Coding Framework and Implementation for Resident Space
Object Observation

Georgia ﬁ Space Systems

Tech |/ Design Laboratory

~ School of Aerospace Engineering

AE8900 MS Special Problems Report
Space Systems Design Lab (SSDL)
Guggenheim School of Aerospace Engineering
Georgia Institute of Technology
Atlanta, GA

Author:
Nicole M. Tyman

Advisor:
Marcus J. Holzinger

May 1, 2015

Coding Framework and Implementation for Resonant
Space Object Observation

Nicole M. Tyman *
Georgia Institute of Technology, Atlanta, GA, 30332, US

The detection, classification, and tracking of Earth-orbiting space objects is of great
importance for the safety of orbiting spacecraft, motivating the improvement of the current
space situational awareness (SSA) model. A revolutionary concept for SSA introduced by
DARPA includes allowing independent observers to contribute observational data in order
to reduce cost and introduce more space object data for the SSN. With the installment
of a Raven-class telescope at the Georgia Institute of Technology, this report seeks to
provide a coding framework for observations that allows for relevent contributions to the
SSA concept. The information and coding architecture are illustrated, and the coding
performance is analyzed. Improvements to the current architecture are introduced as
future work.

I. Introduction

With more than 500,000 estimated space debris objects orbiting Earth, NORAD has cataloged roughly
40,000 space objects as of 2015. At relative velocities of 15 km/s, this debris can potentially collide with
Earth-orbiting spacecraft, including the ISS and thousands of commercial satellites, and create more debris
particulates in the process. The risks associated with these collisions include not only the loss of capital
investment but also the loss of human life. It is no question that the safety of current and future space
objects resides in the detection, classification, and tracking of the orbiting space debris so that the space
environment is adequately modeled.’

For decades, the Space Surveillance Network (SSN) has utilized a network of sensors scattered worldwide
in order to detect and catalog space objects. DARPA is currently seeking to revolutionize space situational
awareness concepts by leading away from a sensor-centric model to a more data-centric model, effectively
introducing more data sources and reducing cost in the process.? This concept seeks to modify the current
SSN architecture to a more distributed and coordinated architecture by introducing more data sources.
These data sources, whether it be backyard astronomers or research institutions, can potentially contribute
to the SSN if the observation capabilities are well-matched with requirements for space object observation.

The observatory at the Georgia Institute of Technology recently acquired a Raven-class telescope to aide
in the efforts of detection, classification, and tracking of space objects. Using commercial-off-the-shelf com-
ponents optimized for specific observation campaigns, the Raven-class telescope can meaningfully contribute
to this new SSA concept in a cost-effective build. This report seeks to describe a code implementation for the
observation of resonant space object using Python and will investigate the required information architecture,
python setup, code architecture, and coding performance. Future work on the code is also investigated to
further improve the architecture and include a discussion for potential instrumentation change.

II. Information Architecture

Figure 1 shows the information architecture for the main Python code, which is used for space object
observations. This figure shows the information flow from the user, weather station, computer system,
and instrumentation to the main Python executable code. The user defines the observation frequency and
duration as well as the save file location for the observation campaign, and the user is responsible for ensuring

*Graduate Researcher, Guggenheim School of Aerospace Engineering, 270 Ferst Drive, AIAA Non-Member

1 of 12

American Institute of Aeronautics and Astronautics

connectivity of the required instrumentation. The goal of the software is to collect measurements from each
instrument at the user-specified frequency and export the information as both XML and text files that may
later be stored in an information database.

The main Python code defined in this report will be converted to an executable file that will govern the
whole observation process. Though a graphical user interface (GUI), the user is able to select the observation
frequency and duration inputs, test the Internet connection, initiate the observation, and save the image
and sensor data. Once the observation is initiated, the executable will utilize event threading in order to
ensure synchronized measurements at the required frequency and duration. The executable will then store
instrumentation and weather station data as an XML and TXT files that may later be converted to a single
XML file with fields defined by the O2SDK XML standard for space object observations.

The XML file may then be uploaded to BaseX, which is an XML database module for Python. If a web
host allows for database access, users may access the XML file through secure authentication over the web.
Using this information architecture, a database of observations can be maintained and used for improvement
of the current space situational awareness model.

Seeing
Sensor

Brightness

GH3
Sensor Camera

User
Inputs
A A
Weather /
Station . Python Text Files BaseX

Executable

XML Files Database

Data

Computer
Clock Time

Figure 1. Code architecture for the main Python code. The user block signifies all that is available to or operable by
the user, and the function call flows are illustrated

III. Python Setup

Python packages are available online from various universities and independent software developers.
These packages have the benefit of offering optimized functions in terms of computation speed that potential
developers may use in their own coding algorithm. These packages allow users to spend less time overcoming
the learning curve associated with working in a new computing language and more time formulating and
developing a working code. Creating working code more efficiently with respect to time and computational
speed using these Python extensions and packages follows the cost-effective goal of the data-centric changes
to the space domain awareness model.

The following Python packages have offered substantial contribution to the project:

e BeautifulSoup

e ElementTree

wxpython

pyflycapture2

2 of 12

American Institute of Aeronautics and Astronautics

BeautifulSoup is Python library that is currently licensed under MIT. This package extracts and parses
data available from an HTML or XML document, and allows for the developer to parse efficiently through
the elements and its attributes. The project uses this package to extract the weather station information
by parsing through the station’s weather data attributes. The extracted fields can then be processed and
passed into an XML structure.

ElementTree is a package that allows the storage of hierarchical data structures using simplified functions
and is used to wrap the structured weather information into an XML format. While the structure of the file
is pre-defined based on the information headers, this package is used to easily create the file structure that
is later saved using the save2xml() function.

Wxpython is a Python-specific GUI toolkit that wraps a cross-platform GUI library written in C++.
This package introduces a graphical user interface to the main Python code, which allows input and event-
triggered control from the user. The package includes many basic GUI items, including radioboxes, buttons,
and text boxes, and allows for the developer to bind events and functions that seem intuitive to the user.

Pyflycapture2 is Python binding for the FlyCapture API used for Point Grey cameras. While the camera
can operate though Point Grey’s own software, this package allows for Python to access functions defined in
the FlyCapture SDK library documentation. This allows the developer to access various camera commands
and settings, including camera connection, image capture, and frame rate and image resolution settings.
This code is used to connect and access the camera when storing the image data.

All of the aforementioned packages are available for free use, and example code using some of the packages
has been supplied under the samples folder on GitHub. For this project, Python version 2.6 for Windows is
used to develop the code.

IV. Code Architecture

The code architecture for the project is shown in Figure 2. The user is able to define the measurement
variables, the save file directory, and url of the weather station into the GUI Panel of the code, while ensuring
that all of the required instrumentation is connected and operating. Through the graphical interface, the
user can select whether to ensure Internet connection, change the current file saving directory, or start the
measurements. Testing the Internet connection commands the code to test whether the user-supplied url is
reachable, which will then trigger a successful or erroneous dialog box. Changing the current file directory
opens a directory dialog, and the choice of a folder triggers the change of the save file location. When the user
selects "start,” the event triggers the initiation of three measurements. Threading is used to simultaneously
initiate three functions: weatherobs(), camobs(), and runtime().

The weatherobs() function is divided into two subfunctions: collect_weather() and save2xml(). The prior
subfunction connects to the weather station via the user-supplied url and extracts relevant data from the
HTML. A filename is then created based on the time of the measurement, and then save2xml() is executed.
This subfunction saves the data into an XML file into the specified directory using the aforementioned
filename. The files are then indented using the IndentPrintXml() function after the file is saved as an XML
file, which is purely done for the aesthetics of the XML file.

The camobs() function connects to the Point Grey camera, takes an image from the camera using the
default values for frame rate and image size, disconnects the camera, and saves the image array as a TEXT
file. The filename for the TEXT file is derived similarly as in the weatherobs() function, where the time of
the meaurement is included.

The runtime() function allows the threading execution to occur for the user-defined frequency. While
each of the threads initiate at the same time, each thread must wait until the other threads have executed
before stopping if the join() function is included. Even if the two measurement threads execute below the
user-defined frequency, this function allows for a new iteration of measurements to occur after the desired
time has elapsed for each measurement.

All save files currently are constructed by using the time of the measurement in the name of the file,
along with the notation of w for weather station data and c for image data. After an XML file and text
file are created from the observation campaign, the user can then upload the XML file into BaseX, which
is a Python database. If the web host allows pulls from databases, the XML files can then be pulled using
specific authentication, allowing information from the file to be made available upon inquiry.

3 of 12

American Institute of Aeronautics and Astronautics

[Measurement Variables:) GUI Panel
frequency, duration Jr
[Collect Weather \

Save file directory Start Measurements e _ Station Information
URL Change File Directory weatherobs()
Instrument Connection: [Test Internet ~ Collect Instrument
Point Grey Camera Connection * Network Measurements
Brightness Sensor \ / l l camabs()
Seeing Sensor .
L) Weather Station Create Save Files
save2xmi()
~ Web Host np txtsave()
k Thread Sleep

BaseX + \ /
[
XML Files

Text Files

Figure 2. Code architecture for the main code, showing the functional progression from user, system, url, and instru-
mentation data to the Python executable.

V. Coding Performance

The performance of the main code is investigated in terms of CPU time using the timeit() module
and the results are shown in Table 1. This test was performed on a Lenovo Yoga tablet PC with wireless

Internet connection for the test frequency of 25 Hz using a Point Grey Grasshopper 2 camera (model number
GRAS-14S3C-C).

Table 1. Run time of each function in the thread.

Function ‘ Run Time (s) ‘
weatherobs() 0.208
collect_weather() 0.198
save2xml() 0.005
camobs() 0.308
start_capture() 0.018
runtime() 0.040

Since the code is divided into three threads, each thread is examined for run times. The thread that
calls weatherobs() runs at nearly five times the required speed. The weatherobs() function is composed of
the collect_weather() function and the save2xml() function, and the bulk of the time is spent collecting the
weather information. The high run time which may be attributed to the limited Internet speed, and may
increase given a faster connection. The thread that calls camobs() runs into a similar problem, but the bulk
of the time is spent initiating the connection to the camera. Image capture itself only took 0.018 seconds,
which would match the required time for each observation. Overall, the code does show promise to execute
at the maximum frequency of the camera as long as a fast Internet connection is secured and the camera
connection and frame rate settings are initiated before the observation occurs.

4 of 12

American Institute of Aeronautics and Astronautics

39

VI. Conclusions and Future Work

By providing a coding framework and implementation for space object observations, the telescope at
Georgia Tech may contribute to the SSA concept and provide relevant data to the SSN. The code has
been attached in the Appendix, and the report outlines the information and coding architecture as well
as the Python setup and coding performance. The code allows for the measurements to be taken at the
desired frequency and observation duration. While the current camera code shows the required code to get
the camera operational, the code shows potential timing improvement through the initiation of the camera
before measurements, setting the required frame rate for image capture, and securing a fast and reliable
Internet connection.

The issue of improving the camera code is saved for future work as the camera options may not be
finalized. With the impending addition of a USB Point Grey camera, there have been concerns whether
there will be issues of compatibility. While Point Grey cameras do have Direct Show driver support, which
should allow compatibility with the software, drivers can be created using the X2 standard for SkyX to
ensure compatibility. If SkyX were to be used for camera and mount control, the Python code can then be
modified for SkyX interfacing and optimized in performance.

Another future work option includes setting up the Python database using BaseX. While it is possible for
BaseX to allow user-authenticated web access to the database, more investigation can be made into setting
up and testing this process. Overall, the future work aims to build up the current coding framework in order
for the telescope at Georgia Tech to be fully capable of providing a database solution to the SSA concept.

Appendix

—x— coding: utf—8 —x—

999 9

Created on Tue Mar 31 14:57:26 2015

Program starts when user has moved the mount and wants to initiate taking
pictures , program will save data and take information from computer

After process is finished , can have another program to process through and
create an xml file

FHFHF I

Purpose: Allow the user to start observations set at certain frequencies
All user—defined items must be defined in the class (TimerClass)

#* FFH

List of modules used/need to install:

5|# numpy, BeautifulSoup, ElementTree, wxpython, py2flycapture2

@author: Jitterbug (Nicole Tyman)
N NN

Import all modules

import os

import timeit

import sys

import time

;| import datetime

import threading
import numpy as np

from bs4 import BeautifulSoup
import urllib2

from xml.etree import ElementTree

from xml.etree.ElementTree import Element
from xml.etree.ElementTree import SubElement
from lxml import etree

global freq

7|# User input

url="http://www. weatherlink .com/user /gtmaui/index .php?view=summary&headers=1"
page=urllib2 .urlopen (url)
start_.date = datetime.datetime .now()

5 of 12

American Institute of Aeronautics and Astronautics

def collect_weather ():

43 page=urllib2 .urlopen(url)
soup = BeautifulSoup (page.read())
45 data=soup.findAll(’td’,{ class ’: ’summary_data’})

return (data)

Makes the xml file indented
19| def IndentPrintXml(fn):
assert fn is not None

51 parser = etree.XMLParser(resolve_entities=False, strip_cdata=False)
document = etree.parse(fn, parser)
53 document . write (fn, pretty_print=True, encoding="utf-8")

55| def save2xml(data, filename):
Create the xml file

57 # Create the root, WeatherData
The root, elements, etc. cannot include spaces
59 weatherdata = Element(’GTWeatherData’)

61 # Create a subelement: Temperature
tem = SubElement(weatherdata, ’OutsideTemp’)

List all the information extracted from the image
65 tempcurr = SubElement(tem, ’Current’)

tempcurr.text = data[l].string

temphigh = SubElement(tem, ’TodaysHigh’)
69 temphigh.text = data[2].string

71 temphightime = SubElement(tem, ’TodaysHighTime)
temphightime . text = data[3].string

templow = SubElement(tem, ’TodaysLow’)

75 templow . text = data[4].string
77 templowtime = SubElement(tem, ’TodaysLowTime’)
templowtime. text = data[5].string

Create the subelement: Outside humidity

81 oh = SubElement(weatherdata, ’'OutsideHumidity’)
ohcurr = SubElement(oh, ’'Current’)
83 ohcurr.text = data[7].string
ohhigh = SubElement(oh, ’'TodaysHigh’)
85 ohhigh.text = data[8].string
ohhightime = SubElement(oh, ’TodaysHighTime’)
87 ohhightime. text = data[9].string
ohlow = SubElement(oh, ’TodaysLow’)
89 ohlow.text = data[10].string

ohlowtime = SubElement(oh, ’'TodaysLowTime’)
91 ohlowtime.text = data[11].string

93 # Create the subelement: Inside Temp

it = SubElement(weatherdata, ’'InsideTemperature’)
95 itcurr = SubElement(it, ’Current’)

itcurr.text = data[13].string
97 ithigh = SubElement(it, ’TodaysHigh’)

ithigh.text = data[14].string
99 ithightime = SubElement(it, ’TodaysHighTime")

ithightime.text = data[15].string

101 itlow = SubElement(it , ’TodaysLow’)
itlow.text = data[l16].string

103 itlowtime = SubElement(it , ’'TodaysLowTime”)
itlowtime.text = data[17].string

Create the subelement: InsideHumidity

107 ih = SubElement(weatherdata, ’InsideHumidity’)
ihcurr = SubElement(ih, ’Current’)

109 ihcurr.text = data[19].string

ihhigh = SubElement(ih, ’TodaysHigh’)

6 of 12

American Institute of Aeronautics and Astronautics

119

139

149

159

161

163

165

167

169

ihhigh.text = data[20].string

ihhightime = SubElement(ih, ’TodaysHighTime)
ihhightime.text = data[21].string

ihlow = SubElement(ih, ’'TodaysLow’)
ihlow.text = data[22].string

ihlowtime = SubElement(ih, ’'TodaysLowTime’)
ihlowtime . text = data[23].string

Create the subelement: Heat Index

hi = SubElement(weatherdata, ’HeatIndex’)
hicurr = SubElement(hi, ’Current’)
hicurr.text = data[25].string

hihigh = SubElement(hi, ’TodaysHigh’)
hihigh.text = data[26].string

hihightime = SubElement(hi, ’TodaysHighTime)
hihightime.text = data[27].string

Create the subelement: Wind Chill

wc = SubElement(weatherdata, ’WindChill’)
wccurr = SubElement(wc, ’Current’)
wceurr . text = data[31].string

wclow = SubElement(wc, ’TodaysLow’)

wclow. text = data[34].string

wclowtime = SubElement(wc, ’'TodaysLowTime)
wclowtime . text = data[35].string

Create the subelement: Dew Point

dp = SubElement(weatherdata, ’DewPoint’)
dpcurr = SubElement(dp, ’Current’)
dpcurr.text = data[37].string

dphigh = SubElement(dp, ’'TodaysHigh’)
dphigh.text = data[38].string

dphightime = SubElement(dp, ’'TodaysHighTime’)
dphightime.text = data[39].string

dplow = SubElement(dp, ’TodaysLow’)
dplow.text = data[40].string

dplowtime = SubElement(dp, ’'TodaysLowTime’)
dplowtime.text = data[41].string

Create the subelement: Barometer

bm = SubElement(weatherdata, ’'Barometer’)
bmcurr = SubElement(bm, ’Current’)

bmcurr. text = data[43].string

bmhigh = SubElement(bm, ’'TodaysHigh’)
bmhigh. text = data[44].string

bmhightime = SubElement(bm, ’TodaysHighTime)
bmhightime. text = data[45].string

bmlow = SubElement(bm, ’TodaysLow’)

bmlow. text = data[46].string

bmlowtime = SubElement(bm, ’TodaysLowTime’)
bmlowtime. text = data[47].string

Create the subelement: Bar Trend

bt = SubElement(weatherdata, ’'BarTrend’)
btcurr = SubElement(bt, ’'Current’)
btcurr.text = data[49].string #55

Create the subelement: Wind Speed

ws = SubElement(weatherdata, 'WindSpeed’)
wscurr = SubElement(ws, ’Current’)
wscurr . text = data[55].string

wshigh = SubElement(ws, ’'TodaysHigh’)
wshigh.text = data[56].string

wshightime = SubElement(ws, ’TodaysHighTime’)
wshightime.text = data [57].string

Create the subelement: Wind Direction
wd = SubElement(weatherdata, *WindDirection)

wdcurr = SubElement(wd, ’Current’)
wdcurr. text = data[61].string

7 of 12

American Institute of Aeronautics and Astronautics

Create the subelement: 12 Hour Forecast
183 hrfc = SubElement(weatherdata, 'TwelveHrForecast’)
hrfc.text = data[66].string

Create the subelement: Average Wind Speed

187 aws = SubElement(weatherdata, *AvgWindSpeed’)
awstm = SubElement(aws, ’TwoMinute’)
189 awstm. text = data[67].string
awstenm = SubElement(aws, ’TenMinute’)
191 awstenm . text = data [68].string
193 # Create the subelement: Wind Gust Speed
wgs = SubElement(weatherdata, 'WindGustSpeed’)
195 wgstm = SubElement(wgs, ’'TwoMinute’)
wgstm . text = data[73].string
197 wgstenm = SubElement(wgs, ’'TenMinute’)

wgstenm . text = data[74].string
199
Create the subelement: Rain

201 rain = SubElement(weatherdata, ’Rain’)
rr = SubElement(rain, ’'Rate’)
203 rr.text = data[81].string
rd = SubElement(rain, ’Day’)
205 rd.text = data[82].string
rs = SubElement(rain, ’Storm’)
207 rs.text = data[83].string
rm = SubElement(rain, ’'Month’)
209 rm.text = data[84].string
ry = SubElement(rain, ’'Year’)
211 ry.text = data[85].string
213 # Create the subelement: Last Hour Rain
lhr = SubElement(weatherdata, ’'LastHourRain’)
215 lhrr = SubElement(lhr, ’'Rate’)

lhrr . text = data[87].string

Save the file

219 output_file = open(filename, ’'w’)
output_file.write(’<?xml version="1.0"7>")
221 output_file.write(ElementTree.tostring(weatherdata))

output_file.close ()

IndentPrintXml(filename)

225
def weatherobs():
227 #Check to see if each thread starts at same time
time = datetime.datetime .now()
220 | # print time
231 #t0 = time. clock ()
weatherdata = collect_weather ()
233 #t1 = time.clock ()
#print t1—t0
235
now = datetime.datetime .now ()
237 nowstr = str(now.year) + ’'_’ 4 str(now.month) + ’_’ + str(now.day) + ’_’ + \
str (now.hour) + '_’ + str(now.minute) + ’_’ 4+ str(now.second) + ’_’ 4+ \
239 str (now. microsecond)
Generate filename and save to file
241 filename = nowstr
filename += 'w’
243 #filename += str(time.time()).replace(’.7,7_")

filename 4= ’.xml’

save2xml (weatherdata, filename) #Puts data into xml

210| def camobs () :
#Check to see if each thread starts at same time

8 of 12

American Institute of Aeronautics and Astronautics

251 #time = datetime.datetime.now()
#print time

253 import flycapture2 as fc2
import numpy as np

¢ = fc2.Context ()

257 c.connect (*c.get_camera_from_index (0))
c.set_video_mode_and_frame_rate (fc2 . VIDEOMODE_1280x960Y 16,
259 fc2 .FRAMERATE_7.5)
c.start_capture ()
261 im = fc2.Image()
b = [np.array(c.retrieve_buffer (im)).sum() for i in range(80)]
263 a = np.array (im)
c.stop-capture ()
265 c.disconnect ()
267 now = datetime.datetime .now ()
nowstr = str(now.year) + ’'_’ 4 str(now.month) + ’_’ + str(now.day) + ’_’ + \
269 str (now.hour) + ’_’ + str(now.minute) + ’_’ + str(now.second) + -’ 4+ \
str (now. microsecond)
271 # Generate filename and save to file
filename = nowstr
273 filename += ’'c¢’
#filename += str(time.time()).replace(’.’,’7_.")
275 filename += ’.txt’
277 np.savetxt (filename, a, delimiter=",")

279 def runtime (freq):
#Since all threads need to start after 1/freq seconds, use the join function

281 # This way, the thread waits until this function is done, then allows for
the next thread to occur
283 #time .sleep (1.0/freq)

time.sleep (1.0/ freq)

287|# Measure time each code operates

#print min(timeit.Timer(weatherobs).repeat (3, 50))/50
280|#print min(timeit.Timer(collect_weather).repeat (3, 50))/50
#print min(timeit.Timer(runtime).repeat(3,50))/50

291
def is_number (x):

293 try:
float (x)

295 return True

except ValueError:

297 pass

299 try:
import unicodedata

301 unicodedata . numeric (x)
return True

303 except (TypeError, ValueError):
pass

305 return False

s07| class TimerClass(threading.Thread):
timearray = np.array ([])

309
def __init__(self, freq, obsdur):
311 self.freqinput = freq
self.obsdur = obsdur

313 threading . Thread. __init__(self)
self.event = threading.Event ()
315 self.count =1

self.isrunning = True

def run(self):

319

while self.count < self.freqinput and self.isrunning:

9 of 12

American Institute of Aeronautics and Astronautics

335

339

343

347

349

353

361

363

365

367

369

379

381

#print self.count, print_time (), time.clock (), 'Time: %f’ % time.time ()
self . timearray = np.r_[self.timearray, time.clock()]
self.weatherdata = collect_-weather ()

Generate filename and save to file

filename = ’'w’
filename += str(self.count)
#filename += str (time.time()).replace(’.’,’_")

> xml’

filename 4=
save2xml (self.weatherdata, filename) #Puts data into excelsheet
#self .event.wait (0.04)
self.count +=1
#time.sleep (0.04)
#print self.count

print self.timearray

def stop(self):
self.event.set ()

import wx

class ObsPanel (wx.Panel):
def __init__(self, parent):
wx.Panel. __init__(self , parent)
self .newpath = os.getcwd () ;

create some sizers

mainSizer = wx.BoxSizer (wx.VERTICAL)
grid = wx.GridBagSizer (hgap=5, vgap=5)
hSizer = wx.BoxSizer (wx.HORIZONTAL)

A multiline TextCtrl — This is here to show how the events work in this program,

don’t pay too much attention to it
#self . logger = wx. TextCtrl(self , size=(200,300), style=wx.TEMULTILINE | wx.
TE_READONLY)

Frequency input
self.freq = wx.StaticText(self, label="Frequency (Hz):”)

self.obsdur = wx.StaticText (self , label="Observation Duration (s):”, size= (180,—1))

self.freqgbox = wx.TextCtrl(self, size=(80,—1))
self .obsdurbox = wx.TextCtrl(self , size=(80,—1))
grid .Add(self.freq, pos=(1,0))

grid .Add(self.freqbox, pos=(1,1))

grid .Add(self.obsdur, pos=(2,0))

grid .Add(self.obsdurbox, pos=(2,1))

Save file input

Shows the current save file location and allows the user to change
the location

self . fltext = wx.StaticText (self, label="Save File Path:”)

grid .Add(self. fltext , pos=(3,0))

self. fl = wx.TextCtrl(self, value=str(self.newpath), size=(250,—1))
grid .Add(self.fl, pos=(4,0), span=(1,2))

Create a change save directory button

self .buttonsave = wx.Button(self, label="Change Directory”)
self.Bind (wx.EVI BUTTON, self.OnChangeDirClick, self.buttonsave)
grid .Add(self.buttonsave, pos=(5,0))

Test Connection button

self .button =wx.Button(self , label="Test Connection”)
self . Bind (wx.EVI.BUTTON, self.OnConClick, self.button)
Start button

self.button2 =wx.Button(self, label="Start”)
self . Bind (wx.EVIBUTTON, self.OnStartClick, self.button2)

10 of 12

American Institute of Aeronautics and Astronautics

389

391

393

395

397

399

401

403

405

407

409

411

413

419

423

429

431

433

439

441

447

449

#Spacer
grid .Add((—-1, 5), pos=(7,0))

hSizer .Add(grid, 0, wx.ALL, 1)

#hSizer .Add(self.logger)

mainSizer .Add(hSizer , 0, wx.ALL, 3)
mainSizer.Add(self.button, 0, wx.CENTER)
mainSizer .Add(self.button2, 0, wx.CENTER)
self . SetSizerAndFit (mainSizer)

def OnChangeDirClick(self , event):

dlg = wx.DirDialog(self, ”Choose a directory:”,
style=wx.DD_DEFAULT STYLE
#| wx.DD_DIR-MUST_EXIST
#| wx.DD_CHANGE_DIR

)
if dlg.ShowModal() = wx.ID_OK:
print "New Save File Path Location: %s” % dlg.GetPath()
self .newpath = dlg.GetPath()
self . fl.SetValue(dlg.GetPath())
#os.chdir (dlg.GetPath())
dlg . Destroy ()

def OnConClick (self ,event):
Test the connection. If fails, return dialog box
#self.logger.AppendText(” Click on object with Id %d\n” %event.Getld ())
try:
urllib2 .urlopen(http://www. google.com’);
dlg = wx.MessageDialog(self, ”Test Connection Successful”, ”Internet
Connectivity?”, wx.OK) #create a dialog (dlg) box to display the message, and ok button
dlg .ShowModal() #show the dialog box, modal means cannot do anything on the
program until clicks ok or cancel
dlg . Destroy () #destroy the dialog box when its not needed
except IOError:
dlg = wx.MessageDialog(self, ”Test Connection Unsuccessful”, "Internet
Connectivity?”, wx.OK) #create a dialog (dlg) box to display the message, and ok button
dlg .ShowModal() #show the dialog box, modal means cannot do anything on the
program until clicks ok or cancel
dlg.Destroy () #destroy the dialog box when its not needed
def OnStartClick (self ,event):
Check if inputs are correct
self . freqinput = float (self.freqbox.GetValue().strip())
self.obsdurinput = float (self.obsdurbox.GetValue().strip())

Start the observations
if is_number(self.freqinput) & is_.number(self.obsdurinput):
if self.freqinput > 25 or self.freqinput < O:
dlg = wx.MessageDialog(self, "Please provide a measurement frequency between
0 and 25.”, "Error”, wx.OK) #create a dialog (dlg) box to display the message, and ok
button
dlg . ShowModal ()
dlg . Destroy ()
elif self.obsdurinput <O0:
dlg = wx.MessageDialog(self , ”Please provide a positive observation duration
.7, 7Error”, wx.OK) #create a dialog (dlg) box to display the message, and ok button
dlg . ShowModal ()
dlg . Destroy ()

else:
#print datetime.datetime .now ()

for i in range(int(self.obsdurinputxself.freqinput)):
Append the threads
threadl= threading.Thread(target=weatherobs)
thread2 = threading.Thread(target=camobs)
thread3 = threading.Thread(target=runtime, args=(self.freqinput,))

threadl.start (
thread2.start (

~——

11 of 12

American Institute of Aeronautics and Astronautics

461

165

467

469

179

181

483

app

thread3.start ()

Wait until all threads are done
threadl. join ()
thread2.join ()
thread3. join ()

#print datetime.datetime .now ()

else:
dlg = wx.MessageDialog(self, ”"Please provide numerical inputs”, "Error”, wx.OK)
#create a dialog (dlg) box to display the message, and ok button
dlg . ShowModal ()
dlg . Destroy ()

def OnSave(self ,event):
self . logger.AppendText(” Click on object with Id %d\n” %event.Getld())
print self.newpath
def EvtText(self, event):
self . logger.AppendText(EvtText: %s\n’ % event.GetString())
def EvtChar(self, event):
self.logger.AppendText(’EvtChar: %d\n’ % event.GetKeyCode())
event . Skip ()
def EvtCheckBox(self , event):
self .logger . AppendText (' EvtCheckBox: %d\n’ % event.Checked())

= wx.App(False)

frame = wx.Frame(None)
panel = ObsPanel(frame)
frame. Fit ()

frame . Show ()

app

.MainLoop ()

Compiled.py

References

IKelso, T. S., Alfano, S. ”Satellite Orbital Conjunction Reports Assessing Threatening Encounters in Space (SOCRATES)”

SPIE, 2006.

2Blake, Travis, Sanchez, M., Krassner, Georgen M. J., and Sundbeck, S. ”Space Domain Awareness,” 2012.

12 of 12

American Institute of Aeronautics and Astronautics

