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Abstract

In this paper the albedo radiation pressure (ARP) is investigated in the
circular restricted three body problem (CR3BP) for a system consisting of
the Sun, a minor body and a solar sail. The analytical framework is provided
with extension to the solar radiation pressure (SRP) theory. The minor body
is treated as Lambertian with bidirectional reflectance distribution function
(BRDF) for approximation purposes. In this study it is found that ARP
dominates SRP in a volume around the minor body which extends to L1

and L2, characterized as the region of influence (RoI) with an analytically
defined boundary. Numerical simulations show that the inclusion of albedo
effects generates new locations of artificial equilibrium points nearby the
minor body, an important fact to address for solar sail missions to asteroids
and comets. Local stability and controllability at equilibrium points are
investigated and the system is found to be unstable but controllable in general
when solar sail attitude angles are chosen as control inputs. Furthermore,
equilibrium points along the RoI boundary are found to be Lyapunov stable.
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1. Introduction

Over the past decade space agencies worldwide have executed several mis-
sions to primitive bodies such as asteroids and comets. Increasing interest
from the scientific communities in understanding their environment, value as
promising mining-resource and role as indicators about the creation of the
Solar System (Sonter, 1997; Nesvorny et al., 2003). In 2005 the Hayabusa
mission, governed by Japan Aerospace Exploration Agency (JAXA), has
provided more information about the dynamical environment of Asteroid
25143 Itokawa and samples from its surface (Scheeres et al., 2007; Michel
and Yoshikawa, 2005). The Rosetta mission to the comet 67P/Churyumov-
Gerasimenko performed a successful landing with its probe Philae on 12
November 2014 which returned important data about the surface (Taylor
et al., 2015). Furthermore, in March 2015 the Dawn spacecraft arrived at
the dwarf planet Ceres to look for habitable oceans and study the relation-
ship between the asteroid belt and formation of the Solar System (Hand,
2015).

Solar sail propulsion is applicable to a wide range of missions. This space-
craft design provides the benifits of potential low-cost and long-term missions,
controllable maneuvers at artificial Lagrange points, or equilibrium points,
and are easily transferred to configurations such as Halo orbits around these
equilibrium points, also named libration points (Farquhar and Kamel, 1973;
Howell, 1984; McInnes et al., 1994; Farres and Jorba, 2012). Studies about
solar sail dynamics around comets, where it is claimed that the sails may
orbit the comet at Sun-side equilibrium points during its perihelion passage
are discussed in Scheeres and Marzari (2002). Solar radiation pressure (SRP)
and the strength of solar tides are claimed to alter the stability character-
istics of the equilibrium points when in the vicinity of the Sun, inducing
easily controlled orbits as discussed in Burns et al. (1979), in which the im-
portance of SRP force exerted on smaller particles is emphasized. Ershkov
(2012) provides a detailed analysis of a photogravitational restricted three
body problem of a small particle system which can be theoretically linked to
asteroids and their effects on the spacecraft from emitted radiation.

Control methods applicable for spacecraft hovering over Near-Earth As-
teroids (NEAs) are discussed in Broschart and Scheeres (2005), which can
ease the difficulty of orbiting small, irregularly sized and low-gravity objects.
The body-fixed hovering behavior maintains the spacecraft relative position
which can prove to be advantageous in acquiring close high-resolution images
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of a particular surface. In fact, solar sails primarily utilize this hovering con-
cept combined with change in attitude or sail area trim to alter the location
of equilibrium points. McInnes et al. (1994) studies the available libration
points for solar sails in CR3BP that are Lyapunov unstable, but establishes
that they are in general controllable using sail attitude feedback control alone.
In general, it is claimed that the sailing capability offers potential low-cost
missions and flexible methods for exploring the solar system (Macdonald and
McInnes, 2011). In a conceptual and simplified version of the solar sail, when
modeled as a perfectly reflecting flat plate, these equilibrium points depend
on sail attitude and strength of SRP and gravity forces. Morrow et al. (2001)
further investigates the solar sail CR3BP dynamics with Hill approximation,
a mathematical tool which applies well to the motion of spacecraft around
asteroids. In the paper it is confirmed that the sail acceleration renders re-
strictions when hovering over or orbiting smaller bodies due to inevitable
sensitivities to the perturbations being present.

To establish an analytical framework to incorporate SRP into the equa-
tions of motion (EoM), the initial steps are to investigate the CR3BP with
SRP in a Sun-minor body system. Solar sails are inherently sensitive to pho-
tons it is proposed in this paper to investigate the additional effects from
the smaller body albedo, or albedo radiation pressure (ARP). Emphasis is
made on ARP as a significant force in addition to SRP in CR3BP and new
conditions are identified. The minor body is modeled as a Lambertian dif-
fuse gray body with its albedo effects modeled by means of optical signature
magnitude based on the relative distance to viewer i.e. solar sail. The albedo
scattering is determined by the bidirectional reflectance distribution function
(BRDF). Since the dynamics will alter in vicinity of minor body, it is im-
portant to investigate local stability and controllability at the equilibrium
points. Due to high number of degrees of freedom, local stability is best an-
alyzed through applying the method of Routh-Hurwitz criterion (McInnes,
1999). Controllability is established conventionally through analyzing the
controllability matrix with control inputs chosen to be the solar sail pitch
and precession angles, claimed to be good choices together with sail area
trimming (Hexi and McInnes, 2005).

The contributions in this paper are listed as follows: (a) equilibrium sur-
faces as a function of solar sail lightness number in a Sun-asteroid CR3BP
system with both SRP and ARP, (b) extension of existing constraints iden-
tifying regions of where equilibrium solutions exist, (c) regions of where SRP
or ARP forces are balanced or separately dominant are analytically identi-
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fied and (d) local stability and controllability at the equilibrium points are
analyzed.

This paper is organized as follows. Section 2 describes the background of
the material and provides the literature review up to date. The equations
presented here serve as basis for further discussion and include only SRP in
the EoM. Section 3 describes the means necessary for an adequate approx-
imation of including ARP in the CR3BP system. Method of incorporating
albedo effects, the force model and conditions for equilibrium solutions are
modified. Extension to the existing constraints and region of influence are
shown analytically. Section 4 discusses the stability and control of the solar
sail at the equilibrium points. Linearization about local nonlinear dynam-
ics is favored over linearization about trajectories since there are no new
fundamental findings based on the local time-varying dynamics. Discussion
about whether the solar sail is controllable or not is presented here. Re-
sults are given in Section 5 and validates the analytically defined framework
and shows how equilibrium points vary based on both SRP and ARP for se-
lected parametrization of solar sail lightness number. Conclusions are given
in section 6 and summarizes the findings and what impacts this may have
on current and future missions. In Appendix A a more rigorous discussion
of the background material is presented with influence from the notation in
McInnes et al. (1994); McInnes (1999). Appendix B-Appendix F show the
partial derivatives used in section 4 to analyze stability and controllability.
Appendix G provides the correct derivation of previous erroneously defined
partial derivatives in McInnes (2000).

2. Theory

The dynamics of a solar sail in the CR3BP with SRP have previously
been established in McInnes et al. (1994); McInnes (1999) and serve as a
model that is to be extended in this paper. The following results are briefly
summarized here to serve as a foundation for the contributions in this work.
More complete derivations are given in in Appendix A. The rotating B frame
rotates once with angular velocity ωB/I about the ẑ-axis or as seen by the
inertial frame I in 2π/ω time units. In this paper the dynamics are considered
to be in the rotating B frame unless otherwise stated, thus the notation for
the frames will be dropped further on. The dimensions are normalized such
that the distance between the primary masses r12, the sum of primary masses
m1 +m2, angular velocity magnitude ‖ωB/I‖2 and the gravitational constant
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G are all defined to be unity. The mass ratio of the system is defined as
µ = m2/(m1 +m2). Fig. 1 shows the geometry of the CR3BP system in the
rotating reference frame, where all units are nondimensionalized.

Figure 1: Schematic geometry of the solar sail restricted three body problem in the x̂− ŷ
rotating frame.

The reduced vector form of equations of motion (EoM) for a solar sail
with r being the vector from the center of mass to m3 may be defined in the
rotating frame as shown in McInnes et al. (1994)

r̈ + 2ω × ṙ + ∇U = a1 (1)

When the solar sail is in equilibrium between gravitational and SRP accel-
erations, the state space form describing the EoM may be written as

ẋ =

[
ṙ
r̈

]
= 06×1 =

[
03×1

a1 −∇U

]
6×1

(2)

The SRP acceleration of a solar sail in CR3BP may be written as

a1 = β
(1− µ)

r21
〈r̂1 · n̂〉2n̂ (3)
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Knowing that r̂1 is directed along the Sun-line and since the SRP force
can never be directed sunwards, the solar sail acceleration is constrained
(McInnes et al., 1994). Therefore the 〈·〉 term is defined as the nonnegative
operator i.e.

〈x〉 =

{
x if x ≥ 0
0 if x < 0

The solar sail lightness number β is an important design parameter which de-
fines the ratio of SRP acceleration to gravitational acceleration. β is defined
as

β =
σ∗

σ
(4)

where

σ∗ =
L1

2πGm1c
(5)

where L1 is the luminosity of the large primary object, where for the Sun it
is taken to be approximately 3.846 × 1026 W . It can be seen that a large β
is induced by larger 1

σ
= A/m3 i.e. the sail acceleration a1 is proportional

to the sail area and inversely proportional to the spacecraft mass. However
it will also be shown that acceleration a1 is also highly dependent on the
sail orientation as indicated by the nonnegative operator 〈·〉. For comparison
and building intuition, Table 1 shows different values of β for spacecraft that
have been tested and deployed in space. Typically values of β = 0.001− 0.3
are feasible (McInnes, 1999). It is to be noted that the examples are not
treated as perfect solar sails with 100 % specular reflection.

Table 1: Solar sail lightness numbers for relevant spacecraft

Spacecraft β
GeoStorm (McInnes, 1999) 0.02
Interstellar Heliopause Probe (McInnes, 1999) 0.3− 0.6
IKAROS (Tsuda et al., 2013) 0.001
Sunjammer (Heiligers and McInnes, 2014) 0.0388− 0.0445

At equilibrium, where SRP and gravitational accelerations are balanced, the
sail normal vector n̂ can defined as the unit vector of the gradient of pseudo-
potential

n̂ =
∇U

‖∇U‖2
(6)
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The solar sail orientation angles, pitch (cone) and precession (clock) angles
in order, can also be expressed at equilibrium as the following

tanα =
‖r̂1 ×∇U‖2

r̂1 ·∇U
(7)

tan γ =
‖((r̂1 × ẑ)× r̂1)× (r̂1 ×∇U)‖2

((r̂1 × ẑ)× r̂1) · (r̂1 ×∇U)
(8)

As indicated on Fig. 1 an additional sail orientation angle has to be defined
with respect to r2 and can be defined as

tan(ψ − α) =
(‖r̂1 × r̂2‖2)(r̂1 ·∇U)− (r̂1 · r̂2)(‖r̂1 ×∇U‖2)
(r̂1 · r̂2)(r̂1 ·∇U) + (‖r̂1 × r̂2‖2)(‖r̂1 ×∇U‖2)

(9)

At an equilibrium point the solar sail lightness number β may be found from
the following expression

β =
r21

(1− µ)

∇U · n̂
〈r̂1 · n̂〉2

(10)

By evaluating the nonnegative operator 〈r̂1 · n̂〉, a boundary S(r1, r2) = 0 can
be found when r̂1 · n̂ = 0 as shown in McInnes et al. (1994). The condition
exists when SRP has no effect on the solar sail i.e. when the sail is oriented
at |α| = 90◦ or more intuitively when β →∞. The boundary is written as

S(r1, r2) = x(x+ µ) + y2 − 1− µ
r1
− µr1 · r2

r32
(11)

and defines possible locations for equilibria in CR3BP in the rotating refer-
ence frame. The boundary exists in form of two topologically disconnected
surfaces and separates regions where equilibrium solutions may and may not
exist as shown in previous work (McInnes et al., 1994). In the free areas the
equilibrium points indicate that the solar sail is in tension between SRP and
gravitational forces.
Based on the methodology described here and in McInnes (1999), the fol-
lowing section will include the ARP force in CR3BP solar sail dynamics and
generate equivalent analytical results for acceleration terms, conditions and
new boundaries.
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3. Inclusion of Albedo Effects

Based on the EoM in CR3BP with SRP effects given in Eq. (1), the
model is now extended to include the ARP. As an approximation, luminosity
of the body is characterized by the bidirectional reflectance distribution func-
tion (BRDF) and is therefore treated as an Lambertian diffuse model. It is
known that for Lambertian BRDF, the reflecting radiation can be expressed
as a function of the angle between the Sun-line vector r̂12 with respect to the
body m2 and the viewer line of sight r̂2 (Magnusson et al., 1996; Kaasalainen
et al., 2002). Several techniques have been developed to estimate albedo val-
ues. A reasonable reflectance number for asteroids should be approximately
ρ = 0.1 − 0.2 (Fernandez et al., 2005; Busch et al., 2008). Asteroids are
treated as gray bodies such that ρ is constant for all wavelengths but with
low emissivity, which is consistent with some of the previous studies found
in Krag (1974). Furthermore the technique of optical signatures have fre-
quently used the visual magnitude system, adopted from the astronomers.
This method will also be applied here and serves as an approximation tool
that may be extended in further study.

The optical signature magnitude of an asteroid M2, when approximated
as a sphere, is given by

M2 = M1 − 2.5 log

(
d22
r22
ρp(φ)

)
(12)

where d2 is the diameter of the asteroid and r2 is the distance between the
asteroid and the observing spacecraft. M1 is the reference magnitude, taken
here to be the Sun, and has the visual magnitude of −26.78 from the Earth
with atmospheric effects being uncorrected (Krag, 1974; Shell, 2010). The
Lambertian BRDF may be expressed in terms of a function of ρp(φ) where ρ
is albedo reflectance and p(φ) is the diffuse phase angle function as identified
in Krag (1974). p(φ) is defined for a diffuse sphere as

p(φ) =
2

3π2
(sinφ+ (π − φ) cosφ) (13)

For a fixed diameter d2 and albedo ρ of the body m2 and varying φ and r2,
represented here as D(φ; r2, ρ, d2), is obtained from rearranging Eq. (10) and
is of the form

D(φ; r2, ρ, d2) =
d22
r22
ρp(φ) (14)

8



This term appears in the logarithm term in Eq. (12) with values ranging
between 0 < D(φ; r2, ρ, d2) < 1 since the magnitude M2 is restricted to be
M2 ≤ M1. More intuitively, this represents the ratio of luminosities of m2

and m1 as seen by the solar sail. Therefore the apparent luminosity of m2,
L2, can be defined in terms of the luminosity of m1, L1, as

L2(φ; r2, ρ, d2) = L1D(φ; r2, ρ, d2) (15)

Having established the basic definitions for albedo, it is now possible to look
at the additional force experienced on the solar sail due to ARP.

3.1. New Dynamics and Equilibrium Solutions

The total force exerted on the solar sail is expressed as∑
F = Fg + FSRP + FARP + Fother (16)

if Fother is neglected, then forces due to gravity Fg, FSRP and FARP are then
considered. Definitions of SRP are given in Appendix A, where SRP and solar
energy flux are defined as PSRP and WSRP , respectively. The expression for
ARP magnitude is as follows

PARP =
WARP

c
(17)

where c is the speed of light and WARP represents the energy flux of the
electromagnetic albedo radiation from the asteroid that creates pressure on
the solar sail. Assuming the Sun and the object are now treated as a luminous
sources, the energy flux varies proportionally with the inverse square of the
distance r̂12 between the Sun and the body m2. The albedo energy flux
WARP can be written in terms of the asteroid luminosity L2(φ; r2, ρ, d2) and
scaled by the Sun-Earth distance RE as

WARP =
L2(φ; r2, ρ, d2)

4πr22
(18)

Albedo photons from the second primary mass are reflected on solar sail,
creating an additional force to FSRP . Incident directions of the photons from
the Sun and m2 are defined as ûi and v̂i, respectively. Specular reflected
directions of the photons from the Sun and m2 are defined as ûr and v̂r,
respectively. The schematic of forces working on the perfectly reflecting
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Figure 2: SRP and ARP forces exerted on a perfectly reflecting solar sail

solar sail is shown in Fig. 2. For a sail area A with unit vector n̂ in direction
normal to the sail surface, the total force exerted on the sail due to photons
incident from ûi and v̂i directions is given by

Fi,SRP + Fi,ARP = PSRPA(ûi · n̂)ûi + P̃A(v̂i · n̂)v̂i (19)

where A(ûi·n̂) and A(v̂i·n̂) are the projected sail areas in ûi and v̂i directions,
respectively. By Newton’s Third Law, the reflected photons will exert a force
of equal magnitude on the solar sail in the specular reflected direction −ûr
and −v̂r, i.e.

Fi,SRP + Fi,ARP = −PA(ûi · n̂)ûr − P̃A(v̂i · n̂)v̂r (20)

Since ûi − ûr = 2(ûi · n̂)n̂ and v̂i − v̂r = 2(v̂i · n̂)n̂, the net photon force is
then given by

Fi,SRP + Fi,ARP = 2PA(ûi · n̂)2n̂ + 2P̃A(v̂i · n̂)2n̂ (21)

Using Eq. (17) then Eq. (21) may be expressed as

FSRP + FARP =
2WA

c
(ûi · n̂)2n̂ +

2W̃A

c
(v̂i · n̂)2n̂ (22)

The sail surface may experience SRP and ARP forces exerted on same side
simultaneously or opposite sides exclusively, with respect to n̂, then Eq. (22)
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needs to be redefined as

FSRP +FARP =
2WA

c
(ûi ·n̂)2 sgn (ûi · n̂)n̂+

2W̃A

c
(v̂i ·n̂)2 sgn (v̂i · n̂)n̂ (23)

where signum function sgn is commonly defined by

sgn(x) =


1 if x > 0
0 if x = 0
−1 if x < 0.

The sgn(·) term accounts for required sign change due to the direction of
forces acting on the solar sail. Using Eq. (18), then the net radiation force
may be expressed as

FSRP + FARP =
L1A

2πcr21
(ûi · n̂)2 sgn (ûi · n̂)n̂

+
L2(φ; r2, ρ, d2)A

2πcr22
(v̂i · n̂)2 sgn (v̂i · n̂)n̂ (24)

In terms of explicit angles the following can be defined

cosα = ûi · n̂ (25)

cos(ψ − α) = v̂i · n̂ (26)

Using the definition of sail loading σ = m3/A and FSRP + FARP = m3

∑
a,

then ∑
a =

FSRP + FARP
σA

(27)

For a solar sail on orbit around m1 the direction of incidence of radiation ûi
is defined by the unit vector r̂1. Likewise for orbit around m2, v̂i is defined
as r̂2. Thus Eq. (27) can be expressed as∑

a =
L1

2πcσr21
cos2 α sgn (r̂1 · n̂)n̂

+
L2(φ; r2, ρ, d2)

2πcσr22
cos2(ψ − α) sgn (r̂2 · n̂)n̂ (28)
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In order to simplify for the nondimensional total acceleration of the solar
sail due to SRP and ARP, then by using Eq. (4) and (5), Eq. (28) may be
expressed as∑

a = β
Gm1

r21
(r̂1 · n̂)2 sgn (r̂1 · n̂)n̂ + β̃

Gm2

r22
(r̂2 · n̂)2 sgn (r̂2 · n̂)n̂ (29)

where

β̃ =
σ̃∗

σ
(30)

and

σ̃∗ =
L2(φ; r2, ρ, d2)

2πGm2c
(31)

In a nondimensionalized CR3BP system, Eq. (29) may be expressed as∑
a = β

(1− µ)

r21
(r̂1 · n̂)2 sgn (r̂1 · n̂)n̂ + β̃

µ

r22
(r̂2 · n̂)2 sgn (r̂2 · n̂)n̂ (32)

Looking at Eq. (30) and Eq. (31), then it is evident that the relationship
between β and β̃ is of the form

β̃

β
=
m1

m2

L2(φ; r2, ρ, d2)

L1

=
(1− µ)

µ
D(φ; r2, ρ, d2)

⇒ β̃ =β
(1− µ)

µ
D(φ; r2, ρ, d2) (33)

It can be inferred that β̃ = β when the function D(φ; r2, ρ, d2) = µ/(1− µ).
This indicates the sail lightness numbers due to SRP and ARP are equal
at a certain phase angle φ and distance r2 for a given system with constant
masses m1 and m2, albedo ρ and diameter d2.
Eq. (32) may be explicitly decomposed into accelerations due to SRP and
ARP, a1 and a2 respectively. The ARP acceleration, second term on the
right hand side of Eq. (32), may then be expressed as

a2 = β̃
µ

r22
(r̂2 · n̂)2 sgn (r̂2 · n̂)n̂ (34)
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The scalar form of solar sail EoM added with ARP are of the form

ẍ− 2ẏ = −Ux + a1,x + a2,x (35)

ÿ + 2ẋ = −Uy + a1,y + a2,y (36)

z̈ = −Uz + a1,z + a2,z (37)

At equilibrium solutions, Eq. (2) is modified to be

ẋ =

[
ṙ
r̈

]
= 06×1 =

[
03×1

a1 + a2 −∇U

]
6×1

(38)

Taking the scalar product of Eq. (32) with n̂, and requiring equilibrium
solutions then

(a1 + a2) · n̂ = ∇U · n̂ (39)

(
β

(1− µ)

r21
(r̂1 · n̂)2 sgn (r̂1 · n̂)n̂ + β̃

µ

r22
(r̂2 · n̂)2 sgn (r̂2 · n̂)n̂

)
· n̂

= ∇U · n̂ (40)

β
(1− µ)

r21
(r̂1 · n̂)2 sgn (r̂1 · n̂) + β̃

µ

r22
(r̂2 · n̂)2 sgn (r̂2 · n̂) = ∇U · n̂ (41)

Substituting Eq. (34) into Eq. (41), then the following is obtained

β(1− µ)

(
1

r21
(r̂1 · n̂)2 sgn (r̂1 · n̂)

+
D(φ; r2, ρ, d2)

r22
(r̂2 · n̂)2 sgn (r̂2 · n̂)

)
=∇U · n̂ (42)

Since it is required that ∇U · n̂ ≥ 0 or (a1 + a2) · n̂ ≥ 0, then there exist four
analytical forms due to the sgn operator of which only three are physically
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valid and satisfy the condition
∑

a · n̂ ≥ 0, i.e.

∑
a·n̂ =



β(1− µ)
(

1
r21

(r̂1 · n̂)2 + D(φ;r2,ρ,d2)

r22
(r̂2 · n̂)2

)
if case 1;

β(1− µ)
(

1
r21

(r̂1 · n̂)2 − D(φ;r2,ρ,d2)

r22
(r̂2 · n̂)2

)
if case 2;

β(1− µ)
(
− 1
r21

(r̂1 · n̂)2 + D(φ;r2,ρ,d2)

r22
(r̂2 · n̂)2

)
if case 3;

Undefined if case 4.

(43)

where case 1: r̂1 ·n̂ ≥ 0, r̂2 ·n̂ ≥ 0 and
∑

a ·n̂ ≥ 0; case 2: r̂1 ·n̂ ≥ 0, r̂2 ·n̂ < 0
and

∑
a · n̂ ≥ 0; case 3: r̂1 · n̂ < 0, r̂2 · n̂ ≥ 0 and

∑
a · n̂ ≥ 0 and case 4:

r̂1 · n̂ < 0, r̂2 · n̂ < 0 and
∑

a · n̂ < 0. The solar sail may now have the normal
vector n̂ directed against either bodies m1 and m2 but not both at the same
time, i.e. n̂ may now be directed against SRP or ARP, contrary to previous
work if only SRP is accounted for (McInnes et al., 1994). Rearranging Eq.
(42) then the equilibrium solutions may be parametrized by β as

β =
∇U · n̂

(1− µ)〈 1
r21

(r̂1 · n̂)2 sgn (r̂1 · n̂) + D(φ;r2,ρ,d2)

r22
(r̂2 · n̂)2 sgn (r̂2 · n̂)〉

(44)

where the 〈·〉 is now the nonnegative operator. Eq. (44) is referred to as
contribution (a) in section 1 and serves as an extension to previous work
(McInnes et al., 1994; McInnes, 1999). A value for β will be given at any
specific equilibrium point. Equivalently equilibrium surfaces can be rendered
for any chosen specific values of β. Eq. (43) is now also a function of phase
angle, orientation and distance with respect to the second primary mass as
well as the object diameter, which all characterize the ARP exerted on the
solar sail. For simplicity in this paper and comparison to previous work
(McInnes et al., 1994; McInnes, 1999), Eq. (44) is parametrized by β instead
of β̃, as it is the intuitive design parameter to use as a benchmark since ARP
is inherently a function of SRP. This choice also provides flexibility since the
three body system may change in a mission scenario when surveying multiple
objects. Furthermore, mass and area of the spacecraft may be selected based
on the solar sail lightness number desired.

3.2. Constraints on the Existence of Equilibrium Solutions

Now in order to analyze a meaningful constraint for both SRP and ARP
affecting the solar sail together, then at an equilibrium solutions it is required
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that Eq. (1) will be in a motionless condition of the solar sail, i.e.

∇U = a1 + a2 (45)

Evaluating the gradient of the pseudo-potential U , defined in Appendix A,
and taking the scalar product of Eq. (45) with n̂, it is required that β ≥ 0
i.e. the solar sail lightness number is lower bounded and that ∇U · n̂ ≥ 0 or
(a1 + a2) · n̂ ≥ 0. The following boundaries are therefore derived as

∇U · n̂ =0

∇U · ∇U

‖∇U‖2
=0

‖∇U‖2 =0

(46)

or alternatively two boundaries can be derived in terms of a1 + a2 which
corresponds to the denominator in Eq. (45) i.e. when β →∞, then

(a1 + a2) · n̂ =0

β
(1− µ)

r21
(r̂1 · n̂)2 sgn (r̂1 · n̂) + β̃

µ

r22
(r̂2 · n̂)2 sgn (r̂1 · n̂) =0

β(1− µ)

(
1

r21
(r̂1 · n̂)2 sgn (r̂1 · n̂) +

D(φ; r2, ρ, d2)

r22
(r̂2 · n̂)2 sgn (r̂2 · n̂)

)
=0

1

r21
(r̂1 · n̂)2 sgn (r̂1 · n̂) +

D(φ; r2, ρ, d2)

r22
(r̂2 · n̂)2 sgn (r̂2 · n̂) =0

r22(r̂1 · n̂)2 sgn (r̂1 · n̂) + r21D(φ; r2, ρ, d2)(r̂2 · n̂)2 sgn (r̂2 · n̂) =0

The derived result defines a boundary as a function of albedo effects, for
where equilibrium solutions exist and do not exist for β ≥ 0 when both SRP
and ARP are exerted on the solar sail. In the free areas the solar sail may now
orient itself unreservedly and there are no constraints on |α| and |(ψ−α)| as
long as the condition (a1 + a2) ≥ 0 is satisfied. For case 1 and 4 the derived
result will correspond to the function V (r1, r2) and is defined as

V (r1, r2) = r22(r̂1 · n̂)2 + r21D(φ; r2, ρ, d2)(r̂2 · n̂)2 = 0 (47)

For case 2 and 3 the function Ṽ (r1, r2) = 0 may be defined as

Ṽ (r1, r2) = r22(r̂1 · n̂)2 − r21D(φ; r2, ρ, d2)(r̂2 · n̂)2 = 0 (48)
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V (r1, r2) corresponds to when n̂ is pointed away from (case 1) or against
(case 4) both SRP and ARP at the same time. The latter case is not prac-
tically valid since the solar sail may not accelerate towards both m1 and
m2 simultaneously. This boundary shows where the equilibrium solutions
may not exist when the sail experiences forces on the same side. Similar
to S(r1, r2), the boundary exists in form of two topologically disconnected
surfaces. Boundary Ṽ (r1, r2) shows where the equilibrium solutions may not
exist when the sail experiences forces on its opposites. Ṽ (r1, r2) corresponds
to when n̂ is pointed against SRP and away from ARP, defined as case 2, or
against ARP and away from SRP, defined as case 3. The result is referred
to contribution (b) in section 1 and practically this means that the solar sail
may orient itself to 0◦ < |α| < 180◦ and still retain equilibrium solutions at a
chosen attitude. Equivalently it can orient itself to |α| ≥ 90◦ in some of the
areas previously known to be forbidden in the model with SRP alone, defined
by the boundary S(r1, r2) in Eq. (11) (McInnes, 1999). It can be inferred
that if D(φ; r2, ρ, d2) = 0 or ρ = 0, i.e. when there are no albedo effects,
then Eq. (47) and Eq. (48) reduce to the constraint V (r1, r2) = S(r1, r2) as
presented in McInnes (1999).

3.3. Photometric Regions of Influence

Since there are now two acceleration forces to balance the gravitational
force to achieve equilibrium, it is important to establish the scale of influence
of SRP and ARP to see which force affects the solar sail the most in vicinity of
m2. Here the derivation of the magnitude of the SRP and ARP accelerations
‖a1‖2 and ‖a2‖2 are given and analyzed when they are equal thus defining
the boundary, similar to the mathematical definition for sphere of influence
(SoI) as presented in Battin (1999). A region of influence (RoI) created by
the luminosity of m2 exists between the boundary ‖a1‖2−‖a2‖2 = 0 and the
object m2 and is derived as follows

‖a1‖2 = ‖a2‖2 (49)
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∥∥∥∥β (1− µ)

r21
(r̂1 · n̂)2 sgn (r̂1 · n̂)

∥∥∥∥
2

=

∥∥∥∥β̃ µr22 (r̂2 · n̂)2 sgn (r̂2 · n̂)

∥∥∥∥
2

⇒
∥∥∥∥β (1− µ)

r21
(r̂1 · n̂)2

∥∥∥∥
2

=

∥∥∥∥βµ(1− µ)D(φ; r2, ρ, d2)

µr22
(r̂2 · n̂)2

∥∥∥∥
2

⇒
∥∥∥∥ 1

r21
(r̂1 · n̂)2

∥∥∥∥
2

=

∥∥∥∥D(φ; r2, ρ, d2)

r22
(r̂2 · n̂)2

∥∥∥∥
2

(50)

‖a1‖2 − ‖a2‖2 =

∥∥∥∥ 1

r21
(r̂1 · n̂)2

∥∥∥∥
2

−
∥∥∥∥D(φ; r2, ρ, d2)

r22
(r̂2 · n̂)2

∥∥∥∥
2

= 0 (51)

or simplified as (
r2
r1

)2

= D(φ; r2, ρ, d2)
(r̂2 · n̂)2

(r̂1 · n̂)2
(52)

or

rRoI ≡ r2 = r1D(φ; r2, ρ, d2)
1/2 cos(ψ − α)

cosα
(53)

where rRoI = r2 and is the distance from m2 to the RoI boundary ‖a1‖2 −
‖a2‖2 = 0. This boundary indicates where the SRP acceleration is larger
than ARP acceleration i.e. where ‖a1‖2 > ‖a2‖2 and vice versa. The result
is referred to as contribution (c) in section 1. For close-up observations of m2,
at a distance of r2 < 1, 000 m for an instance, this particular contribution is
important to emphasize since its impact on the solar sail dynamics has been
analytically identified for which Eq. (43) is a fundamental cause thereof.
In such a condition the solar sail would be strongly influenced by ARP and
therefore equilibrium solutions in the RoI would alter significantly as ‖a1‖2 <
‖a2‖2. Moreover ‖a1‖2 << ‖a2‖2 when the solar sail is very close to the
object m2. On the other hand, when ‖a1‖2 > ‖a2‖2 equilibrium solutions
would not be significantly altered.

Now that the solar sail dynamics in CR3BP with SRP have been properly
defined, it is worth looking into the stability of the artificial equilibrium
points and how to locally control the spacecraft if the equilibrium points are
naturally unstable.

4. Stability and Control at Libration Points

In reality, the motion of a spacecraft in CR3BP is highly nonlinear and
complex. In order to investigate stability and controllability, the behavior of
the system is analyzed using local linear dynamics about the chosen equilib-
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rium points of interest, e.g. the Lagrangian points or artificial equilibrium
points. This section intentionally presents the methodology and notation
very similar to McInnes et al. (1994); McInnes (1999) in order to better
understand the similarities and differences to previous studies.

The equilibrium (libration) points have the coordinates (xLi
, yLi

, zLi
) in

the rotating reference frame and Li is the equilibrium point of interest. With
perturbation at an equilibrium point the coordinates (δx, δy, δz) may be writ-
ten as

rLi
+ δr = [(xLi + δx) (yLi + δy) (zLi + δz)]T (54)

With only first order terms considered from the Taylor Series Expansion, the
local solar sail EoM with respect to the equilibrium points at rLi

(denoted
with ′∗′) are expressed as

δẍ− 2δẏ =(−U∗xx + a∗1,xx + a∗2,xx)δx+ (−U∗xy + a∗1,xy + a∗2,xy)δy

+ (−U∗xz + a∗1,xz + a∗2,xz)δz (55)

δÿ + 2δẋ =(−U∗yx + a∗1,yx + a∗2,yx)δx+ (−U∗yy + a∗1,yy + a∗2,yy)δy

+ (−U∗yz + a∗1,yz + a∗2,yz)δz (56)

δz̈ =(−U∗zx + a∗1,zx + a∗2,zx)δx+ (−U∗zy + a∗1,zy + a∗2,zy)δy

+ (−U∗zz + a∗1,zz + a∗2,zz)δz (57)

where Ujk = ∂U/∂j∂k and U∗jk = Ujk|Li
where (j, k) ∈ (x, y, z). These

partials are given in Appendix B. The second partials of the acceleration
terms a1 and a2 are defined as aj,kl = ∂aj/∂k∂l and is the lth derivative of the
kth component of the radiation acceleration vector aj with respect to body
mj j ∈ (1, 2), and furthermore a∗j,kl = aj,kl|Li

. The first and second partials
of the accelerations are given in Appendix C and Appendix D respectively.

In state space form the perturbation dynamics may be written as

˙̃x = Ax̃ (58)

where the state vector is defined as x̃ = [δx δy δz δẋ δẏ δż]T and the state
matrix A ∈ R6×6 is defined as

A =

[
03×3 I3×3
T N

]
(59)
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where

T =

−Uxx + a1,xx + a2,xx −Uxy + a1,xy + a2,xy −Uxz + a1,xz + a2,xz
−Uyx + a1,yx + a2,yx −Uyy + a1,yy + a2,yy −Uyz + a1,yz + a2,yz
−Uzx + a1,zx + a2,zx −Uzy + a1,zy + a2,zy −Uzz + a1,zz + a2,zz

 (60)

N =

 0 2 0
−2 0 0
0 0 0

 (61)

For a nontrivial solution, then taking det(A) = 0 gives the characteristic
polynomial (McInnes et al., 1994)

P(λ) =
6∑
j=0

qjλ
6−j (62)

It is known that in the system without SRP the collinear libration points,
L1, L2, L3, are unstable and the initial conditions can at best be chosen such
that the eigenvalues are not excited, meaning Lyapunov stability may be
achieved close to the collinear points (Nuss, 1998).
The coefficients of the polynomial P(λ) are given by (McInnes et al., 1994)

q6 = T∗11(T
∗
22T

∗
33 −T∗23T

∗
32)−T∗12(T

∗
33T

∗
21 −T∗23T

∗
31)

−T∗13(T
∗
22T

∗
31 −T∗21T

∗
32) (63a)

q5 = 2T∗33(T
∗
21T

∗
12) + 2(T∗32T

∗
13 −T∗23T

∗
31) (63b)

q4 = T∗11T
∗
22 + T∗11T

∗
33 + T∗23T

∗
32 −T∗13T

∗
31 −T∗12T

∗
21 + 4T∗33 (63c)

q3 = 2(T∗21 −T∗12) (63d)

q2 = T∗11 + T∗22 + T∗33 + 4 (63e)

q1 = 0 (63f)

q0 = 1 (63g)

To check if the system is stable then according to the Routh-Hurwitz cri-
terion, then for a nth-degree polynomial P(λ), all coefficients qi must exist
(qi 6= 0), be positive qi > 0 and if there is any sign change in the Routh
Array then it means that the system is unstable. Looking at the Eqs. (63a)-
(63g) implies that at least one eigenvalue will not lie in closed left half-plane
(CLHP) of the root locus diagram since q1 = 0. Thus the system is naturally
unstable. Substituting for purely imaginary eigenvalues λ = ικ (ι =

√
−1),
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the characteristic polynomial becomes as shown in (McInnes et al., 1994)

P(ικ) = −κ6 + q2κ
4 − ιq3κ3 − q4κ2 + ιq5κ+ q6 (64)

For the condition P(λ) = 0 then both real and purely imaginary parts are
identically zero, thus

κ6 + q2κ
4 − q4κ2 + q6 = 0 (65a)

ικ(q5 − κ2q3) = 0 (65b)

Six solutions appear from this set of equations with κ2i > 0, i = (1, ..., 6).

With κ1 = 0 and κ2,3 = ±
√

q5
q3

, the solution κ is not a consistent solution.

The latter equation can be satisfied if q3 = q5 = 0 and are then represented
in conjugate pairs in the first equation which may or may not have real
solutions. In order to have Lyapunov stability then, by necessity, q3 = 0 ⇒
(T∗21 − T∗12) = 0. Since potential is conservative Uxy − Uyx = 0, such that
q3 = 0 ⇒ (a1,yx + a2,yx − a1,xy − a2,xy) = 0. With q5 = 0 it is also required
that (a1,zx + a2,zx − a1,xz − a2,xz) = 0 and (a1,yz + a2,yz − a1,zy − a2,zy) = 0.
This implies that β = 0 or

∇× a1 + ∇× a2 = 0 (66)

⇒∇× a1 = −∇× a2 (67)

Similar to the CR3BP with SRP acceleration a1 only, this implies both a1 and
a2 must be either conservative or one of the accelerations must be balanced
by opposite curl. A requirement for Lyapunov stability is therefore that SRP
force is zero, i.e. β = 0, or the problem is conservative, i.e. |α| = 90◦ and
ψ = 0◦ or |ψ| = 180◦, or the accelerations are balanced, i.e. a1 = −a2.
Interestingly enough, the condition a1 = −a2 occurs at the RoI boundary
V (r1, r2) as derived in Eq. (47). The modified stability characteristics are
part of contribution (d) in section 1. Although the equilibrium solutions are
in general unstable, they are controllable using either feedback to the sail
attitude or trim to the sail area.

In this paper the sail controllability of position and velocity will be inves-
tigated using the solar sail attitude as the control input, which is considered
to be more practical than trimming area of the solar sail by varying β as
there is more flexibility in changing the attitude by two control variables
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only. Nevertheless, in future work, it is worth to examine controllability
with all three control variables as the thrust of the solar sail inherently has
three components (McInnes, 2000). The sail orientation control variables are
defined such that the input is

u∗ + δu = [(αLi
+ δα) (γLi

+ δγ)]T (68)

where αLi
and γLi

are the nominal sail angles corresponding to the libration
point of interest. Thus the state space form becomes

˙̃x = Ax̃ + Bδu (69)

where A is the same as defined in Eq. (59) and the input matrix B ∈ R6×2

will now have the form

B =

[
03×2
ã∗

]
(70)

where

ã∗ =

a∗1,xα + a∗2,xα a∗1,xγ + a∗2,xγ
a∗1,yα + a∗2,yα a∗1,yγ + a∗2,yγ
a∗1,zα + a∗2,zα a∗1,zγ + a∗2,zγ

 (71)

where aj,kl = ∂aj/∂k∂l and is the lth derivative of the kth component of
the radiation acceleration vector aj with respect to body mj, j ∈ (1, 2), and
furthermore a∗j,kl = aj,kl|Li

. The partial derivatives are given in Appendix E
and Appendix F.

The controllability matrix Γ ∈ R6×12 may be written as

Γ =
[
B AB A2B A3B A4B A5B

]
(72)

To check for controllability, and noting that

N2 =

−4 0 0
0 −4 0
0 0 0

 (73)

and N3 = −4N, the A matrix and higher-order powers are the following

A2 =

[
T N

NT T + N

]
(74)
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A3 =

[
NT N2 + T

T2N2 + T2 2NT− 4N

]
(75)

A4 =

[
T2N2 + T2 2NT− 4N

−4TN− 2TNT T2 − 4N2 −N2T

]
(76)

A5 =

[
−4TN− 2TNT T2 − 4N2 −N2T

T3 −TN2T− 4TN2 16N−NT2

]
(77)

The controllability matrix may thus be expressed in terms of columns as

Γ =
[
w1 w2 w3 w4 w5 w6

]
(78)

where,

w1 =

[
0
ã∗

]
; (79)

w2 =

[
ã∗

Nã∗

]
; (80)

w3 =

[
Nã∗

(T + N)ã∗

]
; (81)

w4 =

[
(N2 + T)ã∗

(2NT− 4N)ã∗

]
; (82)

w5 =

[
(2NT− 4N)ã∗

(T2 − 4N2 −N2T)ã∗

]
; (83)

w6 =

[
(T2 − 4N2 −N2T)ã∗

(16N−NT2)ã∗

]
(84)

It is found that the controllability matrix Γ has full rank except when the
solar sail is not oriented parallell to the SRP and ARP forces having the
properties r̂1 · n̂ = 0 and r̂2 · n̂ = 0 simultaneously, i.e. when |α| = 90◦ and
|ψ| = 180◦ or |ψ| = 0◦. This is naturally similar to the CR3BP with SRP
acceleration a1 alone, i.e. when the system is uncontrollable if r̂1 · n̂ = 0 as
shown in McInnes et al. (1994). For |α| = 90◦ and |ψ| = 180◦ and |ψ| = 0◦,
then the solar sail is positioned at the Lagrange points and no SRP and ARP
effects are induced on the solar sail.
To prove the fact, let r̂1 · n̂ = 0 and r̂2 · n̂ = 0, then

ã∗ =
[
03×3

]
(85)
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and
B = 06×2 (86)

The controllability matrix Γ becomes

Γ = [06×2 06×2 06×2 06×2 06×2 06×2] (87)

Another case that may also render the system to be uncontrollable is when
a1,kl = −a2,kl, and the following proves the fact

ã∗ =
[
03×3

]
(88)

and
B = 06×2 (89)

which gives the same result as Eq. (87).
Thus controllability depends mainly on B or ã∗. Hence columns w1−6 are
all linearly dependent and system is uncontrollable. The findings presented
in this section are referred to contribution (d) in this paper stated in section
1. This implies that the columns of Γ are linearly independent if and only if
the first case r̂1 · n̂ 6= 0 and r̂2 · n̂ 6= 0 and second case a1,kl 6= −a2,kl, thus
rank(Γ) = 6 and the system is in general completely controllable.
Since the system generally is controllable, then a feedback gain K may be
constructed by pole placement or optimal control such that the closed-loop
system Acl = (A + BK) is asymptotically stable.

With the analytical framework established and derivations being shown as
necessary for dynamics, stability and controllability, it is worthwile to look
at the results retrieved through numerical simulation.

5. Numerical Results

This section will cover the simulation results achieved based on the the-
ory established in sections 2 and 3. Analyzing the planar CR3BP for two
separate cases: y = 0 and z = 0 the solar sail in the Sun-asteroid system
with varying β and orientations (α, γ), it is clear that the classical libra-
tion points L1,...,5 are replaced by infinitely many artificial equilibrium points
when including radiation pressure from both the Sun and the asteroid. For
the results discussed here, the mass ratio µ, albedo ρ, diameter of asteroid d2
and distance between Sun and the asteroid r12 are chosen to be as indicated
in Table 2. These are geometrical and physical parameters equivalent to an
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(a) x̂− ŷ Plane

(b) x̂− ẑ Plane

Figure 3: Plots of equilibrium solutions by solar sail lightness number where are the
β contours, is the boundary S(r1, r2), 4 are the Lagrange points and ◦ is the asteroid
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Table 2: CR3BP example parameters for Vesta

µ ρ d2 (km) r12 (km)
1.3× 10−10 0.2 525.4 353.3× 106

asteroid representing Vesta, which is a large asteroid residing in the aster-
oid field. Previous studies shown how SRP generates artificial equilibrium
points (McInnes, 1999), however, with ARP these equilibrium points change
considerably and solar lightness number surfaces at equilibra become altered
due to the Lambertian BRDF as a function of ρ, d2, φ and r2. The chosen
region to investigate is in the vicinity of L1 and L2.

Figs. 3a and 3b show some of the equilibrium solutions or contours of
solar sail lightness number β in the CR3BP with SRP only in the x̂ − ŷ
plane and x̂− ẑ plane, respectively. Highlighted contours are a : β = 0.0003,
b : β = 0.0005, c : β = 0.005, d : β = 0.01, similarly reproduced as in
other literature (McInnes et al., 1994; McInnes, 1999, 2000; Nuss, 1998).
The dashed lines indicate boundaries S(r1, r2) which define the shaded areas
where the β contours cannot exist as r1 · n̂ ≥ 0 and be tangent to the mass
m2 and the collinear points L1 and L2. When ∇U = 0 or α = 90◦ then the
classical Lagrange points are retrieved.

Since µ is very small then this renders more flexibility for small numbers of
β than for large β, demonstrated to be on the order of magnitude 10 less than
for the Sun-Earth system (McInnes et al., 1994). This practically means that
the solar radiation pressure force is much smaller than the solar gravitational
force. For a balance between the solar radiation pressure force and the solar
gravitational force the area to mass ratio is smaller thus a smaller solar
sail area is required for a specific fixed mass. When 0.03 ≤ β ≤ 1, the
contours do not change considerably and thus flexibility is restricted to a
smaller volume. If 0 ≤ β ≤ 1 then the contour shows a three-dimensional
nested torus projected onto the x̂ − ŷ or x̂ − ẑ plane. However for β > 1,
then the inner radius of the torus disappears. As β → ∞ the equilibrium
surfaces approach the boundary S(r1, r2). The equilibrium points have been
demonstrated to be unstable but controllable in general (McInnes et al.,
1994).

Figs. 4a and 4b show the three-dimensional surface of equilibrium so-
lutions for β = 0.0003 and β = 0.005 and for β = 0.0005 and β = 0.01.
Fig. 4b and Fig. 5b show the planar equilibrium solutions or contours of
solar sail lightness number β in the CR3BP with both SRP and ARP in the
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(a) β = 0.0003 (light) and β = 0.005 (dark)

(b) β = 0.0005 (light) and β = 0.01 (dark)

Figure 4: Equilibrium surfaces with selected solar sail lightness numbers β where 4 are
the Lagrange points and ◦ is the asteroid
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(a) x̂− ŷ Plane

(b) x̂− ẑ Plane

Figure 5: Plots of equilibrium solutions by solar sail lightness number where are the β
contours, is the boundary V (r1, r2), is the boundary S(r1, r2),4 are the Lagrange
points and ◦ is the asteroid
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(a) x̂− ŷ Plane

(b) x̂− ẑ Plane

Figure 6: Plots of RoI where is the boundary ‖a1‖2 = ‖a2‖2, is the boundary
V (r1, r2), 4 are the Lagrange points and ◦ is the asteroid
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Figure 7: Solar sail equilibrium points for β = 0.005 and γ = 90◦ with ARP in x̂− ŷ plane
where is the β contour, × are equilibrium points, 4 is L1 Lagrange point and ◦ is the
asteroid

x̂− ŷ plane and x̂− ẑ plane, respectively. Highlighted contours are the same
a : β = 0.0003, b : β = 0.0005, c : β = 0.005, d : β = 0.01. The dashed
boundary S(r1, r2) distinguishes the shaded forbidden areas from the free
areas where the β contours may not exist in the CR3BP model with SRP
only due to r1 · n̂ = 0. V (r1, r2) defines two disconnected shaded areas due to
the constraint

∑
a · n̂ ≥ 0 labelled as V1 and V2. This boundary shows where

equilibrium solutions may not exist when both forces from SRP and ARP
are included. The mass m2 and the collinear Lagrange points L1 and L2,
corresponding to the classical solutions with ∇U = 0 or α = 90◦ and ψ = 0◦

lie on both of the boundaries. Without albedo effects the boundary reduces
to S(r1, r2) as shown in Figs. 3a and 3b. Ṽ (r1, r2) is not shown in Figs. 5a
and 5b, as the forbidden areas due to this constraint are infinitesimally small
at m2 and m1 and did not appear in the simulations.

These results differ from Figs. 3a and 3b, showing that β contours in gen-
eral have different shape due to the Lambertian BRDF. Noteworthy is that
closer Sun-side equilibrium points exist between L1 and m2 which indicates
induced beneficial effects on the solar sail in the current presented approxi-
mation for albedo effects. For flexible solar sail transfers then β has to be on
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the smaller side. This means that the solar sail may move easily with smaller
SRP force as, at some points, it would balance out the gravity and ARP,
rendering existence of new equilibrium solutions. When 0.005 ≤ β ≤ ∞, the
contours do not change considerably. As β →∞, the equilibrium points ap-
proach the boundaries S(r1, r2) and V (r1, r2). The switching point is found
to be at β = 0.001, where β < 0.001 give the conventional contours and
β > 0.001 give the altered contours that asymptotically approach the bound-
ary V (r1, r2) as β → ∞. It is emphasized again as shown in section 4 that
the equilibrium points are still unstable but controllable in general.

It has been demonstrated that the β contours are nearly identical to the
model with SRP only when in vicinity of L1 and when outside the RoI or
boundary ‖a1‖2 = ‖a2‖2. The RoI boundary is shown in Figs. 6a and
6b for the two planar cases. It is evident that in the vicinity of m2 then
‖a1‖2 < ‖a2‖2, thus the solar sail will have equilibrium solutions also when
n̂ is oriented towards the Sun, i.e. when incribed in the RoI interior to the
boundary S(r1, r2). The equilibrium points exactly at the RoI boundary are
in theory found to be Lyapunov stable as claimed in section 4.

Fig. 7 explicitly shows a zoomed-in section of the equilibrium points for
a constant β = 0.005 with 0◦ ≤ α ≤ 180◦ for γ = 0◦ represented with the
albedo value of ρ = 0.2. It can be explicitly seen that the attitude alone
changes the position of the solar sail, and as α → 180◦ then the spacecraft
will approach m2 for the specific β chosen.

6. Conclusions

In this paper it is shown analytically and by analysis that adding ARP
to SRP in the CR3BP significantly affects the solar sail dynamics as the
artificial equilibrium points are shifted considerably for a Sun-minor body
system. Artificial equilibrium points are found to exist on the Sun-side of
the minor body, in a previously inadmissible volume for equilibrium points
between the Lagrange point L1 and the minor body, which enables novel
opportunities for solar sails. Hovering locations for closer observations are
possible in the vicinity of both L1 and L2 Lagrange points which may alleviate
mission operations.

By analytical analysis of local stability it is found that the equilibrium
points are unstable when ARP is included in the CR3BP. The equilibrium
points found to be Lyapunov stable exactly at the RoI boundary. The system
is found to be controllable in general for attitude angles as control inputs,
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thus the solar sail may alter the orientation to enforce asymptotic stability
or even Lyapunov stability at the points of interest. It can be concluded that
linearization about the equilibrium points has to take the ARP forces into
account in order to have a well-defined framework for solar sail control in the
vicinity of a minor body with high albedo.

The findings are benificial for any spacecraft mission to distant planets,
asteroids or comets. For an asteroid or comet it is also important to investi-
gate other dominant perturbation effects. Future work may involve analysis
of periodic orbits around the artificial on-axis and off-axis equilibrium points,
transfers between equilibrium points, oblateness effects and elliptical models
for both the Sun-minor body and Sun-Earth-minor body systems.
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Appendix A. Background

The following content describes the derivations and results based on pre-
vious work in McInnes et al. (1994); McInnes (1999) and includes only solar
radiation pressure in the solar sail circular restricted three body problem
(CR3BP).

In the CR3BP, both the large and minor primary objects are treated as
point masses denoted as m1 and m2, respectively, and the satellite mass m3

is assumed to be infinitesimally small. The relative sizes are denoted as
m1 > m2 >> m3. The objects revolve around a common center of mass
which defines the rotating reference frame B: {x̂, ŷ, ẑ} rotating with an an-
gular velocity ωB/I with respect to the inertial frame I: {̂i1, î2, î3}. The di-
mensions are normalized such that the distance between the primary masses
r12, the sum of primary masses m1 + m2 and the gravitational constant
G are all defined to be unity. The mass ratio of the system is defined as
µ = m2/(m1 + m2). The frame rotates once about the ẑ-axis in 2π/ω time
units. By definition, the angular velocity ωB/I is equal to the mean mo-
tion and has also a nondimensional magnitude equal to unity. ωB/I may be
expressed as

ωB/I = ω = ẑ (A.1)

The position vectors for the solar sail with respect to m1 and m2 in the
rotating frame, as seen in Fig. 1, are defined as

r1 = [(x+ µ) y z]T

r2 = [(x− (1− µ)) y z]T
(A.2)

In general the total force exerted on the solar sail is expressed as∑
F = Fg + FSRP + Fother (A.3)

However if Fother can be neglected, then the SRP force FSRP is the only
force that needs to be considered and can be analyzed separately from the
gravitational force Fg. SRP is assumed to act on only one surface of the solar
sail. The detailed physics of SRP acting on a perfectly reflecting flat plate
are discussed in McInnes (1999). The expression for radiation pressure is as
follows

P =
W

c
(A.4)
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where P is the magnitude of the radiation pressure force, c is the speed of
light and W represents the energy flux of the electromagnetic radiation that
creates pressure. Assuming the Sun can be modelled as a point source, the
energy flux varies proportionally with the inverse square of the distance from
the Sun. W can be written in terms of the solar luminosity L1 and scaled by
the Sun-Earth distance RE as

W =WE

(
RE

r1

)2

WE =
L1

4πR2
E

where WE is the mean energy flux measured at the Earth’s distance from the
Sun, generally taken to be 1368Js−1m−2 at 1AU. The solar sail intercepts

Figure A.1: SRP force exerted on a perfectly reflecting solar sail

photons of all possible frequencies, and reflect them in perfectly elastic colli-
sions. Therefore the momentum transfer force from incident photons creates
a reaction force of equal magnitude from the reflected photons. A solar sail is
an oriented surface such that the acceleration of the solar sail is a function of
the sail attitude. For a sail area A with unit vector n̂ with direction normal
to the sail surface, the SRP force exerted on the sail due to photons incident
from ûi direction is given by

Fi,SRP = PA(ûi · n̂)ûi (A.5)

35



where A(ûi · n̂) is the projected sail area in the ûi direction. Fig. A.1 shows
a schematic of the physics acting on the solar sail. By Newton’s Third Law,
the reflected photons will exert a force of equal magnitude on the solar sail,
but in the specular reflected direction −ûr, i.e.

Fr,SRP = −PA(ûi · n̂)ûr (A.6)

Since ûi − ûr = 2(ûi · n̂)n̂, the total force FSRP is then given by

FSRP = 2PA(ûi · n̂)2n̂ (A.7)

or

FSRP =
2AW

c
(ûi · n̂)2n̂ (A.8)

Using Eq. (A.5), then the force may be expressed as

FSRP =
2AWE

c

(
RE

r1

)2

(ûi · n̂)2n̂ (A.9)

or

FSRP =
AL1

2πcr21
(ûi · n̂)2n̂ (A.10)

As shown in Fig. (A.1), the sail pitch angle α may be expressed as the angle
between the normal vector or sail attitude vector n̂ and the incident radiation
vector ûi. Thus the acceleration due to radiation pressure may be expressed
as

a1 =
L1

2πcσr21
cos2 αn̂ (A.11)

where the solar sail performance may be parametrized by the total spacecraft
mass per unit area m3/A or commonly known as sail loading σ. For a solar
sail in heliocentric orbit the direction of incidence of radiation ûi is defined
by the unit vector r̂1. Then the acceleration exerted on the solar sail may be
expressed as

a1 = β
Gm1

r21
〈r̂1 · n̂〉2n̂ (A.12)

or in nondimensionalized form in a CR3BP system

a1 = β
(1− µ)

r21
〈r̂1 · n̂〉2n̂ (A.13)
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Knowing that r̂1 is directed along the Sun-line and since the SRP force can
never be directed sunwards, the solar sail orientation is constrained to be
nonnegative (McInnes et al., 1994). Therefore the 〈·〉 term is the nonnegative
operator i.e.

〈x〉 =

{
x if x ≥ 0
0 if x < 0

The dimensionless sail loading parameter β is the defined as the ratio of the
radiation pressure force to the solar gravitational force exerted on the sail,
otherwise known as the lightness number of the solar sail (McInnes et al.,
1994). This may be expressed as

β =
σ∗

σ
(A.14)

where

σ∗ =
L1

2πGm1c
(A.15)

where L1 is the luminosity of the large primary object, where for the Sun it is
taken to be approximately 3.846× 1026 W . It is easy to see that a large β is
induced by large A/m3 ratio, that means the larger the sail area is compared
to the mass, then the sail will experience higher acceleration a1. On the other
hand, the sail will have smaller β if area is smaller with fixed spacecraft mass.
Acceleration a1 is also highly dependent on the sail orientation defined by
the 〈·〉 term.

The reduced vector form of equations of motion (EoM) for a solar sail
with r being the vector from the center of mass to m3 can be defined in the
rotating frame as (McInnes et al., 1994)

r̈ + 2ω × ṙ + ∇U = a1 (A.16)

The state space form of the solar sail EoM may be written as a nonlinear
time-invariant vector differential equation[

ṙ
r̈

]
=

[
f1(r,u)
f2(r,u)

]
(A.17)
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Based on the EoM this is written in explicit form as[
ṙ
r̈

]
=

[
ṙ

a1 −∇U − 2ω × ṙ

]
(A.18)

At equilibrium r = r∗ then ṙ = 0 i.e. f1(r,u) = 0 and r̈ = 0. Thus

0 =

[
0

a1 −∇U

]
(A.19)

In scalar form the three body potential U may be written as

U = −
(

1

2
(x2 + y2) +

1− µ
r1

+
µ

r2

)
(A.20)

Stationary solutions require condition in Eq. (A.19). Then, with n̂ being
oriented in the direction of a1, taking the cross product of n̂ with Eq. (??),
it follows that

∇U × n̂ = 0⇒ n̂ = ε∇U (A.21)

where ε is an arbitrary scalar multiplier. Using the fact that ‖n̂‖2 = 1, then
ε = ‖∇U‖−12 , therefore requiring a stationary solution, then

n̂ =
∇U

‖∇U‖2
(A.22)

∇U =

UxUy
Uz

 =


−x+ (1−µ)(x+µ)

r31
+ µ(x−(1−µ))

r32

−y + (1−µ)y
r31

+ µy
r32

(1−µ)z
r31

+ µz
r32

 (A.23)

With ∇U = 0 the five classical equilibrium points at rLi
, i = (1, ..., 5) can be

found as the system is reduced to the conventional CR3BP. However, when
including solar sail acceleration a1 then new artificial equilibrium solutions
emerge.

The sail cone (pitch) angle, α and clock (precession) angle, γ, define the
sail attitude with respect to the coordinate systemR: {r̂1, r̂1×ẑ, (r̂1×ẑ)×r̂1}
located on the solar sail center of mass. The pitch angle α controls the
magnitude of the radiation pressure force and the clock angle controls the
force direction. A schematic is shown in Fig. A.2. The angles may be written
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Figure A.2: Schematic of solar sail cone and clock angles

as

tanα =
‖r̂1 ×∇U‖2

r̂1 ·∇U
(A.24)

tan γ =
‖((r̂1 × ẑ)× r̂1)× (r̂1 ×∇U)‖2

((r̂1 × ẑ)× r̂1) · (r̂1 ×∇U)
(A.25)

The sail attitude with respect to r2 can be defined as (ψ−α), and from using
trigonometric identities then

tan(ψ − α) =
‖r̂2 ×∇U‖2

r̂2 ·∇U

=
(‖r̂1 × r̂2‖2)(r̂1 ·∇U)− (r̂1 · r̂2)(‖r̂1 ×∇U‖2)
(r̂1 · r̂2)(r̂1 ·∇U) + (‖r̂1 × r̂2‖2)(‖r̂1 ×∇U‖2)

(A.26)

The solar sail orientation can be expressed in terms of the components of n̂
with respect to the rotating frame (McInnes, 2000). The scalar components
of n̂ corresponding to the directions x̂, ŷ, ẑ are

nx =
cosα(x+ µ)

r1
− sinα cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2
+

sinα sin γy

‖r1 × ẑ‖2
(A.27)
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ny =
cosαy

r1
− sinα cos γyz

‖(r1 × ẑ)× r1‖2
− sinα sin γ(x+ µ)

‖r1 × ẑ‖2
(A.28)

nz =
cosαz

r1
− sinα cos γ(y2 + (x+ µ)2)

‖(r1 × ẑ)× r1‖2
(A.29)

where
‖r1‖2 = r1 =

√
(x+ µ)2 + y2 + z2, (A.30)

‖r1 × ẑ‖2 =
√

(x+ µ)2 + y2, (A.31)

‖(r1 × ẑ)× r1‖2 =
√

(x+ µ)2z2 + y2z2 + ((x+ µ)2 + y2)2, (A.32)

With the solar sail orientation angles defined, then the effects of a solar sail
may be added to the scalar EoM in the CR3BP. The solar sail acceleration
may be expressed in scalar components with respect to rotating coordinates
as

a1,x = β
(1− µ)

r21
cos2 αnx (A.33)

a1,y = β
(1− µ)

r21
cos2 αny (A.34)

a1,z = β
(1− µ)

r21
cos2 αnz (A.35)

Thus the compact scalar form of solar sail EoM added with SRP are of the
form

ẍ− 2ẏ = −Ux + a1,x (A.36)

ÿ + 2ẋ = −Uy + a1,y (A.38)

z̈ = −Uz + a1,z (A.37)

Equilibrium solutions are created when the left hand terms are zero, or equiv-
alently when the SRP acceleration balances the gravitational acceleration,
i.e. ∇U = a1. Evaluating Eq. (A.20) and taking the scalar product of
Eq. (A.19) with n̂, and requiring to be at equilibrium solutions, the solar
lightness number may be expressed as

β =
r21

(1− µ)

∇U · n̂
〈r̂1 · n̂〉2

(A.38)

The classical solutions without solar sail correspond to the subset β = 0.
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With β > 0 a particular equilibrium solution on a given surface is defined by
the sail cone and clock attitude angles in Eq. (A.24) and Eq. (A.25).

Evaluating the gradient of the potential U for the condition r̂1 · n̂ = 0 or
equivalently r̂1 ·∇U = 0, as a result of n̂ being defined in Eq. (A.22), a
function S(r1, r2) = 0 is obtained as follows

r1 ·∇U =[(x+ µ) y z] ·


−x+ (1−µ)(x+µ)

r31
+ µ(x−(1−µ))

r32

−y + (1−µ)y
r31

+ µy
r32

(1−µ)z
r31

+ µz
r32


=− x(x+ µ) +

(1− µ)(x+ µ)2

r31
+
µ(x− (1− µ))(x+ µ)

r32

− y2 +
(1− µ)y2

r31
+
µ(x− (1− µ))y2

r32
+

(1− µ)z2

r31

+
µ(x− (1− µ))z2

r32

=− x(x+ µ)− y2 +
(1− µ)

r31

(
(x+ µ)2 + y2 + z2

)
µ

r32

(
(x− (1− µ))(x+ µ) + y2 + z2

)
=− x(x+ µ)− y2 +

(1− µ)r21
r31

+
µr1 · r2
r32

= 0

⇒ S =x(x+ µ) + y2 − 1− µ
r1
− µr1 · r2

r32
(A.39)

which defines regions where the solutions may exist and creates two topologi-
cally disconnected boundary surfaces. Not only do the five classical Lagrange
points lie on these surfaces since they are solutions to ∇U = 0 but, in gen-
eral, the sail loading surfaces also approach the boundary asymptotically as
β → ∞ since r̂1 ·∇U → 0. It can easily be seen that S(r1, r2) does not
explicitly depend on SRP, but it depends on the sail position. In the free
areas the equilibrium points indicate that the solar sail is in tension between
SRP and gravitational forces but in forbidden areas this may not happen
and one force dominates the other for any orientation or solar sail lightness
number.
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Appendix B. Second Partial Derivatives of the On-Axis Pseudo-
Potential

The scalar expressions for the second partial derivatives of the pseudo-
potential U are given here.

Uxx =1− 1− µ
r31
− µ

r32
+

3(1− µ)(x+ µ)2

r51
+

3µ(x− (1− µ))2

r52
(B.1)

Uxy =
3(1− µ)(x+ µ)y

r51
+

3µ(x− (1− µ))y

r52
(B.2)

Uxz =
3(1− µ)(x+ µ)z

r51
+

3µ(x− (1− µ))z

r52
(B.3)

Uyx =
3(1− µ)(x+ µ)y

r51
+

3µ(x− (1− µ))y

r52
(B.4)

Uyy =1− 1− µ
r31
− µ

r32
+

3(1− µ)y2

r51
+

3µy2

r52
(B.5)

Uyz =
3(1− µ)yz

r51
+

3µyz

r52
(B.6)

Uzx =
3(1− µ)(x+ µ)z

r51
+

3µ(x− (1− µ))z

r52
(B.7)

Uzy =
3(1− µ)yz

r51
+

3µyz

r52
(B.8)

Uzz =− 1− µ
r31
− µ

r32
+

3(1− µ)z2

r51
+

3µz2

r52
(B.9)
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Appendix C. Partial Derivatives of the Solar Sail SRP Accelera-
tion Terms Relative to Position

The scalar expressions for the second partial derivatives of the solar sail
acceleration a1 with respect to position (assumed that solar sail cone and
clock angles, α and γ, are independent of position) are given here.

a1,xx =β
(1− µ)

r21
cos2 α

(
− 2(x+ µ)nx

r21
+

cosα(y2 + z2)

r31

− sinα sin γy(x+ µ)

‖r1 × ẑ‖32
+

sinα cos γz((x+ µ)4 − y2z2 − y4)
‖(r1 × ẑ)× r1‖32

)
(C.1)

a1,xy =β
(1− µ)

r21
cos2 α

(
− 2ynx

r21
− cosα(x+ µ)y

r31
+

sinα sin γ(x+ µ)2

‖r1 × ẑ‖32

+
sinα cos γ(x+ µ)yz(2(x+ µ)2 + 2y2 + z2)

‖(r1 × ẑ)× r1‖32

)
(C.2)

a1,xz =β
(1− µ)

r21
cos2 α

(
− 2znx

r21
− cosα(x+ µ)z

r31

− sinα cos γ(x+ µ)((x+ µ)2 + y2)2

‖(r1 × ẑ)× r1‖32

)
(C.3)

a1,yx =β
(1− µ)

r21
cos2 α

(
− 2(x+ µ)ny

r21
− cosα(x+ µ)y

r31
− sinα sin γy2

‖r1 × ẑ‖32

+
sinα cos γ(x+ µ)yz(2(x+ µ)2 + 2y2 + z2)

‖(r1 × ẑ)× r1‖32

)
(C.4)

a1,yy =β
(1− µ)

r21
cos2 α

(
− 2yny

r21
+

cosα((x+ µ)2 + z2)

r31

+
sinα sin γy2

‖r1 × ẑ‖32
− sinα cos γz((x+ µ)2(z2 + (x+ µ)2)− y4)

‖(r1 × ẑ)× r1‖32

)
(C.5)
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a1,yz =β
(1− µ)

r21
cos2 α

(
− 2zny

r21
− cosαzy

r31

− sinα cos γy((x+ µ)2 + y2)2

‖(r1 × ẑ)× r1‖32

)
(C.6)

a1,zx =β
(1− µ)

r21
cos2 α

(
− 2(x+ µ)nz

r21
− cosα(x+ µ)z

r31

+
sinα cos γ(x+ µ)z2((x+ µ)2 + y2)

‖(r1 × ẑ)× r1‖32

)
(C.7)

a1,zy =β
(1− µ)

r21
cos2 α

(
− 2ynz

r21
− cosαyz

r31

+
sinα cos γyz2((x+ µ)2 + y2)

‖(r1 × ẑ)× r1‖32

)
(C.8)

a1,zz =β
(1− µ)

r21
cos2 α

(
− 2znz

r21
+

cosα((x+ µ)2 + y2)

r31

− sinα cos γz((x+ µ)2 + y2)2

‖(r1 × ẑ)× r1‖32

)
(C.9)
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Appendix D. Partial Derivatives of the Solar Sail ARP Accelera-
tion Terms Relative to Position

The scalar expressions for the second partial derivatives of the solar sail
acceleration a2 with respect to position (assumed that solar sail cone and
clock angles, α and γ, are independent of position) are given here.

a2,xx =β
(1− µ)d22ρp(φ)

r42
cos2(ψ − α)

(
− 4(x− 1 + µ)nx

r22

+
cosα(y2 + z2)

r31
− sinα sin γy(x+ µ)

‖r1 × ẑ‖32

+
sinα cos γz((x+ µ)4 − y2z2 − y4)

‖(r1 × ẑ)× r1‖32

)
(D.1)

a2,xy =β
(1− µ)d22ρp(φ)

r42
cos2(ψ − α)

(
− 4ynx

r22
− cosα(x+ µ)y

r31

+
sinα sin γ(x+ µ)2

‖r1 × ẑ‖32

+
sinα cos γ(x+ µ)yz(2(x+ µ)2 + 2y2 + z2)

‖(r1 × ẑ)× r1‖32

)
(D.2)

a2,xz =β
(1− µ)d22ρp(φ)

r42
cos2(ψ − α)

(
− 4znx

r22
− cosα(x+ µ)z

r31

− sinα cos γ(x+ µ)((x+ µ)2 + y2)2

‖(r1 × ẑ)× r1‖32

)
(D.3)

a2,yx =β
(1− µ)d22ρp(φ)

r42
cos2(ψ − α)

(
− 4(x− 1 + µ)ny

r22

− cosα(x+ µ)y

r31
− sinα sin γy2

‖r1 × ẑ‖32

+
sinα cos γ(x+ µ)yz(2(x+ µ)2 + 2y2 + z2)

‖(r1 × ẑ)× r1‖32

)
(D.4)
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a2,yy =β
(1− µ)d22ρp(φ)

r42
cos2(ψ − α)

(
− 4yny

r22

+
cosα((x+ µ)2 + z2)

r31
+

sinα sin γy2

‖r1 × ẑ‖32

− sinα cos γz((x+ µ)2(z2 + (x+ µ)2)− y4)
‖(r1 × ẑ)× r1‖32

)
(D.5)

a2,yz =β
(1− µ)d22ρp(φ)

r42
cos2(ψ − α)

(
− 4zny

r22
− cosαzy

r31

− sinα cos γy((x+ µ)2 + y2)2

‖(r1 × ẑ)× r1‖32

)
(D.6)

a2,zx =β
(1− µ)d22ρp(φ)

r42
cos2(ψ − α)

(
− 4(x− 1 + µ)nz

r22

− cosα(x+ µ)z

r31
+

sinα cos γ(x+ µ)z2((x+ µ)2 + y2)

‖(r1 × ẑ)× r1‖32

)
(D.7)

a2,zy =β
(1− µ)d22ρp(φ)

r42
cos2(ψ − α)

(
− 4ynz

r22
− cosαyz

r31

+
sinα cos γyz2((x+ µ)2 + y2)

‖(r1 × ẑ)× r1‖32

)
(D.8)

a2,zz =β
(1− µ)d22ρp(φ)

r42
cos2(ψ − α)

(
− 4znz

r22

+
cosα((x+ µ)2 + y2)

r31
− sinα cos γz((x+ µ)2 + y2)2

‖(r1 × ẑ)× r1‖32

)
(D.9)
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Appendix E. Partial Derivatives of the Solar Sail SRP Accelera-
tion Terms Relative to Orientation

The scalar expressions for the second partial derivatives of the solar sail
acceleration a1 with respect to orientation are expressed given here.

a1,xα =β
(1− µ)

r21
cosα

(
− 3 cosα sinα(x+ µ)

r1
+

(1− 3 sin2 α) sin γy

‖r1 × ẑ‖2

− (1− 3 sin2 α) cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2

)
(E.1)

a1,yα = β
(1− µ)

r21
cosα

(
− 3 cosα sinαy

r1
− (1− 3 sin2 α) sin γ(x+ µ)

‖r1 × ẑ‖2

− (1− 3 sin2 α) cos γyz

‖(r1 × ẑ)× r1‖2

)
(E.2)

a1,zα = β
(1− µ)

r21
cosα

(
− 3 cosα sinαz

r1

− (1− 3 sin2 α) cos γ(y2 + (x+ µ)2)

‖(r1 × ẑ)× r1‖2

)
(E.3)

a1,xγ = β
(1− µ)

r21
cos2 α

(
sinα cos γy

‖r1 × ẑ‖2
+

sinα sin γ(x+ µ)z

‖(r1 × ẑ)× r1‖2

)
(E.4)

a1,yγ = β
(1− µ)

r21
cos2 α

(
− sinα cos γ(x+ µ)

‖r1 × ẑ‖2
+

sinα sin γyz

‖(r1 × ẑ)× r1‖2

)
(E.5)

a1,zγ = β
(1− µ)

r21
cos2 α

(
− sinα sin γ(y2 + (x+ µ)2)

‖(r1 × ẑ)× r1‖2

)
(E.6)
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Appendix F. Partial Derivatives of the Solar Sail ARP Accelera-
tion Terms Relative to Orientation

The scalar expressions for the second partial derivatives of the solar sail
acceleration a2 with respect to orientation are given here.

a2,xα =β
(1− µ)d22ρp(φ)

r42
cos(ψ − α)(

(2 sin(ψ − α) cosα− cos(ψ − α) sinα) (x+ µ)

r1

+
(2 sin(ψ − α) sinα + cos(ψ − α) cosα) sin γy

‖r1 × ẑ‖2

− (2 sin(ψ − α) sinα + cos(ψ − α) cosα) cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2

)
(F.1)

a2,yα =β
(1− µ)d22ρp(φ)

r42
cos(ψ − α)(

(2 sin(ψ − α) cosα− cos(ψ − α) sinα) y

r1

− (2 sin(ψ − α) sinα + cos(ψ − α) cosα) sin γ(x+ µ)

‖r1 × ẑ‖2

− (2 sin(ψ − α) sinα + cos(ψ − α) cosα) yz

‖(r1 × ẑ)× r1‖2

)
(F.2)

a2,zα =β
(1− µ)d22ρp(φ)

r42
cos(ψ − α)(

(2 sin(ψ − α) cosα− cos(ψ − α) sinα) z

r1

− (2 sin(ψ − α) sinα + cos(ψ − α) cosα) cos γ(y2 + (x+ µ)2)

‖(r1 × ẑ)× r1‖2

)
(F.3)

a2,xγ =β
(1− µ)d22ρp(φ)

r42
cos2(ψ − α)

(
sinα cos γy

‖r1 × ẑ‖2

+
sinα sin γ(x+ µ)z

‖(r1 × ẑ)× r1‖2

)
(F.4)

48



a2,yγ =β
β(1− µ)d22ρp(φ)

r42
cos2(ψ − α)

(
− sinα cos γ(x+ µ)

‖r1 × ẑ‖2

+
sinα sin γyz

‖(r1 × ẑ)× r1‖2

)
(F.5)

a2,zγ =β
(1− µ)d22ρp(φ)

r42
cos2(ψ − α)

(
− sinα sin γ(y2 + (x+ µ)2)

‖(r1 × ẑ)× r1‖2

)
(F.6)
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Appendix G. Derivation of Partial Derivatives of the SRP and
ARP Acceleration Terms Relative to Orientation

This section shows how the equations were derived in Appendix E and
Appendix F. Derivation of a1,x and a2,x with respect to each orientation
angle is shown.

a1,xα =
∂

∂α
β

(1− µ)

r21
cos2 αnx

=
∂

∂α
β

(1− µ)

r21
cos2 α

(
cosα(x+ µ)

r1
− sinα cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2
+

sinα sin γy

‖r1 × ẑ‖2

)
=β

(1− µ)

r21

(
−2 cosα sinα

(
cosα(x+ µ)

r1
− sinα cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2

+
sinα sin γy

‖r1 × ẑ‖2

)
+ cos2 α

(
− sinα(x+ µ)

r1
− cosα cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2

+
cosα sin γy

‖r1 × ẑ‖2

))

=β
(1− µ)

r21

(
−2 cos2 α sinα(x+ µ)

r1
+

2 cosα sin2 α cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2

− 2 cosα sin2 α sin γy

‖r1 × ẑ‖2
− cos2 α sinα(x+ µ)

r1
− cos3 α cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2

+
cos3 α sin γy

‖r1 × ẑ‖2

)
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=β
(1− µ)

r21
cosα

(
−2 cosα sinα(x+ µ)

r1
+

2 sin2 α cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2

− 2 sin2 α sin γy

‖r1 × ẑ‖2
− cosα sinα(x+ µ)

r1
− cos2 α cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2

+
cos2 α sin γy

‖r1 × ẑ‖2

)

=β
(1− µ)

r21
cosα

(
−3 cosα sinα(x+ µ)

r1

− (−2 sin2 α + cos2 α) cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2
+

(−2 sin2 α + cos2 α) sin γy

‖r1 × ẑ‖2

)

=β
(1− µ)

r21
cosα

(
−3 cosα sinα(x+ µ)

r1

− (−2 sin2 α + 1− sin2 α) cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2

+
(−2 sin2 α + 1− sin2 α) sin γy

‖r1 × ẑ‖2

)

=β
(1− µ)

r21
cosα

(
− 3 cosα sinα(x+ µ)

r1
+

(1− 3 sin2 α) sin γy

‖r1 × ẑ‖2

− (1− 3 sin2 α) cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2

)
(G.1)

a1,xγ =
∂

∂γ
β

(1− µ)

r21
cos2 αnx

=
∂

∂γ
β

(1− µ)

r21
cos2 α

(
cosα(x+ µ)

r1
− sinα cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2
+

sinα sin γy

‖r1 × ẑ‖2

)
=β

(1− µ)

r21
cos2 α

(
sinα cos γy

‖r1 × ẑ‖2
+

sinα sin γ(x+ µ)z

‖(r1 × ẑ)× r1‖2

)
(G.2)
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a2,xα =
∂

∂α
β

(1− µ)d22ρp(φ)

r42
cos2(ψ − α)nx

=
∂

∂α
β

(1− µ)d22ρp(φ)

r42
cos2(ψ − α)

(
cosα(x+ µ)

r1

− sinα cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2
+

sinα sin γy

‖r1 × ẑ‖2

)
=β

(1− µ)d22ρp(φ)

r42

(
2 cos(ψ − α) sin(ψ − α)

(
cosα(x+ µ)

r1

− sinα cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2
+

sinα sin γy

‖r1 × ẑ‖2

)
+ cos2(ψ − α)

(
− sinα(x+ µ)

r1
− cosα cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2

+
cosα sin γy

‖r1 × ẑ‖2

))

=β
(1− µ)d22ρp(φ)

r42
cos(ψ − α)(

(2 sin(ψ − α) cosα− cos(ψ − α) sinα) (x+ µ)

r1

+
(2 sin(ψ − α) sinα + cos(ψ − α) cosα) sin γy

‖r1 × ẑ‖2

− (2 sin(ψ − α) sinα + cos(ψ − α) cosα) cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2

)
(G.3)

a2,xγ =
∂

∂γ
β

(1− µ)d22ρp(φ)

r42
cos2(ψ − α)nx

=
∂

∂γ
β

(1− µ)d22ρp(φ)

r42
cos2(ψ − α)(

cosα(x+ µ)

r1
− sinα cos γ(x+ µ)z

‖(r1 × ẑ)× r1‖2
+

sinα sin γy

‖r1 × ẑ‖2

)
=β

(1− µ)d22ρp(φ)

r42
cos2(ψ − α)

(
sinα cos γy

‖r1 × ẑ‖2

+
sinα sin γ(x+ µ)z

‖(r1 × ẑ)× r1‖2

)
(G.4)
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