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Multi-Objective CubeSat Constellation Optimization
for Space Situational Awareness

Adam C. Snow*

The proliferation of on-orbit debris has motivated much of the recent space situ-
ational awareness (SSA) missions and related research. Space-based missions are
typically carried out by large spacecraft, yet the emerging and improving technol-
ogy for CubeSat class satellites offers a potential new platform for SSA. This paper
presents the graduate Special Problem effort to develop explore the optimization
of a CubeSat constellation for SSA. This optimization approach considers two ob-
jectives: to maximize the number of daily unique detections while minimizing the
lifecycle cost of a constellation. The epsilon constraint method is used to devel-
op the Pareto Frontier with a genetic algorithm as the single-objective optimizer.
This work was prepared as part of a larger effort for the Journal of Spacecraft and

Rockets, and the supporting material is included.

Nomenclature
a = Semi-major axis t = Time
a = Hyperplane defined by a normal vector X = Inertial position and velocity state
d = Spacecraft parameters z = Number of pixels used to determine
e = Environmental parameters background noise
i = Inclination z = Spacecraft states
l = Focal length zZ = Spacecraft and attitude dynamics
m = Number of pixels covered by space B = Wright Model learning curve coefficient
object streak C = Cost function
n; = Number of image frames per D = Aperture diameter
My = Limiting magnitude F = Lines of flight software code
integration period F = Fraction of all RSOs detected by a
o = Observer inertial location constellation for all RSO parameters and
0 = Observer inertial velocity environmental conditions
p = Space object parameters G = Lines of ground station code
p = Observer boresight vector N = Number of observer satellites
q = Per pixel count rate P = Number of orbital planes
r = RSO intertial location R = Right-handed rotation matrix
r = RSO inertial velocity R, = Radius of the Earth
S = Unit vector in the direction of the sun S = Number of satellites in a Walker
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constellation
T = Set of time values
X = Subsystem mass

FOV  =Field of view of an EOS sensor

FTT = Cost of a full time technician

FTE = Cost of a full time engineer

IFOV = Instantaneous field of view

NRE = Cost of a non-recurring expense

QE = Quantum efficiency

SNR = Signal to noise ratio

= Cost of a theoretical first unit

= Geometrically Detectable Subspace

= The set of environmental parameters

= Inertial frame

= The set of space object parameters

= EOS boresight frame

= Uniform distribution

= The set of full object states

= The set of admissible decision parameters
= The set of natural numbers

= The set of real numbers

= Coefficient of commercial development

= Apparent angular rate

S P EZNRROVE ™I
(@

= Angle between inertial location vector
and Earth-tangent line of sight

02 = Rotation between inertial frames a and b

= Constraint Equation

= F-number

= Distance between two inertial points

” = EOS read noise

Q

= Transmittance

= Solar phase angle
b = Angular rate of b in frame a
= Epsilon constraint

= Spectral excitance

ORI ST

I.

= Total set of geometrically detectable states and

times for an entire constellation

Q = Total set of geometrically detectable states and
times for an entire constellation for all RSO
parameters and environmental conditions

Subscripts

alg = Detection algorithm

bke = Background

c = Image cadence

d = Spacecraft parameters d

h = Horizontal

i =i observing satellite

I = EOS integration

j = 7" space object

& = k' satellite subsystem

N = Number of satellites

» = Image processing; pixel

o = Initial value

¢ = Transfer

v = Vertical

. = Decision variables

rso = Resident Space object

C = Line of sight

F = Field of view

T = Illumination

I = Tangent to the Earth

Superscripts

T = Matrix transpose

Oi = Observer reference frame

r = Dimension of P

v = Dimension of ¢

+ = Positive real numbers

Introduction

Space Situational Awareness (SSA) is a growing concern for both government and private sectors, as it threatens

both national security and commercial interests. The quantity of Resident Space Objects (RSOs) is growing rapidly

due to continual satellite launch, in-space collisions, and anti-satellite activity. The majority of data on RSOs comes

from the US Department of Defense Joint Space Operations Center (JSpOC). This data is gathered through the Space

Surveillance Network (SSN) that JSpOC tasks with the observation and tracking of RSOs. There are currently in
excess of 21,000 LEO objects with diameters above 10 cm [3] in the JSpOC space object catalog(SOC).
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The threat of RSOs on space assets continues to grow. Though object removal is the eventual solution, the first step
is significantly increased awareness of the space environment. It is estimated that there are hundreds of thousands of
RSOs that are difficult to detect and track due to their small size. Given the significant gap in our current understanding,
it is critical for cost effective means of SSA be developed and deployed. This Special Problem effort was prepared as
part of a pending publication in the Journal of Spacecraft and Rockets. This journal artical presents a constellation of
CubeSats as a viable means for SSA both in terms of performance and cost effectiveness.

The journal article had three primary contributions. First it proposed a formal definition for SSA performance giv-
en the LEO space environment and defined a preferred CONOPS for a LEO observer spacecraft. Second it developed
a sequential optimization approach to the CubeSat constellation design problem. A complete system optimization
effort would be computationally intractable. Instead, this paper presents first a qualitative optimization of an individ-
ual spacecraft followed by a computational constellation optimization. Finally, the journal paper presented a multi
objective constellation optimization problem. This final contribution is the main contents of this Special Problem
effort.

The optimization problem begins by describing the sequential optimization approach employed. The contribution-
s in the journal article can be found in §V. This optimization effort two objective functions and generates the Pareto
frontier of trade offs between the objective of maximizing daily unique detections of the constellation and minimizing
the lifecycle cost. The optimization problem used a fixed-step two body propagator of the known RSOs in the Space
Object Catalog along with a set of observer spacecraft in a Walker-Delta configuration. Using the photometric rela-
tionships developed by Ryan Coder, the optimizer is able to determine the detection capability of a given constellation.
The lifecycle cost of a constellation design is determined through the use of parametric cost estimating relationships.
The Pareto Frontier is developed through the use of the Epsilon constraint method to simplify the mutli-objective op-
timization problem into a series of single objective optimization problems. A genetic algorithm is used as the single
objective optimizer as its stochastic nature is well suited for the non-differentiable and discontinuous nature of the
objective space. The effort shows that a constellation of CubeSats represents a powerful yet cost effective method for
space situational awareness.

II. Constellation Design

The performance of many space missions is enhanced through the utilization of a constellation architecture. For
SSA missions, constellations are particularly valuable for maximizing the quantity of detections from a space based
platform. By deploying multiple sensors that are distributed throughout the orbit environment, a constellation based
SSA mission can significantly increase detection performance. The recent developments in small satellite systems
have given rise to several other benefits in constellation design as well [43]. First, a constellation is a fractionated and
disaggregated system that is resilient to single satellite failure. Second, constellations are highly scalable in that they
can be incrementally deployed, providing financial and operational flexibility for mission planners. Finally, this incre-
mental deployment results in a much higher technology refreshment rate than larger satellite missions. With a shorter
life time and scalable architecture, sequential satellite deployments can take advantage of incremental technology
improvements, leading to more adaptive system architectures. These benefits make the utilization of a constellation
architecture highly attractive in the design of a space situational awareness campaign.

The optimization problem articulated in Problem 1 describes the performance optimization of a constellation
across all relevant decision variables. The objective function Fxn (z,T) depends on the number of spacecraft N, the
inertial observer states X, ;, orientation states (Off (1), wj(\g/ (t)), and spacecraft design parameters d; Vi = 1,..., N.
As described in §VI.H, this optimization problem is analytically clear, but computationally intractable. To enable
a computationally manageable yet still meaningful optimization effort, several decision variables are qualitatively
optimized and are treated as constraints. Particularly, §VI.G describes the attitude profile of each satellite in the
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constellation to individually maximize detections by tracking the regions of largest spatial density. Additionally, §VII
describes the relevant spacecraft parameters d; so as to maximize the optical properties of a COTS payload suitable
for CubeSat missions. Once these decision parameters are constrained, the remaining optimization problem involves a
more traditional constellation optimization problem dependent on only IV and x,, ;. This simplified version of Eqn.(44)
is combined with an objective function for lifecycle cost to present a full MOO problem. The full list of parameters

are listed in Table 6, including the remaining variables to be optimized.

A. Performance Simulation

A thorough discussion of the conditions for RSO detection and CubeSat constellation SSA mission CONOPS is
presented in §VI. To quantify the outcome of these analytical models on a given constellation architecture, a detailed
SSA mission simulator is developed. This simulator leverages much of the work done at Georgia Tech in the realm of
space situational awareness and propagation modeling [60], and enables numerical evaluation of Eqn. (44).

The simulation begins by generating a fixed set of NV surveillance spacecraft that are defined with an initial state
Xo,i,0. The attitude trajectory for each spacecraft is described in § VI.G over the simulation time period , t € T'. This
trajectory assigns three pointing targets for the spacecraft. The rings above the northern and southern poles defined
by 900km altitude, sun synchronous orbits are chosen as the pointing target when the spacecraft is above/below the
ecliptic plane. A specific location on this ring is targeted based on the best solar phase angle. As the spacecraft is
crossing the ecliptic plane, the pointing target is at GEO altitude in the radial direction of the satellite position. These
pointing targets are achieved by a simple first order filter with a time constant representative of a CubeSat ADCS
subsystem.

Each spacecraft also is assigned the same EOS payload parameters selected in §VII and are shown again in Table
6. These parameters correspond to the Photonis Nocturn XL imager and the Kowa LM60JSSMA lens, which is the
combination with the highest limiting magnitude which implies high detection capability. The dynamics f, (z, t) for all
spacecraft and objects are given by the equations of motion of the two-body problem using a fixed time step integrator.
Fixed step integration is chosen to simplify the coordination of the simulation of the each of the RSO and observer
orbits.
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Figure 1. Distribution of object diameter used in the simulation

Each RSO is assigned a random initial set of properties p; that give the orbit and optical characteristics for the

#For computational reasons, this simulation only takes an image once each 60 seconds, but an operational cadance
could be 1-2 seconds.
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Table 1. Decision variables, z

Parameter Symbol Units Value

CONOPS Variables:

Translational States (of (t), (')iT(t)) — function of (N, P, a, i)

Rotational States (053/ (1), wf\)/(t)) — function of (N, P, a, 1)

Payload Parameters, d;:

Signal to Noise Ratio SNRje — 4

Pixels occupied by RSO M0 pixels 1

Focal length l mm 60.0

F-number v — 0.80

Aperture diameter D mm 75.0

Horizontal FOV FOV,, deg 14.23

Vertical FOV FOV, deg 11.38

Pixel size P pm 9.7

Sensor resolution Nph X Np oy pixels 1280 x 1024

Quantum Efficiency QE — 0.60

Optical transmittance Topt — 0.9

Dark current per pixel {p.dark e/pixel/s 0.5

Cadence Time* to sec 60

Integration Time tr ms 33

Environmental Parameters, e;;:

Background radiant intensity (p.bke m,/as? 0.0364

Spectral excitement of a d, photons/s/m? 5.6 x 100
magnitude O object

Relative angular rate 7ij rad/s function of (N, P, a, )

Atmospheric transmittance Tatm — 1

Constellation Parameters:

Number of Satellites N N To be optimized

Number of Planes P N To be optimized

Semi-Major Axis a km To be optimized

Inclination i © To be optimized

given object. For this simulation the RSO properties include the initial state and the size. The JSpOC SOC is used
as an a-priori distribution of RSOs. The PDF for the RSOs from §VI is defined as a uniform PDF over the 15,106
items in this SOC. Each of the simulated RSOs is randomly assumed to be one of the 15,106 items from the SOC. The
initial state X; o for each of the RSOs is then given by converting the TLE corresponding to the j th SOC item into a
cartesian position and velocity. The diameter of each RSO is probabilistically assigned based on an estimated RSO
population [69]. The CDF of this distribution is shown in Figure 1. Given the approximation of the space environment
using the PDF of object diameters in the SOC, a majority of the objects are set at a user defined 1 cm minimum with
relatively few large objects. The SOC is only a partial representation of the true space environment, but is useful as
an approximation for this analysis. Thus, while the RSO distribution is uniform over the SOC, the probabilistic RSO
size assignment directly impacts the probability of detection through Eqn. (32). As these sizes are randomly assigned
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at the beginning of each simulation, a Monte Carlo approach is necessary to evaluate performance.

To numerically determine Fn (z,T), the geometrically detectable region D; must first be computed for each time
instant. The simulator propagates each object from its initial state in 60 second time steps for a total duration of 24
hours. As such the operational cadence for the satellites is taken to be 60 seconds, the integration time is set to 0.5
seconds as in § VII. After each propagation step, D; is computed by applying each of the constraints defined by x; ¢,
K; 7, and k7. These constraints fully define D; for each observer with respect to the SOC used in the simulation. For
each observer ¢, each RSO in D; for that observer is assigned a probability of detection via Eqn. (32). Probability
of detection is based on a minimum detectable SNR, of 4 as given in Table 6. For simplicity, this simulation only
considers an object detectable if pg;(¢r;-) > 0.99 . An example of the results from a single 24 hour period of this
simulation with a single observer is shown in Figure 2.

25 . ; : 1000
e P
20 1 k<]
1750 3
2 )
2 ’ a
81 1 s
a 1500 £
0] -]
2107 ] 2
5 5
1250 2

/ | .

0 0
15Jul 00:00  15Jul 06:00 15 Jul 12:00 15 Jul 18:00 16 Jul 00:00

Figure 2. Unique detections. Single Spacecraft, 500 km, 60° inclination

The simulations shown in the remaining section of the paper use 24 hours as the time period for the optimization
and analysis. This duration is sufficiently long enough for the LEO observers to complete roughly 15 orbits, which
is enough to establish the cyclical detection trends that can be seen in Figure 2. Furthermore, while longer observa-
tion periods may allow additional trends to be observed, this is a highly computationally intensive problem and it is
computationally prohibitive to simulate for many days without increasing the time step. In addition, the 60 second
cadence is deemed sufficient to capture the general detectability trends. It is clear that with a shorter cadence, such as
given in Figure 3, the expected total number of detections as well as the number of unique detections will increase.
But since for the work shown in this paper it is more important to show the general trends in detectability and since
the computational requirements for short cadence simulation is high, the 60 second cadence is justified. Lastly, due to
the stochastic nature of RSO size assignment, each of the optimization analyses averages over 10 simulations of the

constellation’s detection performance.

B. Objective Space

This detailed performance simulation can be utilized in an optimization algorithm to maximize the performance of a
constellation of space sensors. In this optimization effort, two performance parameters are used to evaluate mission
design. The first objective is to maximize the detection capability of a constellation Fy (z,T), and the second objective
is to minimize lifecycle cost C'(IV,d;). These two objectives are inversely proportional, making the definition of an
optimal solution unclear. Many previous constellation optimization efforts have utilized similar objective functions to
establish a set of Pareto-optimal solutions [46]. These algorithms develop a Pareto frontier of design points that rep-

resent tradeoffs between mission performance and mission cost objectives. More formally, the optimization algorithm
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employed here can be described as:
Join Jy (N,z(N, P,a,i),T) = —Fn (2(N, P,a,i),T)
JQ(N,Z(N, P,aJ),T) = C(N,d;)
subjectto: z =f, (Z(N, P,a, i),t), teT
z(N, P,a,i) € (X x SO(3) x R* x P) x N

N,PeN
1 N 36
1 P 36
< <
6578 km a 7678 km
0° ) 100°

The first objective function is a measure of the constellation’s detection performance introduced in section §VI.H,
and is a function of the constellation configuration. As the optimization methodology seeks to minimize both objective
functions, the negative value of SOC coverage is considered, and thus a maximum absolute value of unique detections
is pursued. There are several ways to configure the satellite constellation, yet the Walker delta pattern [70] has been
commonly used for initial constellation design, as it evenly distributes the satellites throughout the orbit environment.
A Walker delta constellation is characterized by N satellites distributed across P planes with S = N/P € N satellites
per plane. All satellites share the same semi-major axis a, eccentricity, and inclination ¢ but are phased in terms of
argument of periapse and right ascension of ascending node. The ascending nodes of the P orbital planes are dis-
tributed evenly at intervals of 360/ P. Similarly the S satellites in each orbital plane are distributed evenly at intervals
of 360/5. Finally, the phase difference angle A represents the difference in argument of periapse between adjacent
planes. This phase difference angle must be an integer multiple of 360/N. The Walker delta configuration ensures that
all satellites are evenly distributed throughout the orbit environment. This analysis only considers constellations of up
to 50 satellites in 50 orbital planes with circular orbits, orbital altitudes between 500 and 1300 km, and inclinations
ranging from equatorial to sun-synchronous configurations. These side constraints are chosen to reflect constellation
configurations common to the CubeSat platform.

C. Lifecycle Cost Estimation

After considering the detection performance of a constellation of satellites, the lifecycle cost of deploying these satel-
lites must be considered. In contrast to the performance simulation, which is evaluated through numerical simulation,

the lifecycle cost is evaluated much more analytically. The total cost C'(V, d;) is given by,
C(N,d;) = Cppre(d;) + Cproa(N, d;) + Craunch (N, d;) + Cogs (N, d;) + Cwraps (N, d;) )]

where Cpprgr(d;) is the cost of the design, development, testing, and evaluation (DDT&E) of a constellation of
satellites with parameters d;, Cpoa (N, d;) is the production cost of all NV satellites with parameters d;, Cpauncn (N, d;)
is the cost to deploy all satellites in the constellation, and Cogs (N, d;) is the cost of operations and support of the
satellites once on orbit. Cwuaps(IV,d;) captures the program level and overhead costs associated with the mission.
Each of these costs can be estimated analytically through the use of parametric cost estimating relationships (CERs)
from one of several available cost estimation models [71]. CERs are derived from historical spacecraft missions, and
seek to establish an approximate relationship between specific spacecraft parameters and cost. These approximations

are highly dependent on the historical spacecraft considered and are only fit within specified ranges.
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Due to recent advancements in small satellite technology, all of the publicly available cost models are outside
of relevant ranges [72]. The success of the CubeSat platform has been in part to the economic advantages of lower
hardware costs and development requirements, enabling a wide variety of mission architectures. Since these changes
have been relatively recent, parametric models have not had sufficient time to incorporate historical data to form new
parametric relationships. Despite these limitations, it is useful to employ these parametric models as they provide
a relative scale by which to compare constellation designs. For this effort, the Small Satellite Cost Model (SSCM)
developed by the Aerospace Corporation is used as its relevant range is most similar to the nanosatellite constellation
considered here [73]. Portions of several other historical models are employed to account for the limitations in the
SSCM alone, particularly the sizing cost distribution rankings developed by Microcosm [43].

As the proposed CubeSat constellation lacks definition of the particular business and programmatic environment,
several assumptions must be made. As this constellation architecture is further developed, these assumptions must
be refined to be relevant to business decisions. However, these assumptions suffice for the purpose of evaluating

conceptual constellation performance. The high level costing assumptions are given as:

1. The proposed CubeSat constellation is developed, produced, and operated in a commercial environment, ac-

counting for all relevant business expenses.

2. All constellation sizes spend two years in development, six months in dedicated production, and one year of

operation. All constellations are launched and operated at once.
3. Each spacecraft in the proposed constellation have identical parameters d where d; = d forall: = 1,..., N.

The first step in the cost estimation process is to develop the spacecraft parameters d that inform the CERs. The
CERs used in the SSCM are based on subsystem mass. For this analysis, historical mass distributions are used to size

each of the spacecraft subsystem [74] along with an estimate for payload mass from §VII.

Table 2. Spacecraft Mass Distributions [74]

Subsystem Percent Mass o

Payload 26.7% 7.5%
Structure 21.7% 5.3%
Thermal 3.4% 3.0%
Power 27.9% 6.6%
C&DH 7.5% 5.5%
ADCS 8.0% 4.7%
Comm 4.8% 1.0%

Next, these mass estimates can be used to estimate costs using parametric models. The SSCM utilizes a protoflight
approach, where the fabrication of the first flight unit is included in the development process [73]. This first flight unit
is referred to as the theoretical first unit (TFU) and is used as a starting point for estimating Cp,,q. Therefore, the CERs
given in the SSCM provide the cost of Cpprge + Ctru. In Eqns. (2)-(7), the independent variable is subsystem mass
X in kilograms. The cost of the payload is estimated from the sum of other subsystem costs.

Comm(d) = (357 + 40.6 - X35 ) 2)
CStruct(d) = a(299 +14.2 - Xspruct - ln(XStruct)) (3)
Crherm(d) = (246 4+ 4.2 - X3 )
Chower(d) = (=923 + 396 - XD:7%) o)
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Crrac(d) = (484 + 55 - Xti%c) (6)

Capcs(d) = (1358 + 8.58 - X3pcs) (7)

C'Bus (d) = C(Comm (d) + CSlruct(d) + CH‘herm (d)
+Cpower(d) + Crrac(d) 4+ Capcs(d)

(®)

CPayload(d) =04- CBus (d) (9)

The cost estimates from the SSCM are in FYO0$K which are inflated to FY15$K dollars [73]. Additionally,
a coefficient of o = 0.8 is applied to account for the assumption of commercial development based on historical
programs [43]. As these cost estimates include both non-recurring expenses and recurring expenses, the nonrecurring

Cbprge is determined summing the non-recurring portion of costs for each k& subsystems [43].

Cppree(d) = ZNREk - Cr(d) (10)

with NRE,, given by the historical distributions shown in Table 3.

Table 3. Non-Recurring Expenses

Subsystem Non-Recurring Percentage

Payload 60%
Structure 70%
Thermal 50%
Power 62%
C&DH 71%
ADCS 37%
Comm 71%

At this point a slight deviation in the SSCM is employed to account for the CubSat design paradigm. TFU cost can
be considered to broadly include hardware costs and labor costs. Due to the standardization of CubeSat components,
a survey of COTS components can be conducted to develop a bottoms-up estimate for the hardware costs for the TFU.
The labor costs for TFU can be estimated as the recurring portion of Cywyaps described later, particularly Ciagt, CpmsEs
and Cpoos [43]. To account for uncertainty, a 20% contingency is included with each subsystem estimate in addition
to a 20% system level margin [43]. A summary of the survey results employed here is shown in Table 4.

As the constellation increases in size, the production cost of each incremental unit decreases due to higher effi-

ciency. To account for this, the Wright Model learning curve shown in Eqn. (11) is employed [43].
Cprod = TFU - NP (11)

Where B is the learning curve coefficient applied, 0.95 here. This low level of learning is based on the predomi-
nant use of COTS components. The development and production costs are wrapped in program level costs associated
with the management and overhead for the project prior to launch, Cwraps. These program level costs include Pro-
gram Management and Systems Engineering (PMSE), Integration, Assembly, & Testing (IA&T), Ground Support
Equipment (GSE), and Launch & Orbital Operations Support (LOOS). The CERs for Cyyyqps are shown in Eqns.
(12)-(15).
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Table 4. Spacecraft Hardware Costs

Subsystem Component Manufacturer ~ Cost Estimate
Payload Nocturn Photonis $3,904
Lens Kowa $1,800
Frame Grabber Pleora $1,495
Structure ~ 6U Structure Pumpkin $14,500
EPS Power Management Clyde Space $10,550
30 Whr Battery Clyde Space $3,850
6U Solar Array (x2) Clyde Space $14,300
3U Solar Array (x2) Clyde Space $6,050
C&DH Tyvak Intrepid Tyvak $5,500
ADCS Control Module ISIS $4,650
Sun Sensors (x4) ISIS $2,500
Thermal MLI McMaster Carr $2,000
Telecom S-band Transmitter  ISIS $9,350
S-band Antenna ISIS $5,050
Tyvak UHF Tyvak $3,000
UHF Antenna ISIS $4,950
System Margin 20%
Total Hardware $166,318
Ciagt = 0.139 - (Cpprae + Cprod) (12)
Cpmse = 0.229 - (Cpprak + Cproa) (13)
Case = 0.066 - (Cpprae + Cproa) (14)
ClLoos = 0.061 - (CDDT&E + OProd) (15)
Cwraps = Cragt + Cpmse + Case + CLoos (16)

In addition to having standardized components, CubeSat vehicles also benefit from standardized launch costs.
Launch costs are estimated at Cy yunen = $546, 500 per unit based on secondary payload manifesting prices for a 6U
CubeSat along with the price of a deployment device

The final cost component in lifecycle cost deals with the operation and maintenance of the spacecraft once on orbit,
Cops. These costs are primarily driven by the amount of flight and ground software that need to be maintained during
the mission lifetime. These values scale with the number of satellites, as larger constellations require more effort to
operate and maintain. The operational lifetime is considered to be a single year. In general, Cops can be considered in

the three distinct categories of mission operations labor, hardware and facilities, and program management.

g G
Clabor = N - (16 n 28) . (FTE+FTT) a7
Cops = CLavor + CFacilities + CPMSE, Ops (18)

Estimates for the flight software and ground software required to operate each satellite can be generated in terms
of thousand lines of code (KLOC). From historical trends, each satellite requires 7.8 KLOC flight software, F’, and
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17.0 KLOC for ground software, G [43]. A full time engineer (FTE) can operate and maintain 16 KLOC of flight
software or 28 KLOC of ground software per year [43]. Here it is assumed that there is one full time tech (FTT) per
FTE with annual rates of $150,000 and $220,000 respectively [43].

CFacilities 1nvolves the hardware maintenance, rental equipment, and office space required through mission oper-
ations. Here, this category is simplified to Crycilities = 5% - CGsg + Clease- The maintenance of GSE hardware is
simple 5% of Cgsg, and the lease of all office space and ground station facilities is estimated at $250,000. Finally,
Cpmsg, ops = 0.05 * Crapor + Cracitities [43].

III. Optimization Methodology and Results

There are several common methods for analyzing MOO problems. The most common methods establish a new
objective function of non-domination for evaluating design points. These algorithms create the Pareto frontier by
compiling points that are non-dominated with respect to the multiple design objectives, that is, for each design point
the aggregate objective function is at least as good as all other design points in one or more objective function axis
[75]. Non-domination algorithms such as NGSA-II are very useful as they can comprehensively and clearly define
the Pareto frontier; however, as this optimization effort involves lengthy and complex numerical evaluation of design
points, a more simple algorithm is considered.

The MOO method employed here is the epsilon constraint method [76]. This method involves a series of sequential
optimization algorithms that solve for one of the multiple objective functions while considering all others as equality
constraints. The epsilon constraint method requires that the Pareto frontier be monotonic; at a fixed point for one
objective function, there is only one point along the other objective functions that are on the Pareto frontier. As
only two objective functions are considered here, the epsilon constraint method is quite straightforward to implement.
Moreover, the objective functions employed here can be further decoupled by considering the fact that the only design
variable shared between the two objective functions is IV, the number of satellites in the constellation. A set of 10
optimizations are performed for each N € N/, each time randomly initializing the SOC objects with sizes drawn from

the appropriate distribution. The formal definition of the epsilon constraint function is given below.

foreach E € N ={1,2,4,6,8,12,18,24,36} C N

Nr’x};’gi Ji(N,z(N, P,a,i),T) = —Fn(2(N, P,a,i),T)

subject to: z = £, (z(N, P,a,i),t),t € T
z(N, P,a,i) € (X x SO(3) x R* x P) x N

N=F
PeN
1 P 36
6578 km| < |a| < |7678 km
0° ) 100°

As the second objective function C'(N,d;) is dependent only on the number of satellites, it remains constant for
each constrained design point in the epsilon constraint method. The lifecycle cost for each E € N is given in Figure
3. Parametric CERs include standard error in their approximations based on historical space missions. To consider the
effects of these uncertainty measurements on the entire cost estimate, 10 Monte Carlo runs were performed for each
epsilon constraint point, providing statistical performance information. The resulting cost estimate shown here display
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costs within 3 sigma.
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Figure 3. Lifecycle cost objective function C' (N, d) vs constellation size N

After considering that the multi-objective problem may be simplified to a series of single objective problems, a
single objective optimizer must be selected. Performance simulation based on discrete calculations leads to an objec-
tive space that is highly nonlinear and discontinuous. Several optimization algorithms are suited for this optimization
problem such as the simulated annealing and iterative mixed-integer methods, but a genetic algorithm is employed for
this design problem. Many constellation optimization problems have been addressed using genetic algorithms [46]
due to its stochastic nature and ability to freely explore the objective space. Genetic algorithms are metaheuristic
algorithms inspired by the reproductive and evolutionary processes found in nature. Since the objective functions used
here is nonlinear and non-differentiable, metaheuristic methods are the best suited algorithms for optimization in that
they do not rely on knowledge of the objective function. The specific genetic algorithm characteristics employed in

this optimization effort are shown in Table 5 and follow the procedures given by D.E. Goldberg [77].

Table 5. Summary of genetic algorithm parameters.

Function Value
Population Size 20
Generations 15
Elitism Count 2
Selection Method Roulette
Crossover Fraction 75%
Mutation Fraction 1%

Constraint Evaluation Exterior Penalty

A. Optimization Results

The performance of the genetic algorithms employed here can be analyzed in terms of convergence and breadth of
exploration. To understand convergence behavior, the mean euclidean distance between population members through
consecutive generations is analyzed. This performance varies between consecutive optimization iterations within the
epsilon constraint method. For an optimization algorithm with P = 1, N = 1, a = 6878 km, and ¢ = 72°, convergence
is achieved quickly after eight generations as displayed in Figure 4.

One of the most attractive properties to genetic algorithms is their ability to explore the decision space, even
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Figure 4. Distance between design points through generations

in later generations. This behavior can be analyzed by considering the range of objective function values through
consecutive generations. Figure 5 charts the maximum and minimum values of the objective function among the
population. Even though the optimal configuration is part of the first generation, consecutive generations continue to

explore the sample space. This stochastic nature reduces the threat of converging to local minima.

N
o
o
S

Population Range

Population Mean

Daily Unique Observations
(4]
o
o

o

2 4 6 8 10 12 14 16
Generations

Figure 5. Range of population objective function through generations

In addition to the uncertainty distributions surrounding C'(N, d;), Fiy(z, T) contains significant uncertainty based
on the numerical model applied. In the performance simulation, each object is stochastically assigned a diameter,
leading to varying results for the same constellation design across multiple runs. To account for this uncertainty in the
development of the final Pareto frontier a series of 10 iterations were performed for each E in the epsilon constraint
method, leading to 90 unique optimization problems being performed for Fn (z,T). Additionally, 90 Monte Carlo runs
of C(N,d;) were performed at the same E values. The results of these optimization results are displayed in Figure
6 clearly form a Pareto frontier, representing the tradeoffs between the two design objectives. It can be seen that
the general shape of the epsilon constraint method is monotonic with repsect to the two objective functions, granting
confidence in the use of the epsilon constraint method.

To understand the impact of each of the design variables P, N, a, and %, a univariate sampling of the objective
space is displayed in Figures 7, 8, 9, and 10. Again, these univariate samplings consider 10 consecutive simulations to
display mean and standard deviation. For P, a, and ¢ the constellation size is fixed, thus only considering the object
detection objective function. When varying N, the lifecycle cost increases in the same manner shown in Figure 3.
Daily unique detections are also provided in terms of percentage of the current SOC and are shown within 3 sigma.

With changing semi-major axis, it can be seen that higher altitudes are more favorable in general. RSOs in
lower altitude orbits decay more quickly, meaning that much of the persistent population of RSOs are at higher LEO
altitudes. Higher altitude orbits are closer to these more densely packed regions, making detection more attainable.
Another potential explantion to the increased performance of larger semi-major axis is the reduction in the line of sight
detection constraint given the pole pointing CONOPS. Higher altitude orbits will have a clearer view of the dense pole
regions for longer periods of time, leading to increased number of detections.

When changing inclination a clear optimum can be seen at 60 degrees. Knowing that the poles represent the areas

of largest spacial density of objects, one might expect higher inclination orbits to be favored. However, given the pole
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Figure 8. Detections of a Single Satellite at 500 km Orbital Altitude
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pointing CONOPS, these higher inclination orbits experience higher relative velocity and angular rates with respect to
RSOs, making detections more difficult. This can clearly be seen by the local minima at 90 degrees. In addition to the
60 degree maxima, it is interesting to note the local maxima at the equatorial plane. Knowing that the CONOPS used

here points towards GEO when the pole pointing target is out of view, these increased detections are presumably GEO
RSOs.
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Figure 9. Detections of a Single Plane Constellation at 500 km Orbital Altitude and 70° Inclination

Within a single plane, the number of satellites is directly related to the quantity of detections, as should be expect-
ed. This configuration could be achieved by a large cluster launch on a single launch vehicle. Though the number of
objects detected increases with constellation size, there are diminishing returns. It should be expected that with very
large constellations, the number of unique observations would approach an asymptote, as is suggested by the final
data point at 50 satellites. Because of this performance, the maximum 36 satellite constellation size considered in the
optimization algorithm seems acceptable.
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Figure 10. Detections of a 24 Satellite Constellation at 500 km Orbital Altitude and 70° Inclination

Finally, the configuration of a fixed constellation size can be analyized by a univariate search across multiple
orbital planes. While keeping NV constant, increasing P decreases .S proportionally. With a constellation of 24 satellites
at 500 km and 70°, a constellation in a single plane is significantly favored over multi-plane constellations. This
behavior is the direct result of the pole pointing CONOPS. Since this region is the most densely populated, an equally
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phased train of satellites will be able to more consistently monitor this region at a given phase angle with little overlap.
Though the arguments of periapsis in multi-plane Walker delta constellations are similarly phased, the the additional
planes experience poor solar phase angles thus reducing their performance.

Note that for all design points a large percentage of the current SOC is observed every day. The previously
operational Space Fence consistently monitored 40% of the SOC on a daily basis [39]. The constellations considered
here are capable of detecting roughly 10% to 30% of the SOC in a given day at a price point of $10M to $100M.
Though the there should be significant systemic uncertainty with relation to modeling the cost of CubeSat missions,

the cost order of magnitude is attractive.

B. Discussion of Results

This optimization exercise yields some interesting results that are worth analyzing for the sake of future mission
planners. In addition to the plots, the final design configurations of the 90 optimization algorithms are provided in
Appendix B. These design points can be used to as a starting point for mission designers. In order to apply some of
the results presented here, a discussion of two additional mission objectives are discussed here.

First, a mission planner must understand the impact of cost and performance efficiency along the Pareto frontier
of varying constellation sizes. Smaller constellations are less expensive, but larger constellations are more efficient in
terms of lifecycle cost per observation. If daily unique detections remain constant through time, a year long campaign
could provide relative performance parameters of $25.6/daily unique detection for a single satellite constellation and
as low as $16.75/daily unique detection for 36 satellites. These cost efficiency numbers could be further reduced
by extending the lifecycle of the mission; however, it should be expected that CubeSat missions will have a shorter
lifespan that traditional SSA missions. Depending on the financial objectives of mission planners, either of these
designs may be preferable. A smaller constellation could be a low cost supplement to larger SSA efforts, whereas a
larger constellation could present an opportunity for an efficient and repeatable SSA campaign. Stated again, the mean
single satellite constellation will detect 5.8% of the current SOC per day for a lifecycle cost of $8.2 million, and the
mean 36 satellite constellation will detect 68.6% of the SOC per day for $63.8 million.

In this optimization effort, the primary performance method considered is the daily unique detections with the
ultimate objective for broad detection. Some mission planners may seek to favor accuracy or frequency of detection
over unique detections. To further understand these dynamics, one of the optimal constellation configurations point at
the “knee” of the Pareto frontier is considered. This constellation consists of 8 satellites in 2 orbital planes at 929 km
and 68.7 degrees. Of the 15,106 RSOs simulated, this constellation achieved 4,311 unique detections over 24 hours.
For these detected objects, Figure 11 shows the number of repeat detections. During this period, the constellation
detected each object an average of 2.5 times and as high as 38 times for certain objects. For close monitoring of
specific objects, these repeat detections could be further improved.

Though many SSA efforts seek to detect as many objects as possible, some mission planners may wish to specif-
ically focus on particular regions. Figure 11 also categorizes the orbital locations of these detected objects based on
the classification shown in Appendix A. Not surprisingly, LEO spacecraft in polar orbits are most frequently detected
given the CONOPS employed here. However, this mission plan could be altered for the sake of monitoring specific
regions more closely.

Though the specific objectives of mission planners may vary, this paper illustrates the potential for CubeSat SSA
constellations. Even though dis-aggregated constellations present certain operational and organizational challenges as
compared to flagship missions, the low cost nature of CubeSat systems present an attractive mission design that could

be used as a meaningful supplement to flagship efforts.

16 of 47

American Institute of Aeronautics and Astronautics



m—— Combined
— LEO: Polar
= = LEO: Other
w |
c
Ke]
©
2
a
1
> 10
©
a
S
o
'_
10°
10° 10" 102 10°

Number of Objects

Figure 11. Repeat Detections of a 8 Satellite Constellation at 979 km Orbital Altitude and 68.7° Inclination

IV. Conclusion

This paper begins with a formal definition of the geometrically detectable volume for a space-based observer. By
augmenting this volume to include the capabilities of a given electro-optical sensor (EOS) a true detectable volume of
state space is defined using the concept of probability of detection. Mission design is formulated as an idealized opti-
mization problem with the objective of maximizing the fractional coverage of space object distributions. Describing
mission design as an optimization problem then enables the formal definition of the basic concept of operations for
a general space-based, disaggregated space situational awareness (SSA) mission. Additionally, this approach incor-
porates the optimization of the spacecraft design parameters which is demonstrated through the design and sizing of
a CubeSat EOS payload. This optimization problem is generally computationally intractable due to the high dimen-
sionality and the number of design parameters. By constraining the concept of operations and the spacecraft optical
parameters, the optimization problem is reduced to a computationally tractable optimization problem. A CubeSat con-
stellation cost model is developed to evaluate the cost of a given architecture. Using both detection performance and
lifecycle cost in a multi-objective optimization problem, a Pareto frontier of constellation design tradeoffs is developed.
The results of this optimization effort are further discussed in there potential application to future SSA missions. The
analysis considered here suggests that a CubeSat SSA constellation can be a cost effective alternative and meaningful

supplement to large scale missions.
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V. Supporting Material

The continued and effective use of Earth orbit for all purposes, including commercial and gov-
ernmental, requires a low Earth orbit (LEO) environment that can be accurately characterized. The
growth of space debris over recent years has made such characterization difficult. Fragmentations
of rocket bodies, active satellites, and defunct satellites, among other things, have created huge
numbers of resident space objects (RSOs) that are very difficult to track [1].

The majority of data on RSOs comes from the US Department of Defense Joint Space Oper-
ations Center (JSpOC). This data is gathered through the Space Surveillance Network (SSN) that
JSpOC tasks with the observation and tracking of RSOs. The SSN consists of a network of approx-
imately 30 ground- and space-based sensors that detect and track objects in Earth orbit [2]. Data
from the SSN for all non-classified objects is then made publicly available in the form of two line
elements (TLEs) via Space-track.org. There are currently in excess of 21,000 LEO objects with
diameters above 10 cm [3] in the JSpOC space object catalog (SOC). The TLEs for approximately
15,106 of these objects are publicly available”. The largest contributions to the SSN are ground-
based systems that use either electro-optical sensors (EOS) or radar [4]. For radar based system:s,
which are by far the largest contributors to the SSN, Rayleigh scattering makes debris smaller than
10 cm in diameter very difficult to reliably track [5]. As such, the number of objects in LEO below
10 cm is presently only estimated. Current estimates place the number of objects larger than 1
cm at approximately 700,000 and the number of objects larger than 1 mm at approximately 200
million [6]. A quick analysis of JSpOC numbers on functional vs. nonfunctional Earth satellites
reveals that only around 7% of RSOs are operational assets; in essence, 93% of the objects in orbit
about Earth serve to do nothing other than limit and endanger on-orbit assets [7].

The situation continues to worsen at a concerning rate. Events such as the 2007 Anti-Satellite
(ASAT) test on the defunct Fengyun-3 weather satellite [8] and the 2009 collision between the
defunct Cosmos-2251 and the operational Iridium-33 [9] have both significantly worsened the
problem. These two events alone doubled the number of space objects larger than 1 cm, producing
over 250,000 new fragments [10]. Continuing ASAT tests [11] will only continue to worsen the
situation. Orbital debris larger than 10 cm in diameter can cause catastrophic failure in most
space missions, and debris in the 1 to 10 cm regime can easily disable or damage core mission
functionality [12]. Damage from debris in the 1 to 10 cm regime has posed a catastrophic risk
to the Space Shuttle on multiple occasions [13, 14]. It has been established that should a critical
density of orbital debris be reached, cascading collisions of debris could have the potential to
create a debris belt in Earth orbit. [15]. Such a debris belt would have terrible consequences
to the feasibility of future space missions. In order to understand actions that should be taken to
properly address the likelihood of this eventuality, the situation must be assessed before it becomes

untenable.

bvia www.space-track.org; accessed 3/30/2015
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There is currently action being taken via many different avenues. Space situational awareness
(SSA), the characterization of the space domain, has been listed as a priority for research and
technology advancement at many levels of the United States government. The Presidential Space
Policy under the administration of U.S. President Barack Obama calls for increased knowledge of
the space environment [16]. The Presidential Space Policy has informed the policy of the Joint
Chiefs of Staff in Joint Publication 3-14, which recognizes increased SSA as one of the most im-
portant areas for increased research and new technology in the coming decade [17, 18]. As a result,
the recent FY2016 US Defense Budget Request includes increases in funding to the Space Based
Space Surveillance (SBSS) mission and the JSpOC Mission System (JMS) [19]. Recognizing the
issue on a global scale, the United Nations Committee on the Peaceful Uses of Outer Space also
promotes international cooperation on SSA as it is an issue that affects all space-faring nations
[20].

Given the worsening problem in LEO and the clear need for increased SSA, especially regard-
ing objects with diameters from 1 to 10 cm, it is evident that much work remains regarding RSO
detection. Due to their recent proliferation, opportunities exist in the application of small satellite
design paradigms to RSO detection.

Debris detection was first performed with ground-based radars, and radar systems continue to
be used for this purpose. Ground-based approaches can be divided between optical imaging and
radar imaging. Typically, optical imaging performs much better for objects in geosynchronous
Earth orbit (GEO) while radar is better for the observation of objects in LEO [21]. The earliest
attempt at RSO detection was the radar detection of Sputnik with the Millstone radar at MIT
Lincoln Laboratory’s Millstone Hill observatory [22]. Very accurate radar observations of small
diameter RSOs are still made at this site with the MIT Lincoln Laboratory Haystack radar [23],
one of the first dedicated contributors to the SSN. One of the most recent ground-based radar
contributors to the SSN is the Space-Fence radar array, which is designed to make approximately
1,500,000 observations of LEO objects each day [4]. Detections of debris smaller than 10 cm have
been made with ground-based radar [24, 25], but such observations cannot be made accurately
and consistently enough to contribute to the JSpOC SOC. Deep space radar observatories on the
Kwajalein atoll have also been successful in the accurate tracking of GEO objects [22].

Ground-based optical approaches for debris detection have been increasingly employed. The
most notable of these approaches have been the Optical Ground Station (OGS) [26] and, more
recently, the Space Surveillance Telescope (SST) [27]. Both observatories have made substantial
contributions to the characterization of the GEO debris environment. Other ground-based optical
approaches have involved the repurposing of astronomical telescopes for the observation of LEO
debris. Notable examples of this can be found in [28, 29, 30, 31] as summarized by Shell in
[32]. However, given that ground-based optical observatories are most effectively applied to GEO

observations, their limitation lies in the fact that they are only able to characterize a small portion

19 of 47

American Institute of Aeronautics and Astronautics



of the GEO debris belt that is visible from their fixed location. While their observations can be
extrapolated to estimate numbers of GEO debris, they cannot be used to actively catalog it.

Space-based systems offer different design paradigms than ground-based systems because of
their relative proximity to RSOs. One such advantage is the ability to physically detect the impact
of extremely small debris and thus measure its presence. The first approaches in this manner
include the Long Duration Exposure Facility [33], the Particle Impact Experiment on MIR [34]
and evidence of debris impact on the space shuttle [14]. An exhaustive review of impact-related
in-situ detection is presented by Bauer et al. in [6]. By nature, such experiments are unable to
catalog debris above certain size limits and debris that is still in orbit and therefore can contribute
only to statistical models of the debris environment rather than track orbits of individual objects
for the SOC.

Space-based radar has not traditionally been applied due to the fact that the use of radar de-
tection requires large structures and high power, both of which make its application exceedingly
difficult in a space environment. No missions have successfully carried out the space-based radar
detection of orbital debris. The only plans to do so are theoretical [35].

The application of space-based optical imaging systems to on-orbit debris detection has been
very successful. The earliest such mission, the Midcourse Space Experiment (MSX) Space Based
Visible (SBV) detector [36] demonstrated effective maturation of the technology necessary for
such a mission, and serves as a design standard for space based optical detection mission ar-
chitectures. The Sapphire mission [37], Space-based Telescopes for Actionable Refinement of
Ephemeris (STARE) mission [38] and SBSS mission [39] not only use optical sensors to make
on-orbit detections of space debris, but also do so with a similar concept of operations (CONOPS)
as the MSX/SBYV mission. The MSX/SBV mission proved the design paradigm of placing a sensor
in LEO and alternating the data collection of LEO and GEO objects with the data processing of
the same objects for downlink to the ground [40]. The Sapphire, STARE, and SBSS missions all
do the same. The MSX/SBYV, Sapphire, and SBSS missions are also all capable of both tasked and
passive observation of RSOs. However, all three of these missions are much larger than the STARE
mission. The STARE mission, a 3U CubeSat, is the first and only current application of the Cube-
Sat form factor to RSO detection. However, even though it is much smaller than similar missions,
a review of its optical payload [41] and CONOPS [42] reveals few differences in effectiveness or
application.

In fact, CubeSats offer much more potential than other mission architectures for the detection
of RSOs as their low cost and ease of scalability allows them to be added to a constellation more
easily and to adapt to changes in technology more quickly [43]. A constellation is also much more
resistant to faults as it is fractionated and disaggregated; a failure of one unit does not result in the
failure of the entire system. Planet Labs has recently begun the deployment of a ground-observing

CubeSat constellation in LEO [44]. Similar constellation architectures could be adapted for SSA.
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A disaggregated system offers many benefits for system redundancy and efficacy [45], but a
disaggregated design paradigm has only recently begun to be employed. The SBSS mission is
planned to scale to a constellation of satellites, but has yet to be fully deployed. Likewise, Space
Fence, one of the most recent approaches to ground-based radar detection, consists of two ground-
based radar arrays, but is not planned to scale any further [4]. In short, while many mission
architectures do exist to characterize the current situation of debris in Earth orbit, few mission
architectures effectively do so in a disaggregated and easily scalable manner.

A constellation may be optimized for debris detection. Genetic algorithms are well-suited to
this problem because of their ability to fully explore an entire design space. Many constellation
optimization problems have been addressed using genetic algorithms [46, 47, 48, 49]. As such,
the use of such applicable methodology for optimizing a system of debris observing satellites is
well established. Additionally, the use of a constellation allows for the standardization of data
processing and can streamline the contributions of a system to the SSN [50].

This paper introduces an abstraction of the constellation design problem for a space-based opti-
cal debris observation system. The formulation presented has the inherent value of being written in
provably true logical statements rather than being based on a designer’s intuition. These provably
true statements relate all parameters of a system to mission performance and thus allow for the
optimization of mission performance based on parameters of the system. Geometric line of sight,
object illumination, and field of view detection constraints are all taken into account and related to
mission success criteria. This paper serves as a guide for this design problem.

The performance of such a system cannot be computationally analyzed if every design param-
eter is allowed to vary simultaneously, as the problem would simply be too large. Therefore, this
paper applies a series of assumptions based on physical and technological constraints to this de-
sign problem, allowing for an approximate analysis and optimization of the entire constellation
to be carried out. To be able to simulate the performance offered by a given constellation, as-
sumptions can be made regarding many parameters so that they are constrained to the realm of
possibility. Given a CubeSat form factor, the size of detection sensors can be constrained and
performance capabilities can be determined. After the performance of an individual satellite is
analyzed, a multi-objective optimization algorithm (MOO) is applied to parametrically optimize a
constellation of these satellites with respect to mission performance and lifecycle cost. The objec-
tive function corresponding to mission performance is the fractional coverage of the orbital debris
that is currently available in the JSpOC SOC, and the objective function for lifecycle cost is defined
using traditional cost estimating principles. The epsilon constraint method is used to formulate the
MOO problems a series of single objective optimizations. These optimization methods are used to
develop the Pareto frontier of constellation designs.

In short, the contributions of this effort are the formal definition of a constellation and CONOPS

design for disaggregated space-based SSA, a discussion of the application of SSA sensor sizing
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and data processing, and a MOO problem for constellation design.

VI. The Constellation and Concept of Operations Design Problem
A CubeSat SSA constellation and CONOPS design is fundamentally focused on detecting,

tracking, and characterizing as many space objects as possible. This is inherently a multi-objective
problem; in many cases tracking and characterization efforts directly oppose new object detection
efforts. For example, detecting new objects necessarily reduces resources available for tracking
existing objects.

Constellation design is a challenging high-dimensional multi-objective optimization problem
that has motivated the formulation of a number of specific constellation types, including Walker
[51], Beste [52], Ballard [53], Molniya [54], Draim [55, 56], and Flower [57, 58] constellations.
Selected design considerations include geographic coverage, redundancy of coverage, coverage
quality, ground station connectivity, communication satellite connectivity, orbit insertion methods,
orbit error tolerance, orbit perturbation tolerance, and constellation survivability [59]. Parame-
terization of these constellation types helps attenuate the staggering difficulty of designing and
assessing the performance of a constellation with N individual satellites. In practice for compu-
tational tractability, most constellations reduce the design problem down to only a few decision
variables (e.g., altitude, inclination, phasing) [59].

This section intends to develop a simplified version of the space-based SSA constellation,
CONOPS, and CubeSat design problem to enable future rigorous studies in this area and to place
the remainder of this paper in perspective. Similar to the parameterization of constellations, the
combined SSA CONOPS / CubeSat constellation design problem is, by assumption, reduced to
a numerically tractable set of decision variables. Emphatically, the full design problem proves
computationally intractable and is not solved in its general form in this paper.

Constellation design is often a combination of nonlinear continuous and mixed integer opti-
mization problems. Solution to constellation design problems often takes years and hundreds or
thousands of design iterations [59]. In the interest of tractability, this paper considers the CONOPS
design to be answered by a combination of inertial state and attitude profiles for nominal mission
operational status over some finite period of time. Said differently, here the CONOPS is limited to
the location and pointing of the spacecraft and sensors over a finite period of time.

The sensor types considered in this analysis are passive electro-optical sensors (EOS) that mea-
sure phenomenologies related to the presence or absence of space objects on orbit. In particular,
an EOS is defined here as any electronic device that generates discrete-event signals triggered by
photon events. As a group, EOS sensors include Charge-Coupled Devices (CCDs), Complemen-
tary Metal Oxide Semiconductor (CMOS) sensors, and photon counting devices. This section first
briefly describes geometric constraints, and introduces the approximate statistics behind the detec-

tion of space objects. Next, a single performance objective function - the number of unique space
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object detections in a given finite time period - is derived and the resulting problem discussed.
Finally, solution challenges are identified and an overarching solution strategy for design of a SSA

Constellation of CubeSats is articulated.

A. Problem Geometry and Visualization

The overall space object detection geometry is illustrated in Figure 12a. The line-of-sight vector
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Figure 12. Problem Geometry and Constraint Visualization

p;j = Tj — 0;, where r; is the j RSO inertial location and o; is the i*" observer (sensor platform)
location. Additionally, § is defined as the sun-vector (pointing away from the sun) and ¢;; is defined
as the solar phase angle of the j'" RSO as seen by observer i. The i*" observer’s EOS has a defined
boresight f)i(Hf/), where 05\9/' defines a rotation in the rotation group SO(3) from the inertial frame
N to the i EOS boresight frame O;.

The j** RSO position r; and velocity r; are collectively referred to as the state X;; = [r;f rﬂ
Similarly, the observing platform state is written as X:‘;i = [0?, (')ﬂ. The states x; and x,,; are
restricted over a domain X such that x;,x,; € X C RS. Intuitively, not all possible states Xj, X0
in X lead to a detection by an an EOS on observer ¢ at every instant ¢, reducing the set of states
that may be detected to D; C X C RS. A notional visualization of selected constraints is given in
Figure 12b. Several such constraints are formally introduced in the following subsections. While
these constraints are not novel and represent a combination of common sense and recent work [60],
their inclusion here is necessary for notational purposes and to support a formal articulation of the
objective function and optimization problem in §VI. G. In the interest of brevity variables that are

not considered optimization decision variables are omitted from formal functional definitions.

B. Line-of-Sight

The observer must have Line of Sight (LoS) to a space object for a detection to occur. The region of

space in which the observer does not have LoS is a cone extending from the observer encompassing
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Earth’s surface. Using the notations shown in Figure 12a, for the i*" observer the angle 6; between
the tangent vector p;; and o; defines the half-angle of this exclusion cone. The Earth radius
vector is written as R, and the vector p;; | and o; completes the vector triangle with 0;. Noting the
I

geometry shown in Figure 12a and that ||R.||* 4 ||p;;|* = llos||?, the equation describing the line

of sight constraint for space object j is written after some manipulation as

Kic;(0,1;) = —0; - p; — V/[J0i]|* — [[R.[[2 <0 (19)

where ; ¢ : R3 x R3 — R. Thus, if Eqn. (19) is true then the observer i has LoS with object j

and the following comprises the subset of X’ that has LoS with the observer i'".

L;:={r; € R*| r;r(0;r;) <0} (20)

The LoS constraint operates on the position subspace and may be expressed as r; € £;(0;) C
R3. Because RSO velocity is irrelevant for this constraint, the state space constraint may be for-

mally expressed as x; € £; x R* C R°,

C. Field-of-View

The Field-of-View (FOV) constraint ensures the space object is in the FOV of the sensor. In gen-
eral, an EOS has a rectangular field of view. Thus FOV; and FOV,, are defined as the horizontal
and vertical field of view angles (full angle, not half-angle) of the observer, respectively. The 7
observer sensor boresight in the inertial frame is written as p,(85?). The geometric constraints
expressed in the local boresight frame O; of the i*" observer may be written as a combination of
separating hyperplane constraints outlining the EOS FOV. Individually, such a hyperplane implic-

itly defined by a normal vector a,; may be expressed as

a;,p;; > 0 @1
a, (0, —r;) <0 (22)

)

where there are a total of f constraints forming the FOV. Because “'a;; = R(6%/)a; ;, with R(8%/)
being a right-handed rotation matrix from the inertial frame N to the sensor frame O;, (22) may

be re-written as

“al R(6S) (0; —1;) <0 (23)
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Since there are f such constraints ([ = 1,..., f), the field of view constraint is written as

Oiézl
: R(65) (0, —1;) <0 (24)
O; AT
7f
or, equivalently,
ki 7 (05,15, 05) = A(03)0; — A(6F)r; < 0 (25)

with k; 7 : R? x R® x SO(3) — R/. Using this formulation, a number of separating hyperplanes
result in an inequality constraint that is nonlinear in the observer attitude coordinate 05\9/, but linear

in both 0; and r;. The set of r; that satisfy this constraint given o; and 05\9/ is formally defined as
.E = {rj\ni,;(oi,rj,ef/) < 0} (26)
Since this constraint depends only on position, the full RSO state x; € F; x R3.

D. Illumination

To be detected by a passive EOS, the RSO in question must be illuminated by an external source
(typically the sun). Given the sun vector 8, an object j that is not eclipsed by the Earth must satisfy
the two approximate conditions shown in Equations (27) and (28), where again R, is the radius of
the Earth.

$<0 27

| x r; || > R, (28)
Eqns. (27) and (28) may be written in constraint form as

/{I,l(rj) =7r;- S (29)
Kz2(r;) = Re — |8 X 1] (30)

Where the constraint functions ry. : R? x R® — R must both be simultaneously satisfied for RSO
j to be illuminated. Thus the subset of X’ containing objects illuminated by the Sun is given by

I:={r; € R’| (rz:(r;) <0)U (rzs(r) <0)} 3D

Again, this is a position constraint, and the subspace of positions that are illuminated may be writ-
ten as r; € Z C R3. Because velocity does not affect illumination, the full state space constraint

becomes x; € Z x R3. As a note, Earthshine or Lunar albedo may be considered using similar
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formulations. Further, the illumination constraint depends in no way on the observer location o;.

E. Geometric Detectability
For an EOS i to be geometrically capable of detecting RSO j, the LoS, FOV, and illumination con-

straints must all be satisfied. This is represented notationally by requiring that r; € D;(X,;, 05\9/),
where D; (X, ;, 0/(\9/) = L; N F; N Z. The full state-space constraint for the 4" RSO is X; €
D; (X, 9/(\9/) x R® C X. However, even if a RSO j is geometrically detectable by EOS i (i.e.,
X; € Di(X,4, 0/(\9/) x R?), the RSO, EOS, and scenario characteristics must still be accounted for
when computing the probability that a detection occurs. This is discussed in the following subsec-

tion.

F. Space Object Detection Probability
As demonstrated by Coder & Holzinger [61], the probability of detection for the j* space object

moving relative to the i*" sensor frame is

2
i

SNR; a1e \/Qj,RSOtI + my; (1 + %) [(Qi,p,bkg + Gi p.dark) + Un—z] — jrsotr

\/2¢irsot 1

1 —erf

Dija(tr;-) =~

N | —

(32)

where SNR, ,, is the signal-to-noise ratio required by the detection algorithm, g;rso is the EOS
count rate generated by the ;% space object, ¢7; is the 7' EOS integration period, m;; is the number
of pixels the space object streak covers, z;; is the number of pixels over which the background noise
is determined, g;, i, 1 the per-pixel EOS count rate due to background sources, ¢ p gk 15 the per-
pixel count rate due to dark current, o;, is the EOS read noise, and n; is the number of image
frames per integration period ¢;. The EOS count rate g; rso 1s a function of the RSO shape, surface
materials, inertial location r;, and attitude. A full discussion is given by Holzinger, et al. [62]. The
number of pixels m;; over which the space object signature is spread may be approximated over

short time periods as

s
Mij = Mijo + /Mijo (HZS\I/) (33)

where m;;  1s the spot size of the space object (including diffraction, jitter, and other sources), 7);;
is the apparent angular rate, and IFOV; is the instantaneous pixel field of view. The instantaneous

apparent angular rate as seen by a frame O; fixed to the i EOS boresight rotating with angular
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velocity wf/ with respect to the inertial frame ) is given by

“dp; _Mdpy

O o »
= P X P 34
dt dt frwN pZ_J (34)
“dpy 1 I pi;pi | Y dpy w0 x| KO 35)
dt HPUH i PszPz‘j_ di N Hrj — o
O; 14 B T
dpy; 1 PiiPij | . . _ r; — o
iy [ Ful (I“ . 0i> + w(’)l N (36)
dt ||PUH i p?}Pij_ ’ N Hrj — o,
O; 12 T
"dp; 1 PiiPij | . . , r; — o
— 2 — 7, — ]I_ vy i —0; O; % J 1 37
a || =™ = | o [ e R Sl o |

Thus, the probability p;; 4 of EOS 7 detecting RSO j depends on the observer state X, ;, the observer
orientation and angular velocity 05\9;' and wj(\o/', the i** RSO state x;, the integration time ¢;, and any
number of EOS, RSO, and environmental parameters d; € R, p, € P CR", ande; € E CRY,
respectively. Notationally, this relationship may be expressed as p;; 4(X;; X,, t1, d;, P, t) € [0,1].
With these fundamental constraints and detection probability relationships given, it is now possible

to focus on the definition of a performance objective in the following section.

G. Constellation & Operations Design Objective

There are many of conceivable objectives for a constellation of passive observing CubeSats. Some
possible objectives are the number of unique detections over a specified time period, the expected
number of re-acquisitions (of all objects) per day, or simply the total number of observations. The
authors believe that multiple objectives are appropriate for the problem, however it is the scope of
future work to develop additional objectives using the analytical framework introduced here. As a
note, such additional performance objective functions may be enforced as inequality constraints in
a system design or a full Multi-Objective Optimization (MOO) approach may be pursued.

To define the scope of this effort, the performance objective is to maximize the number of
unique space object detections over some time period 7'. A ‘detection’ here is defined as occurring
when a space object x; both satisfies the geometric constraints D; for any observer ¢ (x; € D;)
and a random draw P from the uniform interval /[0, 1] is greater than the probability of detection
by observer ¢ indicated in Eq. (32). While this objective does not prohibit subsequent space
object detections by the same or other observers, it does not reward multiple detections either. The
purpose of such an objective is to optimize the coverage of a CubeSat constellation. A separate
variation of the time interval over which unique detections are considered can address information
timeliness requirements. It should be emphasized that the proposed objective is simply one of many
possible objectives, and that the mathematical derivation of the analytic form of this objective may
be adjusted for other objectives of interest.

From an optimization perspective, the decision variables considered here are the number of
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constellation CubeSats /N, each of which necessitate the optimization of the observer states X, ; (%)
and EOS attitude trajectory (6% (t), w$ (¢)) over the time interval ¢ € [0, T, EOS integration time
t1, EOS cadence ¢, and observer design parameters d;. The RSO parameters p; and environmental
parameters e;; are considered either random or given, and are not considered design parameters.
The observer design parameters p, may include any and all pertinent design parameters from focal
length to actuator capabilities.

To properly motivate any rigorous discussion on maximizing the number of detected space
objects, an a-priori assumption on the probability density function (PDF) of RSOs on orbit must be
made. Such a proposition is fundamentally problematic given the problem at hand — the purpose of
a proposed CubeSat constellation is to detect and characterize the RSO population, however to do
so optimally requires some information regarding the character of the ostensibly undetected RSO
population. However, the problem is not intractable. Two possible choices are to 1) use admissible
region-like methods [63] to consider all closed orbits about Earth, or, more realistically, 2) use
the SOC or the NASA ORDEM 3.0 model [64] to approximate the a-priori RSO density. Such
a RSO PDF suggested by option 2) is written as f(x,t), f : R® x T"— R, where by definition
J f(x,t)dx = 1 when X encapsulates the full state space.

Since the number of RSOs is necessarily an unknown number, the following analysis simply
maximizes the fraction of unique detected objects represented by the PDF f(x,¢). To begin the
analytical derivation, first consider the conditional probability of observer ¢ detecting at any instant

an object j existing within D; drawn from f(x,t).

P [detection(x;)] = P[(X; ~ f(x,t)) N (X; € D;) N (pija > P ~U[0,1])] (38)
Using Bayes’ rule, Eqn. (38) may be used to compute the fraction F; of existing objects detectable
at time ¢ by EOS ::

[P [detection|X € D;] P [X € D]
P[X € D;|detection]

s Bt a(t) = / Pisa(:2, -, 8) F(x, £)dx (40)

D;

[P [detection] = (39)

The decision variable z(t) is used to encompass all decision variables x,;(t), (85 (), w5 (1)),
t7, and d; previously identified. Additionally, f(x,¢) must be computed for all ¢ € T using the
Fokker-Planck partial differential equation. To compute the number of unique detections made by
EOS 7 over the time interval 7', it is necessary to consider the volume of detectable state space over
all possible instants in 7', notationally written as D; x T' C X x T'. When there are /N such EOS

observers, to avoid duplicate detections the set union operator may be used, defining the total set
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of geometrically detectable states and times for the entire constellation.

N
Q=DxT=|](D;xT) (41)

i=1

Then, the fraction of all RSOs detected by a constellation of N CubeSats may be expressed as

FN<Z7 T) = /Qpij,d<x; z,-, t)f(X, t>dQ (42)

Here, F'(z,T) € [0, 1] is computed assuming a specific set of RSO parameters p, and environmen-
tal parameters e;; Vi, j . These parameters are not necessarily the same for each of the unknown
number of RSOs, so each point x € X in the integrand of Eq. (42) may have RSO properties p and
environmental parameters e drawn from an appropriately defined random distribution with PDF
f (p, x,t), with fiROXPXxEXT — RF capturing any joint dependence of the random variables.
If this is the case, the domain of consideration {2 must be modified to include all permutations of
the RSO and environmental parameters. With this consideration, the modified domain € is given

as

N
Q:DX'PXEXTEU(DiX'PXEXT) (43)

which allows the fraction of all RSOs detected by the constellation for all RSO parameters and

environmental conditions to be computed as

FN(ZaT> = / pij7d(x;zvp7e> t)fN(X P;€, t) Q (44)
Q

The constellation and CONOPS design problem may be written as an optimization problem with

the objective function Eq. (42) as follows

Problem 1 (Space Situational Awareness Constellation Optimization). Determining an SSA con-
stellation of passive EOS sensors (ground-based, space-based, or both) that maximizes the unique

detections over a time interval T' is equivalent to the following optimization problem:

I%in J(szu T) = _FN<‘Z’ T)
Z

subjectto: z =f,(z,t), t €T
€ (X xSO(3) xR* x P) x N
N eN

where N is the number of spacecraft, f, : R x T — R captures any dynamics of the inertial
state, orientation states, and parameters for all N spacecraft, Z = (X x SO(3) x R® x P) x N
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defines the set of admissible decision parameters for all N spacecraft, and N is the set of natural
numbers. The decision variable z is composed of inertial observer states x, ;, orientation states

(O (), wSi (1)), spacecraft design parametersd; ¥i = 1,..., N.

Emphatically, the single-objective performance optimization articulated in Problem 1 has non-
linear time-varying states, potentially possesses discrete design parameters within d;, and has an
integer number of spacecraft /N. Hence, even the ‘simplified’ formulation in Problem 1 is inher-
ently a mixed integer nonlinear programming problem (MINLP). Such problems suffer from both
nonlinear programming (NLP) and mixed integer (MI) drawbacks. Problem 1 in particular is non-
convex, suffers from a surfeit of local minima, and possesses a relatively large number of variables.
Further, the dimension of the statespace increases linearly with the number of spacecraft. From
a mixed integer perspective, the number of constellation spacecraft /N and possible discrete states
within each p;, mean that the computational complexity of the problem increases exponentially
with the number of discrete states (which is always at least one) Thus, Problem 1 is NP-complete,
and appears to be computationally intractable (even if the decision space were convex, it would
still be NP-hard) [65]. The following section discusses several high level relaxations made to form

a tractable problem for the analysis contained within this paper.

H. Approximate Solution Approach
To reduce the MINLP identified in Problem 1 to a computationally tractable problem, the approach

taken here is to choose the majority of decision variables based on a combination of logic, design
experience, and hardware availability. Then, remaining decision variables are optimized using
numerical methods. While this solution approach is clearly not optimal and contains a number of
ad-hoc assumptions, it is hoped that this first attempt to solve Problem 1 serves as a starting point
for future efforts.

The general outline for this strategy is given here. In § VLI, the attitude trajectory for each ob-
server EOS 7 is chosen, largely defining the CONOPS design used in this paper. In § VII, assorted
spacecraft and EOS design parameters are chosen based on a combination of analysis and ranking
of available commercial off-the-shelf (COTS) components. Additionally, the computational com-
plexity of necessary algorithms and their impact on operational EOS cadence is also discussed.
Finally, in §1I, the problem is further reduced to a more traditional constellation design problem
wherein the satellites are distributed over circular orbits parameterized by a Walker constellation.
In the final optimization problem, the remaining decision variables include only the number of
constellation satellites, number of orbit planes, the semi-major axis, and the inclination of each or-
bit plane. Additionally, because the constellation performance with respect to Eqn. (44) nominally
improves as [N becomes larger, the cost of the constellation is also modeled in §II to provide an
additional objective function that naturally forms a Pareto frontier with the performance objective

in Eqn. (44). Table 6 gives an extensive list of all of the parameters and decision variables for the
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final optimization problem used in this paper to generate the Pareto frontier.

Table 6. All decision variables, z

Parameter Symbol Determined in
CONOPS Variables:

Translational States (o7 (t), 0] (1)) §VI.A and §IILLA
Rotational States (05\9/ (1), W (t)) §VLF and §IILA
Payload Parameters, d;:

Signal to Noise Ratio SNRj¢ §VIIL.C.2

Pixels occupied by RSO M5.0 §VIIL.C.2

Focal length l §VILC.1
F-number v SVII.C.1
Aperture diameter D §VIL.C.1
Horizontal FOV FOV,, SVII.C.2
Vertical FOV FOV, §VIL.C.2

Pixel size P §VIL.C.2

Sensor resolution Nph X Ny §VILC.2
Quantum Efficiency QE §VIL.C.2

Optical transmittance Topt $VIL.C.2

Dark current per pixel (p.dark SVII.C.2
Cadence Time to $§VII.C.3
Integration Time tr §VII.C.3
Environmental Parameters, e;;:

Background radiant intensity p.bke §VIL.C.2
Spectral excitement of a mag. 0 object P §VIL.C.2
Atmospheric transmittance Tatm §VII.C.2
Relative angular rate Tij §VIL.C.2
Constellation Parameters:

Number of Satellites Decision Variable: $II1.A

Semi-Major Axis Decision Variable: §III.A

N
Number of Planes P Decision Variable: $III.A
a
Inclination 1 Decision Variable: $III.A

I. CONOPS Design
To design an attitude trajectory through the rotation group SO(3) for each observer EOS, 1, it is

helpful to first revisit the principal geometric constraints satisfied as preconditions to each detec-
tion. Namely, a RSO must be 1) within line-of-sight, 2) within the field of view, and 3) illuminated.
Naturally, one may assume that to detect the largest number of RSOs, the EOS should be oriented
towards regions of illuminated space that do not have the Earth, moon, or sun in the background
and are relatively dense with debris. Just such a set of locations are the volumes of space above

the north and south poles. Both regions possess the largest spatial density of space objects [64],
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and also have large fractions of the debris fields from recent on-orbit collisions and explosions.

Conversely, very few spacecraft have been launched in to extremely low inclinations (below 20

degrees, for example), so there is little incentive to search for space debris in the volume of space

near the equator. Lastly, the majority of debris is in LEO, so an attitude trajectory consistent with

detecting high inclination LEO objects is preferable given the objective in Eqn. (44).

If the constellation is concerned with detecting LEO space objects, the EOS sensors should be

placed in or near LEO to maximize the number of detections (recall that reflected / emitted photon
flux collected by EOS i drops off as 1/ pfj). With these facts in mind, it is determined here that

periodic attitude trajectories wherein each EOS ¢ observes volumes at or near the north and south

poles provides the largest quantity of unique detections. Therefore, the attitude trajectory is chosen

as follows:

1.

EOS 7 should align its FOV towards geosynchronous orbit altitudes once it is within 5 de-
grees of its ascending node. The FOV should be aligned with the zenith direction at the

ascending node.

Pointing at this volume of space should continue until EOS 7 is more than 5 degrees from its

ascending node.

. After passing more than 5 degrees from the ascending node, EOS i should align its FOV

towards the volume of space above the north pole with the highest spatial density of RSOs
and the smallest possible solar phase angle ¢; to a point within the volume (if it satisfies the

LoS constraint).

Pointing at this volume of space should continue until the LoS constraint is no longer satis-

fied, or until the descending node is within 5 degrees.

. EOS 7 should align its FOV towards geosynchronous orbit altitudes once it is within 5 de-

grees of its descending node. The FOV should be aligned with the zenith direction at the

descending node.

Pointing at this volume of space should continue until EOS 7 is more than 5 degrees from its

descending node.

After passing more than 5 degrees from the descending node, EOS i should align its FOV
towards the volume of space above the south pole with the highest spatial density of RSOs
and the smallest possible solar phase angle ¢; to a point within the volume (if it satisfies the

LoS constraint).

. Pointing at this volume of space should continue until the LoS constraint is no longer satis-

fied, or until the ascending node is within 5 degrees.
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The simple EOS attitude trajectory defined by this cyclical CONOPS is used for the remain-
der of this paper. There are many areas of improvement that may be considered, particularly if
additional objective functions are defined. For example, an operator may not care only about the
number of unique detections, but potentially the frequency of detections or detections for underrep-
resented populations in existing catalogs or statistical models [64]. If this is the case, then clearly
the CONOPS defined here should be revisited.

VII. Parametric CubeSat Design

This section introduces the parameters involved in the design of an EOS for a CubeSat mission.
Each of these parameters are informed by the CONOPS and directly impact the performance of the
CubeSat mission. As described in §VI.H, this section constrains the optimization problem defined

in Problem 1 by defining the spacecraft parameters d;.

A. Telescope Scaling

SSA mission architectures dictate a need to detect as many objects as possible, detect the dimmest
objects possible, and obtain detections with as much accuracy as possible, providing criteria by
which the system’s optical sensor can be sized. While many parameters affect the performance
of an optical sensor, aperture diameter D, pixel size p, and focal length [ are the most dominant
parameters used to quantify the performance of a given optical system [61]. Integration time may
be used in conjunction with these optical parameters to determine the cadence of image acquisition
for the system to detect objects of a given magnitude. An analysis on these sizing parameters can
be used to narrow prospective optics choices, but is not considered an absolute means to obtain a
final system design.

By using the three parameters stated above, the IFOV for a given optical system can be defined,

where v refers to f-number, a commonly used parameter for describing optical systems.

v—1/D (45)

p
IFOV = 2arct — 46
arc an(QuD) (46)

IFOV can be described as the FOV for a single pixel. This parameter is important in determin-
ing the overall FOV for an optical sensor, as well as determining the accuracy of a system. The
following equation shows how to calculate the vertical and horizontal components of FOV, FOV,,

and FOV/, respectively, where n,, is the number of pixels in a given sensor in each direction.

FOV, = n,, ,IFOV (47)
FOV), = n,,JFOV (48)
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Optical systems with larger FOV's can view larger areas and thus are capable of detecting a larger
volume of objects, N¢, per frame; however, because a sensor with a larger IFOV is capturing
photons from a larger area, the precise location of any detected object is less accurately defined.
As a result, a tradeoff must be made between detection of more objects, which is achieved with
a higher FOV, and accuracy of detections, which is achieved with a lower IFOV, which in turn
affect all three of the design parameters, D, [, and p. The impact of this tradeoff can be mitigated
by choosing a sensor with a higher number of pixels, but consideration then needs to be given
to other aspects of the sensor design such as power draw, physical dimensions, and computational
requirements. Additionally, a higher FOV sensor is capable of detecting objects with higher relative
angular velocities [66].

To quantify the limiting magnitude, or dimmest signature observable by an optical system,
a metric for limiting magnitude needs to be defined. In the below equation, m,, is the limiting
magnitude.
SNR; aig[+/M2457i5V D (i pokg + Qi,p,dark)]%

o Taum Topt ("7 ) QE /P

The above equation, developed by Coder and Holzinger [61], incorporates a minimum de-

m, = —2.5log,, (49)

tectable signal to noise ratio (SNR), which is defined as the ratio of photons emitted by the target
object to the photons emitted by all other noise sources. m;; is the number of pixels occupied by
photons from RSO 7 as seen by EOS 14, 7;; is the apparent angular rate between the sensor motion
and the space object, ¢; e 18 background radiant intensity per pixel, g; pdark 1S dark current per
pixel, @ is the spectral excitement of a magnitude 0 object , 7, iS atmospheric transmittance,
Topt 18 Optical transmittance, and QE is the quantum efficiency of a given sensor. Again, a higher
limiting magnitude indicates that dimmer objects can be detected, so it is desirable to maximize
this value. In terms of design parameters, this implies a longer focal length /, and lower aperture

diameter, D.

B. Image Processing Scaling

Image processing can be divided into object detection and object tracking. Detection can be ac-
complished through use of blob-detection algorithms, of which many implementations are avail-
able through open source software packages® ‘.

Many algorithms exist for the purpose of tracking objects within a set of sequential images,
ranging from simple nearest-neighbor approaches to more computationally intensive multi-target
multiple hypothesis tracking (MHT) algorithms [67]. Such MHT codes tend to be exceptionally
robust, but because the number of possible object tracks grows exponentially, this can quickly

create an unwieldy problem for a CubeSat processor, making real-time implementation difficult.

“via www.opencv.org; accessed 6/1/2015
dvia www.v3ga.net/processing/BlobDetection; accessed 6/1/2015
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By paring down the number of possible track assignments to some k-best number of tracks, the
k-best MHT algorithm can reach speeds 100 times faster than traditional MHT, allowing k-best
MHT to become acceptable for real-time cubesat missions [68]. For analysis purposes, we state
that the processing speed of a k-best MHT algorithm is O(n°), where c is the number of images
between track pruning. In practice, c can be set to 2, meaning possible tracks are calculated for
all objects in two subsequent images, then pruned back to the k£ best tracks between images. This

allows order of magnitude analysis for run times and later image cadence.

C. Parametric Design for CubeSats

When choosing a CubeSat architecture for an SSA mission, preference is placed on a larger form
factor to accommodate larger optics. There is, however, a limit on the size of commercially avail-
able CubeSat structures. A 6U CubeSat structure is chosen in this analysis because it is one of the
largest CubeSat structures readily available off-the-shelf. Selection of a passive optical payload
system is broken into discussions of aperture diameter, sensor selection, focal length, and cadence

in order to discretize the design problem.

1. Aperture Diameter

Given a 6U CubeSat structural architecture, the two largest aperture diameter lenses allowed are
10cm (1U) on the smaller faces and 20cm (2U) on the largest faces as illustrated in Figure 13.
While both 1U and 2U diameter aperture options are physically possible on a 6U CubeSat, each

Figure 13. 1U and 2U aperture design options for a 6U CubeSat.

case involves additional constraints. Because lenses with 20cm diameters and multiple mirrors
are not available off-the-shelf, the focal length of a 2U diameter lens’s optical system could be at
maximum 10cm, requiring an f-number of less than 0.5. If such optical trains become available in
the future, the 2U diameter aperture case could be revisited as an attractive alternative, but is not
considered in this analysis. The 1U diameter aperture case allows a focal length of up to 30cm, or
an f-number of less than 3. Secondary mirrors are ruled out of the 1U case because with increasing
f-number, FOV decreases which results in fewer object detections. Because of the availability
of commercial-off-the-shelf (COTS) lens options which satisfy the 1U aperture requirement, this

paper focuses on the 1U case. A sample of COTS lens components that fit within the 1U diameter
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limit, outlined in Table 7, are examined to find a suitable component within the design space.

Tables 7 and 8 also include a summary of the values used for calculating the utopia points in
Figures 14 and 15, discussed in §VII.C.2.

Table 7. Sample COTS Lens components

Lens Focal length (mm) F-Number, v Aperture diameter, D (mm)
ThorLabs MVLS0HS ¢ 50 0.95 52.6
Kowa LM60JSSMA | 60 0.8 75.0
Lensagon CM5014GS ¢ 50 1.4 35.7
Edmund Optics " 75 1.8 41.7
Utopia point 300 3 100

Camera to lens connection mounts are standardized in industry, meaning that if a camera and
lens have differing mounts an adapter can be found to make the components compatible. For
this reason, lenses and cameras can be examined separately without paying special consideration
to the type of mount. Also, as seen in the table above, the Kowa LM60 lens has a significantly
larger maximum aperture diameter compared with the other sample lenses. While this provides an
advantage in the amount of light the lens can collect, a decision cannot be made until all possible
sensor and lens combinations are examined to determine the system’s IFOV, FOV, and limiting

magnitude.

2. Sensor Selection

Again, a sample of COTS components capable of working in a 1U constraint, not considering the

camera’s axial direction, are examined as seen in Table 8.

Table 8. Sample COTS sensor components

Sensor Pixel size (um) Resolution (n,; X n,,) Quantum Efficiency
Photonis Nocturn XL ' 9.7 1280 x 1024 0.60
Pointe Grey Flea3 GE-14S3M-C | 4.65 1384 x 1032 0.53
Toshiba IK-HR1H * 5 1920 x 1080 0.60
Gomspace NanoCam C1U'! 3.2 2048 x 1536 0.36
Utopia point 10 10000 x 10000 1.00

¢via www.thorlabs.com; accessed 6/1/2015

fyvia www.kowa.eu; accessed 6/1/2015

gvia www.lensation.de; accessed 6/1/2015

hyia www.edmundoptics.com; accessed 6/1/2015
ivia www.photonis.com; accessed 6/1/2015

ivia www.ptgrey.com; accessed 6/1/2015

kyia www.toshibacameras.com; accessed 6/1/2015
lvia gomspace.com; accessed 6/1/2015
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To evaluate the possible combinations of sensor and lens, limiting magnitude, IFOV, and FOV
are computed, utilizing the values shown in Table 9 along with values for each sensor and lens
shown in Tables 7 and 8, with results plotted in Figures 14 and 15. Here, E [1);;] is an average value
for all 7);; selected for the express purpose of evaluating the point design considered here. In the

results and simulation, §11I.A, this value is computed using the true observer and RSO locations.

Table 9. Payload evaluation parameters

Parameter Units Value
SNRyg — 4
m; pixels 1
E [1;;] rad/s 0.0056
Gp,bkg T)’lv/aS2 0.0364
Qp,dark e/pixel/s 0.5
D, photons/s/m* 5.6 x 10'°
Tatm - 1
Topt — 0.9
457 + ThorLabs MVL50HS
X Kowa LM60JS5MA
40 ® ® % Lensagon CM5014GS
+ Edmund Optics 76mm focal length
& 351 ® O Photonis Nocturn XL
k] O Pointe Grey Flea3
& 30t ¢ Toshiba IK-HR1H
8 ® Vv Gomspace NanoCam C1U
(7] . .
S 25 ¥ Utopia point
©
> 20} 2 &0
(@)
T =
15
v o
N4
10 v
%
5
14 15 16 17 18

Relative Limiting Magnitude

Figure 14. Relative limiting magnitude versus IFOV of all sample lens and sensor combinations. For each
point, interior marks describe lens options, and exterior marks describe sensor options.

In order to evaluate possible lens and sensor options, it is useful to define an optimum, or
utopia point for the system’s performance. For this system, it is not possible to maximize all design
goals due to conflicting optimum design goal parameters, so the following method was used to set
the utopia points. Utopia points are created by setting aperture diameter D to 10cm, Quantum
Efficiency to 1, sensor resolution to 10,000 by 10,000, pixel size p to 10um, and f-number v to
3, with all other evaluation parameters fixed as listed in Table 9. These values were calculated
by assuming the best case payload would maximize both aperture diameter and sensor size. To

that end, the maximum aperture diameter D for the 1U case fills the entire 10cm face. Focal
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Figure 15. Relative limiting magnitude versus FOV of all sample lens and sensor combinations. For each point,
interior marks describe lens options, and exterior marks describe sensor options.

length is also maximized to 300mm, the maximum along the 3U face of the CubeSt, and Quantum
Efficiency is maximized to 1. F-number falls out of the values assigned to aperture diameter D
and focal length [. The sensor is maximized to fill the 100mm x 100mm area, requiring a tradeoff
between pixel size p and sensor resolution n, 5 X n,,, as shown in Equation (50). Neither n,
nor p can be maximized because this results in either one large pixel which would render objects
indistinguishable, or infinite pixels which cannot be used for calculations. Therefore a point is
selected which is believed to be a reasonable midpoint between the two, giving n,, ;< n,, equal
to 10000 x 10000 and p equal to 10m, which results in the maximum sensor size of 100 x 100
mm.

Npp X P

Npy X P

= 100mm (50)

By examining the utopia points in Figures 14 and 15, it is apparent that IFOV and FOV require
conflicting parameter ideals for optical train performance. The optical system that lies closest to
both utopia points, the Kowa LM60JSSMA lens with the Photonis Nocturn XL, is selected for

further analysis. The specifications of this system are summarized in Table 10.

Table 10. Summary of Selected Payload parameters

Parameter Units  Value

Focal length [ mm 60.0
F-number v — 0.80
Aperture diameter D mm 75.0

Pixel size p pm 9.70

Sensor resolution (n, , X n,,) pixels 1280 x 1024
Quantum Efficiency — 0.60
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3. Focal length and Cadence

The cadence, ¢, may be defined as the sum of integration time, ¢;, image transfer time, t;, and
image processing time, ¢,. Two cases may be defined, however, where image processing time and

image integration time overlap, as seen in Equation (51).

tr +t, 1ty >t
to=4 o= (51)
ty 4ty ifty <t

Taking a constant integration time of 33 milliseconds, a base processing time of 0.0175 seconds
per object detected, nominal tracking of 300 objects per image, and a nominal object density of 5
objects per degree squared, it can be seen in Figure 3 that image cadence is dominated by image
processing speed. This base processing time per object detected is based on lab work done for
the RECONSO CubeSat at Georgia Tech using a BeagleBone processor. Processing times will
vary depending on the processor and algorithms selected for each mission. Object density per
square degree is estimated by summing the total number of objects in JSpOC’s SOC with the total
number of stars in the Hipparcos star catalog, and dividing by the total solid angles in degrees
squared of a sphere. While the Hipparcos star catalog contains entries down to magnitude 14, it is
not considered a complete record. An approximately 50 percent margin is therefor added to this
value to account for objects not listed in either catalog. In practice, a threshold can be placed for

the maximum number of stars to be tracked to decrease processing time further.

Cadence (seconds)
FOV (dearees?)

f-Number

Figure 16. Image cadence in seconds between images, and FOV with respect to f-number

To choose a cadence for a given mission design, a trade-off must be made between cadence
and FOV, or detectable objects. Further analysis may be performed to determine the maximum
acceptable time between images based on the relative velocities of RSOs to be tracked, such that
objects will remain in the FOV between subsequent frames, which will allow RSO trajectories to

be tracked. In summary, Figure 3 shows that there is a diminishing return in cadence for higher
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f-numbers as well as a sharp rise in the required time between images at lower f-numbers. Figure

3 also shows that FOV rises with lower f-numbers and decreases slowly with higher f-numbers.
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APPENDICIES:

A. Orbit Classification

Radius of Periapsis (km) Radius of Apoapsis (km) Inclination (°)

Low Earth Orbit (LEO) > R, < R + 2000 -
LEO: polar > R, < R, + 2000 75 <1< 120
Medium Earth Orbit (MEO) > R, < 32,000 -
Geosynchronous Earth Orbit (GEO) > 40,000 < 45,000 -
None of the Above (NOTA) - - -

B. Optimization Results

Planes Satellites Semimajor Axis (km) Inclination(°)

1 1 7603 57.6
1 1 7160 56.8
1 1 7124 57.1
1 1 7142 56.9
1 1 7144 56.4
1 1 7675 55.1
1 1 6995 54.4
1 1 7141 55.7
1 1 6997 57.7
1 1 6999 56.7
2 2 7393 54.7
2 2 7474 56.2
2 2 7348 54.9
1 2 7303 57.8
2 2 7250 53.9
2 2 7293 55.9
2 2 7281 54.0
2 2 7161 53.1
2 2 7294 55.4
2 2 7339 57.4
2 4 7066 54.2
2 4 7003 54.9
2 4 7291 57.8
1 4 7138 59.8
2 4 7136 54.7
2 4 7067 53.7
3 4 7004 40.0
2 4 7004 54.7
2 4 7047 54.8
2 4 7134 54.4
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Planes Satellites Semimajor Axis (km) Inclination(°)

2 6 7134 52.9
2 6 7128 53.0
2 6 7114 53.2
2 6 7001 51.7
2 6 7116 52.7
2 6 7132 53.9
2 6 7055 54.1
2 6 7134 53.6
2 6 7076 53.1
2 6 7331 52.5
2 8 7362 62.3
2 8 7338 61.4
2 8 7239 60.0
2 8 7307 68.7
2 8 7357 62.7
2 8 7262 61.0
2 8 7186 54.6
2 8 7197 52.5
2 8 7329 58.2
2 8 7316 68.6
6 12 6995 45.1
6 12 7375 41.7
2 12 73717 50.9
2 12 7440 49.5
5 12 7465 43.8
4 12 7357 30.0
4 12 7346 31.8
4 12 72717 333
4 12 7299 32.6
4 12 7317 324
3 18 7224 30.7
2 18 7335 35.9
6 18 7362 28.3
3 18 7236 28.4
3 18 7136 28.8
5 18 7264 28.0
6 18 7173 30.5
5 18 7215 29.6
5 18 7354 29.3
6 18 7303 31.3
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Planes Satellites Semimajor Axis (km) Inclination(°)

8 24 7258 28.6
3 24 7305 30.5
8 24 7445 28.7
3 24 7456 27.8
3 24 7268 28.4
8 24 7324 27.3
8 24 7345 28.7
3 24 7356 27.8
3 24 7368 28.4
8 24 7345 28.7
13 36 7453 27.8
9 36 7328 27.7
9 36 7312 28.5
8 36 7358 27.3
13 36 7319 27.5
13 36 7460 27.8
13 36 7361 27.3
6 36 7342 32.2
6 36 7542 33.2
13 36 7419 27.5
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