test article will either be the

spacecraft avionics boards undergoing testing or MATLAB/Simulink algorithms. The architecture

implementation is illustrated in Figure 5.

Figure 5: Framework Hardware Implementation

The host machine is where the simulation is designed and configured for the specific test run via

MATLAB© Simulink. This is where all spacecraft parameters are set, new models are defined, and

simulation management occurs. When the simulation is completed it is compiled into a Simulink

Real-Time C application and loaded onto the target machine for execution. Depending on the test

scenario, the application can be compiled to run in real-time, for HWITL testing, or free-run mode,

for algorithm testing and verification. Free-run mode is an accelerated mode which will execute

the simulation as fast as the hardware capabilities of the target machine allow.

The target machine is where the execution of all testing occurs. The target machine is a modified

PC that is booted into a MATLAB© kernel from an external USB drive. By using this kernel, the

target computer does not load a traditional operating system which requires substantial processor

overhead. Rather the purpose of the kernel is solely for communication with the host computer

and management of the simulation. This allows the C application to utilize the complete power of

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 20 of

80

the processor and drastically increase the speed of any real-time or free run simulations. Data

monitoring during testing will occur via this machine while the final test data will be transferred

to the host computer over crossover Ethernet for post processing. The MATLAB© kernel also

allows for real-time communication between the target and host computers both before and during

testing. As will be discussed later, this allows the test engineer to quickly configure the simulation

from the host machine as well as change parameters or insert faults while a simulation is running.

The target machine will also host the low level IO interface cards which will be responsible for

communication with the spacecraft avionics during HWITL testing. The wiring harness that

interfaces the real-time target PC with the avionics board will be fabricated for each spacecraft

being tested such that the connections are identical to those which the spacecraft would see from

the real component.

For scenarios where MATLAB/Simulink algorithms are undergoing testing in lieu of hardware,

during the configuration of the simulation on the host machine, the algorithms will be directly

inserted into the simulation. These algorithms will then be compiled into the C application with

the rest of the simulation and transferred to the target machine. Execution will still occur on the

target machine so as to take full advantage of the increased simulation speeds allowed by the

standalone MATLAB kernel.

3.2. Data Bus Formulation

To allow for easy configuration, expansion, and data management MATLAB data buses have been

used to track all states, logic flags, and data products throughout the simulation. This was done

intentionally to allow for easy management/access to all state information and to allow for the easy

use of variable models that enable the simulation to be configured without substantial user input.

As will be discussed, the specific utilization of data buses was designed to allow for development

and implementation of new models in a plug and play fashion.

Three major data buses exist in all simulations, regardless of the configuration, test article, or

models utilized. These are the environment (ENV), state (STATE), and initialization (INIT) buses.

Each are required for the successful propagation of all dynamic and kinematic models as well as

for the modelling of sensors and actuators. The environment bus is responsible for tracking all

time conversions and any processes that exist external of the spacecraft. The state bus contains all

information pertaining to the spacecraft inertial state, rotation matrices, and mass properties. The

initialization bus was developed to allow for rapid configuration of the entire simulation with

minimal modifications required. This bus contains all information on the spacecraft initial states

as well as information pertaining to any other physical or performance characteristic (such as

surface areas or sensor noise parameters). Updates to the default values of this bus allow the user

to automatically configure many aspects the simulation at start-up. Data buses for sensor data

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 21 of

80

(SEN_DATA) and actuator response (SC_RESPONSE) are also defined within the baseline

environment, however these will need to be updated to match the data sets of the spacecraft under

examination.

3.3. Variable Models

A primary requirement of SoftSim6D was to have the ability to rapidly configure the simulation

for different perturbation models, sensor models, etc. without substantial user effort. To meet this

need, Simulink Model References and Variant Subsystems were utilized. Model References allow

the generation of custom Simulink blocks for insertion into a high-level model. A model reference

block is a standalone Simulink model that is configured in such a way that, it can be inserted into

another model as a block as opposed to a subsystem. This enables easy configuration management

as well as speeds up compile time of the overall simulation. Generic blank Simulink models

configured for this purpose have been generated for each major variation subsystem within

SoftSim6D to simplify the development of future modules.

Simulink Variant Subsystems are a powerful tool that enables much of SoftSim6D’s rapid

configuration abilities. A variant subsystem allows the definition of multiple instances of the same

subsystem, however only one is active at a time, as determined by an external setting. This setting

can be set at initialization and thus allows the multiple models to be rapidly interchanged without

manual manipulation of the model. In SoftSim6D, each variant is an externally defined model

reference block. To ensure proper functionality, all variants placed within a given variant

subsystem are required to have identical inputs and outputs. Universally across the simulation,

with few exceptions, all variants/model references contain the three standard buses (ENV, STATE,

and INIT). These were designed to contain the necessary information for all derived calculations

within SoftSim6D. The outputs of each variant model are dependent on the specific application

and are typically simple vector outputs. New bus definition (such as SEN_DATA and

SC_RESPONSE) occur at a higher level within the simulation.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 22 of

80

Figure 6: Variant Subsystem Example: Spherical Harmonics

Figure 6 shows an example of a variant subsystem. The displayed subsystem is for the spherical

harmonics perturbation model. Three variants currently exist within the model; no spherical

harmonics, only J2 zonal harmonics, and J2 through J6 harmonics. Currently the J2 zonal harmonics

model is active (this can be discerned by the fact that the other two models appear grayed out). To

change which model is active, the user simply needs to alter the single parameter SPH_Option in

the initialization file. No other action is required. To expand on previous discussion of standard

model reference formats, it is important to note that these models produce both a translational

acceleration and moment result. Although basic spherical harmonics do not produce torques on

the spacecraft, configuration control requires that all perturbation models have both acceleration

and moment outputs. In this case, the moment output of the models is of value zero.

Variant subsystems are used throughout SoftSim6D in any subsystem which is conducive to the

desire to have numerous options available for rapid configuration. Expansion of a variant

subsystem has also been designed to be straightforward. The user needs only to create their new

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 23 of

80

model within the generic template and save it according to configuration standards. A new model

reference corresponding to the new block is then inserted into the relevant variant subsystem. To

be accessible as a rapid configuration option, a single variant control and condition must be added

to the variant subsystem’s block parameters. After this is completed, the new model is completely

integrated and ready for testing.

3.4. Data Visualization and Storage

There are three primary means of data visualization and storage while executing a simulation on

the target machine. Each methodology takes advantage of pre-supported Simulink Real-Time

capabilities and their use customized to support the needs of SoftSim6D.

During all testing, a monitor is connected to the target machine. This monitor is primarily used for

displaying real-time information and visual confirmation of simulation settings. Up to 9 plots of

type Target Scope can be displayed on this screen during simulations. Target Scopes sole use is

for the displaying of information while a test in underway and do not provide for a means of storing

data for post processing. It is for this reason that no target scopes are permanently configured in

SoftSim6D. The test engineer has the latitude to insert these where desired within the simulation

to monitor any desired signals. For HWITL testing, these scopes are useful for verifying

successfully communication with test hardware. Figure 7 shows a HWITL test where a non-zero

signal in the top row scopes signify incoming data and the bottom row signifies outgoing

communications. This proves a useful sanity check to confirm proper operation during a

simulation.

Figure 7: File Scope Example: HWITL Testing

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 24 of

80

The second and most used means of data monitoring and storage is through the use of Host Scopes.

Although they are called scopes, their primary purpose is to save data from the simulation and not

for plotting of data during execution. Host Scopes take the given input signal and save it in a

Simulink Real-Time Scope object. Once all requested data has been gathered, the information is

then transferred to host computer. Host scopes have been implemented across SoftSim6D to store

all signals found in data busses and are found within Data Logging subsystems. This includes

default storage utilities for ENV and STATE as well as for SEN_DATA and SC_RESPONSE. All

listed signals are automatically acquired during every simulation run, in both real-time and free

run modes. Additional scopes can also be readily added to capture new signals.

In certain situations, a simulation may need to be run at a relatively high frequency but the user

may only require data acquisition at a slower frequency. All Host Scopes are configured to allow

slower storage rates if desired and it is a parameter that is configurable at simulation compilation

time. Host Scopes can also be utilized to display select data at near real-time. A real-time plotting

utility has been created to allow user real-time viewing of state data. This capability is separate

from the standard Host Scope configuration described previously as a different implementation

path is required. An example host scope implementation using both long term data storage and

real-time display is shown in Figure 8.

Figure 8: Host Scope Implementation Example

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 25 of

80

An unlimited number of Host Scopes are allowed by Simulink Real-Time, however limitations do

exist on their use. Data found in Host Scopes are stored in the RAM of the target machine until the

simulation is complete and the data is ported over to the host machine. Therefore if the number of

signals saved, simulation duration, and sample frequency result in a data quantity that exceeds the

2 GB RAM limits of Simulink Real-Time, SoftSim6D will be unable to run. If this is the case,

when the simulation is loaded onto the target machine prior to execution, an error will occur to

inform the user to address the issue.

If Host Scopes do not provide sufficient data storage, the third method for data storage it to use

File Scopes. These scopes save data directly to file system on the target machine and have no limit

on size, however Simulink Real-Time is limited to 8 file scopes per simulation. Since there is no

data limit on each of these scopes, signals are combined by bus in order to be stored concurrently

in the same file. A significantly greater amount of custom configuration is required to both

implement and extract data from File Scopes so it is recommended they are only used in long term

HWITL testing where it is absolutely necessary to continuously store large amount of data for

extended periods of time. Standard implementations have been generated for STATE and ENV

data buses. An example of the ENV and STATE file scopes is shown in Figure 9.

Figure 9: File Scope Implementation Example

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 26 of

80

3.5. Adaptability and Expansion

The selection of Simulink Real-Time as the primary framework for SoftSim6D as well as the

various methodologies already described for implementing models and storing data have all been

done with the aim of making the simulation quickly adaptable and intuitive enough to allow new

users to make additions. Model variants, spacecraft physical characteristics, initial state,

component specifications, and simulation parameters have all been implemented in such a way

that a test engineer can configure them at run-time without any modifications to the system. A

detailed discussion of this is found in Chapter 5.

If a user requires a model not currently found in SoftSim6D libraries, generic Simulink models

and code files have been created for the major elements of each layer. In each generic model, the

IO with the corresponding higher level model has already been defined and all of the model

parameters have been configured to automatically map to the settings of the higher level

simulation. A user’s guide is under development which further expedites this process. Figure 10

shows an example generic model.

Figure 10: Generic Model Variant: Magnetic Field Model Example

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 27 of

80

Detailed spreadsheets have been maintained for configuration management and revision control

of existing models, tracking of data bus objects, and scope data ID trackers. Naming and

numbering conventions have been developed and documented for all processes that are utilized

across the simulation to ensure the plug and play capabilities of SoftSim6D.

3.6. Target Machine and Hardware IO

The target machine utilized in the Georgia Tech simulation environment is a standard Dell

OPTIPLEX GX620 with a Pentium D processor. The machine has 4 GB of RAM (although only

2 GB are useable by Simulink Real-Time due to limitations in the MATLAB kernel). A 1 terabyte

(TB) configured to a FAT-32 file system has also been added to allow for the use of File Scopes.

A standard USB flash drive has been written as a boot-disk for the MATLAB kernel and the BIOS

of the target computer is configured to automatically boot from this flash drive at start-up. An Intel

PWLA8391GTL Ethernet Card has also been added to both the target machine and host computer.

This specific type of Ethernet card allows for direct communication between the target and host

computer via a cross-over CAT5 cable. A PCI expansion bus has also been added to the target

machine to allow for a total of five PCI IO cards, used for HWITL testing. The current target

machine is shown in Figure 11.

Figure 11: Georgia Tech Target Machine

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 28 of

80

To date IO cards have been added to the system to support serial communication over RS-232,

RS-422, and RS-485 protocols as well as for the reading and generation of analog signals. All IO

cards were selected based on their protocol, number of available IO lines, and pre-compatibility

with Simulink Real-Time. A list of current IO cards and IO capabilities of the target machine is

found in Table 1. The integrated IO cards in the PCI expansion bus attached to the target machine

is shown in Figure 12.

Table 1: Current IO Capabilities of Target Machine

 Communication Protocols

IO Card RS-232 RS422/485 TTL

Analog to

Digitial

Digitial to

Analog

Quatech ESCLP-100 8 0 0 0 0

Quatech QSCLP-200/300 0 4 0 0 0

Quatech QSCLP-200/300 0 4 0 0 0

Quatech QSCLP-200/300 0 4 0 0 0

PCIM-DAS1602/16 0 0 8 16 2

Target Computer Total 8 12 8 16 2

Figure 12: Target Machine PCI Expansion Bus

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 29 of

80

4. System Modelling

As previously discussed, SoftSim6D can be broken down into three distinct layers; simulation,

emulations, and interface. Chapter 4 will discuss the internal workings of these layers and

examples of functionality that has been implemented to do. Chapter 5 will discuss the integrated

simulation environment that is created using these layers.

4.1. Simulation Layer

 Overview

The simulation layer is the primary physics engine of the environment. This layer contains all

models of the space environment, true spacecraft dynamics, and external perturbations. The states

generated and monitored by this layer are fed into the emulation layer for use in generating sensor

data. The simulation layer is also responsible for updating the true inertial state of the spacecraft

based on commands interpreted by the interface layer and executed by the emulation layer.

 Environment Models

Environments are defined as any processes of state that exist external of the spacecraft and are not

dependent on the state of the spacecraft. Calculation of states of planetary bodies are calculated

here, such as the positions of the Sun and moon in the Earth Centered Inertial (ECI) frame. Any

quantities derived from these states, in conjunction with either time or the spacecraft state, are also

determined. This includes the rotation from ECI to the Earth-Centered-Earth-Fixed (ECEF) frame,

the eclipse state of the spacecraft, and the sun line-of-sight (LOS) vector from the spacecraft.

The framework also classifies any processes of the primary central body as environment models.

The Earth’s magnetic field is calculated with respect to the ECI frame at the current location of

the spacecraft as well as atmospheric density.

Primary time keeping of the simulation time and current Epoch along with all other derived time

measurements (GMST, Julian date, GPS Week and Second, etc.) are all monitored and propagated

from the environment. Any use of time throughout the entire HWITL is calculated here. In

sensitive GN&C missions, time tags on sampled data is of the utmost importance and even a

variation in rounding within the simulation can have undesirable effects. It is for this reason that

all time related calculation have been consolidated to the environment model to ensure 100%

timing consistency. The implementation of this layer is shown in Figure 13.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 30 of

80

Figure 13: Environment Model Simulink Implementation

 Dynamic Modelling

Dynamic modelling of the spacecraft is broken down into three categories; translational dynamics,

rotational dynamics, and mass properties. The translational dynamics of the spacecraft are

described by the generic two-body problem with the inclusion of imparted forces and perturbing

accelerations.

 𝒓̈ = −
𝜇

‖𝒓‖𝟑
𝒓 + 𝒂𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑠 +

𝑭𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙

𝑚
 (1)

As will be discussed later, all non-two-body gravitational forces are treated as external

perturbations in order to allow for the greatest configurability of the 6DOF model.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 31 of

80

Attitude is defined within the simulation via a quaternion of the form:

 𝒒 = [
𝝐
𝜂] (2)

The rotational state of the spacecraft is similarly modelled using the basic Euler’s rotational

equations with the inclusion of external moments.

 𝑱𝒘̇ + 𝒘 × 𝑱𝒘 = 𝝉𝒄 + 𝝉𝒅 (3)

Where 𝝉𝒄 are control torques and 𝝉𝒅 are external disturbances. The kinematics of the orientation

of the body frame with respect to the ECI frame is given by:

 𝒒̇ =
1

2
𝚵(𝒒)𝝎 (4)

Where:

 𝚵(𝒒) = [
𝜂𝑰 + 𝜺𝑥

−𝜺𝑇
] (5)

The attitude matrix defining the rotation from the spacecraft body-frame to the ECI frame is also

calculated and stored here using Equation 6.

 𝑹𝑩𝑭𝑭𝟐𝑬𝑪𝑰(𝒒) = 𝚿𝑻(𝒒)𝚵(𝒒) (6)

Where:

 𝚿(𝒒) = [
𝜂𝑰 − 𝝐×

−𝝐𝑻
] (7)

Mass properties are defined to be constant unless a propulsion system is present on the spacecraft,

in which case a basic model for the change in mass and inertia for the spacecraft as a function of

burn time is included. The implementation of the dynamics modelling subsystem is shown in

Figure 14.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 32 of

80

Figure 14: Dynamics Model Implementation

 Perturbation Models

Perturbations are considered to be all external processes which create a force or moment on the

spacecraft and are dependent only on the spacecraft’s state and current environment. Moments and

accelerations are calculated based on the user’s current desired variant and then fed into the 6DOF

dynamics models for integration. All perturbations can either be turned off at run-time by the user

or configured to a specific fidelity or specification. To make the addition of new perturbations as

simple as possible, it has also been defined that all perturbation models have a resultant

acceleration and moment output. If a given perturbation does not require one of the outputs, within

the model that output is simply set to zero. For instance, gravity gradient effects produce no

translational accelerations on the spacecraft, therefore a non-zero moment would be produced

along with a zero magnitude acceleration. The high level implementation of all perturbation

models is shown in Figure 15.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 33 of

80

Figure 15: Perturbation Model Implementation

4.1.4.1. Third Body Effects

Currently, the ECI state of the moon and sun are calculated within the environments model. These

states are then used in Equation to determine the resulting accelerations.

 𝒂3𝐵𝐷 = 𝜇3𝐵𝐷 (
𝑹3𝐵𝐷 − 𝒓

‖𝑹3𝐵𝐷 − 𝒓‖3
−

𝑹3𝐵𝐷

‖𝑹3𝐵𝐷‖3
) (8)

Where R3BD is the position of the third body expressed in the ECI frame and 𝜇3𝐵𝐷 is the

gravitational parameter of the third body.

4.1.4.2. Atmospheric Drag

Two current models for atmospheric drag currently are defined within the pre-existing libraries.

The first is a basic model which assumes a spherical spacecraft with a given frontal area A and

drag coefficient CD. Atmospheric density, as given by the environment model, is then used in

Equation 9 to determine the translational acceleration on the spacecraft.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 34 of

80

 𝒂𝑎𝑒𝑟𝑜 =
1

2

𝐴

𝑚
𝐶𝐷𝜌(ℎ)(𝒗𝑟𝑒𝑙 ∙ 𝒗𝑟𝑒𝑙)𝒗̂𝑟𝑒𝑙 (9)

Where

 𝒗𝑟𝑒𝑙 = 𝒗𝐸𝐶𝐼 − 𝒗𝑎𝑡𝑚
𝐸𝐶𝐼 (10)

A spherical spacecraft model assumes uniform mass distribution and no center of mass, center of

pressure offset, therefore the resulting moment is:

 𝑴 = 𝟎 (11)

The second atmospheric drag model assumes a spacecraft with discrete, non-overlapping panels

of varying size, drag coefficients, and body-fixed orientation. Nominally, this model is defined

with a basic six sided, rectangular spacecraft; however the simulation is configured such that n

number of sides are possible. The current model does not account for self-shadowing effects,

therefore any defined panels must not overlap. The resulting acceleration equations for a given

side of the spacecraft are defined as:

 𝒂𝑎𝑒𝑟𝑜,𝑖 = − (
1

2

𝜌(ℎ)

𝑚
‖𝒗𝑟𝑒𝑙‖

2𝛾𝑖𝐴𝑖𝐶𝐷,𝑖𝒏̂𝑖 ∙ 𝒗̂𝑟𝑒𝑙) 𝒗̂𝑟𝑒𝑙 (12)

Where 𝜌(ℎ) is the atmospheric density at the given altitude, 𝐴𝑖 is the surface area, 𝐶𝐷,𝑖 is the

surface drag coefficient, 𝒏̂𝑖 is the spacecraft face normal expressed in the ECI frame, and 𝛾𝑖 is

defined below:

 𝛾𝑖 = {
1 𝑖𝑓 𝜸̂𝑖 ∙ 𝒗̂𝑟𝑒𝑙 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13)

Summing over the entire body, the total acceleration due to solar radiation pressure is:

 𝒂𝑎𝑒𝑟𝑜 = ∑ 𝒂𝑎𝑒𝑟𝑜,𝑖

𝑘

𝑖=1

 (14)

This model does account for imparted moments as a result of any offset of a given panels center

of pressure, cp, from the spacecraft’s center of mass, cm. The moments as a function of the

spacecraft’s current attitude are given by Equation 15.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 35 of

80

 𝑴𝑎𝑒𝑟𝑜,𝑖 = −
1

2

𝜌(ℎ)

𝑚
‖𝒗𝑟𝑒𝑙‖

2𝛾𝑖𝐴𝑖𝐶𝐷,𝑖(𝒏̂𝑖 ∙ 𝒗̂𝑟𝑒𝑙)
2(𝒗̂𝑟𝑒𝑙 × 𝒓𝑐𝑝,𝑖) (15)

Where 𝒓𝑐𝑝,𝑖 is the vector from the center of mass to the center of pressure of face i. Summing over

all faces we find:

 𝑴𝑎𝑒𝑟𝑜 = ∑ 𝑴𝑎𝑒𝑟𝑜,𝑖

𝑘

𝑖=1

 (16)

4.1.4.3. Solar Radiation Pressure

Similarly to the atmospheric drag modelling, solar radiation pressure effects can be calculated for

either a spherical or rectangular spacecraft. For all time, a constant solar radiation pressure of

4.57 × 10−6 W/m2 is assumed. Accelerations on a spherical spacecraft are defined as:

 𝒂𝑠𝑜𝑙𝑎𝑟 = − (
𝑆𝑃

𝑚
𝜂𝐴𝐶𝑟) 𝒓̂𝑠𝑢𝑛 (17)

 𝑴 = 𝟎 (18)

Accelerations on a rectangular spacecraft are defined by the equations:

 𝒂𝑠𝑜𝑙𝑎𝑟,𝑖 = − (
𝑆𝑃

𝑚
𝜂𝑖𝐴𝑖𝐶𝑟,𝑖𝒏̂𝑖 ∙ 𝒓̂𝑠𝑢𝑛) 𝒓̂𝑠𝑢𝑛 (19)

Where SP is the mean solar pressure, 𝒏̂𝑖 is the spacecraft face normal expressed in the ECI frame,

𝐴𝑖 is the surface area, 𝐶𝑟,𝑖 is the coefficient reflectivity of face i, and 𝜂𝑖 is defined below:

 𝜂𝑖 = {
1 𝑖𝑓 𝒏̂𝑖 ∙ 𝒓̂𝑠𝑢𝑛 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (20)

Summing over the entire body, the total acceleration due to solar radiation pressure is:

 𝒂𝑠𝑜𝑙𝑎𝑟 = ∑ 𝒂𝑠𝑜𝑙𝑎𝑟,𝑖

𝑘

𝑖=1

 (21)

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 36 of

80

Torques due are given by:

 𝑴𝑠𝑜𝑙𝑎𝑟,𝑖 = − (
𝑆𝑃

𝑚
𝜂𝑖𝐴𝑖𝐶𝑟,𝑖(𝒏̂𝑖 ∙ 𝒓̂𝑠𝑢𝑛)2) (𝒓̂𝑠𝑢𝑛 × 𝒓𝑐𝑝,𝑖) (22)

 𝑴𝑠𝑜𝑙𝑎𝑟 = ∑ 𝑴𝑠𝑜𝑙𝑎𝑟,𝑖

𝑘

𝑖=1

 (23)

4.1.4.4. Gravity Gradient Torques

Gravity gradient torques are generated by non-uniformities in a spacecraft’s inertia. The resulting

moment produced by a non-uniform inertia tensor is defined as:

 𝑴𝑔𝑔 = 3
𝜇

‖𝒓‖3
𝒄̂ × (𝑱 ∙ 𝒄̂) (24)

Where 𝒄̂ is the unit vector in the nadir direction.

4.2. Emulation Layer

 Overview

Unlike the simulation layer which is the same for every spacecraft and configured at run-time, the

emulation layer is built for a specific spacecraft to reflect the sensors and actuators present on-

board. The sensor block within the emulation layer is responsible for interpreting the current state

of the spacecraft and producing the relevant sensor readings. The actuator block interprets the

commands sent to an emulated sensor and generates the true forces and moments imparted on the

spacecraft, which are then fed into the dynamics models.

Although the emulation layer is custom for each spacecraft, it is designed using a plug and play

configuration. Libraries of Simulink blocks have been generated for generic sensor and actuator

models. These models are all configurable at run-time for the hardware specifications of the

desired components. For use they simply need be inserted into the relevant block and connected

to the incoming data buses. All blocks have been configured to accept the generic data buses used

for tracking environment and state information to make integration as simple as possible. If the

user requires a sensor or actuator model not currently defined within the emulation libraries, a

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 37 of

80

generic template and guidelines have been created to simplify the creation and implementation of

the new model.

 Sensor Models

Sensor models are responsible for taking the current environment and state information of the

spacecraft and converting it into the corresponding data reading based on the physics of that sensor.

Sensor models are responsible for transforming the data into the appropriate sensor fixed frame

(SFF) as well as accounting for any imperfections inherent in the sensor. This includes sensor

noise, bias, and misalignments. The corresponding sensor data is then transferred to the interface

layer for transmission to the test article.

The high level implementation of several of the major sensor models are described below. Detailed

information concerning each model can be seen within the comments of the actual sensor libraries

and the indicated reference texts. A sample implementation of the sensor emulation layer can be

found in Figure 16.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 38 of

80

Figure 16: Example Sensor Model Implementation: DaVID CubeSat

4.2.2.1. Magnetometer Models

The primary magnetometer is a basic three-axis measurement configuration of the form:

 𝒃𝑚𝑒𝑎𝑠
𝑆𝐹𝐹 = 𝑹𝐵𝐹𝐹2𝑆𝐹𝐹𝑹𝐸𝐶𝐼2𝐵𝐹𝐹𝒃𝑡𝑟𝑢𝑒

𝐸𝐶𝐼 + 𝜼𝑚𝑎𝑔 + 𝜷𝑚𝑎𝑔 (25)

Where 𝜼𝑚𝑎𝑔 ~ 𝑁(0, 𝜎2) and 𝜷𝑚𝑎𝑔 is the constant measurement bias.

4.2.2.2. Gyro Models

Gyro models currently take two forms, either a single axis gyro measurement, or an integrated

three-axis unit. The three axis measurement takes the form:

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 39 of

80

 𝒘𝑚𝑒𝑎𝑠
𝑆𝐹𝐹 = 𝑹𝐵𝐹𝐹2𝑆𝐹𝐹𝑹𝐸𝐶𝐼2𝐵𝐹𝐹𝒘𝑡𝑟𝑢𝑒 + 𝜼𝑔𝑦𝑟𝑜 + 𝜷𝑔𝑦𝑟𝑜 (26)

4.2.2.3. Sun Sensor Models

Currently three forms of sun sensor models have been developed and tested. The first is a basic

fine sun sensor model which produces a vector in the sensor frame when the sun is in the FOV of

the sensor. When the sun is in the FOV and the spacecraft is not in eclipse, the measurement is

calculated via:

 𝒔𝑚𝑒𝑎𝑠 = 𝑹𝐵𝐹𝐹2𝑆𝐹𝐹𝑹𝐸𝐶𝐼2𝐵𝐹𝐹 ∗ (𝒓𝑠𝑢𝑛
𝐸𝐶𝐼 − 𝒓𝑠𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑡

𝐸𝐶𝐼) + 𝜼𝑠𝑒𝑛𝑠𝑜𝑟 (27)

A second model which calculates the in plane angle of the sun with respect to two adjacent photo

diodes is determined via basic geometry has also been developed. The last model produces a basic

analog voltage reading assuming four adjacent photodiodes mounted on the same surface divided

into four quadrants. Accurate voltage modeling of this configuration of sensors is highly dependent

on test information and best-fit curves provided by the manufacturer. This model was specifically

developed to emulate the Wallops Island CRUQS sun sensor. If a similar model is required for

emulation for a different sensor, it is recommended to not directly use this model, and rather use

it as a template for modification to produce the most accurate model as possible of the desired

sensor.

4.2.2.4. Accelerometer Models

Current accelerometer models include either single or three axis variants and measure non-

gravitational accelerations on the spacecraft. All existing models assume the units are placed near

the center of mass of the spacecraft and do not measure centripetal accelerations caused by rapid

rotation of the host craft. Since this framework has been designed for implementation on small

spacecraft, it has been assumed that any rigid bodies simulated are not large enough for this effect

to be significant. Minor modification would be required if an accelerometer needed to be emulated

that was located far from the spacecraft cm. Measured accelerations are determined by the equation:

 𝒂𝑚𝑒𝑎𝑠 = 𝑹𝐵𝐹𝐹2𝑆𝐹𝐹𝑹𝐸𝐶𝐼2𝐵𝐹𝐹(𝒂𝑠𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 − 𝒂𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙) + 𝜼𝑚𝑒𝑎𝑠 (28)

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 40 of

80

4.2.2.5. Inertial Measurement Units

Modern inertial measurement units (IMUs) for small spacecraft are available in many

configurations that include three axis rate measurements, three axis acceleration measurements,

and some units currently included integrated magnetometers as well. Since IMUs come in a wide

range of configurations, it was decided to not generate standalone IMU models, rather when it is

necessary to model an IMU, framework best-practice dictates that relevant gyroscope and

accelerometer models are selected and independently inserted into the framework. The sensor data

bus can then be used to track the measurements as integrated IMU data.

4.2.2.6. Global Positioning System

A basic model for a Global Positioning System (GPS) received has been developed and

implemented. This model takes the current inertial translational state of the spacecraft, converts it

into the ECEF coordinate frame and generates a GPS time stamped state vector. The model also

has the ability to generate outputs in other coordinate frames or to generate other simulated data,

depending on the specification of the emulated GPS.

 𝒓𝑚𝑒𝑎𝑠
𝐸𝐶𝐸𝐹 = 𝑹𝐸𝐶𝐼2𝐸𝐶𝐸𝐹𝒓𝑠𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡

𝐸𝐶𝐼 + 𝜼𝑚𝑒𝑎𝑠 (29)

 𝒗𝑚𝑒𝑎𝑠
𝐸𝐶𝐸𝐹 = 𝑹𝐸𝐶𝐼2𝐸𝐶𝐸𝐹(𝒗𝑠𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡

𝐸𝐶𝐼 − 𝒘 × 𝒓𝑠𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡
𝐸𝐶𝐼) + 𝝊𝑚𝑒𝑎𝑠 (30)

4.2.2.7. Star Trackers

A basic star tracker model has been implemented such that a noisy attitude quaternion

measurement is generated; pending the view of the star tracker is not impeded by the Earth. The

resulting quaternion represents the estimated attitude of the sensor frame with respect to the ECI

frame.

 𝒒𝑚𝑒𝑎𝑠 = 𝒒𝑠𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 + 𝜼𝑚𝑒𝑎𝑠 (31)

 Actuator Models

Actuator models are responsible for taking commands generated by the test article and generating

the resulting forces and moments on the spacecraft based on physics modeling of the given

component. Since many actuators take on slightly different forms and accept varying command

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 41 of

80

inputs, modification may be required to the pre-existing libraries to account for any variations. For

instance, the current three axis reaction wheel model expects a torque input while others may

require a wheel speed. If this is the case, the existing model will provide a foundation for any

variants that need to be implemented.

4.2.3.1. Reaction Wheel

The current reaction wheel implementation assumes a three wheel configuration, orthogonally

aligned with the primary spacecraft axis. A basic internal control law, accounting for viscous and

coulomb friction is implemented to realize commanded torques. Also wheel saturation is tracked

and accounted for in the output dynamics. Should a reaction wheel in a different configuration be

required, the model must be implemented accordingly. However it can be derived from the same

basic relationships as shown below.

 𝑯 = 𝑱𝝎 + 𝒉 (32)

Where h is the contribution of angular momentum from the reaction wheel. Assuming no external

disturbances, taking the time derivative of the angular momentum results in:

 𝑯̇ = 𝑱𝝎̇ + 𝒉̇ + 𝝎 × (𝑱𝝎 + 𝒉) = 𝟎 (33)

 𝑱𝝎̇ + 𝝎 × 𝑱𝝎 = −𝒉̇ − 𝝎 × 𝒉 (34)

Therefore, the control torque of a reaction wheel is given by:

 𝝉𝑐 = −𝒉̇ − 𝝎 × 𝒉 (35)

Where:

 𝒉 = 𝑨𝛀 (36)

Where 𝑨 is the inertia tensor of the wheel assembly expressed in the body frame and 𝛀 are the

wheel rates, expressed in the body frame.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 42 of

80

4.2.3.2. Magnetic Torque Rods

The magnetic torque rod emulator block simply takes in a commanded magnetic dipole in the body

frame and direction to generate a resulting magnetic torque on the spacecraft. Misalignments of

the torque rods are also taken into account.

 𝝉𝑇𝑅 = (𝑹𝑚𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝒎𝑐𝑚𝑑) × 𝒃𝑬𝑪𝑰
𝑩𝑭𝑭 (37)

4.3. Interface Layer

 Overview

The interface layer is the primary mechanism for SoftSim6D’s successful integration with a test

article. Careful consideration in development and maintenance of the interface layer will be the

driving factor in simulating realistic hardware. In the emulation model, at every time-step of the

simulation, sensor measurements are generated based upon the specifications of the desired sensor

and stored as the corresponding double prevision vector, voltage, etc. When testing MATLAB or

Simulink algorithms, this result is sufficient to be fed into the test article as at this level as primary

emphasis will be on the design of the algorithms themselves and not on the hardware

implementation. However, when dealing with HWITL testing, careful consideration must be made

to ensure a realistic outcome. In order to prepare data for transmission to hardware, three additional

layers are considered; data preparation, communication management, and data transmission.

Figure 17: Sensor Interface Layer Work Flow

In many scenarios, unless the exact component has previously been modelled and verified for

HWITL testing, the three layers will need to be developed for a given component. Generic

frameworks for all three layers have been developed to ease this process and can be readily adapted

to fit new hardware. The following sections will provide further explanation on the purposes of

each layer and the sections of each layer will be custom for each component. Examples using

primarily sensor models will be discussed, although implementation for actuator models undergo

the exact same process, except in reverse order.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 43 of

80

 Data Preparation Layer

Preparing data for transmission is the simplest of the three required steps for HWITL testing,

however a minor error at this phase can completely invalidate any transmitted data so care must

be taken in defining this block for a given component. There are three primary processes handled

by the Data Preparation Layer (DPL). The first is unit conversion. Each sensor model will output

data in a given unit and base. For instance, the three axis magnetometer model gives a default

output in Teslas (T). The component you are simulating may actually produce readings measured

in Gauss (G) or perhaps nano-Teslas (nT). To minimize modification to emulation layer libraries,

any necessary conversion is done in the DPL.

Many sensors fundamentally are built of analog electronics with analog to digital converters

(ADC) used to capture the analog data before transmission over serial protocols. This process of

converting data from an analog to digital format results in the discretization of the sensor data over

finite intervals, based on the resolution of the ADC. The ADC will produce an integer digital

number which requires an additional conversion to be a useful numeric measurement. Typically,

for ease of implementation in serial communication, a sensor will transmit this integer number and

leave conversion to the necessary decimal number and units to the user. This relationship is defined

as a measure of units per Least Significant Bits (LSB). For instance, a rate gyro may have a

conversion of 0.1 º/s/LSB. If a reading were to be used in an attitude control algorithm, an example

reading of 22 would be converted as follows:

 22 ∗
0.1 ° 𝑠⁄

𝐿𝑆𝐵
= 2.2 ° 𝑠⁄ (38)

The DPL simulates the sensor, by reversing this process and discretizing the reading and

converting it to the corresponding integer. This step is not necessary in all sensors as some may

directly report floating or double precision numbers. This will be the case in more advance sensors

that typically contain some form of internal microprocessor.

The last process in the DPL converts the measurement into the necessary precision. This involves

converting the double precision number that has been used thus far in Simulink into the precision

dictated by the hardware’s Software Interface Control Document (SICD). An example Simulink

implementation of the DPL can be shown in Figure 18.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 44 of

80

Figure 18: Data Preparation Layer Example: EPSON MG350 IMU

 Communication Management Layer

The Communication Management Layer (CML) is the most complicated, yet essential, component

of the interface layer. The CML is responsible for monitoring all incoming data test article for

valid commands, retrieving the necessary data from the DPL, and then packaging the data into a

valid format for transmission over the corresponding serial protocol. Two primary modules make

up the CML; the Data Buffer Module (DBM) and the Command Processing Module (CPM). An

example CML is shown in Figure 19.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 45 of

80

Figure 19: Communication Management Layer Example: EPSON MG350 IMU

4.3.3.1. Data Buffer Module

The IO cards used to communicate with the flight avionics board maintain FIFO buffers which

hold all incoming data until they are read and emptied by the target computer. At each finite

iteration of the simulation, the Data Buffer Module, reads and stores the information from this

buffer. As the DBM operates in discrete time, the FIFO buffer ensures that no data is lost between

iterations of the simulation. Since the majority of simulated components communicate

asynchronously, there is no guarantee that a communication packet will be received during the

exact window of a FIFO read operation by the DBM. It is for this reason that the DBM stores data

from time adjacent FIFO read operations and combines them into a complete packet. Once the

DBM has confirmed an entire packet has been formed, it will pass on the packet to the CPM, as

shown in Figure 20.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 46 of

80

Figure 20: Data Buffer Module Example: EPSON MG350 IMU

This process ensures no dropped transmissions, however it does present the possibility for

inadvertently inserting latency into the system. For example, if an avionics board is designed to

sample a sensor at 1 Hz, but the simulation is only running at 1 Hz, the data request packet has the

potential to be read over two time steps by the target computer. This would result in a one second

delay in response, which is undesirable. It is for this reason that all HWITL simulations be run at

least 10 times faster than the maximum sampling rate of an avionics board. The minimum sample

for any HWITL simulation is recommended to be at least 100 Hz.

4.3.3.2. Communication Processing Module

Once a valid packet has been confirmed by the DBM, the Communication Processing Module

(CPM) will decode the packet to determine the specific command that has been set. The CPM is

able to simulate a wide range of activities for a given component. For instance, besides requesting

data, a command packet received from the test article can request the change of a setting such as

component ID number or gain. The CPM has the ability to recognize that, and change the resulting

setting, pending the Interface Layer has been properly designed to account for said command. A

common component command is to change the devices address or component ID. This is

especially the case when multiple copies of a single component are connected to a single avionics

board. The CPM has the ability to interpret that command, change the address, acknowledge the

command, and have that change persist throughout the rest of the simulation.

Although a generic CPM model has been created for use in generating specific component models,

the CPM requires a substantial knowledge of the software interface of the desired component in

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 47 of

80

order to be adequately implemented. It is desirable that for any component being emulated a SICD

be obtained from the manufacturer to ease the process of development. Typically SICD’s are

written to enable a user to write software capable of commanding and receiving/interpreting data

from a device. The development of a component specific CPM will require the opposite of that.

Generating a CPM will require the reverse engineering of a SICD such that the generated software

accurately simulates the role of the component being commanded by an external processor. During

the development process of the CPM it is highly encouraged to have a test article available that is

designed to command the desired component to confirm proper serial communication. This can be

as simple as a basic microprocessor such as an Arduino or Tiva C microcontroller configured to

sample data at a set frequency. Having such an article available during the development and

verification process of the simulation will drastically decrease set-up time required once the actual

flight test article has arrived.

The intricacies of development for a specific CPM will vary by component. For example purposes,

the design, implementation, and testing of the CPM for an EPSON IMU MG350 will be described

in detail. Figure 21 shows an example of the CPM for this IMU. The EPSON CPM takes in the

input SERIAL_CMD, which is the full command packet received by the target computer and

verified by the DBM. The command packets to read from the EPSON unit are short three byte

sequences containing a leading header byte, a command ID byte, and a termination byte. The CPM

first checks for valid header and termination bytes. Once confirmed, the CPM will then determine

which data the received command byte corresponds to. The desired information will then be passed

into a custom MATLAB function known as ByteWriter2.m. This function internally converts the

input value into a 16 bit signed binary number and then into a 2 byte hexadecimal number. The

hexadecimal number is then converted into a MATLAB int16 class for use in data transmission.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 48 of

80

Figure 21: Command Processing Module Example: EPSON MG350 IMU

It is important to note that although MATLAB int16 technically corresponds to a 16 bit signed

integer, transmitting a single16 bit signed integer will not result in the transmission of the correct

two byte number. This is due to both the design of MATLAB serial drivers as well as how

MATLAB defines a 16 bit signed integer at the binary level (which is of primary concern for serial

communication). In general, it is strongly recommended that for transmission of any data type

using Simulink Real-Time, data integrity must be performed at the binary level in order to ensure

accurate communication. This is also important because different implementations may use

different byte orderings than considered convention. For example one sensor may send two bytes

of data with the Most Significant Byte (MSB) first while others may send the Least Significant

Byte (LSB). This is even more the case in communication requiring floating or double point

precision.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 49 of

80

 Data Transmission Layer

The Data Transmission Layer (DTL) is responsible for all actual communication with the test

hardware. The DTL reads the FIFO buffer of the corresponding data port and IO card in the target

machine and then transforms it into a numeric format that can be utilized by the rest of the

simulation. It primarily consists of what are known as Read Write Simulink blocks. These are

custom Simulink IO blocks that come with supported IO cards. They contain all of the driver code

necessary to operate the IO card in the target computer. Although the exact layout of the Block

Parameters varies by card and manufacturer, all allow for configuration of major requirements for

serial communication such as baud rate, parity, stop bits, FIFO size, etc. Analog to Digital

Acquisition System (ADACS) cards provide the user options on voltage limits, sample times, and

precision. An example DTL for the Honeywell HMR2300 magnetometer in conjunction with the

Read Write block for the Quatech ESC-100 IO Card is shown in Figure 22.

Figure 22: Data Transmission Layer Example: Honeywell HMR2300

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 50 of

80

 MATLAB and Simulink Algorithm Testing

In addition to real-time HWITL testing, SoftSim6D has the capability to be used for both real-time

and accelerated testing of MATLAB/Simulink algorithms. For a given spacecraft, once the

Simulation Layer and Emulation Layer have been defined, they do not need to be changed,

regardless of algorithm or HWITL testing. The only alterations that are required are in the Interface

Layer. For algorithm testing, the complexity of the Interface Layer is drastically reduced. For the

highest fidelity testing, it is recommended that the user generate a DPL to account for potential

issues caused by data discretization, although this is not required. For testing the user will then

insert their MATLAB/Simulink algorithm directly into the Interface Layer via a Model Reference

block and connect to the corresponding inputs. It is also important to note that in order to take

advantage of SoftSim6D, the target algorithms need to be designed in accordance with

requirements consistent with Simulink Coder. A sample work flow for both sensor and actuator

IO using MATLAB/Simulink algorithms as the test article is shown in Figure 23.

Figure 23: Algorithms Only Interface Layer Work Flow

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 51 of

80

5. Integrated Base Level Environment

5.1. Overview

With the development of the individual simulation layers in Chapter 4, the groundwork was

successfully laid for a full simulation containing fully functioning integrated plant models,

component emulation, and serial communication. When it is desired to configure a simulation for

a new spacecraft or scenario, an Integrated Base Level Environment (IBLE) has been developed

to act as a framework to build upon. Figure 24 shows a high level view of the IBLE prior to

configuration by the user. The IBLE has two major components already implemented; the

simulation layer, denoted by the red environment, dynamics, and INIT blocks as well as the

emulation layer, denoted by the cyan sensor and actuator blocks. The simulation later within the

IBLE is 100% configurable from initialization files by the user, given that no new functionality

(such as new perturbation model) is required. The emulation layer will require manipulation by

the user in order to insert relevant component models into the simulation, however extensive

libraries for standard components have been developed to facilitate this process and ensure the

plug and play usability of the framework. This chapter will discuss the configuration of a new

simulation using the IBLE as well as the custom utilities that have been developed to support all

forms of testing using SoftSim6D.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 52 of

80

Figure 24: Standard IBLE for Single Spacecraft Mission Development

5.2. Configuring a Simulation

 Simulation Layer

The Simulation Layer has been designed and implemented such that no manual user manipulation

of the SoftSim6D Simulink model is required for configuration. As previously discussed,

everything required to run a high fidelity 6DOF simulation is contained within this layer. To

configure all parameters and select the desired model variants only two files are required to be

edited; the spacecraft and simulation initialization file, LOAD_Init.m, and the variant definition

file, LOAD_ModelVariantDefinition.m.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 53 of

80

The spacecraft and simulation initialization file (SSIF) is the primary means of configuring the

physical properties and state of the spacecraft as well as the parameters for the simulation.

Spacecraft mass properties, areas, surface properties coefficients, etc are all defined here. The file

contains detailed comments to define necessary units and what values may be ignored (if certain

variants are not selected for use). The initial inertial translation and rotational states are also

defined. Lastly basic simulation parameters are also tunable to the user’s preference. This includes

simulation length, Epoch, time step, and scope sample rate. This structure, shown in Figure 25,

has been designed such any changes in a simulation’s SSIF, at compilation and execution, will

automatically be reflected in the test. As will be discussed in SoftSim6D’s custom support utilities,

anytime the simulation has already been compiled and loaded onto the target machine, many of

the parameters found in the SSIF can be altered in real-time or between simulations without re-

compiling.

Figure 25: Spacecraft and Simulation Initialization File

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 54 of

80

The Variant Definition File (VDF) provides the user with the capability to control all variant

selections from a single location. Individual model variant definition files are defined for each

variant subsystem in the corresponding directories where the models are stored. These files

automatically create the necessary Simulink Model Variant objects to define a variant subsystem

when the high level model is loaded. The VDF then calls these pre-defined objects and sets the

integer logic flag associated with the user’s desired model choice. The primary use of the VDF is

to select change or turn off various perturbation models. The VDF can also be utilized to alter

sensor variants if the scenario simulation is configured to do so. An example section of the VDF

can be seen in Figure 26.

Figure 26: Variant Definition File

5.3. Support Software

Numerous custom MATLAB utilities have been developed to aid in simulation verification,

execution, real-time management, and data post-processing. Several of the major utilities that can

support all forms of testing will be discussed.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 55 of

80

 ExecuteTest

To ensure proper compilation and execution of a simulation, multiple initialization files are

required to ensure all updated parameters and settings are reflected as well as to prepare the

necessary objects, scopes, and data structures that drastically simplify the process of real-time

tuning and data post-processing. To aid in this process, a generic MATLAB utility called

ExecuteTest.m has been created for SoftSim6D. This utility provides two essential functions;

compilation of a new real-time C application and the loading of the application and parameters to

the target machine.

The single most common error that occurs when modifying or generating a new model for use in

SoftSim6D is a compilation error. This error does not necessarily occur because a Simulink model

is not functional, rather because of either incorrect model parameters for integration with

SoftSim6D or the use of MATLAB/Simulink features that are not auto-codable into C. A model

may be developed and run correctly in Simulink, but if the provided generic blocks that

automatically configure to SoftSim6D are not used or MATLAB C guidelines are not followed,

the model may need to be updated. To verify that none of these errors will manifest themselves

when it is attempted to generate and run a full simulation, the “compilation test” functionality of

ExecuteTest was developed. When this test is run, if such an error exists, a red MATLAB error

will appear which points to the problem of the source. If there are no errors, the test will simply

display complete and exit the application. It is important to run this test frequently when making

significant changes to any simulation. The error that is displayed can only identify a few errors at

once and more may appear to exist when actually a single error occurs and is allowed to propagate

through multiple levels. This can be avoided by frequently verifying the ability of the simulation

to compile.

The second process provided by this utility compiles and executes the test. Before compilation,

the application will ask the user for the desired SSIF and VDF files and then load these into the

simulation. The user can also select whether a real-time or free run application will be generated.

The simulation is then loaded onto the target machine and executed at the user’s command. All of

these tasks can be conducted manually through MATLAB’s command line and the

running/loading of various SoftSim6D configuration files, however ExecuteTest drastically

expedites the process for the user. The user interface for ExecuteTest can be seen in Figure 27.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 56 of

80

Figure 27: ExecuteTest User Interface

 ConfigExec

As previously discussed, Simulink Real-Time has the capability that once a real-time application

is loaded onto the target machine, certain parameters can be changed either before or during the

execution of a simulation. In order for this to occur, the user must have a detailed knowledge of

the file path, data type, block type, and setting type for a given parameter. The manual execution

of this process is very time consuming and not practical for a large number of parameters. To

expedite this process, ConfigExec was generated. After a simulation is generated and loaded onto

the target machine, SoftSim6D has been designed such that nearly all parameters defined in the

SSIF can be altered, preventing the need for recompilation which can take several minutes. Due to

how data is stored and the simulation is compiled, model variants (defined in the VDF) and the

sample time of host scopes cannot be altered without re-running ExecuteTest.

All initial conditions, environment parameters, and sensor/actuator parameters are purposely

defined within the INIT block to enable the maximum utility of ConfigExec. Since they can be

updated by a simple command, ConfigExec makes large scale Monte-Carlos analysis of nearly

any parameter possible. No modifications are required to the simulation to enable this form of

large scale testing, rather a basic script utilizing the functions described in this section can be

created and implemented to remove the user completely from the process.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 57 of

80

 IO_Killer

While ConfigExec provides the functionality of updating parameters prior to testing, IO_Killer

utilizes Simulink Real-Time’s ability to update parameters during real-time test execution.

IO_Killer provides the framework and is the first implementation of fault injection in SoftSim6D.

IO_Killer is a custom Simulink Block that can be inserted between the CML and DTL. This block

enables the user to simulate various data transmission errors that are fairly common in serial

communication. When the command to implement a specific error is given, the block takes the

incoming communication from the CML, corrupts it in the specified manner, and then sends it to

the DTL for transmission.

Currently three types of fault injection are possible. These are all common errors that can occur in

serial communication and it is therefore important to verify the test article’s ability to identify and

correct for them. The first is to simply disable outgoing communication with the test article.

Commands from the test article are still processed and recorded in this mode, however, no data

packet is transmitted back to the test article. This simulates the failure of a component. The second

is to corrupt the outgoing data packet. When this mode is implemented, a packet of the correct size

and with the correct termination byte is transmitted, however the contents are purposely corrupted

to simulate a “bad” packet. This can be configured to either occur once (to simulate a temporary

failure) or every time the test article requests information. Lastly, an error similar to a Distributed

Denial of Service (DDOS) attack is possible. When this is activated, miscellaneous data is

continuously streamed to the target device. This functionality, although unlikely to manifest itself

in this manner is actuality, exercises the target device’s ability to buffer, recognize, and dispose of

undesirable data. The Simulink block and settings dialogue are shown in Figure 28 and Figure 29.

Although IO_Killer only deals specifically with serial communication faults, both the MATLAB

real-time execution function and the corresponding Simulink block were written in a generic

manner to provide the framework for any future fault injection developments.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 58 of

80

Figure 28: IO_Killer Simulink Implementation

Figure 29: IO_Killer Settings Prompt

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 59 of

80

 PlotRun

The high number of host scopes distributed across the standard simulation generates an extremely

large quantity of data sets assigned to individual Simulink Host Scope handles. To allow the user

to rapidly extract all of this data from the target computer, put it into a concise data structure and

plot important qualities, PlotRun.m was created. After a simulation is completed, PlotRun is called

and all data contained within the standard host scopes of the IBLE is saved in a structure called

Results in the MATLAB workspace. A portion of this structure is shown in Figure 30.

Figure 30: Results Data Structure

PlotRun then provides the user the ability to plot certain common properties, specifically

spacecraft state time-histories and sensor readings. The state plotting utility can be used universally

across any simulation built from the IBLE, however the sensor plotting ability must be updated to

reflect the specific configuration of the spacecraft under testing. Figure 31 shows the standard state

plots generated by PlotRun during a validation simulation.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 60 of

80

Figure 31: PlotRun Generated State Time-Histories

5.4. Validation

The dynamic and sensor simulation capabilities of SoftSim6D were verified through several

means. Individual outputs of perturbation, environment, and sensor models were compared to

various sources. Models that have counterparts in other already verified Georgia Tech simulation

tools were run through various operational test cases and their outputs compared. This was the

case for the attitude dynamics models as well as several sensor models. Subsystems or models that

did not have another simulation verification source readily available were compared to test cases

and other information found in relevant technical literature. Lastly, translational high fidelity

dynamics results were compared to various simulations in Systems Tool Kit (STK). Since exact

information on the various perturbation models and integration routines used in STK are not

publically available, the parameters and relevant model variants were selected to be as close as

possible to the inferred capabilities of STK’s HPOP propagator. Table 2 and Table 3 show that

SoftSim6D’s dynamics simulation is within a kilometer of inertial position as predicted by STK

and velocity is within a meter per second. Through this and extensive other means of verifying

output data, the current release of SoftSim6D is considered to be fully validated.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 61 of

80

Table 2: STK Verification Position Testing Results

Table 3: STK Verification Velocity Testing Results

Position Error Value [km]

Average 0.93545

Standard Deviation 0.14701

Maximum 1.2343

Velocity Error Value [km/s]

Average 0.00093758

Standard Deviation 0.00014316

Maximum 0.0012219

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 62 of

80

6. Hardware-in-the-Loop Testing

6.1. Overview

The most powerful capability of SoftSim6D is its ability to perform real-time hardware-in-the-

loop testing. Common test set-ups only provide the ability to verify that avionics are able to

properly communicate over designated serial protocols, not actively provide real-time simulated

inputs that allow the user to “fly” the hardware. SoftSim6D is a compact, all-in-one solution to

both verify hardware IO and exercise all on-board software through active simulation. Currently

SoftSim6D has been verified to communicate over RS-232, RS-422, and RS-485 protocols as well

as generate and read analog signals. This sections provides an overview of the verification of the

Interface Layer components required to communicate over these protocols as well as a full HWITL

test case of SoftSim6D.

6.2. Verifying HWITL IO Capability

The first step in implementing the interface layer for HWITL capabilities, specifically the DBM,

CPM, and CTL, was the generation of a suitable test article. A Texas Instrument Tiva C Series

microcontroller was programmed to act as a test avionics board (TAB) for the purposes of

verifying serial communication. Initial testing focuses on the capabilities of the CTL and DBM to

verify that data was successfully received and transformed into an actionable data type. The TAB

was configured to send data packets of various lengths and data type over basic serial UART. A

breadboard was then used in conjunction with the relevant low-level logic converters to transform

the signal into either RS-232, RS-422, or RS-485 and then connected to the relevant IO port in the

target machine. The output of the CTL and DBM were then recorded and analyzed to determine if

the correct signal was received and properly interpreted.

To verify the data transmission capability of the CPM and CTL, specifically their ability to convert

MATLAB data types into the necessary binary and then hexadecimal numbers, a reverse test set

up was assembled. A test Simulink model containing only the CPM and CTL was created to

generate and transmit data at a fixed interval through an IO card to the breadboard/TAB hardware.

The TAB was then programmed to read and record the received data for verification. Initial testing

focused on basis transmission of hexadecimal numbers, the foundation of most serial

communication packets. Next, development and verification focused on transmission of numeric

information of various integer and floating point data types. Testing discovered inconsistencies

with Simulink Real-Time’s stated binary conversion and communication transmission utilities.

This led to the development of several custom functions (including ByteWriter2, discussed in

Chapter 4) to ensure proper packing and transmission of all data types. Further testing using the

TAB proved that the updated CPM and CTL properly transmitted data across all supported serial

protocols and data types.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 63 of

80

A final test configuration was set up using a standalone closed loop DBM, CPM, and CTL in

conjunction with the TAB. The TAB was configured to send a basic set of commands to the target

machine and the test simulation to respond with pre-set numeric responses. After this was

successfully completed, the same test set up was configured to talk to over multiple IO ports using

different command sequences simultaneously. A single TAB was set up to serve as the test article.

The successful completion of this test, verified both the software and hardware capabilities of

SoftSim6D to send, receive, and interpret data simultaneously over multiple IO ports.

The analog capabilities of the target machine were also verified. To verify reading analog inputs

(analogous to analog commands from an avionics board), a power supply was used to simulate a

voltage source. The power supply was manually stepped through different voltage settings while

a standalone version of the analog CTL read the inputs. The generation of analog signals by the

target machine (to simulate an analog sensor) was verified using a hand held digital multi-meter.

6.3. Test Case: Modular Attitude Determination System

 Overview

The Modular Attitude Determination System (MADS) is a CubeSat avionics board currently under

development by Marshall Space Flight Center (MSFC). The MADS board is designed to be highly

configurable for various mission needs. It is based around an 80 MHz 32-bit ARM Cortex-M4F

processor and can accommodate up to 8 UART devices, 6 I2C lines, 4 SPI lines and 4 A/D

converters. The MADS board was designed such that it can be rapidly reproduced with connectors

for new sensors while still utilizing the same hardware framework and software. Currently the

board is configured for a Novatel GPS unit, EPSON MG350 IMU, Honeywell HMR2300

magnetometer, and the Wallops Island CRUQS sun sensor. The onboard software is configured to

sample data and provide an inertial state and attitude solution at a rate of 1 Hz. In flight, this

information will then be transmitted to the primary flight computer via one of its SPI lines.

 Configured Emulation Layer

For testing of the MADS board four of the five components required in the emulation layer were

already developed and verified as part of the initial library development efforts. These were the

rate gyro, accelerometer, magnetometer, and GPS model blocks. The only custom block required

was for the Wallops Island sun sensor as this had a custom measurement output. The Wallop Island

block (denoted in Figure 32 as the DAVID Sun Sensor) was independently developed and verified

then inserted into the simulation using the same process as any pre-existing blocks. All pre-existing

blocks were simply inserted into the IBLE and their parameters updated in the associated

initialization file. The custom emulation layer for the MADS board is shown in Figure 32.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 64 of

80

Figure 32: MADS Emulation Layer Implementation

 Configured Interface Layer

The testing of the MADS board was the first complete implementation of closed loop

communication between a target avionics board and SoftSim6D. The individual interface layer

blocks for each component were configured to accept and respond accordingly to all possible

commands that the MADS board was able to send. This included basic ping commands, re-setting

of device ID commands, and querying of data. All command were individually verified with the

MADS board in de-bug mode prior to testing. The MADS board has also successfully been able

to communicate with all actual hardware, therefore we can say with confidence that SoftSim6D

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 65 of

80

accurately emulated all sensors. This also was the first time fault injection was used in testing, by

means of the IO_Killer Simulink libraries. The completed Data Preparation and Communication

Management Layers are shown in Figure 33. The Data Transmission Layer is shown in Figure 34.

Figure 33: MADS Data Preparation and Communication Layer Implementation

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 66 of

80

Figure 34: MADS Data Transmission Layer Implementation

 Hardware Set-Up

To interface with the MADS board, a combination of custom harnessing and bread boarding were

used. The HMR2300 magnetometer is a standard RS-232 signal so a basic harness converting

SoftSim6D’s standard DB-9 connector to the board’s micro DB-9 connector was manufactured.

The EPSON IMU and Novatel GPS are both designed to be board-mounted and communicate

directly over UART. Therefore, to accommodate this, a breadboard was used in conjunction with

DS8921N RS-485/422 to UART conversion chips to convert the RS-485 signal generated by

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 67 of

80

SoftSim6D to UART. Analog outputs from SoftSim6D utilized a custom harness which connected

the ADACS card to the micro DB-25 connector on the board. For power, the MADS board requires

a 5V and 3.3V power rail. A standard Arduino MEGA was used to regulate and supply this to the

board. The hardware test set up of the MADS board is shown in Figure 35.

Figure 35: MADS HWITL Test Set Up

Lastly, for data monitoring, a Texas Instruments Tiva C Series microcontroller was connected to

one of the MADS board’s spare UART ports. This microcontroller was used to mimic the flight

computer that MADS is sending its calculated state and attitude estimate to. This information was

stored using the Tiva microcontroller for later post processing and comparison with the saved true

states as determined by SoftSim6D. A sample of the computed information provided by the MADS

board in real-time is shown in Figure 36.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 68 of

80

Figure 36: MADS Calculated Solution Output

 Testing Results

Several rounds of testing were conducted to fully characterize the performance of the MADS

board. As issues were found within the board, these bugs were communicated to MSFC engineers

and updates were made before continuing on to the next round of testing. The first round of testing

focused on short ten to sixty minute tests to verify the calculated state and attitude solution of the

MADS board. The saved states from SoftSim6D were transferred from the target machine using

PlotRun and then a custom data processing script was written to match the true inertial state of the

spacecraft with the corresponding timestamped solution determined by the MADS board.

The translational state true and estimated error from a single ten minute test run are shown in

Figure 37. It is important to note that an error of almost 150 meters in position knowledge occurs

in this time frame. Such a deviation is significant as the noise of the GPS measurement is only on

the order of tens of meters. This was the first error discovered through SoftSim6D testing. To

characterize this issue, longer duration tests were conducted and revealed that the error was

sinusoidal in nature. If a filter error on part of the MADS algorithms was the primary cause, it

would be expected that this error would grow exponentially. This type of sinusoidal error points

to a timing error between the true and estimated states. Ultimately it was confirmed that a timing

error was the cause of the ~1 m/s velocity bias that induced the sinusoidal position error. The cause

was a conversion from GPS Week and Second to fractional Julian days where a rounding error on

the order of the seventh decimal place created a fraction of a second time bias. Since this rounding

initially appears so insignificant to the user, this error would not have been found without

SoftSim6D. The error was subsequently fixed and not witnessed in later testing.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 69 of

80

Figure 37: MADS Inertial Translational State Estimation Results

A sample angular velocity and attitude quaternion test result are shown in Figure 38 and Figure

39, respectively. Figure 38 demonstrates that the MADS algorithms are able to estimate spacecraft

rate fairly well, estimating bias correctly and keeping overall noise within expected limits. The

brief spikes in angular velocity error were determined to be caused be errors in spacecraft attitude

estimation that resulted in momentary spikes in estimated rate bias. Figure 39 shows that the

attitude solution provided by MADS is highly inaccurate, never converging to the correct solution.

This, however, was expected. Although we are feeding sun sensor measurements to the MADS

board over analog channels, at the time of this testing the MADS algorithms were not configured

to directly use this information in attitude determination. Rather they were designed to use the

digital output of the sun sensor provided over an SPI line. Since SoftSim6D currently does not

have the hardware capability to communicate over this protocol, for this testing the MADS

algorithms operated as if no sensor was active (the analog inputs were simply recorded but not

used). The algorithms were not designed to function on magnetometers only for attitude

determination, therefore no viable solution was found. To verify these results, tests were conducted

on the standalone algorithms in MSFC’s development framework assuming no sun sensor input

and results were comparable. It was therefore accepted by MSFC engineers that the board was

operating as expected under the conditions of a sun sensor failure.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 70 of

80

Figure 38: MADS Angular Velocity Estimation Test Results

Figure 39: MADS Attitude Estimation Test Results

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 71 of

80

In addition to basic state and attitude estimation verification, the IO fault injection utilities of

SoftSim6D were utilized to fully exercise the MADS board. Using the termination capability of

IO_Killer, component boot-up order was evaluated. Testing revealed that if the MADS board was

powered on before the GPS unit, the MADS algorithm were unable to find a solution for all time.

The error source was determined to be the initialization of the state filter. When the filter initializes

on boot-up, if there is no GPS information available, a divide by zero operation occurs resulting

in an infinite solution. Once GPS data is available, the previous infinite states prevented any

solution from being found. A patch was implemented to prevent this and was not witnessed again.

No errors were induced by delayed boot-up of other components.

Both corrupted data injection and DDOS attacks were performed on the unit, with no errors

detected. The MADS board performed as expected, rejecting corrupted data and re-requesting data

until a valid packet was received. Intermittent component failures after board initialization were

also tested. Components were temporarily failed for a period of seconds or minutes and then

reactivated. The MADS algorithms performed as expected, simply propagating its last estimated

solution until communication could be restored with the device. At the conclusion of IO testing

and the subsequent software updates, no injected faults were able to trigger an unexpected error

state.

Lastly, long duration testing was conducted to determine if any error states will manifest

themselves in the MADS board over extended operations. Tests of 15, 18, and 24 hours were

conducted. To accommodate this significant amount of information (the 15 hour test generated

roughly 16 GB of data), file scopes were implemented to store data to the hard drive of the target

machine. Substantial post-processing scripts were written to extract and process the file scope data

as well as compare to the calculated states determined by the MADS board. Results showed that

during long term testing, no variations from expected behavior occurred and there were no

communication failures. In all, SoftSim6D testing was able to fully verify both the nominal and

off-nominal capabilities of the MADS avionics board, within testing limitations.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 72 of

80

7. Proximity Operations Scenario Mission Simulation

7.1. Updated Capabilities

Significant development efforts have been dedicated to developing the final expansion of the

HWITL simulation environment; the capability of the environment to simulate multiple spacecraft

simultaneously for support of testing proximity operations-based mission architectures

(SoftSim6D-ProxOps). The primary challenge involved in expanding the environment to be

capable of supporting multiple spacecraft was the modification of data structures and data handling

routines to account for any number of primary spacecraft. Development of the initial simulation

capability was focused on the implementation of “plug and play,” rapidly adaptable libraries and

data structures were intentionally designed to handle only a single spacecraft at a time to allow for

easier testing and debugging. The framework required for a single spacecraft was leveraged as a

baseline for the individual spacecraft within a constellation and then a wrapper structure to handle

all information throughout the constellation was developed and tested. The new wrapper has been

developed to handle any number of simulated spacecraft, with its only limitation being the

hardware memory capacity of the target machine.

Figure 40: Proximity Operations SoftSim6D Implementation

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 73 of

80

After the data structure was completed and tested, a two spacecraft example scenario was

implemented (shown in Figure 40). For the simulation of the spacecraft themselves, no new models

had to be developed. The pre-existing dynamics models were used to implement both spacecraft

and the new data structure wrapper allowed for individual configuration of each spacecraft. The

existing libraries of sensors and actuators were also used for each spacecraft. Modifications were

required to the sensor and actuator libraries to allow for multiple instances of the same component

with different configuration parameters to be simulated simultaneously. For example, in the

scenario where both spacecraft have the same general class of magnetometer except each have

different performance characteristics. A general fix to the issue was determined and applied across

libraries. This has also been added to the generic models used to develop future sensors/actuators

to prevent the issue from reoccurring.

In the Proximity Operations environment, the components typically found in the highest level of

the IBLE are now found within each spacecraft block. The only block from the original single

spacecraft IBLE that is reserved for the high level simulation is now the INIT block. In addition

to the two spacecraft blocks, shown in Figure 40, a new high level block was created for multiple

spacecraft scenarios. This block, known as the Relative Motion Calculation subsystem, is

responsible for calculating the relative inertial states and any desired relative reference frames

between the two spacecraft. The information generated in this block is then fed into each individual

spacecraft model. This data is made available to each spacecraft for use in the calculation of any

relative sensor data, such as images, beacon readings, laser ranging readings, etc.

Figure 41: Proximity Operations Relative Motion Calculation Subsystem

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 74 of

80

To aid in testing and verification of the expanded environment, new utilities were constructed to

manage, extract, and plot data for multi-spacecraft simulations. Updated versions of ExecuteTest

(ExecuteTest_ProxOps), ConfigExec (ConfigExec_MultipleSC), and PlotRun

(PlotRun_Multiple) were generated. These are all configured for the two spacecraft case, however

they have been designed such that they can be expanded to any number of spacecraft without

significant user development.

7.2. Testing and Expandability Limitations

To verify the integrated two spacecraft Proximity Operations example, two individual single

spacecraft scenarios were run using the original IBLE. The outputs of these simulations were

compared to the results of the Proximity Operations test case and were verified to be identical.

Several scenarios were examined and all results verified as consistent with the single spacecraft

equivalent simulation. An example of two spacecraft being simulated simultaneously is shown in

Figure 42 and Figure 43.

Figure 42: Proximity Operations Test Case: Spacecraft 1 Inertial State

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 75 of

80

Figure 43: Proximity Operations Test Case: Spacecraft 2 Inertial State

Testing to date has verified the nominal performance of SoftSim6D-ProxOps as well as the

associated support functions. The only limitations for the number of total spacecraft to be

simulated arise from the hardware limitations of the target machine. This includes processor

power, memory allowance, and the number of IO ports. The current configuration of the target

machine should be capable of simulating several spacecraft simultaneously without issues,

however if large constellations (on the orders of tens of spacecraft) are to be tested, hardware

upgrades may be required.

Currently all updated SoftSim6D-ProxOps data structures and utilities have been configured for

two spacecraft. Modification will be required for larger constellations, although such modifications

are a simple expansion of the current configuration. A user’s guide has been developed to walk

the user through this process.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 76 of

80

8. Current Development and Forward Work

8.1. Martian System Simulation: SoftSim6D-Mars

In support of development work currently underway at Georgia Tech for the development of a

CubeSat constellation in Martian orbit, a new variant of SoftSim6D was developed, known as

SoftSim6D-Mars. Softsim6D-Mars leverages the framework of the original IBLE and applies it to

the Martian system. Environment, perturbation, and dynamics models have been updated to use

Mars as the primary central body. Models within the 6DOF simulation capability include the

Martian atmosphere, solar radiation pressure, spherical harmonics, gravity gradient torques, and

third-body effects from the sun, Phobos, and Deimos. The same sensor and actuator libraries

developed for the IBLE are utilized for the emulation layer. The data bus structures and storage

routines are directly inherited from the IBLE. All original support utilities are also compatible with

the SoftSim6D-Mars IBLE. Similar to original verification work, SoftSim6D-Mars was verified

through comparison with STK simulations. Errors were comparable to those of the Earth centered

IBLE.

Although initial functionality has been proven, updates to SoftSim6D-Mars are suggested to fully

utilize its potential. Currently the initial states of third bodies (i.e. the sun, Phobos, and Deimos)

are calculated via STK for the desired starting Epoch and fed into an initialization function. To

speed up testing, the development of an initialization script to automatically determine the initial

states of these bodies is desirable. Also only a basic exponential atmospheric density model is used

for aerodynamic drag calculations. This should be sufficient for high altitude missions, however

the development of a new density block may be desirable for certain scenarios. Lastly, the current

configuration of SoftSim6D-Mars is a single spacecraft variant. Updates will be required to

simulate a constellation of small spacecraft in Martian orbit. The steps laid out by the SoftSim6D

user’s guide for expanding the basic Earth simulation for additional spacecraft can be followed to

perform such an operation.

8.2. Generic Central Body Implementation: SoftSim6D-Universal

In the future, it is highly probable that small satellite architectures will be utilized for either

heliocentric missions or concepts based around other large bodies in the solar system. It is for this

reason that it would be practical to update SoftSim6D to be generic for any central body. A library

of environment and perturbation models would need to be generated for each specific central body,

however a generic capability would at minimum allow for two body dynamics about any major

planetary object in the solar system. Such a capability is oftentimes sufficient for initial trade

studies and mission developments. Primary body specific models could then be developed for

missions that will undergo further development.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 77 of

80

When SoftSim6D-Mars was developed, initial strides were made towards this end. Planet specific

parameters such as radius and gravitational parameters were made generic throughout the entire

framework, configurable from the initialization file. The INIT data structure was also updated to

account for varying central bodies. Further updates to initialization scripts and data structures are

needed to make SoftSim6D-Mars rapidly configurable but no significant additional changes to the

framework should be necessary.

8.3. Additional IO Capability

Currently, SoftSim6D can only communicate over the standard RS-232, RS-422, and RS-485

protocols and generate/read basic analog signals. To increase the number of devices SoftSim6D is

able to emulate, it is desirable to purchase additional IO cards to expand the capabilities of the

target machine. Specifically IO cards capable of I2C and SPI communication. Unlike UART

protocols, I2C and SPI communication can vary slightly from device to device. Therefore, IO cards

capable of adapting to a specific component’s needs are rather complex. To work across a wide

range of components, customized IO cards are most likely required and the associated MATLAB

drivers. Mathworks has several licensed vendors who can provide these cards, but at a cost that

typically runs into the thousands of dollars. Lower cost solutions do exist and can be adapted when

absolutely necessary, however they are may not be adaptable to all configurations. It is therefore

recommended that investment be made in the higher cost custom IO cards to provide a robust

solution for SoftSim6D’s needs.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 78 of

80

9. Conclusion

To date, SoftSim6D has been proven to achieve all of its primary requirements with the potential

to be further expanded to accommodate an even wider range of capabilities. The rapid adaptability

and versatility of SoftSim6D should considerably reduce the amount of time required for future

projects to develop a high fidelity simulation environment. Initial algorithm testing capability can

be achieved on the order of days instead of weeks and HWITL testing capabilities can be ready

within weeks of testing requirement definition. Once the baseline implementation of SoftSim6D

was completed, the short timeline required to prepare for testing of the MSFC MADS avionics

board serves as proof of the system’s capabilities. Recent modifications now allow for the

simultaneous testing of multiple spacecraft and missions in the Martian system. Well defined

configuration management and coding procedures in addition to instruction manuals also make

SoftSim6D a very user friendly environment.

Through extensive development planning, implementation, and verification efforts, an extremely

robust and adaptable small spacecraft testing environment has been created. SoftSim6D has proven

to be a versatile environment that will drastically increase the reliability of future Georgia Tech

small satellite missions. With the conclusion of this master’s project, initial operability of

SoftSim6D has been achieved and the framework is ready for use in conjunction of full flight

missions.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 79 of

80

References

[1] NASA Engineering and Safety Center, "Demonstration of Autonomous Rendezvous

Technology Mishap Review Board RP-06-119," NASA, 2006.

[2] R. B. Friend, "Orbital Express Program Summary and Mission Overview," in SPIE Sensors

and Systems for Space Applications II, Orlando, FL, 2008.

[3] S. MacGillivray, "Proximity Operations Nano-Satellite Flight Demonstration (PONSFD)

Overview," in 10th Annual CubeSat Developers Workshop 2013, San Luis Obispo, CA,

2013.

[4] S. Chait and D. Spencer, "Prox-1: Automated Trajectory Control For On-Orbit Inspection,"

in AAS Guidance, Navigation, and Control Conference, Breckenridge, CO, 2013.

[5] N. K. Ure, Y. Kaya and G. Inalhan, "The Development of a Software and Hardware-in-

The-Loop Test System for ITU-PSAT II Nano Satellite ADCS," in IEEE Aerospace

Conference, Big Sky, MT, 2011.

[6] A. Ptak and K. Foundy, "Real-Time Spacecraft Simulation and Hardware-in-the-Loop

Testing," in IEEE Real-Time Technology and Applications Symposium, Denver, CO, 1998.

[7] Y. Yang and X. Cao, "Design and Development of the Small Satellite Attitude Control

System Simulator," in AIAA Modeling and Simulation Technologies Conference and

Exhibit, Keystone, CO, 2006.

[8] J. Debbler, J. J. Davis, J. Valasek and J. L. Junkins, "Mobile Robotic System for Ground

Testing of Multi-Spacecraft Proximity Operations," in AIAA Modelling and Simulation

Technologies Conference and Exhibit, Honolulu, HI, 2008.

[9] B. e. a. Kelm, "FREND: Pushing the Envelope of Space Robotics," Naval Research

Laboratory, 2008.

[10] S. Montenegro, S. Janhichen and O. Maibaum, "Simulation-Based Testing of Embedded

Software in Space Applications," Embedded Systems Modelling - Technology, and

Applications, pp. 73-82, 2006.

[11] S. Tashakkor and J. Molina-Fraticelli, "SPRITE-HIL," NASA Marshall Space Flight

Center, 2013, 2013.

Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation

Environment: SoftSim6D

Date: 3 December

2015

Page 80 of

80

[12] S. Zhaowei, X. Guodong, L. Xiaohui and C. Xibin, "The Integrated System for Design,

Analysis, System Simulation, and Evaluation of the Small Satellite," Advances in

Engineering Software, vol. 31, no. 7, pp. 437-443, 2000.

[13] "Satellite Missions Database," ESA, 2014. [Online]. Available:

https://directory.eoportal.org/image/image_gallery?img_id=168595&t=1338044414980.

[Accessed 10 November 2014].

