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“Well, actually, we have a lot better rockets than the coyote.” 

-Dan Truman, Armageddon 
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Abstract 

The capabilities of small satellites produced by the university and small business community have 

seen a sharp rise in recent years. With this growth in capabilities has come an increase in mission 

complexity to encompass those architectures previously only found in well-funded government 

programs, including proximity operations. The inherent complexity of proximity operations-based 

missions introduces a great deal of risk to the mission’s success. The low-budget nature of the 

small satellite community has limited the development of relevant testing infrastructure to match 

the pace of mission complexity increase to adequately mitigate risk. This research will leverage 

the standardization of CubeSat components to develop a highly adaptable hardware-in-the-loop 

testing capability for the verification and validation of small satellite avionics boards and flight 

software. MATLAB© Simulink Real-Time will be utilized to create a user friendly framework that 

can easily be adapted to support a wide range of small satellite mission architectures. This 

architecture, known as SoftSim6D, has been designed to thoroughly exercise the robustness of a 

satellite with the primary aim of minimizing mission risk to ensure full mission success. An 

examination of the overall framework, verified capabilities, and current variants will be discussed. 
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Acronyms 

6DOF 
Six degrees of 

freedom 

ADACS 
Analog to Digital 

Acquisition System 

ADC 
analog to digital 

converter 

CML 
Communication 

Management Layer 

COTS 
Commercial-off-

the-Shelf 

CPM 
Communication 

Processing Module 

DBM 
Data Buffer 

Module 

DDOS 
Distributed Denial 

of Service 

DPL 
Data Preparation 

Layer 

DTL 
Data Transmission 

Layer 

ECEF 
Earth Centered 

Earth Fixed 

ECI 
Earth Centered 

Inertial 

EGSE 
Electrical ground 

support equipment 

ENV 
Environment data 

bus 

FIFO First In First Out 

FOV Field of view 

GB Gigabyte 

GN&C 

Guidance, 

navigation, and 

control 

GPS 
Global Positioning 

System 

HWITL 
Hardware-in-the-

Loop 

I/O Input/output 
 

IBLE 
Integrated Base 

Level Environment 

IMU 
Inertial 

measurement unit 

INIT 
Initialization data 

bus 

LEO Low Earth Orbit 

LOS Line of sight 

LSB 
Least Significant 

Bit 

MADS 

Modular Attitude 

Determination 

System 

MEO Middle Earth Orbit 

MSFC 
Marshall Space 

Flight Center 

PCI 

Peripheral 

Component 

Interconnect 

RAM 
Random access 

memory 

SSF Sensor fixed frame 

SICD 
Software interface 

control document 

SSIP 

Spacecraft and 

Simulation 

Initialization File 

STATE State data bus 

STK Systems Tool Kit 

TAB Test avionics board 

UART 

Universal 

asynchronous 

receiver/transmitter  

VDF 
Variant Definition 

File 
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1. Introduction 

1.1. The Growing Need of HWITL Testing 

Throughout the history of spaceflight, relative proximity operations and rendezvous have 

undergone a significant evolution from human-in-the-loop to ground-in-the-loop to varying levels 

of autonomy. Due to the inherent complexity of automated proximity operations, the development 

of such a system presents a high operational and cost risk to developing organizations. Errors in 

algorithms or flight coding that are not caught through testing have the potential to result in a 

mission failure. This reality is what makes it difficult for mission designers to truly remove the 

ground from on-orbit maneuver planning and allow the system complete autonomy. The only way 

to guarantee the system is robust enough to be able to operate on a completely autonomous basis 

is to have a comprehensive ground test program designed specifically to exercise the system in 

such a way that faults in the system (if any) will present themselves in a laboratory environment 

as opposed to during mission critical operations.  

 

Autonomous proximity operations-based missions are by 

definition inherently risk prone as they involve at least one 

spacecraft maneuvering in close quarters to another space 

object. A slight miscalculation or incorrect reaction can 

create the potential for a collision resulting in a mission 

failure and possibly result in the loss of both space assets. 

This inherent risk further backs the needs for a system 

dedicated to the comprehensive check out of a satellite’s 

guidance, navigation, and control (GN&C) system so as to 

verify the robustness of the system. Multi-million dollar 

class missions often undergo extensive testing regimes but 

without a system independently designed to reach these testing goals, mission failure is still a 

possibility. This was shown in the NASA DART mission (illustrated in Figure 1) where inadequate 

software requirements and software failures resulted in a collision with the MUBLCOM spacecraft 

and the loss of a $110 million mission [1]. The MUBLCOM spacecraft was not critically damaged 

by the collision, but loss of the DART mission shows the risk involved in autonomous relative 

operations even for well-funded programs. The high profile Orbital Express mission was also 

plagued with failures due to incorrect software implementation. Although the mission was 

recovered through on-orbit software updates, it further stresses the potential for these types of 

failures even in the best-funded situations [2]. The possibility of failure is not an option if such 

autonomous systems wish to be used to service high-value assets or in support of manned 

spaceflight. 

 

Figure 1: DART Concept Visualization 

Invalid source specified. 
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With the rising popularity of CubeSats and small satellite platforms, the cost of producing these 

spacecraft has decreased drastically allowing complicated missions to be developed on the scale 

of hundreds of thousands of dollars as opposed to tens of millions. This has resulted in the addition 

of large numbers of universities and start-up 

companies to the small satellite community. As 

these organizations operate on very restricted 

budgets, they often do not have in-house test 

capabilities that are capable of fully testing complex 

GN&C systems. Although they do not have this 

capability, it has not deterred them from developing 

proximity operations-based missions such as Tyvak 

Nano-Satellite Systems CubeSat Proximity 

Operations Demonstration (CPOD) and Georgia 

Tech’s Prox-1 mission [3] (see Figure 2), [4]. These missions, by design, are high-risk operations 

but these risks are further increased by limited capability and funding to perform extensive testing 

prior to operations. It is thus desirable for there to exist a highly adaptable test capability to reduce 

operational risk but also at minimal expense such that low-budget missions can still afford to adopt 

more in depth test programs.  

 

1.2. Previous Approaches 

There are several universities and organizations that 

have developed various levels of such a capability 

but there are limitations to many of these 

approaches. One prevalent method is the physical 

augmentation of an integrated spacecraft to measure 

system performance. This involves the use of rate 

tables, Helmholtz cages, image simulators, as well 

as other devices to emulate the on-orbit spacecraft 

performance. A prime example of this is MIT’s 

testing system designed for testing the attitude 

determination and control system used with the 

ITU-PSAT II mission which utilized an air bearing 

table and Helmholtz cage [5] (shown in Figure 3). Although it has been proven to verify certain 

portions of ITU-PSAT II’s ACS system, it is limited in scope and not easily reconfigurable for 

additional scenarios. Similar approaches can be found at other institutions, but they all present the 

issue that they cannot be easily reconfigured for additional scenarios without extensive time and 

cost [6], [7], [8], [9].  

 

Figure 2: Prox-1 Mission Visualization 

Figure 3: ITU-PSAT II Test Setup [5] 
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Another approach removes hardware actuation from the loop and focusses on software emulation 

of sensors and actuators [10], [11], [12]. This approach has been successfully utilized in the 

development in Marshall Space Flight Center’s SPRITE tool for HWITL testing of CubeSats. Here 

the plant dynamics of a spacecraft are simulated and resulting sensor readings are generated to be 

fed into a spacecraft’s flight computer [11]. The benefit to this approach is that the primary 

adaptations required between different testing scenarios are software based, not hardware, and thus 

reduce the complexity and cost of a reconfiguration. In the small satellite community, this is 

desirable as cost and schedule are often limiting factors in the extent of testing which will be 

conducted. Although this approach does not verify individual sensor and actuator performance and 

rather focusses on the spacecraft’s avionics, it can be argued that this approach is highly valuable.  

 

Multiple approaches have been used in the past in order to tackle the problem of thoroughly testing 

complicated mission architectures. However, capabilities that have been developed have either 

been limited in scope or lacked the capability to be easily adapted for other mission architectures. 

The need clearly exists for the development of a reconfigurable system that can test a wide range 

of mission profiles for different spacecraft while still remaining cost effective for the small satellite 

community. 
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2. Methodology 

2.1. Approach Selection 

After conducting a survey of pre-existing testing environments it was determined that a framework 

which would achieve the most utility throughout the entire lifecycle of the mission and provide 

the greatest platform for fully exercising a spacecraft’s avionics system should focus on the 

avionics of the spacecraft. Physical actuation of an integrated spacecraft was considered as a 

possible option, however it was decided that this would only have limited utility in fully verifying 

the system. Physical actuation (rate tables, Helmholtz cage’s, etc.) would provide the ability to 

partially test nominal mission performance but would not give testing engineers the ability to 

adequately introduce off-nominal scenarios to fully characterize the system. These systems also 

often require significant modification between spacecraft which introduce large cost and schedule 

implications making the system less desirable. However, a testing environment based on integrated 

avionics testing can both fully exercise the system’s performance and be adaptable enough to make 

it a viable “generic” testing environment. 

 

In the small satellite community, the vast majority of sensors and actuators used on-board satellites 

originate from commercial vendors as opposed to custom-designed, mission-specific solutions. As 

these Commercial-Off-The-Shelf (COTS) components gain more flight heritage, the validity of 

the performance specifications for these units has increased dramatically. It is for this reason that 

oftentimes it is safe to take these specifications at “face” value and not invest extensive resources 

in verifying individual sensor performance. This is especially the case for university-based and 

other low-budget missions where this sort of testing is not within the budgetary allowances of the 

program. Since these components have a high probability of meeting performance specification 

during operation, it is possible to remove them from the testing chain. This fact allows us to now 

formulate the main methodology behind the HWITL test bed. 

 

As previously discussed, the largest risk to a successful mission lies with the successful 

implementation of the hardware/software interface as well as adequate definition and 

implementation of flight software requirements. The software interface with hardware can often 

prove to be a complicated interface to design for nominal conditions. Without proper requirements 

and extensive testing, this software interface may not be able to properly function should the 

hardware malfunction. In university-class missions, requirements concerning off-nominal 

hardware communication are often not adequately defined, thus requiring further testing to verify 

functionality. A major cause of mission failure also lies with the definition of flight software 

requirements rather than their implementation. Requirements may be developed, implemented, 

and successfully tested, but if those requirements do not adequately encompass the true needs of 

the mission, failure is still possible. For instance, one of the causes for the failure of the DART 
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mission was a GPS velocity error bias of 0.6 m/s. The design requirements stated that the measured 

velocity error must be within ±2 m/s (meaning this error fell within requirements). However, as 

the failure of the mission proved, this requirement was not properly defined and thus contributed 

to the mission failure [1]. A key ability of the HWITL platform will be to rigorously test the 

spacecraft avionics in a system realistic enough such that potential in-flight errors caused by poor 

requirements definition will be revealed. 

 

To replace the physical simulators and actuators that we have removed from the testing chain, the 

HWITL platform will instead mimic the low level output of each of these components. As opposed 

to many testing schemes where this data would be fed into the flight computer via an electrical 

ground support equipment (EGSE) connection, this approach would feed the emulated component 

I/O directly into the hardware connections on the avionics boards where the actual component 

would be connected. Introducing component signals at this level would therefore allow the 

complete verification of the entire avionics hardware and software chain while still allowing the 

test engineer a great deal of control over the system. This capability is especially important in 

distributed architectures where information passes through multiple levels of signal and data 

processing before reaching the primary flight processor. EGSE connections typically bypass all 

lower level hardware/software and pass data directly to the flight computer. Although this form of 

testing may verify performance of software on the primary flight computer, it does not provide 

any verification for the multiple lower levels of hardware/software that in reality sensor data would 

need to pass through before it reaches the flight computer. Therefore the EGSE methodology 

would effectively be ignoring a large number of potential fault locations and not truly validating 

the robustness of the system. 

 

The resulting environment will therefore need to be a full avionics in the loop test bed, capable of 

exercising all of the avionics electronics of the spacecraft, from low-level serial communication 

and associated basic electronics such as logic level converters to subsystem level microprocessors 

to the fully integrated avionics system with the primary flight computer in the loop. 

2.2. Framework Requirements 

The scope of the HWITL framework has already been defined as an avionics-in-the-loop test bed 

capable of fully exercising a spacecraft’s flight avionics system. From here three primary driving 

requirements have been defined. From this point forward, the framework will be known as 

SoftSim6D. 

 

Requirement 1 

The test bed shall be a robust Hardware-in-the-Loop avionics testing environment with primary 

emphasis on supporting the development, verification, and validation of autonomous proximity 

operations based mission systems 
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Requirement 2 

The system shall be capable of supporting spacecraft projects throughout the mission lifetime, 

from initial development, to engineering and flight unit testing to flight anomaly mitigation during 

on-orbit operation. 

 

Requirement 3 

The system shall be highly adaptable such that it can be rapidly configured for a new mission with 

no to minimal simulation development required. 

2.3. System Architecture 

Initial requirements definition of the SoftSim6D framework determined that the framework was 

to be both highly adaptable for specific mission requirements and capable for use during all phases 

of a spacecraft design lifecycle. SoftSim6D was designed with the intention that it can be used for 

development of MATLAB/Simulink control algorithms and mission design, testing of flight C 

code, and Hardware-in-the-Loop (HWITL) testing of flight avionics boards. In support of this, a 

framework was developed with three distinct layers: simulation, emulation, and interface. 

 

The simulation layer is the primary engine of the environment, consisting of a series of high fidelity 

environmental, perturbation, and dynamics models. Environmental models generate the Earth-

centric ephemerides of the spacecraft, sun, and moon. Perturbations caused by atmospheric drag, 

solar radiation pressure, spherical gravity harmonics, and third body effects are modeled. 

Accelerations and moments caused by these phenomena are fed into translational and rotational 

dynamic plants along with physical characteristics of the spacecraft to create a high fidelity six 

degrees-of-freedom environment. 

 

The emulation layer is responsible for the simulation of spacecraft components and consists of two 

parts: spacecraft sensors and actuators. The spacecraft sensor block takes the true spacecraft state 

as determined by the simulation layer and generates the corresponding sensor readings for a suite 

of generic spacecraft sensors. The actuator block acts upon commands received from the test article 

and generates the resulting forces and moments to be fed back into the simulation level for 

propagation of the spacecraft state.  

 

For a given spacecraft or flight program, once components are selected, the only modifications 

that will be required to interface with a given test article will be the interface layer. For basic 

testing of MATLAB/Simulink algorithms, this layer will simply generate data buses to be fed 

directly into the provided MATLAB code. For testing of flight C code and HWITL testing, the 

interface layer will act as the interpreter between the simulation and test module, generating 
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realistic low-level input/output (IO) to model flight hardware conditions as realistically as possible. 

The layered architecture is illustrated in Figure 4: High Level Architecture OverviewFigure 4. 

 

 

Figure 4: High Level Architecture Overview 

A key attribute of this architecture is that it is highly adaptable and configurable such that it is able 

to accommodate a wide range of mission profiles, sensors, and testing requirements. As such, a 

standardized plant framework has been developed for all models to allow for new models to be 

“plugged” into the simulation, minimizing rework between each satellite. Generic models have 

also been developed for “standard” classes of COTS components such as reaction wheels, cold gas 

thrusters, inertial measurement units (IMU’s), etc. with easily changeable configuration 

parameters to allow the plant models to be updated for different versions of hardware.  

 

Different mission profiles can call for different fidelities in their environments models based on 

mission requirements. For example a spacecraft with a deployable boom operating in LEO would 

have greater concern about the effect of atmospheric drag on system performance than a 

communications satellite in MEO. It is for this reason that environment models such as 

atmospheric density, solar radiation pressure, and Earth’s magnetic field will also be treated as 

interchangeable components within the overall framework. For example, the testing of a specific 

satellite may call for the use of a specific high fidelity magnetic field model not included in the 

standard HWITL framework libraries. To prevent the need for substantial code change to 

accommodate a new model, the specific model utilized by a simulation run will be another 

configuration parameter with a standard interface format.  
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3. Simulink Real-Time Implementation 

3.1. Overview 

This architecture has been implemented using MATLAB© Simulink Real-Time via a real-time 

target machine. Using this framework, the test environment will have three primary components; 

the host machine, the target machine, and the test article. The test article will either be the 

spacecraft avionics boards undergoing testing or MATLAB/Simulink algorithms. The architecture 

implementation is illustrated in Figure 5.  

 

 

Figure 5: Framework Hardware Implementation 

 

 

The host machine is where the simulation is designed and configured for the specific test run via 

MATLAB© Simulink. This is where all spacecraft parameters are set, new models are defined, and 

simulation management occurs. When the simulation is completed it is compiled into a Simulink 

Real-Time C application and loaded onto the target machine for execution. Depending on the test 

scenario, the application can be compiled to run in real-time, for HWITL testing, or free-run mode, 

for algorithm testing and verification. Free-run mode is an accelerated mode which will execute 

the simulation as fast as the hardware capabilities of the target machine allow. 

 

The target machine is where the execution of all testing occurs. The target machine is a modified 

PC that is booted into a MATLAB© kernel from an external USB drive. By using this kernel, the 

target computer does not load a traditional operating system which requires substantial processor 

overhead. Rather the purpose of the kernel is solely for communication with the host computer 

and management of the simulation. This allows the C application to utilize the complete power of 
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the processor and drastically increase the speed of any real-time or free run simulations. Data 

monitoring during testing will occur via this machine while the final test data will be transferred 

to the host computer over crossover Ethernet for post processing. The MATLAB© kernel also 

allows for real-time communication between the target and host computers both before and during 

testing. As will be discussed later, this allows the test engineer to quickly configure the simulation 

from the host machine as well as change parameters or insert faults while a simulation is running.  

 

The target machine will also host the low level IO interface cards which will be responsible for 

communication with the spacecraft avionics during HWITL testing. The wiring harness that 

interfaces the real-time target PC with the avionics board will be fabricated for each spacecraft 

being tested such that the connections are identical to those which the spacecraft would see from 

the real component.   

 

For scenarios where MATLAB/Simulink algorithms are undergoing testing in lieu of hardware, 

during the configuration of the simulation on the host machine, the algorithms will be directly 

inserted into the simulation. These algorithms will then be compiled into the C application with 

the rest of the simulation and transferred to the target machine. Execution will still occur on the 

target machine so as to take full advantage of the increased simulation speeds allowed by the 

standalone MATLAB kernel. 

3.2. Data Bus Formulation 

To allow for easy configuration, expansion, and data management MATLAB data buses have been 

used to track all states, logic flags, and data products throughout the simulation. This was done 

intentionally to allow for easy management/access to all state information and to allow for the easy 

use of variable models that enable the simulation to be configured without substantial user input. 

As will be discussed, the specific utilization of data buses was designed to allow for development 

and implementation of new models in a plug and play fashion. 

 

Three major data buses exist in all simulations, regardless of the configuration, test article, or 

models utilized. These are the environment (ENV), state (STATE), and initialization (INIT) buses. 

Each are required for the successful propagation of all dynamic and kinematic models as well as 

for the modelling of sensors and actuators. The environment bus is responsible for tracking all 

time conversions and any processes that exist external of the spacecraft. The state bus contains all 

information pertaining to the spacecraft inertial state, rotation matrices, and mass properties. The 

initialization bus was developed to allow for rapid configuration of the entire simulation with 

minimal modifications required. This bus contains all information on the spacecraft initial states 

as well as information pertaining to any other physical or performance characteristic (such as 

surface areas or sensor noise parameters). Updates to the default values of this bus allow the user 

to automatically configure many aspects the simulation at start-up. Data buses for sensor data 
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(SEN_DATA) and actuator response (SC_RESPONSE) are also defined within the baseline 

environment, however these will need to be updated to match the data sets of the spacecraft under 

examination.  

3.3. Variable Models 

A primary requirement of SoftSim6D was to have the ability to rapidly configure the simulation 

for different perturbation models, sensor models, etc. without substantial user effort. To meet this 

need, Simulink Model References and Variant Subsystems were utilized. Model References allow 

the generation of custom Simulink blocks for insertion into a high-level model. A model reference 

block is a standalone Simulink model that is configured in such a way that, it can be inserted into 

another model as a block as opposed to a subsystem. This enables easy configuration management 

as well as speeds up compile time of the overall simulation. Generic blank Simulink models 

configured for this purpose have been generated for each major variation subsystem within 

SoftSim6D to simplify the development of future modules.  

 

Simulink Variant Subsystems are a powerful tool that enables much of SoftSim6D’s rapid 

configuration abilities. A variant subsystem allows the definition of multiple instances of the same 

subsystem, however only one is active at a time, as determined by an external setting. This setting 

can be set at initialization and thus allows the multiple models to be rapidly interchanged without 

manual manipulation of the model. In SoftSim6D, each variant is an externally defined model 

reference block. To ensure proper functionality, all variants placed within a given variant 

subsystem are required to have identical inputs and outputs. Universally across the simulation, 

with few exceptions, all variants/model references contain the three standard buses (ENV, STATE, 

and INIT). These were designed to contain the necessary information for all derived calculations 

within SoftSim6D. The outputs of each variant model are dependent on the specific application 

and are typically simple vector outputs. New bus definition (such as SEN_DATA and 

SC_RESPONSE) occur at a higher level within the simulation. 

 



 
Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation 

Environment: SoftSim6D 

 

Date: 3 December 

2015 

Page 22 of 

80 

 

 

 

Figure 6: Variant Subsystem Example: Spherical Harmonics 

Figure 6 shows an example of a variant subsystem. The displayed subsystem is for the spherical 

harmonics perturbation model. Three variants currently exist within the model; no spherical 

harmonics, only J2 zonal harmonics, and J2 through J6 harmonics. Currently the J2 zonal harmonics 

model is active (this can be discerned by the fact that the other two models appear grayed out). To 

change which model is active, the user simply needs to alter the single parameter SPH_Option in 

the initialization file. No other action is required. To expand on previous discussion of standard 

model reference formats, it is important to note that these models produce both a translational 

acceleration and moment result. Although basic spherical harmonics do not produce torques on 

the spacecraft, configuration control requires that all perturbation models have both acceleration 

and moment outputs. In this case, the moment output of the models is of value zero. 

 

Variant subsystems are used throughout SoftSim6D in any subsystem which is conducive to the 

desire to have numerous options available for rapid configuration. Expansion of a variant 

subsystem has also been designed to be straightforward. The user needs only to create their new 
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model within the generic template and save it according to configuration standards. A new model 

reference corresponding to the new block is then inserted into the relevant variant subsystem. To 

be accessible as a rapid configuration option, a single variant control and condition must be added 

to the variant subsystem’s block parameters. After this is completed, the new model is completely 

integrated and ready for testing. 

3.4. Data Visualization and Storage  

There are three primary means of data visualization and storage while executing a simulation on 

the target machine. Each methodology takes advantage of pre-supported Simulink Real-Time 

capabilities and their use customized to support the needs of SoftSim6D. 

 

During all testing, a monitor is connected to the target machine. This monitor is primarily used for 

displaying real-time information and visual confirmation of simulation settings. Up to 9 plots of 

type Target Scope can be displayed on this screen during simulations. Target Scopes sole use is 

for the displaying of information while a test in underway and do not provide for a means of storing 

data for post processing. It is for this reason that no target scopes are permanently configured in 

SoftSim6D. The test engineer has the latitude to insert these where desired within the simulation 

to monitor any desired signals. For HWITL testing, these scopes are useful for verifying 

successfully communication with test hardware. Figure 7 shows a HWITL test where a non-zero 

signal in the top row scopes signify incoming data and the bottom row signifies outgoing 

communications. This proves a useful sanity check to confirm proper operation during a 

simulation. 

 

 

Figure 7: File Scope Example: HWITL Testing 
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The second and most used means of data monitoring and storage is through the use of Host Scopes. 

Although they are called scopes, their primary purpose is to save data from the simulation and not 

for plotting of data during execution. Host Scopes take the given input signal and save it in a 

Simulink Real-Time Scope object. Once all requested data has been gathered, the information is 

then transferred to host computer. Host scopes have been implemented across SoftSim6D to store 

all signals found in data busses and are found within Data Logging subsystems. This includes 

default storage utilities for ENV and STATE as well as for SEN_DATA and SC_RESPONSE. All 

listed signals are automatically acquired during every simulation run, in both real-time and free 

run modes. Additional scopes can also be readily added to capture new signals.  

 

In certain situations, a simulation may need to be run at a relatively high frequency but the user 

may only require data acquisition at a slower frequency. All Host Scopes are configured to allow 

slower storage rates if desired and it is a parameter that is configurable at simulation compilation 

time. Host Scopes can also be utilized to display select data at near real-time. A real-time plotting 

utility has been created to allow user real-time viewing of state data. This capability is separate 

from the standard Host Scope configuration described previously as a different implementation 

path is required. An example host scope implementation using both long term data storage and 

real-time display is shown in Figure 8. 

 

 

Figure 8: Host Scope Implementation Example 
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An unlimited number of Host Scopes are allowed by Simulink Real-Time, however limitations do 

exist on their use. Data found in Host Scopes are stored in the RAM of the target machine until the 

simulation is complete and the data is ported over to the host machine. Therefore if the number of 

signals saved, simulation duration, and sample frequency result in a data quantity that exceeds the 

2 GB RAM limits of Simulink Real-Time, SoftSim6D will be unable to run. If this is the case, 

when the simulation is loaded onto the target machine prior to execution, an error will occur to 

inform the user to address the issue. 

 

If Host Scopes do not provide sufficient data storage, the third method for data storage it to use 

File Scopes. These scopes save data directly to file system on the target machine and have no limit 

on size, however Simulink Real-Time is limited to 8 file scopes per simulation. Since there is no 

data limit on each of these scopes, signals are combined by bus in order to be stored concurrently 

in the same file. A significantly greater amount of custom configuration is required to both 

implement and extract data from File Scopes so it is recommended they are only used in long term 

HWITL testing where it is absolutely necessary to continuously store large amount of data for 

extended periods of time. Standard implementations have been generated for STATE and ENV 

data buses. An example of the ENV and STATE file scopes is shown in Figure 9. 

 

 

Figure 9: File Scope Implementation Example 
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3.5. Adaptability and Expansion 

The selection of Simulink Real-Time as the primary framework for SoftSim6D as well as the 

various methodologies already described for implementing models and storing data have all been 

done with the aim of making the simulation quickly adaptable and intuitive enough to allow new 

users to make additions. Model variants, spacecraft physical characteristics, initial state, 

component specifications, and simulation parameters have all been implemented in such a way 

that a test engineer can configure them at run-time without any modifications to the system. A 

detailed discussion of this is found in Chapter 5. 

 

If a user requires a model not currently found in SoftSim6D libraries, generic Simulink models 

and code files have been created for the major elements of each layer. In each generic model, the 

IO with the corresponding higher level model has already been defined and all of the model 

parameters have been configured to automatically map to the settings of the higher level 

simulation. A user’s guide is under development which further expedites this process. Figure 10 

shows an example generic model. 

 

 

Figure 10: Generic Model Variant: Magnetic Field Model Example 
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Detailed spreadsheets have been maintained for configuration management and revision control 

of existing models, tracking of data bus objects, and scope data ID trackers. Naming and 

numbering conventions have been developed and documented for all processes that are utilized 

across the simulation to ensure the plug and play capabilities of SoftSim6D. 

3.6. Target Machine and Hardware IO 

The target machine utilized in the Georgia Tech simulation environment is a standard Dell 

OPTIPLEX GX620 with a Pentium D processor. The machine has 4 GB of RAM (although only 

2 GB are useable by Simulink Real-Time due to limitations in the MATLAB kernel). A 1 terabyte 

(TB) configured to a FAT-32 file system has also been added to allow for the use of File Scopes. 

A standard USB flash drive has been written as a boot-disk for the MATLAB kernel and the BIOS 

of the target computer is configured to automatically boot from this flash drive at start-up. An Intel 

PWLA8391GTL Ethernet Card has also been added to both the target machine and host computer. 

This specific type of Ethernet card allows for direct communication between the target and host 

computer via a cross-over CAT5 cable. A PCI expansion bus has also been added to the target 

machine to allow for a total of five PCI IO cards, used for HWITL testing. The current target 

machine is shown in Figure 11. 

 

 

Figure 11: Georgia Tech Target Machine 
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To date IO cards have been added to the system to support serial communication over RS-232, 

RS-422, and RS-485 protocols as well as for the reading and generation of analog signals. All IO 

cards were selected based on their protocol, number of available IO lines, and pre-compatibility 

with Simulink Real-Time. A list of current IO cards and IO capabilities of the target machine is 

found in Table 1. The integrated IO cards in the PCI expansion bus attached to the target machine 

is shown in Figure 12. 

 

Table 1: Current IO Capabilities of Target Machine 

  Communication Protocols 

IO Card RS-232 RS422/485 TTL 

Analog to 

Digitial 

Digitial to 

Analog 

Quatech ESCLP-100 8 0 0 0 0 

Quatech QSCLP-200/300 0 4 0 0 0 

Quatech QSCLP-200/300 0 4 0 0 0 

Quatech QSCLP-200/300 0 4 0 0 0 

PCIM-DAS1602/16 0 0 8 16 2 

           

Target Computer Total 8 12 8 16 2 

 

 

 

Figure 12: Target Machine PCI Expansion Bus 
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4. System Modelling 

As previously discussed, SoftSim6D can be broken down into three distinct layers; simulation, 

emulations, and interface. Chapter 4 will discuss the internal workings of these layers and 

examples of functionality that has been implemented to do. Chapter 5 will discuss the integrated 

simulation environment that is created using these layers. 

4.1. Simulation Layer 

 Overview 

The simulation layer is the primary physics engine of the environment. This layer contains all 

models of the space environment, true spacecraft dynamics, and external perturbations. The states 

generated and monitored by this layer are fed into the emulation layer for use in generating sensor 

data. The simulation layer is also responsible for updating the true inertial state of the spacecraft 

based on commands interpreted by the interface layer and executed by the emulation layer. 

 Environment Models 

Environments are defined as any processes of state that exist external of the spacecraft and are not 

dependent on the state of the spacecraft. Calculation of states of planetary bodies are calculated 

here, such as the positions of the Sun and moon in the Earth Centered Inertial (ECI) frame. Any 

quantities derived from these states, in conjunction with either time or the spacecraft state, are also 

determined. This includes the rotation from ECI to the Earth-Centered-Earth-Fixed (ECEF) frame, 

the eclipse state of the spacecraft, and the sun line-of-sight (LOS) vector from the spacecraft. 

 

The framework also classifies any processes of the primary central body as environment models. 

The Earth’s magnetic field is calculated with respect to the ECI frame at the current location of 

the spacecraft as well as atmospheric density. 

 

Primary time keeping of the simulation time and current Epoch along with all other derived time 

measurements (GMST, Julian date, GPS Week and Second, etc.) are all monitored and propagated 

from the environment. Any use of time throughout the entire HWITL is calculated here. In 

sensitive GN&C missions, time tags on sampled data is of the utmost importance and even a 

variation in rounding within the simulation can have undesirable effects. It is for this reason that 

all time related calculation have been consolidated to the environment model to ensure 100% 

timing consistency. The implementation of this layer is shown in Figure 13. 
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Figure 13: Environment Model Simulink Implementation 

 

 Dynamic Modelling 

Dynamic modelling of the spacecraft is broken down into three categories; translational dynamics, 

rotational dynamics, and mass properties. The translational dynamics of the spacecraft are 

described by the generic two-body problem with the inclusion of imparted forces and perturbing 

accelerations. 

 

 𝒓̈ =  −
𝜇

‖𝒓‖𝟑
𝒓 + 𝒂𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛𝑠 +  

𝑭𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙

𝑚
 (1) 

 

As will be discussed later, all non-two-body gravitational forces are treated as external 

perturbations in order to allow for the greatest configurability of the 6DOF model.  
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Attitude is defined within the simulation via a quaternion of the form: 

 

 𝒒 = [
𝝐
𝜂] (2) 

 

The rotational state of the spacecraft is similarly modelled using the basic Euler’s rotational 

equations with the inclusion of external moments.  

 

 𝑱𝒘̇ + 𝒘 × 𝑱𝒘 =  𝝉𝒄 +  𝝉𝒅 (3) 

 

Where 𝝉𝒄 are control torques and 𝝉𝒅 are external disturbances. The kinematics of the orientation 

of the body frame with respect to the ECI frame is given by: 

 

 𝒒̇ =
1

2
𝚵(𝒒)𝝎 (4) 

 

Where: 

 

 𝚵(𝒒) = [
𝜂𝑰 + 𝜺𝑥

−𝜺𝑇
] (5) 

 

The attitude matrix defining the rotation from the spacecraft body-frame to the ECI frame is also 

calculated and stored here using Equation 6. 

 

 𝑹𝑩𝑭𝑭𝟐𝑬𝑪𝑰(𝒒) =  𝚿𝑻(𝒒)𝚵(𝒒) (6) 

Where: 

 

 𝚿(𝒒) =  [
𝜂𝑰 −  𝝐×

−𝝐𝑻
] (7) 

 

Mass properties are defined to be constant unless a propulsion system is present on the spacecraft, 

in which case a basic model for the change in mass and inertia for the spacecraft as a function of 

burn time is included. The implementation of the dynamics modelling subsystem is shown in 

Figure 14. 
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Figure 14: Dynamics Model Implementation 

 

 Perturbation Models 

Perturbations are considered to be all external processes which create a force or moment on the 

spacecraft and are dependent only on the spacecraft’s state and current environment. Moments and 

accelerations are calculated based on the user’s current desired variant and then fed into the 6DOF 

dynamics models for integration. All perturbations can either be turned off at run-time by the user 

or configured to a specific fidelity or specification. To make the addition of new perturbations as 

simple as possible, it has also been defined that all perturbation models have a resultant 

acceleration and moment output. If a given perturbation does not require one of the outputs, within 

the model that output is simply set to zero. For instance, gravity gradient effects produce no 

translational accelerations on the spacecraft, therefore a non-zero moment would be produced 

along with a zero magnitude acceleration. The high level implementation of all perturbation 

models is shown in Figure 15. 
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Figure 15: Perturbation Model Implementation 

 

4.1.4.1. Third Body Effects 

Currently, the ECI state of the moon and sun are calculated within the environments model. These 

states are then used in Equation to determine the resulting accelerations. 

 

 𝒂3𝐵𝐷 =  𝜇3𝐵𝐷 (
𝑹3𝐵𝐷 − 𝒓

‖𝑹3𝐵𝐷 − 𝒓‖3
− 

𝑹3𝐵𝐷

‖𝑹3𝐵𝐷‖3
) (8) 

 

Where R3BD is the position of the third body expressed in the ECI frame and 𝜇3𝐵𝐷  is the 

gravitational parameter of the third body. 

4.1.4.2. Atmospheric Drag 

Two current models for atmospheric drag currently are defined within the pre-existing libraries. 

The first is a basic model which assumes a spherical spacecraft with a given frontal area A and 

drag coefficient CD. Atmospheric density, as given by the environment model, is then used in 

Equation 9 to determine the translational acceleration on the spacecraft. 
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 𝒂𝑎𝑒𝑟𝑜 =
1

2

𝐴

𝑚
𝐶𝐷𝜌(ℎ)(𝒗𝑟𝑒𝑙 ∙ 𝒗𝑟𝑒𝑙)𝒗̂𝑟𝑒𝑙 (9) 

 

Where 

 𝒗𝑟𝑒𝑙 = 𝒗𝐸𝐶𝐼 − 𝒗𝑎𝑡𝑚
𝐸𝐶𝐼  (10) 

 

A spherical spacecraft model assumes uniform mass distribution and no center of mass, center of 

pressure offset, therefore the resulting moment is: 

 𝑴 = 𝟎 (11) 

The second atmospheric drag model assumes a spacecraft with discrete, non-overlapping panels 

of varying size, drag coefficients, and body-fixed orientation. Nominally, this model is defined 

with a basic six sided, rectangular spacecraft; however the simulation is configured such that n 

number of sides are possible. The current model does not account for self-shadowing effects, 

therefore any defined panels must not overlap. The resulting acceleration equations for a given 

side of the spacecraft are defined as: 

 

 𝒂𝑎𝑒𝑟𝑜,𝑖 =  − (
1

2

𝜌(ℎ)

𝑚
‖𝒗𝑟𝑒𝑙‖

2𝛾𝑖𝐴𝑖𝐶𝐷,𝑖𝒏̂𝑖 ∙ 𝒗̂𝑟𝑒𝑙 ) 𝒗̂𝑟𝑒𝑙 (12) 

 

Where 𝜌(ℎ) is the atmospheric density at the given altitude, 𝐴𝑖  is the surface area, 𝐶𝐷,𝑖  is the 

surface drag coefficient, 𝒏̂𝑖 is the spacecraft face normal expressed in the ECI frame, and 𝛾𝑖 is 

defined below: 

 

 𝛾𝑖 =  {
1 𝑖𝑓 𝜸̂𝑖 ∙ 𝒗̂𝑟𝑒𝑙 > 0 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 

 

Summing over the entire body, the total acceleration due to solar radiation pressure is: 

 

 𝒂𝑎𝑒𝑟𝑜 =  ∑ 𝒂𝑎𝑒𝑟𝑜,𝑖

𝑘

𝑖=1

 (14) 

   

This model does account for imparted moments as a result of any offset of a given panels center 

of pressure, cp, from the spacecraft’s center of mass, cm. The moments as a function of the 

spacecraft’s current attitude are given by Equation 15. 
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 𝑴𝑎𝑒𝑟𝑜,𝑖 =  − 
1

2

𝜌(ℎ)

𝑚
‖𝒗𝑟𝑒𝑙‖

2𝛾𝑖𝐴𝑖𝐶𝐷,𝑖(𝒏̂𝑖 ∙ 𝒗̂𝑟𝑒𝑙)
2(𝒗̂𝑟𝑒𝑙 × 𝒓𝑐𝑝,𝑖) (15) 

 

Where 𝒓𝑐𝑝,𝑖 is the vector from the center of mass to the center of pressure of face i. Summing over 

all faces we find: 

 

 𝑴𝑎𝑒𝑟𝑜 =  ∑ 𝑴𝑎𝑒𝑟𝑜,𝑖

𝑘

𝑖=1

 (16) 

 

4.1.4.3. Solar Radiation Pressure 

Similarly to the atmospheric drag modelling, solar radiation pressure effects can be calculated for 

either a spherical or rectangular spacecraft. For all time, a constant solar radiation pressure of 

4.57 × 10−6 W/m2 is assumed. Accelerations on a spherical spacecraft are defined as: 

 

 𝒂𝑠𝑜𝑙𝑎𝑟 =  − (
𝑆𝑃

𝑚
𝜂𝐴𝐶𝑟) 𝒓̂𝑠𝑢𝑛 (17) 

 

 𝑴 = 𝟎 (18) 

Accelerations on a rectangular spacecraft are defined by the equations: 

 

 𝒂𝑠𝑜𝑙𝑎𝑟,𝑖 =  − (
𝑆𝑃

𝑚
𝜂𝑖𝐴𝑖𝐶𝑟,𝑖𝒏̂𝑖 ∙ 𝒓̂𝑠𝑢𝑛 ) 𝒓̂𝑠𝑢𝑛 (19) 

 

Where SP is the mean solar pressure, 𝒏̂𝑖 is the spacecraft face normal expressed in the ECI frame, 

𝐴𝑖 is the surface area, 𝐶𝑟,𝑖 is the coefficient reflectivity of face i, and 𝜂𝑖 is defined below: 

 

 𝜂𝑖 =  {
1 𝑖𝑓 𝒏̂𝑖 ∙ 𝒓̂𝑠𝑢𝑛 > 0 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (20) 

 

Summing over the entire body, the total acceleration due to solar radiation pressure is: 

 

 𝒂𝑠𝑜𝑙𝑎𝑟 =  ∑ 𝒂𝑠𝑜𝑙𝑎𝑟,𝑖

𝑘

𝑖=1

 (21) 
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Torques due are given by: 

 

 𝑴𝑠𝑜𝑙𝑎𝑟,𝑖 =  − (
𝑆𝑃

𝑚
𝜂𝑖𝐴𝑖𝐶𝑟,𝑖(𝒏̂𝑖 ∙ 𝒓̂𝑠𝑢𝑛)2 ) (𝒓̂𝑠𝑢𝑛 × 𝒓𝑐𝑝,𝑖) (22) 

 

 𝑴𝑠𝑜𝑙𝑎𝑟 =  ∑ 𝑴𝑠𝑜𝑙𝑎𝑟,𝑖

𝑘

𝑖=1

 (23) 

 

4.1.4.4. Gravity Gradient Torques 

Gravity gradient torques are generated by non-uniformities in a spacecraft’s inertia. The resulting 

moment produced by a non-uniform inertia tensor is defined as: 

 

 𝑴𝑔𝑔 = 3
𝜇

‖𝒓‖3
𝒄̂ × (𝑱 ∙ 𝒄̂) (24) 

 

Where 𝒄̂ is the unit vector in the nadir direction. 

 

4.2. Emulation Layer 

 Overview 

Unlike the simulation layer which is the same for every spacecraft and configured at run-time, the 

emulation layer is built for a specific spacecraft to reflect the sensors and actuators present on-

board. The sensor block within the emulation layer is responsible for interpreting the current state 

of the spacecraft and producing the relevant sensor readings. The actuator block interprets the 

commands sent to an emulated sensor and generates the true forces and moments imparted on the 

spacecraft, which are then fed into the dynamics models. 

 

Although the emulation layer is custom for each spacecraft, it is designed using a plug and play 

configuration. Libraries of Simulink blocks have been generated for generic sensor and actuator 

models. These models are all configurable at run-time for the hardware specifications of the 

desired components. For use they simply need be inserted into the relevant block and connected 

to the incoming data buses. All blocks have been configured to accept the generic data buses used 

for tracking environment and state information to make integration as simple as possible. If the 

user requires a sensor or actuator model not currently defined within the emulation libraries, a 
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generic template and guidelines have been created to simplify the creation and implementation of 

the new model. 

 Sensor Models 

Sensor models are responsible for taking the current environment and state information of the 

spacecraft and converting it into the corresponding data reading based on the physics of that sensor. 

Sensor models are responsible for transforming the data into the appropriate sensor fixed frame 

(SFF) as well as accounting for any imperfections inherent in the sensor. This includes sensor 

noise, bias, and misalignments. The corresponding sensor data is then transferred to the interface 

layer for transmission to the test article. 

 

The high level implementation of several of the major sensor models are described below. Detailed 

information concerning each model can be seen within the comments of the actual sensor libraries 

and the indicated reference texts. A sample implementation of the sensor emulation layer can be 

found in Figure 16. 
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Figure 16: Example Sensor Model Implementation: DaVID CubeSat 

 

4.2.2.1. Magnetometer Models 

The primary magnetometer is a basic three-axis measurement configuration of the form: 

 

 𝒃𝑚𝑒𝑎𝑠
𝑆𝐹𝐹 = 𝑹𝐵𝐹𝐹2𝑆𝐹𝐹𝑹𝐸𝐶𝐼2𝐵𝐹𝐹𝒃𝑡𝑟𝑢𝑒

𝐸𝐶𝐼 +  𝜼𝑚𝑎𝑔 +  𝜷𝑚𝑎𝑔 (25) 

 

Where 𝜼𝑚𝑎𝑔 ~ 𝑁(0, 𝜎2) and 𝜷𝑚𝑎𝑔 is the constant measurement bias. 

4.2.2.2. Gyro Models 

Gyro models currently take two forms, either a single axis gyro measurement, or an integrated 

three-axis unit. The three axis measurement takes the form: 
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 𝒘𝑚𝑒𝑎𝑠
𝑆𝐹𝐹 = 𝑹𝐵𝐹𝐹2𝑆𝐹𝐹𝑹𝐸𝐶𝐼2𝐵𝐹𝐹𝒘𝑡𝑟𝑢𝑒 +  𝜼𝑔𝑦𝑟𝑜 +  𝜷𝑔𝑦𝑟𝑜 (26) 

 

4.2.2.3. Sun Sensor Models 

Currently three forms of sun sensor models have been developed and tested. The first is a basic 

fine sun sensor model which produces a vector in the sensor frame when the sun is in the FOV of 

the sensor. When the sun is in the FOV and the spacecraft is not in eclipse, the measurement is 

calculated via: 

 

 𝒔𝑚𝑒𝑎𝑠 = 𝑹𝐵𝐹𝐹2𝑆𝐹𝐹𝑹𝐸𝐶𝐼2𝐵𝐹𝐹 ∗ (𝒓𝑠𝑢𝑛
𝐸𝐶𝐼 − 𝒓𝑠𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑡

𝐸𝐶𝐼 ) +  𝜼𝑠𝑒𝑛𝑠𝑜𝑟 (27) 

 

A second model which calculates the in plane angle of the sun with respect to two adjacent photo 

diodes is determined via basic geometry has also been developed. The last model produces a basic 

analog voltage reading assuming four adjacent photodiodes mounted on the same surface divided 

into four quadrants. Accurate voltage modeling of this configuration of sensors is highly dependent 

on test information and best-fit curves provided by the manufacturer. This model was specifically 

developed to emulate the Wallops Island CRUQS sun sensor. If a similar model is required for 

emulation for a different sensor, it is recommended to not directly use this model, and rather use 

it as a template for modification to produce the most accurate model as possible of the desired 

sensor. 

 

4.2.2.4. Accelerometer Models 

Current accelerometer models include either single or three axis variants and measure non-

gravitational accelerations on the spacecraft. All existing models assume the units are placed near 

the center of mass of the spacecraft and do not measure centripetal accelerations caused by rapid 

rotation of the host craft. Since this framework has been designed for implementation on small 

spacecraft, it has been assumed that any rigid bodies simulated are not large enough for this effect 

to be significant. Minor modification would be required if an accelerometer needed to be emulated 

that was located far from the spacecraft cm. Measured accelerations are determined by the equation: 

 

 𝒂𝑚𝑒𝑎𝑠 = 𝑹𝐵𝐹𝐹2𝑆𝐹𝐹𝑹𝐸𝐶𝐼2𝐵𝐹𝐹(𝒂𝑠𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 − 𝒂𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙) +  𝜼𝑚𝑒𝑎𝑠 (28) 
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4.2.2.5. Inertial Measurement Units 

Modern inertial measurement units (IMUs)  for small spacecraft are available in many 

configurations that include three axis rate measurements, three axis acceleration measurements, 

and some units currently included integrated magnetometers as well. Since IMUs come in a wide 

range of configurations, it was decided to not generate standalone IMU models, rather when it is 

necessary to model an IMU, framework best-practice dictates that relevant gyroscope and 

accelerometer models are selected and independently inserted into the framework. The sensor data 

bus can then be used to track the measurements as integrated IMU data. 

 

4.2.2.6. Global Positioning System 

A basic model for a Global Positioning System (GPS) received has been developed and 

implemented. This model takes the current inertial translational state of the spacecraft, converts it 

into the ECEF coordinate frame and generates a GPS time stamped state vector. The model also 

has the ability to generate outputs in other coordinate frames or to generate other simulated data, 

depending on the specification of the emulated GPS. 

 

 𝒓𝑚𝑒𝑎𝑠
𝐸𝐶𝐸𝐹 = 𝑹𝐸𝐶𝐼2𝐸𝐶𝐸𝐹𝒓𝑠𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡

𝐸𝐶𝐼 +  𝜼𝑚𝑒𝑎𝑠 (29) 

 

 𝒗𝑚𝑒𝑎𝑠
𝐸𝐶𝐸𝐹 = 𝑹𝐸𝐶𝐼2𝐸𝐶𝐸𝐹(𝒗𝑠𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡

𝐸𝐶𝐼 − 𝒘 × 𝒓𝑠𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡
𝐸𝐶𝐼 ) +  𝝊𝑚𝑒𝑎𝑠 (30) 

 

4.2.2.7. Star Trackers 

A basic star tracker model has been implemented such that a noisy attitude quaternion 

measurement is generated; pending the view of the star tracker is not impeded by the Earth. The 

resulting quaternion represents the estimated attitude of the sensor frame with respect to the ECI 

frame. 

 

 𝒒𝑚𝑒𝑎𝑠 = 𝒒𝑠𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡 +  𝜼𝑚𝑒𝑎𝑠 (31) 

 

 Actuator Models 

Actuator models are responsible for taking commands generated by the test article and generating 

the resulting forces and moments on the spacecraft based on physics modeling of the given 

component. Since many actuators take on slightly different forms and accept varying command 



 
Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation 

Environment: SoftSim6D 

 

Date: 3 December 

2015 

Page 41 of 

80 

 

 

inputs, modification may be required to the pre-existing libraries to account for any variations. For 

instance, the current three axis reaction wheel model expects a torque input while others may 

require a wheel speed. If this is the case, the existing model will provide a foundation for any 

variants that need to be implemented. 

 

4.2.3.1. Reaction Wheel 

The current reaction wheel implementation assumes a three wheel configuration, orthogonally 

aligned with the primary spacecraft axis. A basic internal control law, accounting for viscous and 

coulomb friction is implemented to realize commanded torques. Also wheel saturation is tracked 

and accounted for in the output dynamics. Should a reaction wheel in a different configuration be 

required, the model must be implemented accordingly. However it can be derived from the same 

basic relationships as shown below. 

 

 𝑯 = 𝑱𝝎 + 𝒉 (32) 

 

Where h is the contribution of angular momentum from the reaction wheel. Assuming no external 

disturbances, taking the time derivative of the angular momentum results in: 

 

 𝑯̇ = 𝑱𝝎̇ +  𝒉̇ +  𝝎 × (𝑱𝝎 + 𝒉) = 𝟎 (33) 

 

 𝑱𝝎̇ +  𝝎 × 𝑱𝝎 =  −𝒉̇ −  𝝎 × 𝒉 (34) 

 

 

 

Therefore, the control torque of a reaction wheel is given by: 

 

 𝝉𝑐 =  −𝒉̇ −  𝝎 × 𝒉 (35) 

 

Where: 

 𝒉 = 𝑨𝛀 (36) 

 

Where 𝑨 is the inertia tensor of the wheel assembly expressed in the body frame and 𝛀 are the 

wheel rates, expressed in the body frame. 
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4.2.3.2. Magnetic Torque Rods 

The magnetic torque rod emulator block simply takes in a commanded magnetic dipole in the body 

frame and direction to generate a resulting magnetic torque on the spacecraft. Misalignments of 

the torque rods are also taken into account. 

 𝝉𝑇𝑅 =  (𝑹𝑚𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝒎𝑐𝑚𝑑) × 𝒃𝑬𝑪𝑰
𝑩𝑭𝑭 (37) 

 

4.3. Interface Layer 

 Overview 

The interface layer is the primary mechanism for SoftSim6D’s successful integration with a test 

article. Careful consideration in development and maintenance of the interface layer will be the 

driving factor in simulating realistic hardware. In the emulation model, at every time-step of the 

simulation, sensor measurements are generated based upon the specifications of the desired sensor 

and stored as the corresponding double prevision vector, voltage, etc. When testing MATLAB or 

Simulink algorithms, this result is sufficient to be fed into the test article as at this level as primary 

emphasis will be on the design of the algorithms themselves and not on the hardware 

implementation. However, when dealing with HWITL testing, careful consideration must be made 

to ensure a realistic outcome. In order to prepare data for transmission to hardware, three additional 

layers are considered; data preparation, communication management, and data transmission. 

 

 

Figure 17: Sensor Interface Layer Work Flow 

In many scenarios, unless the exact component has previously been modelled and verified for 

HWITL testing, the three layers will need to be developed for a given component. Generic 

frameworks for all three layers have been developed to ease this process and can be readily adapted 

to fit new hardware. The following sections will provide further explanation on the purposes of 

each layer and the sections of each layer will be custom for each component. Examples using 

primarily sensor models will be discussed, although implementation for actuator models undergo 

the exact same process, except in reverse order. 
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 Data Preparation Layer 

Preparing data for transmission is the simplest of the three required steps for HWITL testing, 

however a minor error at this phase can completely invalidate any transmitted data so care must 

be taken in defining this block for a given component. There are three primary processes handled 

by the Data Preparation Layer (DPL). The first is unit conversion. Each sensor model will output 

data in a given unit and base. For instance, the three axis magnetometer model gives a default 

output in Teslas (T).  The component you are simulating may actually produce readings measured 

in Gauss (G) or perhaps nano-Teslas (nT). To minimize modification to emulation layer libraries, 

any necessary conversion is done in the DPL.  

 

Many sensors fundamentally are built of analog electronics with analog to digital converters 

(ADC) used to capture the analog data before transmission over serial protocols. This process of 

converting data from an analog to digital format results in the discretization of the sensor data over 

finite intervals, based on the resolution of the ADC. The ADC will produce an integer digital 

number which requires an additional conversion to be a useful numeric measurement. Typically, 

for ease of implementation in serial communication, a sensor will transmit this integer number and 

leave conversion to the necessary decimal number and units to the user. This relationship is defined 

as a measure of units per Least Significant Bits (LSB). For instance, a rate gyro may have a 

conversion of 0.1 º/s/LSB. If a reading were to be used in an attitude control algorithm, an example 

reading of 22 would be converted as follows: 

 

 22 ∗
0.1 ° 𝑠⁄

𝐿𝑆𝐵
= 2.2 ° 𝑠⁄   (38) 

 

The DPL simulates the sensor, by reversing this process and discretizing the reading and 

converting it to the corresponding integer. This step is not necessary in all sensors as some may 

directly report floating or double precision numbers. This will be the case in more advance sensors 

that typically contain some form of internal microprocessor. 

 

The last process in the DPL converts the measurement into the necessary precision. This involves 

converting the double precision number that has been used thus far in Simulink into the precision 

dictated by the hardware’s Software Interface Control Document (SICD). An example Simulink 

implementation of the DPL can be shown in Figure 18. 
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Figure 18: Data Preparation Layer Example: EPSON MG350 IMU 

 

 Communication Management Layer 

The Communication Management Layer (CML) is the most complicated, yet essential, component 

of the interface layer. The CML is responsible for monitoring all incoming data test article for 

valid commands, retrieving the necessary data from the DPL, and then packaging the data into a 

valid format for transmission over the corresponding serial protocol. Two primary modules make 

up the CML; the Data Buffer Module (DBM) and the Command Processing Module (CPM). An 

example CML is shown in Figure 19. 
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Figure 19: Communication Management Layer Example: EPSON MG350 IMU 

 

4.3.3.1. Data Buffer Module 

The IO cards used to communicate with the flight avionics board maintain FIFO buffers which 

hold all incoming data until they are read and emptied by the target computer. At each finite 

iteration of the simulation, the Data Buffer Module, reads and stores the information from this 

buffer. As the DBM operates in discrete time, the FIFO buffer ensures that no data is lost between 

iterations of the simulation. Since the majority of simulated components communicate 

asynchronously, there is no guarantee that a communication packet will be received during the 

exact window of a FIFO read operation by the DBM. It is for this reason that the DBM stores data 

from time adjacent FIFO read operations and combines them into a complete packet. Once the 

DBM has confirmed an entire packet has been formed, it will pass on the packet to the CPM, as 

shown in Figure 20.  
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Figure 20: Data Buffer Module Example: EPSON MG350 IMU 

 

This process ensures no dropped transmissions, however it does present the possibility for 

inadvertently inserting latency into the system. For example, if an avionics board is designed to 

sample a sensor at 1 Hz, but the simulation is only running at 1 Hz, the data request packet has the 

potential to be read over two time steps by the target computer. This would result in a one second 

delay in response, which is undesirable. It is for this reason that all HWITL simulations be run at 

least 10 times faster than the maximum sampling rate of an avionics board. The minimum sample 

for any HWITL simulation is recommended to be at least 100 Hz. 

4.3.3.2. Communication Processing Module 

Once a valid packet has been confirmed by the DBM, the Communication Processing Module 

(CPM) will decode the packet to determine the specific command that has been set. The CPM is 

able to simulate a wide range of activities for a given component. For instance, besides requesting 

data, a command packet received from the test article can request the change of a setting such as 

component ID number or gain. The CPM has the ability to recognize that, and change the resulting 

setting, pending the Interface Layer has been properly designed to account for said command. A 

common component command is to change the devices address or component ID. This is 

especially the case when multiple copies of a single component are connected to a single avionics 

board. The CPM has the ability to interpret that command, change the address, acknowledge the 

command, and have that change persist throughout the rest of the simulation. 

 

Although a generic CPM model has been created for use in generating specific component models, 

the CPM requires a substantial knowledge of the software interface of the desired component in 
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order to be adequately implemented. It is desirable that for any component being emulated a SICD 

be obtained from the manufacturer to ease the process of development. Typically SICD’s are 

written to enable a user to write software capable of commanding and receiving/interpreting data 

from a device. The development of a component specific CPM will require the opposite of that. 

Generating a CPM will require the reverse engineering of a SICD such that the generated software 

accurately simulates the role of the component being commanded by an external processor. During 

the development process of the CPM it is highly encouraged to have a test article available that is 

designed to command the desired component to confirm proper serial communication. This can be 

as simple as a basic microprocessor such as an Arduino or Tiva C microcontroller configured to 

sample data at a set frequency. Having such an article available during the development and 

verification process of the simulation will drastically decrease set-up time required once the actual 

flight test article has arrived. 

 

The intricacies of development for a specific CPM will vary by component. For example purposes, 

the design, implementation, and testing of the CPM for an EPSON IMU MG350 will be described 

in detail. Figure 21 shows an example of the CPM for this IMU. The EPSON CPM takes in the 

input SERIAL_CMD, which is the full command packet received by the target computer and 

verified by the DBM. The command packets to read from the EPSON unit are short three byte 

sequences containing a leading header byte, a command ID byte, and a termination byte. The CPM 

first checks for valid header and termination bytes. Once confirmed, the CPM will then determine 

which data the received command byte corresponds to. The desired information will then be passed 

into a custom MATLAB function known as ByteWriter2.m. This function internally converts the 

input value into a 16 bit signed binary number and then into a 2 byte hexadecimal number. The 

hexadecimal number is then converted into a MATLAB int16 class for use in data transmission.  
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Figure 21: Command Processing Module Example: EPSON MG350 IMU 

 

It is important to note that although MATLAB int16 technically corresponds to a 16 bit signed 

integer, transmitting a single16 bit signed integer will not result in the transmission of the correct 

two byte number. This is due to both the design of MATLAB serial drivers as well as how 

MATLAB defines a 16 bit signed integer at the binary level (which is of primary concern for serial 

communication). In general, it is strongly recommended that for transmission of any data type 

using Simulink Real-Time, data integrity must be performed at the binary level in order to ensure 

accurate communication. This is also important because different implementations may use 

different byte orderings than considered convention. For example one sensor may send two bytes 

of data with the Most Significant Byte (MSB) first while others may send the Least Significant 

Byte (LSB). This is even more the case in communication requiring floating or double point 

precision. 
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 Data Transmission Layer 

The Data Transmission Layer (DTL) is responsible for all actual communication with the test 

hardware. The DTL reads the FIFO buffer of the corresponding data port and IO card in the target 

machine and then transforms it into a numeric format that can be utilized by the rest of the 

simulation. It primarily consists of what are known as Read Write Simulink blocks. These are 

custom Simulink IO blocks that come with supported IO cards. They contain all of the driver code 

necessary to operate the IO card in the target computer. Although the exact layout of the Block 

Parameters varies by card and manufacturer, all allow for configuration of major requirements for 

serial communication such as baud rate, parity, stop bits, FIFO size, etc. Analog to Digital 

Acquisition System (ADACS) cards provide the user options on voltage limits, sample times, and 

precision. An example DTL for the Honeywell HMR2300 magnetometer in conjunction with the 

Read Write block for the Quatech ESC-100 IO Card is shown in Figure 22. 

 

 

Figure 22: Data Transmission Layer Example: Honeywell HMR2300 
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 MATLAB and Simulink Algorithm Testing 

In addition to real-time HWITL testing, SoftSim6D has the capability to be used for both real-time 

and accelerated testing of MATLAB/Simulink algorithms. For a given spacecraft, once the 

Simulation Layer and Emulation Layer have been defined, they do not need to be changed, 

regardless of algorithm or HWITL testing. The only alterations that are required are in the Interface 

Layer. For algorithm testing, the complexity of the Interface Layer is drastically reduced. For the 

highest fidelity testing, it is recommended that the user generate a DPL to account for potential 

issues caused by data discretization, although this is not required. For testing the user will then 

insert their MATLAB/Simulink algorithm directly into the Interface Layer via a Model Reference 

block and connect to the corresponding inputs. It is also important to note that in order to take 

advantage of SoftSim6D, the target algorithms need to be designed in accordance with 

requirements consistent with Simulink Coder. A sample work flow for both sensor and actuator 

IO using MATLAB/Simulink algorithms as the test article is shown in Figure 23. 

 

 

Figure 23: Algorithms Only Interface Layer Work Flow 
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5. Integrated Base Level Environment 

5.1. Overview 

With the development of the individual simulation layers in Chapter 4, the groundwork was 

successfully laid for a full simulation containing fully functioning integrated plant models, 

component emulation, and serial communication. When it is desired to configure a simulation for 

a new spacecraft or scenario, an Integrated Base Level Environment (IBLE) has been developed 

to act as a framework to build upon. Figure 24 shows a high level view of the IBLE prior to 

configuration by the user. The IBLE has two major components already implemented; the 

simulation layer, denoted by the red environment, dynamics, and INIT blocks as well as the 

emulation layer, denoted by the cyan sensor and actuator blocks. The simulation later within the 

IBLE is 100% configurable from initialization files by the user, given that no new functionality 

(such as new perturbation model) is required. The emulation layer will require manipulation by 

the user in order to insert relevant component models into the simulation, however extensive 

libraries for standard components have been developed to facilitate this process and ensure the 

plug and play usability of the framework. This chapter will discuss the configuration of a new 

simulation using the IBLE as well as the custom utilities that have been developed to support all 

forms of testing using SoftSim6D. 

 



 
Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation 

Environment: SoftSim6D 

 

Date: 3 December 

2015 

Page 52 of 

80 

 

 

 

Figure 24: Standard IBLE for Single Spacecraft Mission Development 

 

5.2. Configuring a Simulation 

 Simulation Layer 

The Simulation Layer has been designed and implemented such that no manual user manipulation 

of the SoftSim6D Simulink model is required for configuration. As previously discussed, 

everything required to run a high fidelity 6DOF simulation is contained within this layer. To 

configure all parameters and select the desired model variants only two files are required to be 

edited; the spacecraft and simulation initialization file, LOAD_Init.m, and the variant definition 

file, LOAD_ModelVariantDefinition.m. 
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The spacecraft and simulation initialization file (SSIF) is the primary means of configuring the 

physical properties and state of the spacecraft as well as the parameters for the simulation. 

Spacecraft mass properties, areas, surface properties coefficients, etc are all defined here. The file 

contains detailed comments to define necessary units and what values may be ignored (if certain 

variants are not selected for use). The initial inertial translation and rotational states are also 

defined. Lastly basic simulation parameters are also tunable to the user’s preference. This includes 

simulation length, Epoch, time step, and scope sample rate. This structure, shown in Figure 25, 

has been designed such any changes in a simulation’s SSIF, at compilation and execution, will 

automatically be reflected in the test. As will be discussed in SoftSim6D’s custom support utilities, 

anytime the simulation has already been compiled and loaded onto the target machine, many of 

the parameters found in the SSIF can be altered in real-time or between simulations without re-

compiling.  

 

 

Figure 25: Spacecraft and Simulation Initialization File 

 



 
Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation 

Environment: SoftSim6D 

 

Date: 3 December 

2015 

Page 54 of 

80 

 

 

The Variant Definition File (VDF) provides the user with the capability to control all variant 

selections from a single location. Individual model variant definition files are defined for each 

variant subsystem in the corresponding directories where the models are stored. These files 

automatically create the necessary Simulink Model Variant objects to define a variant subsystem 

when the high level model is loaded. The VDF then calls these pre-defined objects and sets the 

integer logic flag associated with the user’s desired model choice. The primary use of the VDF is 

to select change or turn off various perturbation models. The VDF can also be utilized to alter 

sensor variants if the scenario simulation is configured to do so. An example section of the VDF 

can be seen in Figure 26. 

 

 

Figure 26: Variant Definition File 

 

5.3. Support Software 

Numerous custom MATLAB utilities have been developed to aid in simulation verification, 

execution, real-time management, and data post-processing. Several of the major utilities that can 

support all forms of testing will be discussed. 
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 ExecuteTest 

To ensure proper compilation and execution of a simulation, multiple initialization files are 

required to ensure all updated parameters and settings are reflected as well as to prepare the 

necessary objects, scopes, and data structures that drastically simplify the process of real-time 

tuning and data post-processing. To aid in this process, a generic MATLAB utility called 

ExecuteTest.m has been created for SoftSim6D. This utility provides two essential functions; 

compilation of a new real-time C application and the loading of the application and parameters to 

the target machine. 

 

The single most common error that occurs when modifying or generating a new model for use in 

SoftSim6D is a compilation error. This error does not necessarily occur because a Simulink model 

is not functional, rather because of either incorrect model parameters for integration with 

SoftSim6D or the use of MATLAB/Simulink features that are not auto-codable into C. A model 

may be developed and run correctly in Simulink, but if the provided generic blocks that 

automatically configure to SoftSim6D are not used or MATLAB C guidelines are not followed, 

the model may need to be updated. To verify that none of these errors will manifest themselves 

when it is attempted to generate and run a full simulation, the “compilation test” functionality of 

ExecuteTest was developed. When this test is run, if such an error exists, a red MATLAB error 

will appear which points to the problem of the source. If there are no errors, the test will simply 

display complete and exit the application. It is important to run this test frequently when making 

significant changes to any simulation. The error that is displayed can only identify a few errors at 

once and more may appear to exist when actually a single error occurs and is allowed to propagate 

through multiple levels. This can be avoided by frequently verifying the ability of the simulation 

to compile. 

 

The second process provided by this utility compiles and executes the test. Before compilation, 

the application will ask the user for the desired SSIF and VDF files and then load these into the 

simulation. The user can also select whether a real-time or free run application will be generated. 

The simulation is then loaded onto the target machine and executed at the user’s command. All of 

these tasks can be conducted manually through MATLAB’s command line and the 

running/loading of various SoftSim6D configuration files, however ExecuteTest drastically 

expedites the process for the user. The user interface for ExecuteTest can be seen in Figure 27. 
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Figure 27: ExecuteTest User Interface 

 

 ConfigExec 

As previously discussed, Simulink Real-Time has the capability that once a real-time application 

is loaded onto the target machine, certain parameters can be changed either before or during the 

execution of a simulation. In order for this to occur, the user must have a detailed knowledge of 

the file path, data type, block type, and setting type for a given parameter. The manual execution 

of this process is very time consuming and not practical for a large number of parameters. To 

expedite this process, ConfigExec was generated. After a simulation is generated and loaded onto 

the target machine, SoftSim6D has been designed such that nearly all parameters defined in the 

SSIF can be altered, preventing the need for recompilation which can take several minutes. Due to 

how data is stored and the simulation is compiled, model variants (defined in the VDF) and the 

sample time of host scopes cannot be altered without re-running ExecuteTest. 

 

All initial conditions, environment parameters, and sensor/actuator parameters are purposely 

defined within the INIT block to enable the maximum utility of ConfigExec. Since they can be 

updated by a simple command, ConfigExec makes large scale Monte-Carlos analysis of nearly 

any parameter possible. No modifications are required to the simulation to enable this form of 

large scale testing, rather a basic script utilizing the functions described in this section can be 

created and implemented to remove the user completely from the process. 
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 IO_Killer 

While ConfigExec provides the functionality of updating parameters prior to testing, IO_Killer 

utilizes Simulink Real-Time’s ability to update parameters during real-time test execution. 

IO_Killer provides the framework and is the first implementation of fault injection in SoftSim6D. 

IO_Killer is a custom Simulink Block that can be inserted between the CML and DTL. This block 

enables the user to simulate various data transmission errors that are fairly common in serial 

communication. When the command to implement a specific error is given, the block takes the 

incoming communication from the CML, corrupts it in the specified manner, and then sends it to 

the DTL for transmission. 

 

Currently three types of fault injection are possible. These are all common errors that can occur in 

serial communication and it is therefore important to verify the test article’s ability to identify and 

correct for them. The first is to simply disable outgoing communication with the test article. 

Commands from the test article are still processed and recorded in this mode, however, no data 

packet is transmitted back to the test article. This simulates the failure of a component. The second 

is to corrupt the outgoing data packet. When this mode is implemented, a packet of the correct size 

and with the correct termination byte is transmitted, however the contents are purposely corrupted 

to simulate a “bad” packet. This can be configured to either occur once (to simulate a temporary 

failure) or every time the test article requests information. Lastly, an error similar to a Distributed 

Denial of Service (DDOS) attack is possible. When this is activated, miscellaneous data is 

continuously streamed to the target device. This functionality, although unlikely to manifest itself 

in this manner is actuality, exercises the target device’s ability to buffer, recognize, and dispose of 

undesirable data. The Simulink block and settings dialogue are shown in Figure 28 and Figure 29. 

 

Although IO_Killer only deals specifically with serial communication faults, both the MATLAB 

real-time execution function and the corresponding Simulink block were written in a generic 

manner to provide the framework for any future fault injection developments. 
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Figure 28: IO_Killer Simulink Implementation 

 

Figure 29: IO_Killer Settings Prompt 
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 PlotRun 

The high number of host scopes distributed across the standard simulation generates an extremely 

large quantity of data sets assigned to individual Simulink Host Scope handles. To allow the user 

to rapidly extract all of this data from the target computer, put it into a concise data structure and 

plot important qualities, PlotRun.m was created. After a simulation is completed, PlotRun is called 

and all data contained within the standard host scopes of the IBLE is saved in a structure called 

Results in the MATLAB workspace. A portion of this structure is shown in Figure 30. 

 

 

Figure 30: Results Data Structure 

 

PlotRun then provides the user the ability to plot certain common properties, specifically 

spacecraft state time-histories and sensor readings. The state plotting utility can be used universally 

across any simulation built from the IBLE, however the sensor plotting ability must be updated to 

reflect the specific configuration of the spacecraft under testing. Figure 31 shows the standard state 

plots generated by PlotRun during a validation simulation. 
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Figure 31: PlotRun Generated State Time-Histories 

 

5.4. Validation 

The dynamic and sensor simulation capabilities of SoftSim6D were verified through several 

means. Individual outputs of perturbation, environment, and sensor models were compared to 

various sources. Models that have counterparts in other already verified Georgia Tech simulation 

tools were run through various operational test cases and their outputs compared. This was the 

case for the attitude dynamics models as well as several sensor models. Subsystems or models that 

did not have another simulation verification source readily available were compared to test cases 

and other information found in relevant technical literature. Lastly, translational high fidelity 

dynamics results were compared to various simulations in Systems Tool Kit (STK). Since exact 

information on the various perturbation models and integration routines used in STK are not 

publically available, the parameters and relevant model variants were selected to be as close as 

possible to the inferred capabilities of STK’s HPOP propagator. Table 2 and Table 3 show that 

SoftSim6D’s dynamics simulation is within a kilometer of inertial position as predicted by STK 

and velocity is within a meter per second. Through this and extensive other means of verifying 

output data, the current release of SoftSim6D is considered to be fully validated. 
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Table 2: STK Verification Position Testing Results 

 
 

Table 3: STK Verification Velocity Testing Results 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Position Error Value [km]

Average 0.93545

Standard Deviation 0.14701

Maximum 1.2343

Velocity Error Value [km/s]

Average 0.00093758

Standard Deviation 0.00014316

Maximum 0.0012219
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6. Hardware-in-the-Loop Testing 

6.1. Overview 

The most powerful capability of SoftSim6D is its ability to perform real-time hardware-in-the-

loop testing. Common test set-ups only provide the ability to verify that avionics are able to 

properly communicate over designated serial protocols, not actively provide real-time simulated 

inputs that allow the user to “fly” the hardware. SoftSim6D is a compact, all-in-one solution to 

both verify hardware IO and exercise all on-board software through active simulation. Currently 

SoftSim6D has been verified to communicate over RS-232, RS-422, and RS-485 protocols as well 

as generate and read analog signals. This sections provides an overview of the verification of the 

Interface Layer components required to communicate over these protocols as well as a full HWITL 

test case of SoftSim6D. 

6.2. Verifying HWITL IO Capability 

The first step in implementing the interface layer for HWITL capabilities, specifically the DBM, 

CPM, and CTL, was the generation of a suitable test article. A Texas Instrument Tiva C Series 

microcontroller was programmed to act as a test avionics board (TAB) for the purposes of 

verifying serial communication. Initial testing focuses on the capabilities of the CTL and DBM to 

verify that data was successfully received and transformed into an actionable data type. The TAB 

was configured to send data packets of various lengths and data type over basic serial UART. A 

breadboard was then used in conjunction with the relevant low-level logic converters to transform 

the signal into either RS-232, RS-422, or RS-485 and then connected to the relevant IO port in the 

target machine. The output of the CTL and DBM were then recorded and analyzed to determine if 

the correct signal was received and properly interpreted.  

 

To verify the data transmission capability of the CPM and CTL, specifically their ability to convert 

MATLAB data types into the necessary binary and then hexadecimal numbers, a reverse test set 

up was assembled. A test Simulink model containing only the CPM and CTL was created to 

generate and transmit data at a fixed interval through an IO card to the breadboard/TAB hardware. 

The TAB was then programmed to read and record the received data for verification. Initial testing 

focused on basis transmission of hexadecimal numbers, the foundation of most serial 

communication packets. Next, development and verification focused on transmission of numeric 

information of various integer and floating point data types. Testing discovered inconsistencies 

with Simulink Real-Time’s stated binary conversion and communication transmission utilities. 

This led to the development of several custom functions (including ByteWriter2, discussed in 

Chapter 4) to ensure proper packing and transmission of all data types. Further testing using the 

TAB proved that the updated CPM and CTL properly transmitted data across all supported serial 

protocols and data types. 



 
Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation 

Environment: SoftSim6D 

 

Date: 3 December 

2015 

Page 63 of 

80 

 

 

 

A final test configuration was set up using a standalone closed loop DBM, CPM, and CTL in 

conjunction with the TAB. The TAB was configured to send a basic set of commands to the target 

machine and the test simulation to respond with pre-set numeric responses. After this was 

successfully completed, the same test set up was configured to talk to over multiple IO ports using 

different command sequences simultaneously. A single TAB was set up to serve as the test article. 

The successful completion of this test, verified both the software and hardware capabilities of 

SoftSim6D to send, receive, and interpret data simultaneously over multiple IO ports. 

 

The analog capabilities of the target machine were also verified. To verify reading analog inputs 

(analogous to analog commands from an avionics board), a power supply was used to simulate a 

voltage source. The power supply was manually stepped through different voltage settings while 

a standalone version of the analog CTL read the inputs. The generation of analog signals by the 

target machine (to simulate an analog sensor) was verified using a hand held digital multi-meter. 

6.3. Test Case: Modular Attitude Determination System 

 Overview 

The Modular Attitude Determination System (MADS) is a CubeSat avionics board currently under 

development by Marshall Space Flight Center (MSFC). The MADS board is designed to be highly 

configurable for various mission needs. It is based around an 80 MHz 32-bit ARM Cortex-M4F 

processor and can accommodate up to 8 UART devices, 6 I2C lines, 4 SPI lines and 4 A/D 

converters. The MADS board was designed such that it can be rapidly reproduced with connectors 

for new sensors while still utilizing the same hardware framework and software. Currently the 

board is configured for a Novatel GPS unit, EPSON MG350 IMU, Honeywell HMR2300 

magnetometer, and the Wallops Island CRUQS sun sensor. The onboard software is configured to 

sample data and provide an inertial state and attitude solution at a rate of 1 Hz. In flight, this 

information will then be transmitted to the primary flight computer via one of its SPI lines.  

 Configured Emulation Layer 

For testing of the MADS board four of the five components required in the emulation layer were 

already developed and verified as part of the initial library development efforts. These were the 

rate gyro, accelerometer, magnetometer, and GPS model blocks. The only custom block required 

was for the Wallops Island sun sensor as this had a custom measurement output. The Wallop Island 

block (denoted in Figure 32 as the DAVID Sun Sensor) was independently developed and verified 

then inserted into the simulation using the same process as any pre-existing blocks. All pre-existing 

blocks were simply inserted into the IBLE and their parameters updated in the associated 

initialization file. The custom emulation layer for the MADS board is shown in Figure 32. 
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Figure 32: MADS Emulation Layer Implementation 

 Configured Interface Layer 

The testing of the MADS board was the first complete implementation of closed loop 

communication between a target avionics board and SoftSim6D. The individual interface layer 

blocks for each component were configured to accept and respond accordingly to all possible 

commands that the MADS board was able to send. This included basic ping commands, re-setting 

of device ID commands, and querying of data. All command were individually verified with the 

MADS board in de-bug mode prior to testing. The MADS board has also successfully been able 

to communicate with all actual hardware, therefore we can say with confidence that SoftSim6D 
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accurately emulated all sensors. This also was the first time fault injection was used in testing, by 

means of the IO_Killer Simulink libraries. The completed Data Preparation and Communication 

Management Layers are shown in Figure 33. The Data Transmission Layer is shown in Figure 34.  

 

 

Figure 33: MADS Data Preparation and Communication Layer Implementation 
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Figure 34: MADS Data Transmission Layer Implementation 

 

 Hardware Set-Up 

To interface with the MADS board, a combination of custom harnessing and bread boarding were 

used. The HMR2300 magnetometer is a standard RS-232 signal so a basic harness converting 

SoftSim6D’s standard DB-9 connector to the board’s micro DB-9 connector was manufactured. 

The EPSON IMU and Novatel GPS are both designed to be board-mounted and communicate 

directly over UART. Therefore, to accommodate this, a breadboard was used in conjunction with 

DS8921N RS-485/422 to UART conversion chips to convert the RS-485 signal generated by 
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SoftSim6D to UART. Analog outputs from SoftSim6D utilized a custom harness which connected 

the ADACS card to the micro DB-25 connector on the board. For power, the MADS board requires 

a 5V and 3.3V power rail. A standard Arduino MEGA was used to regulate and supply this to the 

board. The hardware test set up of the MADS board is shown in Figure 35. 

 

 

Figure 35: MADS HWITL Test Set Up 

Lastly, for data monitoring, a Texas Instruments Tiva C Series microcontroller was connected to 

one of the MADS board’s spare UART ports. This microcontroller was used to mimic the flight 

computer that MADS is sending its calculated state and attitude estimate to. This information was 

stored using the Tiva microcontroller for later post processing and comparison with the saved true 

states as determined by SoftSim6D. A sample of the computed information provided by the MADS 

board in real-time is shown in Figure 36. 
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Figure 36: MADS Calculated Solution Output 

 Testing Results 

Several rounds of testing were conducted to fully characterize the performance of the MADS 

board. As issues were found within the board, these bugs were communicated to MSFC engineers 

and updates were made before continuing on to the next round of testing. The first round of testing 

focused on short ten to sixty minute tests to verify the calculated state and attitude solution of the 

MADS board. The saved states from SoftSim6D were transferred from the target machine using 

PlotRun and then a custom data processing script was written to match the true inertial state of the 

spacecraft with the corresponding timestamped solution determined by the MADS board.  

 

The translational state true and estimated error from a single ten minute test run are shown in 

Figure 37. It is important to note that an error of almost 150 meters in position knowledge occurs 

in this time frame. Such a deviation is significant as the noise of the GPS measurement is only on 

the order of tens of meters. This was the first error discovered through SoftSim6D testing. To 

characterize this issue, longer duration tests were conducted and revealed that the error was 

sinusoidal in nature. If a filter error on part of the MADS algorithms was the primary cause, it 

would be expected that this error would grow exponentially. This type of sinusoidal error points 

to a timing error between the true and estimated states. Ultimately it was confirmed that a timing 

error was the cause of the ~1 m/s velocity bias that induced the sinusoidal position error. The cause 

was a conversion from GPS Week and Second to fractional Julian days where a rounding error on 

the order of the seventh decimal place created a fraction of a second time bias. Since this rounding 

initially appears so insignificant to the user, this error would not have been found without 

SoftSim6D. The error was subsequently fixed and not witnessed in later testing. 
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Figure 37: MADS Inertial Translational State Estimation Results 

A sample angular velocity and attitude quaternion test result are shown in Figure 38 and Figure 

39, respectively. Figure 38 demonstrates that the MADS algorithms are able to estimate spacecraft 

rate fairly well, estimating bias correctly and keeping overall noise within expected limits. The 

brief spikes in angular velocity error were determined to be caused be errors in spacecraft attitude 

estimation that resulted in momentary spikes in estimated rate bias. Figure 39 shows that the 

attitude solution provided by MADS is highly inaccurate, never converging to the correct solution. 

This, however, was expected. Although we are feeding sun sensor measurements to the MADS 

board over analog channels, at the time of this testing the MADS algorithms were not configured 

to directly use this information in attitude determination. Rather they were designed to use the 

digital output of the sun sensor provided over an SPI line. Since SoftSim6D currently does not 

have the hardware capability to communicate over this protocol, for this testing the MADS 

algorithms operated as if no sensor was active (the analog inputs were simply recorded but not 

used). The algorithms were not designed to function on magnetometers only for attitude 

determination, therefore no viable solution was found. To verify these results, tests were conducted 

on the standalone algorithms in MSFC’s development framework assuming no sun sensor input 

and results were comparable. It was therefore accepted by MSFC engineers that the board was 

operating as expected under the conditions of a sun sensor failure. 
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Figure 38: MADS Angular Velocity Estimation Test Results 

 

Figure 39: MADS Attitude Estimation Test Results 
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In addition to basic state and attitude estimation verification, the IO fault injection utilities of 

SoftSim6D were utilized to fully exercise the MADS board. Using the termination capability of 

IO_Killer, component boot-up order was evaluated. Testing revealed that if the MADS board was 

powered on before the GPS unit, the MADS algorithm were unable to find a solution for all time. 

The error source was determined to be the initialization of the state filter. When the filter initializes 

on boot-up, if there is no GPS information available, a divide by zero operation occurs resulting 

in an infinite solution. Once GPS data is available, the previous infinite states prevented any 

solution from being found. A patch was implemented to prevent this and was not witnessed again. 

No errors were induced by delayed boot-up of other components. 

 

Both corrupted data injection and DDOS attacks were performed on the unit, with no errors 

detected. The MADS board performed as expected, rejecting corrupted data and re-requesting data 

until a valid packet was received. Intermittent component failures after board initialization were 

also tested. Components were temporarily failed for a period of seconds or minutes and then 

reactivated. The MADS algorithms performed as expected, simply propagating its last estimated 

solution until communication could be restored with the device. At the conclusion of IO testing 

and the subsequent software updates, no injected faults were able to trigger an unexpected error 

state. 

 

Lastly, long duration testing was conducted to determine if any error states will manifest 

themselves in the MADS board over extended operations. Tests of 15, 18, and 24 hours were 

conducted. To accommodate this significant amount of information (the 15 hour test generated 

roughly 16 GB of data), file scopes were implemented to store data to the hard drive of the target 

machine. Substantial post-processing scripts were written to extract and process the file scope data 

as well as compare to the calculated states determined by the MADS board. Results showed that 

during long term testing, no variations from expected behavior occurred and there were no 

communication failures. In all, SoftSim6D testing was able to fully verify both the nominal and 

off-nominal capabilities of the MADS avionics board, within testing limitations. 

 

 

 

 

 

 

 

 

 

 



 
Georgia Tech Small Satellite Real-Time Hardware-in-the-Loop Simulation 

Environment: SoftSim6D 

 

Date: 3 December 

2015 

Page 72 of 

80 

 

 

7. Proximity Operations Scenario Mission Simulation 

7.1. Updated Capabilities 

Significant development efforts have been dedicated to developing the final expansion of the 

HWITL simulation environment; the capability of the environment to simulate multiple spacecraft 

simultaneously for support of testing proximity operations-based mission architectures 

(SoftSim6D-ProxOps). The primary challenge involved in expanding the environment to be 

capable of supporting multiple spacecraft was the modification of data structures and data handling 

routines to account for any number of primary spacecraft. Development of the initial simulation 

capability was focused on the implementation of “plug and play,” rapidly adaptable libraries and 

data structures were intentionally designed to handle only a single spacecraft at a time to allow for 

easier testing and debugging. The framework required for a single spacecraft was leveraged as a 

baseline for the individual spacecraft within a constellation and then a wrapper structure to handle 

all information throughout the constellation was developed and tested. The new wrapper has been 

developed to handle any number of simulated spacecraft, with its only limitation being the 

hardware memory capacity of the target machine. 

 

 

Figure 40: Proximity Operations SoftSim6D Implementation 
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After the data structure was completed and tested, a two spacecraft example scenario was 

implemented (shown in Figure 40). For the simulation of the spacecraft themselves, no new models 

had to be developed. The pre-existing dynamics models were used to implement both spacecraft 

and the new data structure wrapper allowed for individual configuration of each spacecraft. The 

existing libraries of sensors and actuators were also used for each spacecraft. Modifications were 

required to the sensor and actuator libraries to allow for multiple instances of the same component 

with different configuration parameters to be simulated simultaneously. For example, in the 

scenario where both spacecraft have the same general class of magnetometer except each have 

different performance characteristics. A general fix to the issue was determined and applied across 

libraries. This has also been added to the generic models used to develop future sensors/actuators 

to prevent the issue from reoccurring. 

 

In the Proximity Operations environment, the components typically found in the highest level of 

the IBLE are now found within each spacecraft block. The only block from the original single 

spacecraft IBLE that is reserved for the high level simulation is now the INIT block. In addition 

to the two spacecraft blocks, shown in Figure 40, a new high level block was created for multiple 

spacecraft scenarios. This block, known as the Relative Motion Calculation subsystem, is 

responsible for calculating the relative inertial states and any desired relative reference frames 

between the two spacecraft. The information generated in this block is then fed into each individual 

spacecraft model. This data is made available to each spacecraft for use in the calculation of any 

relative sensor data, such as images, beacon readings, laser ranging readings, etc. 

 

 

Figure 41: Proximity Operations Relative Motion Calculation Subsystem 
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To aid in testing and verification of the expanded environment, new utilities were constructed to 

manage, extract, and plot data for multi-spacecraft simulations. Updated versions of ExecuteTest 

(ExecuteTest_ProxOps), ConfigExec (ConfigExec_MultipleSC), and PlotRun 

(PlotRun_Multiple) were generated. These are all configured for the two spacecraft case, however 

they have been designed such that they can be expanded to any number of spacecraft without 

significant user development.  

 

7.2. Testing and Expandability Limitations 

To verify the integrated two spacecraft Proximity Operations example, two individual single 

spacecraft scenarios were run using the original IBLE. The outputs of these simulations were 

compared to the results of the Proximity Operations test case and were verified to be identical. 

Several scenarios were examined and all results verified as consistent with the single spacecraft 

equivalent simulation. An example of two spacecraft being simulated simultaneously is shown in 

Figure 42 and Figure 43. 

 

Figure 42: Proximity Operations Test Case: Spacecraft 1 Inertial State 
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Figure 43: Proximity Operations Test Case: Spacecraft 2 Inertial State 

Testing to date has verified the nominal performance of SoftSim6D-ProxOps as well as the 

associated support functions. The only limitations for the number of total spacecraft to be 

simulated arise from the hardware limitations of the target machine. This includes processor 

power, memory allowance, and the number of IO ports. The current configuration of the target 

machine should be capable of simulating several spacecraft simultaneously without issues, 

however if large constellations (on the orders of tens of spacecraft) are to be tested, hardware 

upgrades may be required. 

 

Currently all updated SoftSim6D-ProxOps data structures and utilities have been configured for 

two spacecraft. Modification will be required for larger constellations, although such modifications 

are a simple expansion of the current configuration. A user’s guide has been developed to walk 

the user through this process. 
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8. Current Development and Forward Work 

8.1. Martian System Simulation: SoftSim6D-Mars 

In support of development work currently underway at Georgia Tech for the development of a 

CubeSat constellation in Martian orbit, a new variant of SoftSim6D was developed, known as 

SoftSim6D-Mars. Softsim6D-Mars leverages the framework of the original IBLE and applies it to 

the Martian system. Environment, perturbation, and dynamics models have been updated to use 

Mars as the primary central body. Models within the 6DOF simulation capability include the 

Martian atmosphere, solar radiation pressure, spherical harmonics, gravity gradient torques, and 

third-body effects from the sun, Phobos, and Deimos. The same sensor and actuator libraries 

developed for the IBLE are utilized for the emulation layer. The data bus structures and storage 

routines are directly inherited from the IBLE. All original support utilities are also compatible with 

the SoftSim6D-Mars IBLE. Similar to original verification work, SoftSim6D-Mars was verified 

through comparison with STK simulations. Errors were comparable to those of the Earth centered 

IBLE.  

 

Although initial functionality has been proven, updates to SoftSim6D-Mars are suggested to fully 

utilize its potential. Currently the initial states of third bodies (i.e. the sun, Phobos, and Deimos) 

are calculated via STK for the desired starting Epoch and fed into an initialization function. To 

speed up testing, the development of an initialization script to automatically determine the initial 

states of these bodies is desirable. Also only a basic exponential atmospheric density model is used 

for aerodynamic drag calculations. This should be sufficient for high altitude missions, however 

the development of a new density block may be desirable for certain scenarios. Lastly, the current 

configuration of SoftSim6D-Mars is a single spacecraft variant. Updates will be required to 

simulate a constellation of small spacecraft in Martian orbit. The steps laid out by the SoftSim6D 

user’s guide for expanding the basic Earth simulation for additional spacecraft can be followed to 

perform such an operation. 

8.2. Generic Central Body Implementation: SoftSim6D-Universal 

In the future, it is highly probable that small satellite architectures will be utilized for either 

heliocentric missions or concepts based around other large bodies in the solar system. It is for this 

reason that it would be practical to update SoftSim6D to be generic for any central body. A library 

of environment and perturbation models would need to be generated for each specific central body, 

however a generic capability would at minimum allow for two body dynamics about any major 

planetary object in the solar system. Such a capability is oftentimes sufficient for initial trade 

studies and mission developments. Primary body specific models could then be developed for 

missions that will undergo further development.  
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When SoftSim6D-Mars was developed, initial strides were made towards this end. Planet specific 

parameters such as radius and gravitational parameters were made generic throughout the entire 

framework, configurable from the initialization file. The INIT data structure was also updated to 

account for varying central bodies. Further updates to initialization scripts and data structures are 

needed to make SoftSim6D-Mars rapidly configurable but no significant additional changes to the 

framework should be necessary.  

8.3. Additional IO Capability 

Currently, SoftSim6D can only communicate over the standard RS-232, RS-422, and RS-485 

protocols and generate/read basic analog signals. To increase the number of devices SoftSim6D is 

able to emulate, it is desirable to purchase additional IO cards to expand the capabilities of the 

target machine. Specifically IO cards capable of I2C and SPI communication. Unlike UART 

protocols, I2C and SPI communication can vary slightly from device to device. Therefore, IO cards 

capable of adapting to a specific component’s needs are rather complex. To work across a wide 

range of components, customized IO cards are most likely required and the associated MATLAB 

drivers. Mathworks has several licensed vendors who can provide these cards, but at a cost that 

typically runs into the thousands of dollars. Lower cost solutions do exist and can be adapted when 

absolutely necessary, however they are may not be adaptable to all configurations. It is therefore 

recommended that investment be made in the higher cost custom IO cards to provide a robust 

solution for SoftSim6D’s needs. 
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9. Conclusion 

To date, SoftSim6D has been proven to achieve all of its primary requirements with the potential 

to be further expanded to accommodate an even wider range of capabilities. The rapid adaptability 

and versatility of SoftSim6D should considerably reduce the amount of time required for future 

projects to develop a high fidelity simulation environment. Initial algorithm testing capability can 

be achieved on the order of days instead of weeks and HWITL testing capabilities can be ready 

within weeks of testing requirement definition. Once the baseline implementation of SoftSim6D 

was completed, the short timeline required to prepare for testing of the MSFC MADS avionics 

board serves as proof of the system’s capabilities. Recent modifications now allow for the 

simultaneous testing of multiple spacecraft and missions in the Martian system. Well defined 

configuration management and coding procedures in addition to instruction manuals also make 

SoftSim6D a very user friendly environment.  

 

Through extensive development planning, implementation, and verification efforts, an extremely 

robust and adaptable small spacecraft testing environment has been created. SoftSim6D has proven 

to be a versatile environment that will drastically increase the reliability of future Georgia Tech 

small satellite missions. With the conclusion of this master’s project, initial operability of 

SoftSim6D has been achieved and the framework is ready for use in conjunction of full flight 

missions. 
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