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Control Cost and Mahalanobis Distance Binary Hypothesis
Testing for Spacecraft Maneuver Detection

Andris D. Jaunzemis*, Midhun V. Mathew†, Marcus J. Holzinger‡

Georgia Institute of Technology, Atlanta, GA 30332

An anomaly hypothesis testing technique using the minimum-fuel control distance metric is extended
to incorporate non-Gaussian boundary condition uncertainties and employ binary hypothesis testing.
The adjusted control distance metric utilizes Gaussian mixtures to model non-Gaussian boundary
conditions, and binary hypothesis testing allows inclusion of anomaly detection thresholds and allow-
able error rates. An analogous framework accommodating Gaussian mixtures and binary hypothesis
testing is developed. Both algorithms are compared using simulated and empirical satellite maneu-
ver data. The North-South station-keeping scenario shows control distance to be less sensitive with
increased uncertainty than Mahalanobis distance but more consistent with respect to observation
gap duration, a trend which is corroborated using available real-world data. The same consistency
with respect to observation gap is observed in East-West station-keeping while also showing control
distance metric to be more sensitive for shorter observation gaps. In the non-Gaussian boundary con-
dition case, control distance outperforms Mahalanobis distance in both detection and computational
complexity.

I. Introduction

Correlating on-orbit observations and detecting space ob-

ject maneuvers is a challenging endeavor in Space Sit-

uational Awareness (SSA). There are currently at least

20,000 trackable on-orbit objects, over 1,000 of which

are active [1, 2], and these numbers are expected to grow

significantly due to improved tracking capabilities, new

launches, and continued debris generation [3]. Predicting

conjunction events is a difficult task [4]. Recent events,

such as the Iridium-Cosmos on-orbit collision, highlight

the mutual interest that national and private operators

share for accurate object correlation and maneuver de-

tection capability [5]. Detecting maneuvers is particu-

larly important when tracking active objects for which no

operational information is available, as detecting maneu-

vers in real-time is required to adequately react to anoma-

lies or possible conjunctions [6, 7]. Timely detection of

maneuvers allows for responsiveness in follow-up track-

ing, which is crucial for post-maneuver orbit characteriza-

tion [6]. This task is especially difficult in low-thrust ma-

neuvers, where state change is more subtle [8]. Hoots et

al. provide an overview of tracking techniques used in the

space surveillance system, noting that the operational cen-

ters still depend largely on orbit models and applications

from the 1950s and 1960s [9]. These techniques often rely

on input from human analysts who excel at evaluating in-

formation and drawing conclusions based on incomplete

data, whereas automated tools often fall short in these sit-

uations [3]. Pending improvements in space surveillance

sensors are predicted to increase the number of cataloged

objects by an order of magnitude and the frequency of

measurement updates by a factor of 4 or more [3]. The

increase in data volume and complexity of decision will

render human analyst processes impractical, motivating a

need for automated decision processes.

A fundamental problem in SSA is state uncertainty, par-

ticularly in track association and maneuver detection [10].

Initially, state uncertainty may be assumed to be Gaus-

sian, which is often appropriate for resident space objects;

however, the orbital dynamics (e.g. gravity, drag, third

body perturbations) are nonlinear, and after propagation

the state uncertainty may become non-Gaussian [10]. One

typical solution is to model a non-Gaussian distribution

using a weighted sum of Gaussian distributions, termed a

Gaussian mixture model. Many arbitrary probability den-

sity functions can be closely approximated by a Gaussian

mixture [10].

Data association algorithms for object correlation and

maneuver detection have been well explored in literature.

The data association task hypothesizes an association and

attempts to compute a measure of the probability that the

hypothesis is true. Methods often focus on admissible

regions or probabilistic approaches to compare uncorre-

lated tracks and detect maneuvers. For instance, Tommei

et al. address object correlation and orbit determination

with admissible region-based methods and a virtual de-

bris algorithm that were applied to optical observations

and radar observations [11]. Maruskin et al. also use ad-

missible regions for object correlation by mapping admis-

sible regions to Delaunay or Hamiltonian orbit elements

and by comparing an observation with an earlier estimate

propagated forward in time [12]. Fujimoto et al. employ

highly constrained probability distributions in Poincare

orbit element space, where distributions are defined by

admissible-region maps such that the intersection between
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admissible regions, or lack thereof, reflects the correlation

between respective observations [13].

DeMars et al. approach the SSA data association prob-

lem using finite-set statistics to create a Bayesian ap-

proach for multi-object estimation. The adaptive entropy-

based Gaussian-mixture information synthesis (AEGIS)

approach is used to track objects while utilizing finite-set

statistics (FISST) to account for uncertainty, false alarms

and misdetections [14]. Kelecy and Jah apply batch least-

squares and extended Kalman filter based strategies to

detect and reconstruct low thrust finite maneuvers [8].

Huang et al. relate uncorrelated tracks (UCTs) using a

nonlinear least squares iterative process to optimally esti-

mate maneuvers following a maximum a posteriori crite-

rion for object correlation and maneuver detection [15].

Likewise, there are many distance or pseudo-distance

metrics that may be used to measure the discrepancy be-

tween two state distributions (e.g. Mahalanobis distance)

[16]. Problematically, existing metrics do not directly

quantify the level of propulsive effort required to cause

the observed state change. The problem of associating

UCTs over large time periods is particularly difficult when

resident space objects (RSOs) maneuver during observa-

tion gaps. Even relatively small station-keeping maneu-

vers at geostationary Earth orbit (GEO) can result in po-

sition discrepancies of many kilometers after an observa-

tion gap. UCT correlation is further confounded by state

estimate uncertainties [17]. Since both the initial and final

UCTs are best estimates, with associated probability den-

sity functions (PDFs), correlation is difficult particularly

in densely-populated regions of the space environment.

Given a propagated estimate of the state PDF, correlating

UCTs tests whether a new observation (with its associ-

ated uncertainty) is a previously observed object, and if

not, determines the discrepancy.

Holzinger et al. propose a minimum-fuel control dis-

tance metric to approach data association and maneuver

detection while considering propulsive effort and recon-

structing maneuvers [18]. Since on-board fuel remains

a scarce commodity for operational spacecraft, operators

are likely to execute fuel-optimal, or near-optimal, ma-

neuvers [17]. Under the assumption of optimal control,

multiple deterministic UCTs can be related by comput-

ing the control effort required for a spacecraft trajectory

to meet those boundary conditions. This approach ne-

cessitates the reconstruction of a minimum-fuel trajectory

consistent with the a priori information and new observa-

tions. Holzinger et al. have shown, through the properties

of strict positivity, symmetry, and triangle inequality, that

control performance is a metric [17], allowing objective

comparisons to other commonly used distance metrics.

The control cost distributions required can be computed

along each relevant trajectory by considering boundary

condition uncertainty [18]. In the previous work, a sin-

gle cost distribution was developed using the maneuvered

trajectory, testing the anomaly hypothesis by comparing

the size of the observed maneuver to the amount of uncer-

tainty in control cost due to uncertainty in the boundary

conditions [18]. This straight-forward approach encoun-

ters problems when attempting to draw conclusions re-

garding error rates, making comparisons to other metrics

incomplete.

A commonly-used statistical approach in anomaly de-

tection that incorporates error rates is binary hypothesis

testing, wherein integration over a pair of PDFs allows

determination of false alarm and missed detection proba-

bilities. Binary hypothesis testing has been implemented

for anomaly detection in various fields, such as signal pro-

cessing [19]. One variant of binary hypothesis testing,

the Neyman-Pearson approach, devises the most power-

ful likelihood-ratio test for a given significance level and

threshold [20]. In typical Neyman-Pearson detector im-

plementation, these thresholds are selected through anal-

ysis of a number of observations with associated PDFs;

however, in applications involving only one observation,

this method reduces to a more basic form of binary hy-

pothesis testing, which is the case for UCT association

where only one PDF is available at each time epoch.

Evaluating metrics for anomaly detection requires se-

lection of a representative subsection of the infinite con-

tinuum of possible maneuvers. Since optical observations

are primarily useful for space objects at high altitudes,

such as GEO, maneuvers relevant to GEO spacecraft are

particularly interesting. Spacecraft in GEO are assigned

to specific longitude slots for their operational lifetime,

but are also subject to a number of perturbations that

must be rejected using station-keeping maneuvers. For

instance, North-South station-keeping maneuvers adjust

inclination, which is primarily perturbed by third-body

gravitational effects, to maintain an equatorial orbit. East-

West station-keeping maneuvers adjust true longitude (or

phase), which is primarily perturbed by Earth oblateness

sectoral harmonics (i.e. J22), to maintain the spacecraft’s

GEO slot. These two primary station-keeping maneuvers

form a representative subset of maneuvers that could po-

tentially be encountered in operation.

This study modifies the approach to control distance

anomaly detection by introducing a binary hypothesis

structure, using control cost distributions from both the

maneuvered and quiescent (non-maneuvered) trajectories.

For this study, the hypothesis integration threshold is se-

lected to match a desired rate of false alarms using the

pair of control cost PDFs. Additionally, the control dis-

tance metric is extended for application to non-Gaussian

boundary conditions using Gaussian mixtures. Alternate

formulations of the Mahalanobis distance have already

been formulated using Gaussian mixtures [21], so this

study develops a similar formulation for the control dis-

tance metric. The primary contributions of this paper

are: 1) a computationally tractable Gaussian mixture ap-

proximation to computing control cost distributions for

non-Gaussian boundary condition probability densities,
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2) a binary hypothesis testing framework for anomaly

detection using the control distance metric that permits

specification of false alarm rates, 3) an analogous binary

hypothesis testing framework for anomaly detection us-

ing Mahalanobis distance, and 4) the implementation of

these two methods with quantitative performance com-

parisons drawn between the control distance metric and

Mahalanobis distance using both synthetic and real-world

data. These metrics are compared using a GEO space-

craft in both North-South and East-West station-keeping

test cases.

The remainder of the paper begins with a review of the

relevant background theory, which is presented in Section

II, allowing discussion of the novel theoretical contribu-

tions of this paper in Section III. Section IV contains a

discussion of the simulation implementation of the con-

trol distance and Mahalanobis distance detection meth-

ods, followed by simulation results using synthetic data

for a GEO spacecraft performing both North-South and

East-West station-keeping maneuvers. Corresponding re-

sults using real data are presented in Section V. A sub-

set of the data for these simulations is presented in each

section for discussion, but Appendix A contains a more

complete selection of the simulation data for reference.

Finally, the results from the synthetic and real data simu-

lations are distilled into potential operational applications

in Section VI, followed by concluding remarks in Section

VII.

II. Background
This section provides background information required

for novel theory development in Section III, including

description of the anomaly detection scenario and back-

ground on Gaussian mixture models and Mahalanobis dis-

tance.

A. Scenario

The following notional scenario is relevant to the task of

associating a pair of UCTs to detect maneuvers. As pic-

Figure 1. Maneuver detection scenario

tured in Fig. 1, an uncorrelated track UCTA at time t0
is used to generate a PDF, fA(x(t0)). Using the mean

state of the PDF, xμ(t0) = E [x(t0)], the track is prop-

agated to time t f under assumed quiescent dynamics,

ẋ(t) = f(x(t),u(t) = 0, t), yielding the propagated mean

state xμ(t f ) and its associated PDF fA(x(t f )). Another un-

correlated track at time t f , UCTB, yields its own PDF

fB(x∗(t f )) and mean state x∗μ(t f ) = E

[
x∗(t f )

]
. An optimal

maneuvered trajectory is generated connecting the mean

states of the UCTs, xμ(t0) and x∗μ(t f ), under the same dy-

namics, ẋ∗(t) = f(x∗(t),u∗(t), t), by minimizing some ob-

jective function J. This yields the maneuvered trajectory

x∗μ(t) and associated control u∗μ(t).

B. Optimal Connecting Trajectories

The anomaly detection algorithm begins with a trajec-

tory optimization routine, which uses mean states of the

boundary conditions to generate boundary time-fixed op-

timal connecting trajectories. The UCT pair is considered

a two-point boundary value problem (TPBVP), and a tra-

jectory is computed to optimally connect the two UCTs

based on a chosen cost function, J. In this study, the tra-

jectory is optimized by minimizing the quadratic control

cost, shown in Eq. (1) [22]. This particular cost func-

tion satisfies the metric properties of non-negativity, coin-

cidence, symmetry, and triangle inequality.

J(u(t); t0, t f ) =
1

2

∫ t f

t0
u(τ)Tu(τ) dτ. (1)

The quadratic control cost function is ideal for variable

specific impulse (VSI) engines, often used in low-thrust

applications, which have become more prevalent in re-

cent years. Alternate cost functions could also be imple-

mented, such as an impulsive cost function, as long as

they also satisfy metric properties.

C. Gaussian Mixture Models

The existing method to generate control cost PDFs as-

sumes normally distributed boundary conditions for sim-

plicity [17]; however, spacecraft state estimates are not al-

ways well-modeled as Gaussian distributions. This moti-

vates the use of a more general formulation able to handle

non-Gaussian boundary conditions using Gaussian mix-

ture models. Previous uses of Gaussian mixtures for space

applications include AEGIS-FISST, which leverages an

adaptive algorithm to spawn or destroy Gaussian compo-

nents of the Gaussian mixture to increase its fidelity while

maintaining computational tractability [14].

A Gaussian mixture is created by overlapping multiple

Gaussian distributions with different weights. For refer-

ence, the probability density of a state x in a multivariate

normal distribution of n-dimensions with mean xμ,i and

covariance Pi is defined using Eq. (2).

f (x; xμ,i,Pi) =
1

(2π)k/2 det [Pi]
1/2

exp

(
−1

2
(x − xμ,i)ᵀPi

−1(x − xμ,i)
)
.

(2)

Similarly, the probability density of a state x in a Gaus-

sian mixture model is defined using the weighted sum of
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a set of k multivariate normal density functions, as in Eq.

(3). A multivariate random variable ζ sampled from this

mixture is defined in Eq. (4):

f (x; xμ,1,P1, . . . , xμ,k,Pk) =

k∑
i=1

wi f (x; xμ,i,Pi) (3)

ζ ∼ f (xμ,1,P1, . . . , xμ,k,Pk) =

k∑
i=1

wiN(xμ,i,Pi) (4)

where w1, . . . ,wk are the weightings such that wi ≥ 0 and∑k
i=1 wi = 1.

D. Mahalanobis Distance with Gaussian Mixtures

The standard Mahalanobis distance and its Gaussian mix-

ture analog can be derived from the general definition of

the inner-product distance between two vectors q and r in

k-dimensions:

d(q, r)2 = ‖q − r‖2 (5)

= (q − r)TA−1(q − r) , A ∈ S
n×n
+ (6)

where the distance matrix A is positive-definite and sym-

metric. From observation, using the n × n identity matrix

In as the distance matrix will yield the Euclidean distance.

Likewise, using the covariance matrix Pi of a Gaussian

distribution will yield the Mahalanobis distance. Li et al.

define a new distance matrix to be used in the case of a

Gaussian mixture using Kullback-Leiber divergence [21].

The Mahalanobis distance is a measure of the dis-

tance between a two points within a Gaussian distribution,

scaled by the covariance of the distribution. The Maha-

lanobis distance thus calculates an n-dimensional standard

deviation between the points. Often, one of the points is

defined as the mean of the distribution, in which case Ma-

halanobis distance measures how many standard devia-

tions a query is from the mean. The Mahalanobis distance

of vector x from a distribution with mean xμ and covari-

ance P is defined by Eq. (7).

dM

(
x, xμ,P

)
=

√(
x − xμ

)T
P−1

(
x − xμ

)
(7)

A metric similar to Mahalanobis distance has been pro-

posed by Hill et al. to identify outliers when compar-

ing UCTs [23]. The particular metric shown in Eq. (8)

compares the new PDF at time t f , fB(x) = N(xμ,B,PB)

with a previous estimate propagated to time t f , fA(x) =

N(xμ,A(t f ),PA(t f )). In the case of maneuver detection,

PA(t f ) + PB is the distance matrix used to account for the

combined uncertainty of both distributions [23].

dM

(
xμ,A, xμ,B,PA(t f ) + PB

)

=

√(
xμ,A − xμ,B

)T (
PA(t f ) + PB

)−1 (
xμ,A − xμ,B

)
(8)

For the general case using Gaussian mixture bound-

ary conditions, the Mahalanobis distance equation must

be modified to account for multiple normal distributions.

Minimizing the KL divergence for a Gaussian mixture

yields the following distance matrix in Eq. (9) [21].

Pμ(x) =

⎡⎢⎢⎢⎢⎣
∑n

i=1 wi f (x; xμ,i,Pi)P−1
i∑n

j=1 wj f (x; xμ, j,P j)

⎤⎥⎥⎥⎥⎦
−1

(9)

From this result, Pμ is a weighted reciprocal sum of the

component covariances, where the weight is the probabil-

ity of x occurring in distribution i compared to the entire

the Gaussian mixture distribution.

In this work, the Gaussian mixture Mahalanobis dis-

tance will use Eq. (9) as the distance matrix. For a Gaus-

sian mixture composed of k Gaussian distributions, the

expected value, or centroid state, of the mixture is shown

in Eq. (10).

xμ = E
[
ζ
]
=

k∑
i=1

wixμ,i (10)

The Mahalanobis distance analog for Gaussian mixtures

is therefore defined in Eq. (11).

dGM(x, xμ; P−1
μ ) =

√(
x − xμ

)T
P−1
μ

(
x − xμ

)
(11)

In the case when the Gaussian mixture only has a single

component, the mixture is in fact a normal distribution,

so Eqs. (9-10) reduce to the covariance and mean of the

individual distribution respectively, and the standard Ma-

halanobis distance is recovered.

E. Binary Hypothesis Testing

A binary hypothesis structure uses separate PDFs for the

null and alternative hypotheses to allow prescription of

allowable error rates and detection thresholds. In order to

apply binary hypothesis testing, a pair of mutually exclu-

sive hypotheses, a null hypothesis H0 and an alternative

hypothesisH1, must be developed along with correspond-

ing probability density functions, f0(x) and f1(x). Given

PDFs for the binary hypotheses, the following probabili-

ties can be computed:

PFA =

∫ ∞

ν

f0(x)dx (12)

PFN =

∫ ν

−∞
f1(x)dx (13)

PD =

∫ ∞

ν

f1(x)dx (14)

where ν is a selected threshold, PFA is the probability of

false alarm (Type I error), PFN is the probability of false

negative or missed detection (Type II error), and PD is the

probability of detection. Noting that each integral shares
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the same integration threshold ν, the probabilities in Eqs.

(13-14) can be related by PFN + PD = 1. Also note that,

assuming both PDFs have been normalized, Eq. (13) is

equivalently defined as the cumulative distribution func-

tion (CDF) for the H1 hypothesis, while Eqs. (12) and

(14) are the complementary CDFs, or tail distributions.

Figure 2 notionally depicts the computation of these prob-

abilities from the H0 and H1 PDFs.

a) PFA b) PFN

c) PD

Figure 2. One-sided Binary Hypothesis Testing Illustration

The threshold ν is typically selected in order to match

a maximum allowable rate of false alarms, PFA, using the

null hypothesis PDF and Eq. (12).

III. Theory
The goal of this paper is to develop an algorithm using

distance metrics for spacecraft anomaly detection. The

control distance metric provides a method for comput-

ing the distance between two state distributions, gener-

ated by different spacecraft tracks. This is accomplished

by linearizing about a nominal optimal trajectory between

connecting the mean states of the PDFs. Due to the non-

linear nature of the general orbit determination problem,

these PDFs can be non-Gaussian, particularly after propa-

gation for some time. Therefore, the previous control dis-

tance metric work is extended using a Gaussian-mixture

approximation for application to non-Gaussian boundary

conditions. Using the extended control distance metric

approach, control cost distributions are computed for the

binary hypothesis pair of a non-maneuvered and a maneu-

vered trajectory. The control cost PDFs are used in a bi-

nary hypothesis test, subject to a desired false alarm rate,

to determine the probability that an anomaly has occurred

between the state estimates.

This study develops a framework to implement the con-

trol cost distribution method into an anomaly detection

algorithm. The cost distribution approximation method

by Holzinger et al. is extended for application to non-

Gaussian boundary conditions in Section III.A, and binary

hypothesis testing techniques are applied to the control

cost PDFs in Section III.B. Similar treatments for Maha-

lanobis distance are developed and presented in Section

III.C.

Figure 3. Minimum-fuel control distance anomaly detection and
characterization framework

The anomaly detection algorithm is assembled as

shown in Fig. 3. The inputs to the algorithm are a pair

of UCTs, represented by PDFs at times t0 and t f . The

output of the algorithm is the probability that the anomaly

hypothesis is true , PD, indicating whether an anomaly

has been detected. Stated differently, this is the proba-

bility that something outside the modeled quiescent dy-

namics (e.g. a maneuver) has occurred, under the pre-

liminary assumption that the two UCTs are generated by

the same object. Using theory developed in the follow-

ing sections, anomaly probability is calculated using two

different methods, the control distance metric and Ma-

halanobis distance, yielding two anomaly probabilities

for this study. This allows the analogous methods to be

compared in both anomaly detection sensitivity and error

rates.

A. Gaussian Mixture Approximation for Control
Distance Metric

The derivation for the Gaussian mixture approximation

for the control distance metric follows a similar deriva-

tion from Holzinger et al. that was restricted to Gaus-

sian boundary conditions [17]. Using the optimal state

and costate trajectory (x∗μ(t), p∗μ(t)), state uncertainties are

incorporated to generate an approximate probability dis-

tribution of the control cost associated with propagation

between the boundary conditions. This is accomplished

by linearizing about the nominal optimal trajectory and

applying perturbations within the boundary condition dis-

tributions. Performing this many times generates a distri-

bution of trajectories, and the control cost associated with

the perturbed trajectories can be computed. In order to

improve accuracy of boundary condition representation,

the following method adapts the previous work on control

distance metrics [17] for use with Gaussian mixtures. To

approximate the quadratic control cost connecting Gaus-

sian mixture boundary conditions, the trajectory connect-

ing the centroid states of the initial and final boundary

conditions is used. The centroid state, or expectation, of

the initial boundary condition is computed as the weighted

average of the mean states of each Gaussian component,
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as shown in Eq. (15):

xμ(t0) = E [x(t0)] = E

⎡⎢⎢⎢⎢⎢⎣
n∑

i=1

wixi(t0)

⎤⎥⎥⎥⎥⎥⎦ =
n∑

i=1

wixμ,i(t0) (15)

The centroid state of the final boundary condition can be

computed similarly. The centroid states enable the trajec-

tory to be reduced to a two-point boundary value prob-

lem, similar to the previous technique [18]. The con-

trol cost distribution is constructed by linearizing about

this mean connecting trajectory and sampling initial and

final states from the non-Gaussian boundary conditions,

which introduces new perturbing terms. Figure 4 shows

a notional depiction of the key variables introduced in the

Gaussian mixture approximation. The optimal trajectory

Figure 4. Gaussian mixture scenario geometry

between the centroid states is used as the nominal opti-

mal trajectory (x∗μ(t),u∗μ(t)), computed using the trajectory

optimization routine. The deviation of the mean state of

an individual Gaussian component from the centroid state

of its mixture is defined as μi and μ j for the initial and fi-

nal boundary conditions, respectively. This deviation term

adds an extra perturbation to the control cost distribution.

The quadratic control cost function, in Eq. (16), can

be expanded by decomposing the control effort u(t) into

three components as shown in Eq. (17):

J =
1

2

∫
u(τ)Tu(τ)dτ (16)

u(t) = u∗μ(t) + δui j(t) + δu(t) (17)

where u∗μ(t) represents the optimal control associated with

the mean trajectory x∗μ(t), δui j(t) represents the control

perturbation due to the μi and μ j variations in mean state

of Gaussian initial component i and Gaussian final com-

ponent j from the centroid states, and δu(t) represents the

control perturbation due to δx0 and δx f , variations in the

state sampled from boundary condition uncertainty. Sim-

ilarly, from Holzinger et al. [17], the optimal control effort

can be written as a function of the costates using Eq. (18):

u(t) = − ∂f
∂u

T (
p∗μ(t) + δpi j(t) + δp(t)

)
(18)

where p∗μ(t) represents the optimal costate associated with

the mean trajectory x∗μ(t), δpi j(t) represents the costate

perturbation due to μi and μ j, and δp(t) represents the

costate perturbation due to δx0 and δx f . There exists

a function Λ(t, t0) ∈ R
n×2n , shown in Eq. (19), that

maps variations in initial and final states to variations in

the costate at time t, δp(t).

Λ(t, t0) = [Φpx(t, t0)

−Φpp(t, t0)Φxp(t f , t0)†Φxx(t f , t0)Φpp(t, t0)Φxp(t f , t0)†]
(19)

Note that this function is composed of portions of the state

transition matrix partitioned as

[
δx(t)
δp(t)

]
= Φ(t, t0)

[
δx(t0)

δp(t0)

]
(20)

=

[
Φxx(t, t0) Φxp(t, t0)

Φpx(t, t0) Φpp(t, t0)

] [
δx(t0)

δp(t0)

]
(21)

where Φ(t, t0) is the state transition matrix mapping vari-

ations δx and δp to time t about the optimal trajectory.

Also note that, while the pseudoinverse term Φxp(t f , t0)†
is not guaranteed to exist for arbitrary systems, its exis-

tence implies controllability through the optimal control

problem. This portion of the state transition matrix deter-

mines how variations in the costates affect the state, or in

other words whether the state is controllable. In this pa-

per, controllability is assumed, so for present purposes the

pseudoinverse is also assumed to exist [17].

Using Λ(t, t0), the components δui j(t) and δu(t) can be

computed as shown in Eqns. (22) and (23).

δui j(t) = − ∂f
∂u

T

Λ(t, t0)

[
μi
μ j

]
(22)

δu(t) = − ∂f
∂u

T

Λ(t, t0)

[
δxi

δx j

]
(23)

The following terms are defined for ease of notation:

μi j =

[
μi
μ j

]
(24)

Pi j =

[
Pi 0
0 P j

]
(25)

δzi j =

[
δxi

δx j

]
(26)

Note that μi j ∈ R
12×1 is a constant vector for each (i, j)

boundary condition pair. Similarly, Pi j ∈ R
12×12 is a con-

stant matrix for each (i, j) boundary condition pair. The

zero-mean random variable δzi j is sampled from the i
and j boundary condition uncertainties such that δxi ∼
N(0,Pi) and δx j ∼ N(0,P j).

Since δzi j is independent of time τ, the approximate

quadratic control cost for a single term of the Gaussian

mixture connecting initial distribution i to final distribu-

tion j can be expressed as seen in Eq. (27) by substituting

the definitions in Eqs. (28-30) into Eq. (16):

Ji j ≈ J∗ + ω(t f , t0)Tδzi j + 2μT
i jΩ(t f , t0)δzi j + ω(t f , t0)Tμi j

+ μT
i jΩ(t f , t0)μi j + δz

TΩ(t f , t0)δzi j (27)
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J∗ =
1

2

∫ t f

t0
u∗(τ)Tu∗(τ)dτ (28)

ω(t f , t0) =

∫ t f

t0
Λ(τ, 0)T ∂f

∂u
u∗(τ)dτ (29)

Ω(t f , t0) =
1

2

∫ t f

t0
Λ(τ, 0)T ∂f

∂u
∂f
∂u

T

Λ(τ, 0)dτ (30)

J∗ is the quadratic control cost of the optimal trajectory

(x∗μ(t),p∗μ(t)) without boundary-condition variations. The

terms ω(t, t0) and Ω(t, t0) are defined relative to the opti-

mal trajectory (x∗μ(t),u∗μ(t)) connecting the centroid states.

Combining terms, the cost Ji j in Eq. (27) can be re-written

in a format similar to the strictly Gaussian result from

Holzinger et al. [17], as shown in Eq. (31).

Ji j = J∗ + δJi j (31)

≈ J∗ + ω(t f , t0)T(μi j + δzi j)+

(μi j + δzi j)
TΩ(t f , t0)(μi j + δzi j) (32)

where δJi j is the variational control cost due to uncertain-

ties in the ith initial and jth final terms of the boundary

conditions. From Holzinger et al. [17] Appendix B, the

analytic first and second moments of the variational con-

trol cost, δJi j, are:

E

[
δJi j

]
= μJ,i j ≈ ωTμi j + μ

T
i jΩi jμi j + Tr

[
Ωi jPi j

]
(33)

E

[
δJ2

i j

]
= σ2

J,i j ≈
(
ωT + 2μT

i jΩ
)T

Pi j

(
ωT + 2μT

i jΩ
)

+ 2Tr
[
ΩPi jΩPi j

]
(34)

The control cost considering all i initial boundary condi-

tions and j final boundary conditions is then the weighted

sum of the individual costs between each i and j:

J ≈ J∗ +
N0∑
i=1

N f∑
j=1

wiwjδJi j (35)

where wi is the weight of the ith initial boundary condition

and wj is the weight of the jth final boundary condition.

Thus, the analytic expected value of the initial and final

Gaussian sum boundary condition may be written as:

E [J] ≈ E

⎡⎢⎢⎢⎢⎢⎢⎣J∗ +
N0∑
i

N f∑
j

wiw jδJi j

⎤⎥⎥⎥⎥⎥⎥⎦

≈ J∗ +
N0∑
i

N f∑
j

wiw jE
[
δJi j

]

≈ J∗ +
N0∑
i

N f∑
j

wiw jμJ,i j (36)

which leads to the expected value of the total control cost

distribution in Eq. (37):

μJ ≈ J∗

+

N0∑
i

N f∑
j

wiw j

(
ωTμi j + μ

T
i jΩμi j + Tr

[
ΩPi j

])
(37)

This yields the approximate expected value of the control

cost distribution connecting two Gaussian-mixture bound-

ary conditions, and therefore can be used to approximate

control cost distributions for non-Gaussian boundary con-

ditions. Note that, in the case where the boundary con-

ditions each consist of a single Gaussian component, the

summation and weighting terms drop out and μi j = 0,

recovering the Gaussian expressions for control cost dis-

tributions from Holzinger et al. [17].

Note that the approximations shown here assume that

the Gaussian components are within the region of con-

vergence of the map Λ(t0, t f ). This assumption is more

likely to be valid when the Gaussian components of the

mixture are more tightly packed, as is the case after prop-

agation of an initially Gaussian state estimate. However,

if the Gaussian mixture components are more separate,

this assumption may no longer be valid. Results in Sec-

tion III.B show a decidedly non-Gaussian case with ac-

curate control cost reproduction, but this is not guaran-

teed. Preliminary work [24] used an intermediate method

where optimal trajectories were computed between each

of the Gaussian components, instead of linearizing about

the single optimal trajectory and applying the perturbing

cost due to μi and μj. This introduces significant compu-

tational complexity over the approximations in this paper

due to the combinatorial nature of this approach, requiring

N0 × Nf optimal trajectories, but may be preferred based

on the boundary conditions provided. Cost distributions

developed using a combinatorial method are still valid for

use in the remaining theory.

B. Anomaly Detection using Binary Hypothesis Test-
ing

The existing implementation of control cost maneuver

detection forms the anomaly hypothesis using only the

control cost distribution from the maneuvered trajectory,

comparing the deterministic optimal control cost to the

uncertainty in the maneuvered control cost distribution.

This approach computes a probability that the optimal

control cost was detectable over the noise in the measure-

ments, or the probability of a maneuver [25]. However,

this method does not allow specification of acceptable er-

ror rates, making comparisons to existing distance met-

rics, such as Mahalanobis distance, incomplete. While the

cost distribution for the maneuvering (alternative) hypoth-

esis is well defined from the previous method, an oppos-

ing distribution for the null hypothesis was not developed.

This study modifies the anomaly detection method by

applying binary hypothesis testing. For the anomaly de-

tection problem, the binary hypotheses are formulated as

follows:

H0 (Null Hypothesis): Observed trajectory adequately

explained by quiescent state propagation with

boundary condition uncertainty.
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H1 (Alternative Hypothesis): Observed trajectory not

adequately explained by quiescent state propagation

with boundary condition uncertainty.

Recalling the scenario from Fig. 1, the binary distribu-

tions for the null and alternate hypotheses are drawn from

the maneuvering and non-maneuvering trajectories, re-

spectively.

In the event that the null hypothesis is accepted, the

change in state between observations is small enough

that it more likely explained solely by uncertainty in the

boundary conditions. Therefore, the associated control

cost PDF f0(J) is derived from a quiescent propagated tra-

jectory:

f0(J) ≈
N0∑
i=1

N0∑
j=1

wiwjN
(
μJ,i j, σ

2
J,i j

)
(38)

The Gaussian mixture approximation for control cost dis-

tribution is applied along the quiescent trajectory connect-

ing the initial UCT boundary condition and its propagated

counterpart at the later time, such that each initial Gaus-

sian component i = 1, ...,N0 has a corresponding final

Gaussian component j = 1, ...,N0.

Alternately, if the null hypothesis is rejected, then the

change in state between observations is too large to be ad-

equately explained solely by uncertainty in the boundary

conditions. The associated control cost PDF f1(J) is de-

rived from the maneuvering trajectory:

f1(J) ≈
N0∑
i=1

N f∑
j=1

wiwjN
(
μJ,i j, σ

2
J,i j

)
(39)

Note that here the Gaussian mixture approximation for

control cost distribution is applied along the optimal tra-

jectory connecting the two input UCT boundary condi-

tions, so the final condition Gaussian components j have

changed between Eqns. (38) and (39).

This formulation was selected by analyzing a number

of different theoretical scenarios to ensure the entire space

of possible binary hypotheses revealed the desired behav-

ior, as illustrated in Fig. 5. For instance, in the case

of a small maneuver, the null and alternative hypothesis

PDFs will mostly overlap. Since the allowable rate of

false alarm, PFA, is likely to be small, the corresponding

threshold ν will cause the anomaly probability PD from

Eq. (14) to be small as well. However, in the event that

a large maneuver has occurred, the alternative hypothesis

PDF will be shifted far to the right of the null hypoth-

esis PDF. Using the same PFA and corresponding ν, the

anomaly probability PD is large, indicating that a maneu-

ver has likely occurred.

The following approach applies binary hypothesis test-

ing to spacecraft anomaly detection using control distance

PDFs and prescribed acceptable false alarm and missed

detection rates:

a) Significant overlap, low PD

b) Small overlap, high PD

Figure 5. Theoretical scenarios for control cost binary hypotheses

1) Construct control cost PDFs for binary hypotheses,

f0(J) and f1(J), using Eqs. (38) and (39).

2) Using allowable false alarm rate PFA, compute inte-

gration threshold cost ν using Eq. (12).

3) Compute anomaly probability PD using Eq. (14) us-

ing f1(J) and ν from previous step.

Once PD is computed, a final thresholding process can be

used to determine whether to flag as an anomaly.

4a) If threshold detection probability for anomaly is di-

rectly prescribed, PD,thresh is given.

4b) If allowable false negative (missed detection) rate

prescribed, PD,thresh = 1 − PFN .

5) If PD >= PD,thresh, flag as anomaly.

C. Binary Hypotheses for Mahalanobis Distance

Since Mahalanobis distance has been proposed as a po-

tential data association and anomaly detection metric, an

analogous formulation for binary hypothesis testing is

also developed using Mahalanobis distance. The binary

hypotheses are reinterpreted using the Mahalanobis dis-

tance formulation from Eq. (11).

The null hypothesis considers the state distribution

fA(x(t f )), the initial distribution propagated quiescently to

time t f . Given a point sampled from distribution fA at t f ,

namely xA(t f ) ∼ fA(x(t f )), Eq. (40) computes the Maha-

lanobis distance from this point to the quiescent distribu-
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tion fA.

dM|H0
=

√(
xA(t f ) − E

[
xA(t f )

])T
P−1

A

(
xA(t f ) − E

[
xA(t f )

])
(40)

The alternative hypothesis considers the state distribu-

tion fB(x(t f )) from the new observation at time t f . Given

a point sampled from distribution fB, namely xB(t f ) ∼
fB(x(t f )), Eq. (41) computes the Mahalanobis distance

from this point to the quiescent distribution fA.

dM|H1
=

√(
xB(t f ) − E

[
xA(t f )

])T (
PA(t f ) + PB

)−1 (
xB(t f ) − E

[
xA(t f )

])
(41)

The use of (PA(t f ) + PB) as the distance matrix follows

the convention set by Hill et al. per Eq. (8) to describe

the distance between a maneuvered distribution and the

quiescent propagated distribution [23].

Similar to the control cost PDFs, this interpretation us-

ing Mahalanobis distance is justified by considering the

theoretical cases of quiescent propagated state distribution

fA(x(t f )) and new state distribution fB(x(t f )) as shown in

Fig. 6. Cases I and III refer to a situation where uncer-

tainty in the initial spacecraft state estimate is high, but

uncertainty in the new estimate is reduced. Cases II and

IV refer to a situation where uncertainty in the initial es-

timate is low, but uncertainty in the new estimate is sig-

nificantly larger. In case I, the propagated distribution

envelops the new state distribution, so the Mahalanobis

distance PDFs show significant overlap, yielding a low

probability of anomaly. In case II, the new state distribu-

tion envelops the propagated distribution, so there is once

again significant overlap. The mean of the distributions

are offset and uncertainty in the new observation is larger,

leading to a non-negligible anomaly probability and indi-

cating that an anomaly likely occurred between the obser-

vations to cause the change. In both cases III and IV,

the state distributions no longer overlap, causing the Ma-

halanobis distance distributions to be further separate as

well, leading to high anomaly probabilities.

In each case, this binary hypothesis Mahalanobis dis-

tance formulation effectively determines the anomaly

probability as designed, providing an analogous formu-

lation for comparison to the control distance metric.

IV. Simulation Results
This section begins with a discussion of the algorithm im-

plementation, followed by a demonstration and analysis

of the performance of the algorithm. Sensitivity studies

are also performed to assess the applicability of the meth-

ods to typical spacecraft maneuver classes.

A. Implementation Details

The algorithm as described in Fig. 3 is implemented in

MATLAB to evaluate its performance and effectiveness.

A( f )
])

a) State distributions

b) Mahalanobis distance PDFs

Figure 6. Theoretical scenarios for Mahalanobis distance binary hy-
potheses
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Specifics for each portion of this block diagram are ex-

plained below.

1. Trajectory Optimization

Using the input UCT state PDFs, the deterministic two-

point boundary value problem between the expected-

value states is formulated into an optimization problem,

discretizing the simulation into a user-defined number of

time-steps, which is solved using the constrained mini-

mization function in MATLAB, fmincon(). The decision

variable for this minimization is a stacked vector of the

thrust accelerations at each discrete time instant, and the

thrust accelerations are held constant for each discrete

time step. Keplerian dynamics, along with a number of

user-selectable perturbation accelerations (J2, J22, J3, lu-

nar gravitational, and solar gravitational perturbations),

are enforced between steps of the trajectory as equality

constraints to ensure the generated trajectory dynamics

are accurate. Since the partial derivatives of the dynam-

ics with respect to the decision variables (thrust accel-

erations) are well known, the gradient of the constraint

is supplied to the optimization function to improve con-

vergence. The output of the direct optimization step is

a nominal optimal direct trajectory of states and controls

connecting the UCTs, which is refit to an optimal indi-

rect trajectory of states and costates. The generated opti-

mal trajectory is validated using the nonlinear dynamics

to numerically integrate the proposed control vector and

quantify the error between the integrated final condition

and the specified final UCT boundary condition. In addi-

tion, the quiescent trajectory from the initial condition is

computed under the same dynamics with the assumption

that no control input is used.

2. PDF Generation

To accurately construct the control cost PDFs for

Gaussian-mixture boundary conditions, a localized

Monte-Carlo-like method is employed to sample from the

boundary conditions and apply the Gaussian-mixture con-

trol cost approximation. This is done by selecting one

of the boundary condition Gaussian components from the

mixture randomly with a probability based on the weight-

ing for that particular Gaussian component. Once the

Gaussian components are selected for the initial and fi-

nal states, the deviation μi j and covariance Pi j terms are

known. The zero-mean random variable δzi j is selected

using the covariance information for the chosen Gaussian

components. With all the required terms gathered, the

quadratic cost is computed using Eq. (16). When gen-

erating the numerical PDFs, if a negative-valued cost is

generated, that sample is discarded and another sample

is drawn. The number of samples required to construct

this distribution depends on the scenario. In this study,

the control cost distribution is sampled nsamp = 10000

times, an amount shown in previous studies to be able to

reconstruct the non-linearized control cost distributions in

a similar scenario [24], and the samples are used to con-

struct the approximate control cost PDF. This process is

performed using both the quiescent and maneuvering tra-

jectories to form both null hypothesis f0(J) and alterna-

tive hypothesis f1(J) PDFs. This process could equiva-

lently be performed analytically by forming a Gaussian-

mixture using μJ,i j, andσJ,i j from Eqs. (10) and (34) along

with wi and wj for each boundary condition. The local-

ized Monte-Carlo-like approach is chosen for simplicity

of implementation. Mahalanobis distance PDFs are con-

structed in a similar manner. Samples from each boundary

condition are used in conjunction with Eqs. (40-41) to de-

velop PDFs for each hypothesis.

3. Anomaly Detection

Once PDFs are obtained for each hypothesis, anomaly de-

tection is performed the same for both control distance

and Mahalanobis distance. CDFs for both null and al-

ternative hypotheses are computed, noting that the lower

limit of integration becomes 0 since the distance cannot

be negative.

F0(x) =

∫ x

0

f0(y)dy (42)

F1(x) =

∫ x

0

f1(y)dy (43)

Applying Eq. (12), the input allowable false alarm rate

PFA is used to compute the threshold ν by interpolating

on the null hypothesis CDF, F0. Using the threshold ν and

applying Eq. (14), the probability of anomaly is computed

by interpolating on the alternative hypothesis CDF, F1.

B. Gaussian Mixture Approximation Validation

The Gaussian mixture approximation promises a more

computationally tractable method for addressing non-

Gaussian boundary conditions; however, it still must pro-

vide an accurate reconstruction of the uncertainty cost

distribution. To validate the Gaussian mixture approxi-

mation of control cost distributions, a synthetic scenario

is constructed for a GEO spacecraft with a non-Gaussian

boundary condition state distribution, represented using

Gaussian mixtures. The orbital elements for the boundary

conditions are listed in Tables 1-2. This particular sce-

nario is selected to illustrate the ability to generate and

handle non-Gaussian control cost distributions using the

binary hypothesis testing approach outlined above. The

initial condition occurs 30 minutes before the ascending

node passage, and the 3 Gaussian terms vary only in in-

clination. The final condition occurs 30 minutes after the

ascending node passage, with 2 Gaussian terms varying

only in inclination. Note that the asymmetry in the Gaus-

sian mixtures (N0 = 3,Nf = 2) is entirely allowed by
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the formulation in Section III.A. These particular bound-

ary conditions represent a 1 hour observation gap wherein

the observed spacecraft has performed a small inclination

correction. The 1−σ boundary condition uncertainties are

initialized at 10 meters in position and 10 centimeters-per-

second in velocity. These values are selected to generate

multimodal cost distributions when scaled by α to empha-

size the generality of the analytical contributions.

Table 1. Boundary condition orbital elements for Gaussian mixture
inclination change

Initial Condition
Parameter i = 1 i = 2 i = 3

Weighting, w 0.34 0.33 0.33

Semi-major Axis, a (km) 42164 42164 42164

Eccentricity, e 0 0 0

Inclination, i (deg) 0.015 0.025 0.035

Long. of Asc. Node, Ω (deg) 0 0 0

Arg. of Periapsis, ω (deg) 0 0 0

True Anomaly, θ (deg) 352.5 352.5 352.5

Table 2. Initial boundary condition orbital elements for Gaussian
mixture inclination change

Final Condition
Parameter j = 1 j = 2

Weighting, w 0.5 0.5
Semi-major Axis, a (km) 42164 42164

Eccentricity, e 0 0

Inclination, i (deg) 0.00 0.01

Long. of Asc. Node, Ω (deg) 0 0

Arg. of Periapsis, ω (deg) 0 0

True Anomaly, θ (deg) 7.5 7.5

For validation purposes, an alternate method is used

to generate control cost distributions through direct sam-

pling of the boundary conditions and non-linearized tra-

jectory optimization. For each run, a state is selected at

random from the initial and final Gaussian mixture bound-

ary conditions. The optimal control between the cho-

sen boundary conditions is computed, and the resulting

control cost is collected before selecting another pair of

boundary conditions. This process is repeated nsamp =

5000 times to sample the control cost space, binning the

results to construct a control cost PDF. Since this method

does not make the simplifying assumption of linearizing

about a best-estimate trajectory, it more accurately gener-

ates the actual control cost distribution between the Gaus-

sian mixture boundary conditions, at the expense of much

longer computation times.

Figure 7 shows the normalized PDF and associated

CDF resulting from both these methods. The solid lines

indicate the non-linearized propagation, labeled “True,”

and the dashed lines indicate the control cost distribu-

tion generated using the Gaussian mixture approximation

method, labeled “Aprx.” Inspection of the normalized

PDFs shows significantly non-Gaussian control cost dis-

tributions, as expected given the separation in the bound-

ary condition components: transitioning from initial com-

ponent i = 1 to final component j = 1 uses significantly

less fuel than from initial component i = 3 to final com-

ponent j = 1. Despite the differences in approach, the

control cost PDFs and CDFs agree well between the non-

linearized and approximated methods, demonstrating the

efficacy of contribution 1: the Gaussian mixture control

cost approximation.

Figure 7. Comparison of control cost distributions using the non-
linearized and approximate methods

Since the CDFs are nearly identical, the binary hypoth-

esis testing algorithm yields a nearly identical probability

of anomaly using either method. To further demonstrate

the applicability of contribution 2, the binary hypothesis

testing algorithm, a sample calculation of anomaly prob-

ability is illustrated using Fig. 7. Assuming an allowable

false alarm rate of 5%, or PFA = 0.05, the threshold ν
is calculated from Eq. (12) by interpolating on the H0

CDF to find the cost where F0(J) = 1 − PFA. Given the

threshold cost, the false negative probability is calculated

using Eq. (13) by interpolating on the H1 CDF, such that

here PFN = F1(ν) = 0.54. Recalling that PD = 1 − PFN ,

the probability of anomaly for this scenario is therefore

PD = 0.46, or 46%.

Table 3. Timing comparison for validation scenario

Method Complexity Actual Time (s)
Non-Linearized O(nsamp) 53450

GM Approximation O(c) 2.835

Given the similarity of the PDFs, the computational

complexity savings of the Gaussian mixture approxima-

tion method offers a significant benefit inherent in the first

contribution. Table 3 shows the time required to perform

the full anomaly detection algorithm for both of these sce-

narios. These results are in-line with expectation, as the

trajectory optimizer is expected to be the computational

bottleneck. The non-linearized validation method runs
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in roughly O(nsamp) time since a trajectory optimization

is required for each sample (with small variations in the

time required for each sample based on the boundary con-

ditions). In comparison, the Gaussian-mixture approxi-

mation method only requires a single trajectory optimiza-

tion, and therefore runs in nearly constant time, or O(c).

Therefore, when considering the computational complex-

ity improvements, the Gaussian mixture approximation

method significantly outperforms the non-linearized ap-

proach while maintaining accuracy in the control cost

PDF and therefore performing similarly in anomaly de-

tection.

In order to test the efficacy of the Mahalanobis distance

Gaussian-mixture method proposed, the same scenario is

used to develop PDFs and CDFs for the binary hypotheses

using Mahalanobis distance. In comparison to the control

distance method, the Mahalanobis distance PDFs from the

individual Gaussian components are more distinct, so the

combined PDF forms narrow peaks in an extremely non-

Gaussian manner as seen in Fig. 8. In particular, the

null hypothesis distribution covers a wide range of Ma-

halanobis distance values, since the quiescent propagated

distributions are very dissimilar. The wide null hypoth-

esis distribution causes the distance threshold for 95%

anomaly confidence to be large, yielding an effectively

0% anomaly detection, similar to Case I in Fig. 6.

Figure 8. Mahalanobis distance distributions for non-Gaussian
boundary conditions

Additionally, the Mahalanobis distance Gaussian mix-

ture formulation is significantly more computationally ex-

pensive due to the complicated combined covariance cal-

culation in Mahalanobis distance PDF generation. With-

out this calculation, in the purely Gaussian case, Maha-

lanobis distance is computed quicker than control dis-

tance, since Mahalanobis distance does not require tra-

jectory optimization. Adding in the combined covariance

calculation for non-Gaussian boundary conditions signif-

icantly increases computation time over the control dis-

tance method, as shown in Table 4.

Using the formulations developed in the Theory sec-

Table 4. Timing comparison by algorithm segment

Algorithm Segment CD (s) MD (s)
Trajectory Optimization 1.845 0

PDF Generation 0.762 11.347

Anomaly Testing 0.229 0.225

Total 2.835 11.572

tion, these results demonstrate the ability to take non-

Gaussian boundary conditions and form PDFs and CDFs

for use in binary hypothesis testing. The control distance

method proved to be better in the detection of this partic-

ular maneuver, but the following simulation results will

delve deeper into performance of each algorithm in dif-

ferent maneuver detection scenarios.

C. Synthetic Data - Inclination Change

Having shown the ability to accurately construct con-

trol cost PDFs for non-Gaussian boundary conditions, the

anomaly detection algorithm is next evaluated by parame-

terizing the problem to assess sensitivity. For the remain-

ing results in this paper, the boundary conditions are sim-

plified to single Gaussian distributions for ease of param-

eterization and discussion, but similar simulations could

be performed using Gaussian mixtures as shown above.

A simulated scenario is constructed to emulate an incli-

nation change performed at GEO, termed a North-South

station-keeping maneuver in operations. Typically, satel-

lites at GEO will be placed into orbit slots and given al-

lowable deviations in the North-South and East-West di-

rections. This particular scenario employs a 0.02 degree

inclination change, similar in magnitude to that observed

in the available real-world data (Section V.A). The goal

of this scenario is to analyze the sensitivity of both the

control distance and Mahalanobis distance binary hypoth-

esis testing methods to changes in observation gap, uncer-

tainty, and false alarm rate. Each of these three parameters

are varied systematically in simulation for evaluation.

The observation gap is varied between 10 minutes and

48 hours. Each element of the 6 × 6 covariance matrix is

varied by an uncertainty scaling parameter α. The 1 − σ
boundary condition position uncertainty is initialized at 1

meter and varied up to 250 meters using the scaling pa-

rameter α. Likewise, the 1−σ boundary condition veloc-

ity uncertainty is also varied between 1 centimeter-per-

second and 250 centimeters-per-second using the scal-

ing parameter α. The prescribed false alarm rate is var-

ied between 0.5% and 10%, or PFA = 0.005 to 0.10.

For each combination of observation gap, boundary con-

dition uncertainty, and prescribed false alarm rate, the

anomaly probability is computed using both the control

distance and Mahalanobis distance metrics. This produces

a 4-dimensional dataset, (PD : δt, α, PFA), which is best

viewed as a set of contour plots using slices of constant

PFA.
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Figure 9 presents a contour plot for a subset of the

control distance sensitivity study data using a false alarm

probability PFA = 0.05. Note that, though the uncertainty

scaling parameter α is varied from 1 ≤ α ≤ 250, a sub-

set of this range (α >= 10) has been plotted to highlight

trends. Toward the left of the uncertainty axis, bound-

ary condition uncertainty is low, so it is easier to distin-

guish between the non-maneuvered and maneuvered tra-

jectories; therefore, anomaly probability is high (PD ≈ 1).

Increasing boundary condition uncertainty causes more

overlap in the control distance distributions, introducing

values of PD < 1 as the propagated uncertainty is large

enough to account for the new observation. Additionally,

a slight spike in anomaly probability can be seen around

half-orbit period observation gaps, which coincides with

the furthest out-of-plane difference between the quies-

cent and maneuvered trajectories. At these points, bound-

ary condition uncertainty must be significantly greater to

cause overlap between the trajectories, showing increased

sensitivity to the maneuver at that condition.

Figure 9. Control distance probability of anomaly contours vs un-
certainty scaling parameter and observation gap, simulated inclina-
tion change maneuver, PFA = 0.05.

Additional contour plots for different false alarm prob-

abilities can be seen in Fig. 16 of Appendix A. Each sub-

figure shows a contour plot of anomaly probability for a

prescribed false alam rate, where the darker colors indi-

cate a higher probability of anomaly. Here, false alarm

rates of 0.5%, 1%, 5%, and 10% were used. As expected,

the algorithm declares higher probabilities of anomaly for

a fixed observation gap and uncertainty as the allowable

rate of false alarm increases because the threshold for ma-

neuver detection is lessened. The remainder of the trends

are consistent regardless of false alarm probability, so they

are relegated to Appendix A for reference.

Figure 10 presents the same anomaly probability data

using Mahalanobis distance distributions, with a more

complete set of plots featured in Fig. 17 of Appendix

A. Similar trends observed with control distance can also

be noted for Mahalanobis distance: increasing the rate of

false positives increases the probability of anomaly, and

increasing uncertainty yields lower confidence in anomaly

detection. However, Mahalanobis distance also shows

significant variability, specifically with resonances near

orbital half-periods (shown 12 and 36 hours for GEO). At

these points, the non-maneuvered and maneuvered orbits,

for H0 and H1 respectively, are at their furthest separa-

tion (H0 at its maximum out-of-plane distance), making

the state difference large. Additionally, a smaller spike

can be seen at the orbit periods (24 and 48 hours) where

both orbits lie in the equatorial plane, due to significant

velocity vector differences between the H0 and H1 orbits

despite similar positions.

Figure 10. Mahalanobis distance probability of anomaly contours vs
uncertainty scaling parameter and observation gap, simulated incli-
nation change maneuver, PFA = 0.05.

It can be seen that, at some observation gap durations,

Mahalanobis distance is significantly more sensitive to in-

clination change maneuvers, as evidenced by the higher

probabilities of anomaly at higher uncertainty. However,

this is not always the case, as at times the control dis-

tance metric and Mahalanobis distance metric are compa-

rable in detection probabilities. This variation with ob-

servation gap time is a dangerous aspect of using Ma-

halanobis distance to develop maneuver detection thresh-

olds. Since Mahalanobis distance is very dependent upon

the observation time, this requires a better understanding

and more careful consideration of the dynamics of the

spacecraft and what kind of maneuver it would perform

at what point in the orbit. Control distance, however, is

more consistent with time, allowing the development of

a more general-use threshold for the North-South station-

keeping maneuver at GEO. Additionally, the reliability of

uncertainty quantification is a concern when considering

the uncertainty sensitivity advantage of Mahalanobis dis-

tance. In Section VI a synergistic implementation is dis-

cussed, using both control distance and Mahalanobis dis-

tance to leverage the advantages of both methods.

Alternate test cases (omitted from this paper for space

and uniformity between examples) showed that both al-

13 of 23

American Institute of Aeronautics and Astronautics



gorithms were more sensitive to velocity uncertainty than

position uncertainty. For instance, in the control distance

test cases shown here, the algorithm struggles to detect

maneuvers above α = 100, which corresponds to 100

meters in position uncertainty and 100 centimeters-per-

second in velocity uncertainty. Manually changing the

boundary condition uncertainties to include cases lower

velocity uncertainty showed improved anomaly detection

performance even at higher position uncertainty.

D. Synthetic Data - Phasing Maneuvers

A similar sensitivity study is conducted for a phasing ma-

neuver at GEO. This maneuver type is termed East-West

station-keeping, as it refers to the satellite maintaining a

specific longitude over the Earth. A 0.1 degree change in

longitude is prescribed, selected to represent drifting com-

pletely across a ±0.05 degree GEO slot. The same param-

eters (observation gap, boundary condition uncertainty,

and false alarm rate) are varied over the same ranges.

Figures 11 and 12 present the probability of anomaly

contours for the orbit phasing maneuver for both control

distance and Mahalanobis distance, respectively. More

complete sets of data are featured in Appendix A, Fig.

18 for control distance and Fig. 19 for Mahalanobis dis-

tance. Once again, some trends hold true for both con-

trol distance and Mahalanobis distance: increasing uncer-

tainty decreases anomaly probability while increasing al-

lowable false alarm rate increases anomaly probability. In

this case, however, both methods show significant varia-

tion with observation gap. Performing a 0.1 degree longi-

tude change over 10 minutes requires significantly more

fuel than over 24 hours, where the spacecraft can more

effectively utilize natural dynamics and slightly adjust its

semi-major axis to transfer to a different point in the orbit.

Therefore, maneuvers of this kind over small observation

gaps are much easier to detect.

Figure 11. Control distance probability of anomaly contours vs un-
certainty scaling parameter and observation gap, simulated phasing
maneuver, PFA = 0.05.

Figure 12. Mahalanobis distance probability of anomaly contours vs
uncertainty scaling parameter and observation gap, simulated phas-
ing maneuver, PFA = 0.05.

An interesting note in this scenario is that control dis-

tance either matches or outperforms Mahalanobis distance

for much of the first orbit period, predicting higher prob-

abilities of anomaly for the same uncertainty, observa-

tion gap, false alarm rate triplet. However, as the obser-

vation gap increases, Mahalanobis distance again shows

considerable variation, yielding higher anomaly probabil-

ities than control distance at 34 hours and lower prob-

abilities at 26 hours. Once again, the observation time

can be seen to be a significant factor in anomaly detec-

tion for Mahalanobis distance, requiring knowledge of

the spacecraft’s position in its orbit. For control distance,

while it is more sensitive to time for East-West maneuvers

than North-South, it still shows improved consistency in

medium-duration cases, albeit with lower anomaly sensi-

tivity.

V. Empirical Data Results
A. Station-Keeping

To complement the simulated scenarios, the algorithm

is also tested using real operational data, the availabil-

ity of which drove the construction of the simulated in-

clination change scenario. The real data, taken from

observations of the Galaxy 15 geostationary satellite by

the Wide Area Augmentation System (WAAS), spans a

month of operation and includes Earth-centered Earth-

fixed (ECEF) position and velocity, as well as radial, in-

track, and cross-track (RIC) acceleration, as seen by a ro-

tating Hill frame attached to the spacecraft. WAAS is an

extremely accurate navigation system that uses a network

of ground-based reference stations to measure small vari-

ations in GPS satellite signals to develop deviation cor-

rections (DCs). The DCs are then broadcast by GPS satel-

lites to improve position accuracy calculations for WAAS-

enabled GPS receivers.

Figure 13 shows the cross-track acceleration data for
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Figure 13. Cross-track acceleration for Galaxy 15 satellite, real data

the empirical dataset. Inspection of the acceleration

data reveals two large anomalous cross-track acceleration

events, candidates for North-South inclination station-

keeping maneuvers, during days 7 and 22. The selected

maneuver, the peak during day 7, resulted in a 0.03 degree

inclination change. Simulation initial and final conditions

are selected corresponding to the desired observation gap

such that the maneuver is always in the middle of the se-

lected time span. For instance, for a 6 hour observation

gap, the initial condition is the spacecraft state 3 hours

before the maneuver, and the final condition is the state

3 hours after the maneuver. The real-world data is ana-

lyzed in a similar manner to the synthetic data by varying

observation gap, boundary condition uncertainty, and pre-

scribed false alarm rate.

Figure 14. Control distance probability of anomaly contours vs un-
certainty scaling parameter and observation gap, real-data (WAAS)
inclination change maneuver, PFA = 0.05.

The results of the real data sensitivity study are seen

in Fig. 14 and 15 for control distance and Mahalanobis

distance, respectively. This data is nearly identical to that

of the simulated inclination change scenario, showing the

same trends with respect to all varied parameters. In this

scenario, Mahalanobis distance is still more sensitive in its

detection of the maneuver at higher uncertainties. How-

ever, control distance remains more consistent with re-

spect to observation gap, allowing for improved applica-

tion to arbitrary space objects without requiring specific

knowledge of the object’s spot in its orbit. The agreement

Figure 15. Mahalanobis distance probability of anomaly contours
vs uncertainty scaling parameter and observation gap, real-data
(WAAS) inclination change maneuver, PFA = 0.05.

between these results and Fig. 9 and 10 lends confidence

to the applicability of this approach in an operational set-

ting. Additional results using different false alarm rates

are presented in Appendix A, Fig. 20 and 21 for control

distance and Mahalanobis distance, respectively. As with

the synthetic scenarios, increasing PFA lowers the thresh-

old for anomaly probability calculation and thus increases

anomaly probability. The remaining observation gap and

uncertainty trends remain unaffected by PFA.

VI. Operational Application
The simulation results presented in this paper explore

a range of different maneuver and boundary condition

cases; this section condenses these results and provides

recommended operational use cases for each anomaly de-

tection method. In situations where the separation be-

tween the Gaussian components of the Mahalanobis dis-

tance Gaussian mixture are greater than their covariances,

combined Mahalanobis distance PDFs tend to be seg-

mented (see Fig. 8), which significantly reduces the abil-

ity to detect anomalies using the Mahalanobis distance

method. Moreover, regardless of the mixture compo-

nent separations, the Mahalanobis distance method incurs

a significant computation time penalty for non-Gaussian

boundary conditions due to the costly requirement to

recompute the relevant covariance at each intermediate

propagation time-step. In contrast, the computational bur-

den of control distance is approximately constant regard-

less of whether or not boundary conditions are Gaussian.

In the Gaussian case, control distance takes approximately

2- to 3-times as long to compute, and Mahalanobis dis-

tance is more sensitive in maneuver detection in most but

not all cases. The two methods are complementary; when

one performs less effectively, the other remains sensitive

to anomalies. The WAAS data supports results generated

by the simulated cases, providing empirical support for

these results.

Based on these observations, the control distance met-
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ric is recommended in applications with non-Gaussian

boundary condition uncertainties to avoid significant com-

putation penalties, as well as poorly conditioned anomaly

detection in more-segmented Gaussian mixture cases. For

Gaussian boundary conditions, Mahalanobis distance is

in general more sensitive to anomalies. However, since

neither method always dominates in anomaly detection

for Gaussian boundary conditions, the control distance

method could be implemented alongside Mahalanobis

distance without significant computational complexity in-

crease. Implementing control cost in both cases grace-

fully handles transitions from Gaussian to non-Gaussian

boundary conditions, maintaining performance without

introducing significant computational complexity.

VII. Conclusions
The control distance metric provides a natural means of

associating spacecraft observations by subsuming the or-

bital dynamics into the association metric. This effort

modifies the control distance anomaly detection approach

to address error-rate shortcomings in the single hypothesis

method and relax Gaussian boundary condition assump-

tions. The inclusion of Gaussian mixture approximations

and a binary hypothesis test approach allow control of al-

lowable error rates and enable comparisons using anoma-

lous and quiescent hypotheses. An analogous set of hy-

potheses is constructed for Mahalanobis distance and ex-

tended to allow for non-Gaussian uncertainties. For both

Gaussian and non-Gaussian boundary conditions, simu-

lation results show control distance is able to compute

anomaly probabilities at an operationally acceptable com-

putational cost. The Gaussian test cases show Maha-

lanobis distance to be generally but not uniformly more

sensitive to anomalies. However, Mahalanobis distance

anomaly detection is less consistent with observation gap,

and the Mahalanobis distance approach is less effective

in both anomaly detection and computational complexity

with non-Gaussian boundary conditions. This study con-

cludes that, the control distance method is preferred for

use with non-Gaussian boundary conditions, while both

Mahalanobis distance and control distance should be im-

plemented for Gaussian boundary conditions for added

robustness.
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IX. Appendix A - Sensitivity Study Results

This appendix contains a larger selection of data from the hypothesis testing sensitivity studies. Trends using this data are high-

lighted in the Simulation Results and Empirical Results sections.

A. Synthetic Data: North-South Station-Keeping

a) PFA = 0.005 b) PFA = 0.01

c) PFA = 0.05 d) PFA = 0.1

Figure 16. Control distance probability of anomaly contours vs uncertainty scaling parameter and observation gap, simulated inclination
change maneuver.
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a) PFA = 0.005 b) PFA = 0.01

c) PFA = 0.05 d) PFA = 0.1

Figure 17. Mahalanobis distance probability of anomaly contours vs uncertainty scaling parameter and observation gap, simulated incli-
nation change maneuver.
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B. Synthetic Data: East-West Station-Keeping

a) PFA = 0.005 b) PFA = 0.01

c) PFA = 0.05 d) PFA = 0.1

Figure 18. Control distance probability of anomaly contours vs uncertainty scaling parameter and observation gap, simulated phasing
maneuver.
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a) PFA = 0.005 b) PFA = 0.01

c) PFA = 0.05 d) PFA = 0.1

Figure 19. Mahalanobis distance probability of anomaly contours vs uncertainty scaling parameter and observation gap, simulated phasing
maneuver.
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C. Empirical Data: North-South Station-Keeping

a) PFA = 0.005 b) PFA = 0.01

c) PFA = 0.05 d) PFA = 0.1

Figure 20. Control distance probability of anomaly contours vs uncertainty scaling parameter and observation gap, real-data (WAAS)
inclination change maneuver.
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a) PFA = 0.005 b) PFA = 0.01

c) PFA = 0.05 d) PFA = 0.1

Figure 21. Mahalanobis distance probability of anomaly contours vs uncertainty scaling parameter and observation gap, real-data (WAAS)
inclination change maneuver.
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