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i  mole fraction of species i 

j  mole fraction of species j 

  mass fraction of species i, 

Dij  diffusion coefficient for species i into species j 

D12  binary diffusion coefficient 

Mi  molecular weight of species i  

A  density of first resin component, kg/m
3
 

B  density of second resin component, kg/m
3
 

C  density of fiber reinforcement, kg/m
3
 

r  residual density, kg/m
3
   

  solid material density, instantaneous density, kg/m
3
 

o  initial density, kg/m
3


s  solid material density, kg/m
3 

e  boundary layer edge gas density, kg/m
3
 

v  density of pure virgin material, kg/m
3
 

c  density of pure char material, kg/m
3


resin  density of resin component, kg/m
3
 

fiber  density of fiber reinforcement, kg/m
3 

( )wu   total mass flux entering the boundary layer, kg/m
2
-s 

  Stephan-Boltzman constant, W/m
2
-K

4
 

i  density exponent factor eq. (2.7) , or species source term eq. (2.49) 

  transpiration correction factor 

  quantity defined to simplify species conservation equation 
  quantity defined to simplify species conservation equation
  quantity defined to simplify species conservation equation
″  denotes flux quantity, 1/m

2
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SUMMARY 

 

 

Heatshield design and analysis has traditionally been a decoupled process, the 

designer creates the geometry generally without knowledge about how the design 

variables affect the thermostructural response or how the system will perform under off 

nominal conditions.  Heatshield thermal and structural response analyses are generally 

performed as separate tasks where the analysts size their respective components and 

feedback their results to the designer who is left to interpret them.  The analysts are 

generally unable to provide guidance in terms of how the design variables can be 

modified to meet geometric constraints and not exceed the thermal or structural design 

specifications.  In general, the thermal response analysis of ablative thermal protection 

systems has traditionally been performed using a one-dimensional finite difference 

calculation.  The structural analyses are generally one, two, or three-dimensional finite 

element calculations.    

In this dissertation, the governing differential equations for ablative thermal response 

are solved in three-dimensions using the finite element method.  Darcy’ Law is used to 

model the flow of pyrolysis gas through the ablative material.  The three-dimensional 

governing differential equations for Darcy flow are solved using the finite element 

method as well.  Additionally, the equations for linear elasticity are solved by the finite 

element method for the thermal stress using temperatures directly from the thermal 

response calculations. 

This dissertation also links the analysis of thermal protection systems to their design.  

The link to design comes from understanding the variation in the thermostructural 

response over the range of the design variables.  Material property sensitivities are 

performed and an optimum design is determined based on a deterministic analysis 

minimizing the design specification of bondline temperature subject to appropriate 
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constraints.  A Monte Carlo simulation is performed on the optimum design to determine 

the probability of exceeding the design specifications.  The design methodology is 

demonstrated on the Orion Crew Exploration Vehicle’s compression pad design.     
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CHAPTER 1 

 

 INTRODUCTION 

1.1 Robust Heatshield Design 

The classical definition of a robust design is a design capable of performing its 

function without failure over a wide range of conditions.  In terms of a spacecraft’s 

heatshield, or, thermal protection system (TPS), a robust design is one which will survive 

entry even though the entry environment encountered during flight, and or its structural 

and thermal response to that environment, may be significantly different than that 

predicted in its design.  The need for a robust design, or design for uncertainty, stems 

from the fact that during the design process, analytic predictions of the entry heating, 

aerodynamics, and trajectory, have uncertainties associated with them.  There are also 

uncertainties in being able to accurately predict a TPS material’s thermal response to its 

environment.  Typically, thickness margin is added to a heatshield to account for the 

uncertainties in predicting its environment and material response.  Thickness margin is 

the flight heatshield thickness minus the minimum required heatshield thickness derived 

from calculation; in other words, it is extra thickness above and beyond what was 

calculated during the design process.    

TPS margin is usually calculated in one of two ways [1].  The first is a stacked worst 

case scenario, where all pertinent environment and material property variables are set to 

their worst case values and the heatshield is sized to the required bondline temperature 

limit.  The second is a lumped uncertainties root-sum-square (RSS) approach. For this 

method, the uncertainties in the environment are typically lumped together and a required 

thickness margin is computed assuming no uncertainty in the material response to that 

environment.  Lumping the environmental uncertainties means the trajectory dispersions, 

convective heat flux, and radiative heat flux uncertainties are combined as one factor 
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which gets applied to the input convective heat flux.  Next, the required thickness margin 

to cover uncertainty in the material’s properties to the nominal environment is computed.  

The RSS of these two independent margins is then defined as the required thickness 

margin. Additional margin due to uncertainties in surface recession, manufacturing 

tolerance and factor of safety may then also be added on top of that RSS value to define 

the final TPS thickness. 

Keeping the TPS mass a minimum is always a goal for entry vehicle design, since it 

essentially trades against payload mass.  Minimizing mass and arriving at a robust TPS 

design are often at odds.  One of the reasons for this is the classic approach for increasing 

system robustness that relies on increasing thickness margin to improve robustness.  

While this has proven a successful design philosophy in the past, the end result is a 

heavier heatshield that may be over designed.  Adding thickness without proper 

quantification gives no insight into the system reliability, and only mitigates a small 

portion of the possible failure modes.   

While conservative and proven successful in the past, this approach provides no 

quantification for the amount of margin applied and says nothing about the probability 

the system will fail, i.e. is the system robust.  Table 1 lists some recent Mars and Earth 

entry vehicle flight TPS thicknesses and the associated margin applied [2, 3, 4, 5, 41]. 

Table 1.1:  Past entry vehicle flight TPS thickness and margin 

Mission TPS system TPS thickness 

(cm) 

Margin (%) 

Stardust PICA 5.82 21
* 

Mars Exploration 

Rover 

SLA 1.57 41 

Mars Pathfinder SLA 1.91 87 

 

Currently, there is a research effort underway to statistically quantify the input 

uncertainties that go into the design and analysis of TPS and to perform a probabilistic 

                                                 
*
 Relatively low since the flight thickness calculation already included the uncertainties in the aerothermal 

environment  
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analysis to size the heatshield thickness and determine the appropriate margin. [1,6,7].  

For a blunt nose sphere cone entry vehicle, the simplest heatshield design would be one 

that was small, made of a monolithic material, and was attached to its parent spacecraft, 

or launch vehicle through its backshell.  This type of design is generally indicative of past 

planetary mission entry vehicles.  Figure 1.1 shows a schematic of a typical blunt nose 

entry vehicle. 

As our desire to land larger, more advanced payloads grows, so must the size and 

complexity of the entry vehicle.  As the size of the vehicle grows, having a monolithic 

TPS becomes less viable due to difficulties in manufacturing a single continuous piece of 

heatshield material.  This implies that an advanced TPS may be constructed from blocks 

of material and therefore will have seams and gaps.  Moreover, as the size of the vehicle 

grows, it becomes less efficient, from a structural and mass standpoint, to structurally 

attach the entry vehicle to the launch vehicle, or parent spacecraft, through the backshell.  

The forebody structure must be designed to carry loads associated with atmospheric entry 

and becomes a large fraction of the total vehicle mass for large aeroshells.  If the launch 

vehicle were attached to the aft of the entry vehicle, then the  

 

Figure 1.1:  Common components of a blunt nose entry vehicle 

Backshell TPS 

Forebody TPS 

Primary Structure 

Aft Structure 
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vehicle’s aft structure would need to be sized to accommodate the launch loads, thereby, 

increasing total mass.  In order to minimize the structural mass, the most efficient method 

of transferring the launch loads would be to penetrate the forebody TPS and attach the 

parent spacecraft or launch vehicle to the entry vehicle primary structure.  These 

penetrations are reinforced hard points on the forebody TPS usually consisting of a 

compression pad which is inserted into the acreage TPS and a tension tie rod that passes 

through the TPS or the compression pad and connects directly to the vehicle structure [8, 

9].  Figure 1.2 shows a generic, simplified concept for a forebody TPS penetration.  The 

compression pad, tension tie, and close out material make up the heatshield penetration 

sub-system.   

Current research efforts to develop a probabilistic design methodology for the thermal 

protection system do not address singularities in the heatshield such as gaps, seams, joints 

and penetrations.   A robust design philosophy must also be followed for these heatshield 

singularities in order to accurately quantify the required margin of the system as a whole. 

 

Figure 1.2:  Generic heatshield penetration concept 

In the case of the penetrations, the compression pad must be strong enough to carry 

the launch loads as well as survive reentry, which may also mean that it is constructed 

from a higher density material than the surrounding acreage TPS.  If both the acreage 

Acreage TPS 

Tension tie 

Compression pad 

Compression 

pad/acreage 

TPS interface 

Shear Groove 
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TPS and compression pads are ablative materials, the higher density material may be less 

susceptible to surface recession than the lower density material.  This could result in 

surface geometric discontinuities during flight.  In the region of the compression pad, 

there exists the potential for heating augmentation due to the disturbance in flow caused 

by the change in geometry.  Also, due to assembly requirements, the compression pad 

may be set within a cavity with respect to the acreage TPS.   Figure 1.3 shows the heating 

augmentation effect on a scale model of the Orion Crew Exploration Vehicle (CEV) 

which was tested in NASA Langley’s Mach 6 tunnel [10].  The portions on the surface of 

the model that are green represent regions where no augmentation to the heating is 

occurring.  The parts of the surface that are red and pink represent regions on the surface 

where heating augmentation is occurring.  It is clear that significant heating augmentation 

is possible due to the presence of the compression pads and tension ties.  This is a single     

 

Figure 1.3:  Wind tunnel heating augmentation data on the Crew Exploration Vehicle [10]  

example showing that the penetrations cannot be lumped in with the acreage TPS and 

need an independent assessment.   

Computational fluid dynamics (CFD) calculations have been performed on the CEV 

forebody heatshield with the detail of the heatshield compression pads added to the 

computational model.  Results for a specific compression pad cavity depth with respect to 
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the heatshield outer mold line (OML) are shown in Figure 1.4 [11].  The augmented 

heating on the back wall of the cavity and on the acreage TPS downstream of the 

compression pad is apparent from Figure 1.4.   

 

Figure 1.4:  CFD calculation for heating augmentation near a CEV compression pad [11] 

 Figure 1.5 shows a photo of the Genesis heatshield penetration before and after 

arc jet testing at 460 W/cm
2
.  Figure 1.5 shows an increased amount of recession 

immediately adjacent to and downstream of the cavity.  Also notice the color difference 

between the area downstream of the cavity and the area just below the cavity, indicating a 

difference in the heating levels in the two regions.  These Figures (1.3, 1.4, 1.5) confirm 

the existence of augmented heating in the region of a forebody heatshield penetration.  

 

Figure 1.5:  Genesis heatshield penetration pre and post arc jet testing [21] 
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In this dissertation, linking design uncertainty with analysis of the heatshield 

penetrations will be addressed; specifically, a design for uncertainty methodology will be 

developed. 

1.2 Past Heatshield Penetration Design Concepts 

To illustrate the complexity of the geometries and material combinations utilized in 

past forebody heatshield penetration designs, it is sensible to review the three successful 

past planetary entry vehicles which included them.  The vehicles that have used forebody 

penetrations are the Apollo command module, Genesis entry capsule, and the Viking 

Lander aeroshell.  These three vehicles utilized three different concepts for the design of 

their respective penetration subsystem.  The three main mission parameters that drive the 

design of the penetration subsystem are the structural load, the peak heat flux, and total 

heat load encountered during flight at the penetration location.  Generally speaking, these 

systems are typically designed using an uncoupled approach, where the thermal and 

structural sizing are performed independently.  After the thermal and structural designs 

have been matured, tests are performed to verify system performance.  For example, the 

arc jet test of the Genesis penetration with surrounding heatshield material shown in 

Figure 1.5, or the structural test of the Apollo compression pad with surrounding Avcoat 

heatshield material shown in Figure 1.6 were performed for system verification purposes 

[8].  In all three cases, the thermal design of the penetration system was performed using 

a one-dimensional analysis and or performed experimentally.  Although this design 

philosophy has proven successful in the past; no insight was gained in terms of the 

robustness of the penetration system.  Design and testing were performed under nominal 

or sometimes, worst case expected thermal and structural loads.  Referring back to the 

definition of a robust design, the question of how these designs would perform over a 

range of thermal and structural loading conditions was not determined so they were not 

designed for uncertainty.  
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Figure 1.6:  Apollo compression pad structural load test [8]  

1.2.1  Apollo Heatshield Penetration Design 

The Apollo heatshield design had six hard points where the command module 

attached to the service module.  These six attachment points made up the penetration 

subsystem for the Apollo heatshield.  As shown in Figure 1.7,  the penetration subsystem 

consisted of six high density fiberglass phenolic compression pads with stainless steel 

tension ties passing through three of the pads [9].  The three pads which included the 

tension ties included grooves in the compression pad face to carry the shear loading.  The 

service module had six metallic pads which served as the interface to the service module.  

The command module heatshield compression pads were inserted into the acreage 

heatshield material and bonded to the stainless steel carrier structure with RTV-560.  The 

compression pads that included the tension ties were tear drop shaped and the tension tie 

passed through the section of the tear drop which had the smaller diameter.  The tension 

tie was designed to pass through the high density ablative compression pad.  The 

fiberglass phenolic compression pad material had a much higher strength than the 
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surrounding primary TPS material, Avcoat 5026.  This was done to avoid placing high 

bearing loads on the primary ablator which could have caused damage to the acreage TPS 

and create gaps in the tension tie/ablator interface.   

 The three compression pads that only carried compressive loads were circular.  

Figure 1.7 shows a cross section of the Apollo compression pad with the tension tie.  The  

 

Figure 1.7:  Cross section of the Apollo heatshield penetration subsystem [9]  

first feature which can be seen is the groove cut into the face of the compression pad, this 

groove was the called the “shear groove” and was the primary means of transferring the 

shear load from the service module to the command module.  The second feature of the 

design is that a Marinite insulating sleeve was placed around the tension tie in order to 

insulate the stainless steel carrier structure from the high temperatures surrounding it.  

Another feature shown is a Marinite block, labeled as fiberglass in Figure 1.7, which was 

placed inside the carrier structure replacing the stainless steel honeycomb in that location.  

Marinite is a trade name for a type of fiberglass manufactured by BNZ Materials, Inc 
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[12].  The Marinite block was necessary since the honeycomb was incapable of carrying 

the shear loads placed on it by the compression pad.  Shear was transferred to the 

Marinite insert by way of a stainless steel ring which was embedded into the backside of 

the compression pad.   

 

 

Figure 1.8:  Cross section of the Apollo compression pad [13] 

One design feature not shown in Figure 1.7 is the manner in which the 

compression pad was constructed.  Figure 1.8 gives some insight into the compression 

pad construction [13].  The compression pad was made from several laminated fiberglass 

plates which were cut into the proper size and shape, then were pinned and bonded 

together with fiberglass rods.  The entire perimeter of this assembly was then wrapped 

with a single layer of the same fiberglass fabric and bonded to the pads exterior with 

RTV-560. 

   The last feature of the design visible in Figure 1.7 is the fact that the compression 

pad is initially recessed into the acreage TPS material.  Initially, the required thickness of 

the compression pads was determined to be more than that required for the acreage 
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AVOCAT 5026 in the same region [14].  The block I design, which was meant only to 

enter the Earth’s atmosphere from low Earth orbit, included compression pads that 

protruded above the outer mold line of acreage TPS.  The tension tie bolt also protruded 

above the acreage TPS, but was expected to melt flush with the acreage ablator soon after 

entry and not cause any problems.  During the block II lunar design period, the heating 

augmentation in the compression pad region as well as other protuberances were studied  

 

Figure 1.9: Apollo 4 command module recovery after entry from low Earth orbit [17] 

extensively [15,16,17,18].  Figure 1.9 shows the effects of heating augmentation in the 

regions near the heatshield singularities.  The vehicle shown in Figure 1.9 was recovered 

in 1966 and was one of the early Apollo flight test vehicles.  This vehicle was a block I 

design with protruding compression pads that entered the Earth’s atmosphere from low 

Earth orbit [17].  The effects of heating augmentation can clearly be seen near two of the 

compression pads. 

 The presence of heating augmentation causes difficulties when attempting to 

design both the acreage TPS and compression pads.  The difficulty is that predicting 

heating augmentation is complex and has much uncertainty associated with it.  Increased 

local heating can increase the bondline temperature or cause excessive recession in those 
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local areas.  Typically there are two ways to quantify the heating augmentation, through 

testing and through CFD.  In modern times, both of these methods are used.  In the days 

of Apollo, engineers had to rely solely on test data.  For Apollo, tests were performed 

either in high speed wind tunnels or in flight.  In both cases the heating augmentation was 

assessed relative to the baseline.  Conclusions were then made about the level of 

augmentation present and the relationship to the flight environment.  Based on these 

results, heating augmentation “bump” factors were applied to the baseline heating. 

 There is uncertainty in the test measurement itself, but this is usually included in 

the estimate of the heating bump factors.  However, the test data is generally not at flight 

conditions since there are no ground facilities available that can duplicate the combined 

heat rate, pressure, shear, and enthalpy environment of an 11 km/s entry.  As mentioned 

above, the data must be extrapolated to the flight conditions, and thus another source of 

uncertainty is introduced.   

 As a result of the Apollo ground test and flight tests [15, 16, 17, 18], the design 

approach for the block II Apollo heatshield was changed to disallow any protruding 

singularities.  In the final block II Apollo heatshield design, all special elements of the 

heatshield, like the compression pads were designed as either slightly recessed, or flush 

with the surrounding TPS.  The compression pads were thus slightly recessed as shown in 

Figure 1.7.         

 All of these design features were intended to prevent a heatshield failure near the 

penetration region.  The question of how these design features contributed to the 

robustness of the design and how well it could accommodate the uncertainties were not 

directly addressed.  These questions were left unanswered in the Apollo program. 

1.2.2  Viking Heatshield Penetration Design 

The design of the Viking heatshield penetration subsystem was significantly different 

than that of Apollo.  The penetration subsystem on Viking was not its own unique entity, 
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it was included as part of two different subsystems.  The penetrations were actually 

pyrotechnically initiated separation nuts and were part of the pyrotechnic devices and 

mechanical devices subsystems. 

Detailed information on the Viking penetration design is scarce and it has been stated 

by several of the former Viking engineers and program mangers that it was the least 

documented part of the design [19].  Be that as it may, Figure 1.10 shows the pyrotechnic 

separation nuts that were used in several locations on the Viking spacecraft, including the 

three aeroshell penetrations [20].  As described in [20], the separation nut had a threaded 

steel collet on the inside, slit nearly through, lengthwise, in four places.  The nut was 

powered by two gas generation cartridges called Viking standard initiators, or VSI’s.  

The closed end of the nut body was equipped with two ports by which the VSI’s 

connected.  Between the end of the collet and the blank end of the body was a piston, 

sealed against the body by sealing rings.  Surrounding the entire assembly was a base by   

 

Figure 1.10:  Viking aeroshell separation nut 

which the separation unit could be secured to the structure of the vehicle.  When the load 

bearing bolt was installed in the nut, the bolt engaged the internal threads in the collet.  
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When the power cartridges were fired, the resulting gas pressurized the space between the 

closed end of the body and the piston.  Since the piston could not move, the body moved 

and disengaged the ring from the collet.  At the end of the body stroke, the threaded 

portions of the segments pedaled outward and disengaged the bolts.  The bolt size for the 

aeroshell separation nut was 5/16”.  Not shown in the figure is a push off spring used to 

impart a separation velocity between the lander capsule and orbiter.  In the Viking 

literature surveyed, no mention of the impact to the forebody heating due to the presence 

of the penetrations could be found as well as the impact on the overall heatshield 

performance.  Moreover, as in Apollo, the questions of uncertainty and robustness were 

not directly addressed.   

1.2.3  Genesis Heatshield Penetration Design 

The Genesis design for the compression pad, which Lockheed Martin called the 

sample return capsule (SRC) retention and release (R&R) mechanism, is a more complex 

system than both Apollo and the Viking designs. This design has both advantages and 

disadvantages.  Genesis had three fittings equally spaced around the forebody of the 

sample return capsule as shown in Figure 1.11, where the third fitting is hidden behind 

the capsule.  

 

Figure 1.11:  Genesis sample return capsule [21] 
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The most significant difference is the addition of a retracting separation bolt and its 

associated hardware.  Figure 1.12 shows a cross section of the Genesis SRC R&R 

mechanism [21].  The Genesis system consists of five main components, a thick Carbon  

Carbon facesheet, a Molybdenum fitting, a separation bolt, a Titanium filler block, and a 

bolt catcher.  The compression pad is preloaded to 8,500 lbs to prevent the sample return 

capsule from separating from the spacecraft during launch.  The Molybdenum fitting 

carries the compressive preload, the shear and additional compression load developed 

during launch.  The shear load is transferred from the Molybdenum shear fitting to the 

reinforced thickened carbon-carbon.  The Genesis heatshield was constructed from a thin 

layer of carbon-carbon on top of a carbon based insulation called Fiberform.  The major 

advantage of the Genesis compression pad is that the thickened carbon-carbon is made of 

the same material as the main heatshield.  As such, the compression pad and heatshield 

will generally recede at the same rate during entry, reducing the likelihood of a 

discontinuity and potential heating augmentation failure mode.   The major disadvantage    

 
Figure 1.12:  Genesis compression pad design [21] 
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of this approach is the metallic Molybdenum fitting which passes through the entire 

mechanism and provides a direct thermal path through the heatshield.  Fortunately, the 

heat pulse for the Genesis trajectory was of short duration with a relatively low total heat 

load, so this design did not experience any thermal soak issues during entry.  Although 

the Genesis design performed as intended, the robustness of the design, in particular the 

un-insulated Molybdenum fitting, had it encountered any significant off nominal 

conditions, comes into question.   

As shown in Figure 1.5, the Genesis project tested the combined design of the 

penetration and surrounding TPS to verify the performance of this system.  CFD was also 

performed to determine the aerodynamic heating on the capsule and the increased heating 

near the penetrations [22].   The arc jet test was run under controlled conditions with 

regard to the environmental test parameters in the NASA Ames Interactive Heating 

Facility using a wedge model at a heat flux of 460 W/cm
2
.  Even though the arc jet test 

was a success and the CFD proved to be helpful, the project did not directly address the 

question as to how the system would perform under the range of potential environmental 

conditions.   

Arc jet testing alone cannot demonstrate a design is robust unless multiple tests are 

run under varying conditions.  Arc jet testing models of this type becomes cost 

prohibitive from a model construction standpoint.   In addition, because of the complexity 

of the penetration geometry, a typical arc jet “iso-Q” coupon will not suffice. The 

environmental conditions which can be simulated in the facility are also limited.  Clearly 

some analytical means, in addition to testing, is necessary to assess robustness of a 

penetration system.               

1.3 Thermal Protection System Design and Analysis 

There are two types of thermal protection systems in use today, reusable and ablative.  

Use of reusable TPS, like the space shuttle tiles or a metallic heat sink, is generally 
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limited to low heat flux entry trajectories [23, 24].  Ablative TPS on the other hand can 

withstand large heat fluxes and heat loads and are generally used for vehicles which have 

a high entry velocity.  In addition to high entry velocity, ablative TPS are also well suited 

where the target planet has a high atmospheric density such as Jupiter [25] since the heat 

rate is proportional to the density.   

Ablative materials have been in use since the 1950’s where they were primarily 

applied to the design and construction of ballistic missile nose cones.  The success 

ablators demonstrated in re-entry applications made them attractive for use in rocket 

nozzle applications [26].  In general, the analysis of an ablative material’s thermal 

response requires the solution of a differential energy transport equation [27].  In one 

dimension, and neglecting pyrolysis gas flow, the form of this differential equation is 

given by (1.1) along with an associated decomposition or charring relation given by (1.2). 
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The terms of equation (1.1) have a direct physical interpretation.  From left to right, 

the first term of (1.1) represents the energy which is conducted into the solid, the second 

is the amount of energy stored within the solid, and the third is the heat absorbed by the 

decomposition of the solid.  This coupled pair of differential equations in general defies 

analytic solution and requires an approximate numerical solution.  Koo, at el., [28] 

conducted a review of numerical techniques which endeavor to solve (1.1) and (1.2) for 

rocket nozzle and entry vehicle applications using ablative materials.  The majority of 

work listed in ref. [28] focuses on rocket nozzle applications and their specific issues.   

References [26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 84, 88, 89, 90, 91, 92, 93, 94, 

95, 96] represent some of the approaches taken during the 1950’s and 1960’s to solve the 
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ablation problem for reentry heatshield and rocket nozzle applications, where reference 

[84] provides an extensive bibliography.   

The early analysis attempts of the 1950’s and early 60’s at solving the 

thermochemical ablation problem presented in general by 1.1 and 1.2 involved coupling a 

simple one-dimensional heat conduction calculation with no decomposition or pyrolysis 

gas flow with the heat of ablation to predict surface recession [26, 34, 87, 91].  The heat 

of ablation, or Q
*
, as it is denoted in the literature, is often incorrectly used as a material 

property, when in fact it is a data correlation parameter valid only during steady state 

ablation.  For these early formulations, the 1-D heat equation for the in-depth 

temperatures was given by,        
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Along with (1.3), researchers developed boundary conditions at the surface by forming an 

energy balance equation which described phenomenon that they knew about.  The surface 

energy balance they developed was based on the ablation performance and the 

observations made during arc jet tests of Teflon and are given as, 
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 (1.4) 

The left hand side of (1.4) is the net conductive heat flux from the surface and provides 

the link to the in-depth energy equation (1.1).  The first term on the right hand side of 

(1.4) represents the net convective heat flux into the surface in the absence of ablation, 

the second term is the net radiative heat flux away from the surface, the third represents 

the energy absorbed by material vaporization at the surface, and the last term represents 

the energy flux absorbed due to transpiration of the ablation products into the boundary 

layer.  By making the approximation that the ablation is a steady state process it can be 

shown that the heat flux conducted into the material can be represented by, 
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Substituting (1.5) into (1.4), rearranging and grouping similar terms the surface energy 

equation for steady state ablation is obtained, 
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 (1.6) 

If (1.6) is divided by the density and recession rate, all of the parameters on the right 

hand side are either known or can be measured in an arc jet test.  The resulting equation 

defines the thermochemical heat of ablation, 
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Examination of (1.7) shows that Q* is linear in H; consequently, it was correlated to arc 

jet data and tabulated as a function of H.  Plotting the data, the slope of the resulting line 

was taken as  and the y-intercept was taken as cpT+Hv.  Since the specific heat and 

temperature are known or could be determined from a test, Hv could also be derived 

from arc jet test data.  Equation (1.4) could then be used as the surface energy balance 

coupled to a transient conduction solution with the additional constraint that the recession 

rate was equal to zero until a specified ablation temperature was reached.  This 

formulation is approximate and not considered by modern standards to be high fidelity.  

In 1961, Munson and Spindler [92] introduced in-depth thermal response modeling 

for organic resin composite materials which would decompose in-depth.  Building on 

(1.3) and (1.6), their formulation for the in-depth conduction and their surface energy 

balance are given by, 
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Where the pyrolysis gas mass flux, decomposition rate and the transpiration correction, 

, ,tm and 
 , respectively were given by, 
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 (1.9) 

A more rigorous approach introduced by Kratsch, Hearne, and McChesney [89] in 

1963, modeled the decomposition as a mixture of organic resin and fiber reinforcement 

given as, 

 (1 )s resin fiber       (1.10) 

The in-depth equation Kratsch, et. al. used was similar to that used by Munson and 

Spindler, but they recognized that some parameters involved complex chemical processes 

and should be expressed in terms of the enthalpy given by, 
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 (1.11) 

Kratsch et. al. also adopted the transfer coefficient approach developed by Lees [85, 102] 

to approximate the heat transfer to the ablating surface from the chemically reacting 

boundary layer.  Lees showed that the surface energy balance for an ablating material in a 

chemically reacting boundary layer could be written as, 
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Assuming that the heat and mass transfer coefficients are equal and the Lewis and Prandtl 

numbers are unity, and defining non-dimensional ablation rates, the surface energy 

balance can be written as, 
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In the mid to late 60’s, Kendall, Rindal, and Bartlett [88], and Moyer and Rindal [27] 

extended the work by Kratsch et. al. to include unequal heat and mass transfer 

coefficients and non-unity Lewis and Prandtl numbers.  They also included the work of 

Goldstein [98, 99] which characterized the decomposition of organic resin composites 

using a three reaction Arrhenius equation model.  They also corrected the in-depth energy 

equation to account for the energy of the pyrolysis gas convection and generation within 

the solid and also corrected it to account for grid motion due to a coordinate system that 

is attached to the receding surface.  Their form of the in-depth energy equation is, 
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Kendall, Rindal, Moyer, and Bartlett were the primary authors of the Charring Material 

Thermal Response and Ablation Program (CMA) [56].  CMA has stood the test of time 

and is still widely used in industry, academia, and government.  It is this form of the in-

depth energy equation that will be derived in Chapter 2, in addition to the derivation of 

the surface boundary conditions.  The Fully Implicit Ablation and Thermal Analysis 

Program, FIAT is also widely utilized throughout industry.  FIAT is a finite difference 

procedure based on CMA where the primary difference is FIAT calculates the 

decomposition of the material implicitly, thereby making the solution fully implicit.  The 

primary advantage is that the solution becomes insensitive to the time step   

1.3.1  Design and Analysis Philosophy 

Ablative materials returned to the forefront of heatshield development in the mid 

1990’s when planetary entry missions were designed with high entry velocity.  Stardust, 

Genesis, Huygens, and the delayed Mars Sample Return missions, [40, 41, 42, 43, 44, 45, 

46] are examples of vehicles with high entry velocity requiring ablative TPS.  These high 
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entry velocities translate into heat rates that are about 2 orders of magnitude higher than 

what current reusable materials can withstand.    

Throughout the classic literature, the most widely used technique in the solution of 

1.1 and 1.2 is the finite difference technique.  A few attempts were made in the early 

1980’s to solve 1.1 and 1.2 using the finite element technique [47, 48, 49].  However, in 

this time, the push for reusable TPS materials all but halted the development of new 

ablative materials as well as the analysis techniques specific to their use as entry 

heatshields.  Moreover, all attempts in employing the finite element technique were 

related to rocket nozzle applications, their specific assumptions and challenges, and were 

limited to either one or two dimensional solutions.  One of the main goals of the 

previously developed analysis techniques was to enable engineers to understand the 

behavior of ablative materials in the environment in which they are used.  Moreover, they 

strove to provide engineers with the means to design a vehicle’s TPS.  However, the 

actual design and analysis remained detached.      

In today’s design environment where mission managers are seeking to increase the 

payload fraction, minimizing thermal protection system mass is crucial.  However, 

sacrificing TPS robustness in order to achieve a minimum mass is unacceptable.  This 

work focuses on linking the design to the analysis by developing a design for uncertainty 

framework.  Within this framework, the robustness of an ablative penetration system is 

evaluated by determining the probability a design with fixed design variables exceeds its 

design criteria.  This framework also links the analysis to design by creating design 

variable contour maps which satisfy each design criteria to within 99%.  These maps 

provide the necessary link between the analysis and the designer and, or mission 

manager.   

This framework makes use of a three-dimensional finite element analysis tool for 

entry vehicle heatshield and heatshield singularity design.  Therefore, a more detailed 
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description of the current numerical analysis techniques and differences between the two 

most common techniques employed in solving 1.1 and 1.2 is warranted. 

1.3.2  Finite Difference Techniques 

Most of the analysis codes mentioned previously (e.g., CMA, FIAT) solved their 

respective sets of differential equations using the finite difference method.  Finite 

difference techniques employ a point-wise approximation of the governing differential 

equations [50].  The finite difference model is formed by writing difference equations 

across an array of grid points.  As the number of grid points is increased, the 

approximation of the original equation improves.  There are a large number of 

engineering analysis tools that utilize the finite difference technique, since writing the 

difference equations to represent the governing equations of the problem is fairly straight 

forward.  The finite difference technique is very well suited to one-dimensional problems 

and can be used in two-dimensional problems which have simple geometries, however, 

the technique loses its numerical simplicity when the problem is three-dimensional, 

involves complex geometry, has unusual boundary conditions, or has multiple materials 

in the cross sectional plane.   

For a structured finite difference grid, the connections between nodes are restricted to 

being orthogonal with respect to one another.  Two examples of a two-dimensional finite 

difference discretization are shown in Figure 1.13.  If the solution region is the interior of 

the solid, restricting where the nodes can be placed within that solid introduces 

approximations near the boundaries as seen in Figure 1.13 (a), where a node has been 

placed outside the geometric boundary in order to capture more of the solution region.  

The other option available is to remove that node and leave a portion of the solid out of 

the solution region, shown in Figure 1.13 (b).  This “stair stepping”, as it is commonly 

called, in addition to not exactly representing the geometry, makes it difficult to apply an 

accurate boundary condition to the curved boundary of the solid.  In order to minimize 
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the approximations on the boundaries, a structured finite difference mesh would need to 

have an increased number of nodes in those areas.  Increasing the number of nodes 

increases the computational time necessary to obtain a solution.  With a structured grid, 

irregular boundaries can also be better approximated by using weighting parameters on 

the distance between adjacent nodes.  For nodes on the curved boundary, the weighting 

parameters would be less than 1.0, for uniform grid point spacing the parameter would 

equal 1.0.    

 

Figure 1.13:  Example finite difference discretization 

Another solution is to use an unstructured Cartesian finite difference grid where the 

nodes do not have to maintain connectivity with one another, but still must be orthogonal 

with adjacent nodes [51].  Figure 1.14 shows an example of an unstructured Cartesian 

finite difference grid.  Here the curved boundary can be better approximated, but there is 

a disadvantage in having to define the nodal connectivity where there are cells where the 

nodes do not line up. 
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Figure 1.14:  Unstructured Cartesian finite difference grid [51] 

A large amount of research has been performed by the CFD community into body-

fitted curvilinear coordinate grids which has alleviated most of the issues associated with 

structured and unstructured Cartesian grid finite difference solution schemes [50, 52, 53, 

54, 55].  Casting the differential equations using generalized coordinates can be 

accomplished using either the finite difference or finite volume techniques.  An example 

of an airfoil meshed with a non-orthogonal gird is shown in Figure 1.15.  The non-

orthogonal grid in the physical domain is transformed to an orthogonal grid in the 

computational domain using a generalized transformation of the form shown in (1.15). 
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Figure 1.15:  Airfoil meshed with non-orthogonal body-fitted grid [52] 

 

There have been numerous numerical procedures developed to model the thermal 

response of ablative materials [27, 56, 57, 94].  Most of these codes are one-dimensional 

finite difference schemes; others seek semi-analytic approximate solutions to the 

governing differential equations.  In particular the codes developed in references [27 and 

57] have been very successful in predicting the one-dimensional thermal response of 

ablative materials under both arc jet and flight conditions.  However, their success is 

restricted to problems in which a one-dimensional approximation is valid; for example, at 

the stagnation point where the geometry is planar and where the in-plane thermal 

conductivity does not affect the in-depth conduction.    

1.3.3  Finite Element Techniques 

Unlike the finite difference method which seeks to approximate the governing 

equations, the finite element method seeks to obtain approximate solutions to the 

governing differential equations [58, 59, 60, 61].  Instead of using an array of points like 

finite difference methods, a finite element model is built up from several small 

interconnected sub-regions, or elements.  These elements, when assembled, form a 
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piecewise approximation to the governing equations; the basic premise being that the 

global solution can be approximated by replacing it with an assemblage of discrete 

elements.  Since these elements can be put together in a variety of ways, they can be used 

to represent highly complex shapes [58].  Discretization of the solution domain can be 

performed with either a structured, or an unstructured grid.  However, one of the main 

advantages is the ability to utilize an unstructured grid. 

Figure 1.2, Figure 1.7, Figure 1.8, and Figure 1.12, point out that a heatshield 

penetration design has an inherently complex geometry.  Also, due to the presence of a 

singularity in the heatshield, the heating boundary conditions near the penetration system 

are complex (as shown in Figure 1.3).  These are two of the reasons that a finite element 

solution of the governing differential equations is sought for the thermal response of the 

penetration subsystem. 

Another advantage of the finite element method is that it allows the use of higher 

order elements.  Higher order elements are elements which have an increased number of 

nodes, and as a result have more degrees of freedom per element.  For example, a 

standard linear quadrilateral has four nodes; a higher order quadratic quadrilateral has 

eight nodes where the extra four nodes are placed between the corner nodes as shown in 

Figure 1.16.  The terms linear and quadratic refer   

 

Figure 1.16:  Linear and quadratic quadrilateral elements 



 28 

 

 

to the order of the interpolation functions used to represent the unknown field variable 

between adjacent nodes.  Interpolation functions will be discussed in greater detail in 

Chapter 3.  Higher order elements have two main benefits.  The first is that they add more 

computational degrees of freedom per element which could result in a reduction in the 

total number of elements required to solve a particular problem as well as increasing the 

accuracy of the solution.  The second benefit is that it allows the element to have curved 

sides.  Using curved sided elements allows for a more precise discretization of the 

geometry without having to increase the number of elements.   

Most finite element computer codes have data structures that store data on an element 

basis, hence reducing the number of elements saves computer memory.  The increased 

number of nodes does increase the computational time; however, the benefits mentioned 

above generally outweigh this disadvantage.   

A cross section of the Orion CEV heatshield compression pad is shown in Figure 

1.17.  The finite element discretization using eight node linear hexahedral elements and 

higher order twenty node quadratic hexahedral elements of the compression pad are 

shown in Figure 1.18.  Both discretizations shown in Figure 1.18 have the same number   

 

Figure 1.17:  Cross section of the Orion CEV heatshield compression pad 
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Figure 1.18:  (a) Linear 8 node hexahedral mesh (b) Quadratic 20 node hexahedral mesh  

of elements, but notice how the twenty node quadratic hexahedral elements more closely 

approximate the circular boundaries on the compression pad and the linear eight node 

elements with the straight sides don’t quite represent the circular shape.  More elements 

would be required for the eight node linear hexahedral mesh to represent the boundary 

with the same error as the quadratic element. 

The main reason for seeking a finite element solution is compatibility with modern 

design and analysis tools.  Modern design tools like ProEngineer [62] allow engineers to 

model complex geometries and analysis tools such as MSC Software’s NASTRAN, and 

PATRAN Thermal [63, 64] make it practical to perform general structural and thermal 

analysis of these complex geometries.  These design and analysis tools have become 

widely accepted throughout the entry vehicle design community, so compatibility with 

these tools would promote a multidisciplinary design process and increase the efficiency 

of the design process.  This compatibility is the first step in linking heatshield design and 

analysis.  It is of interest to note that while MSC Software’s PATRAN Thermal is a 

complex piece of software with many features and capabilities in performing thermal 

analysis, it does not have the capability to analyze ablative heatshields.  In fact, no 

commercially available thermal analysis software packages have the capability to 

perform high fidelity ablation and thermal response analysis.  Cullimore and Ring’s 

Thermal Desktop [65] software has recently implemented a heat of ablation analysis 
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capability; however, as mentioned in section 1.3, this is not considered a high fidelity 

method.  There are some research codes available, (e.g. CMA, FIAT, TITIAN), but as 

mentioned previously, all of them are finite difference based and incompatible with 

modern design tools.   

1.4 The Need for a Three-Dimensional Finite Element Thermal Analysis Capability 

For some types of problems a one-dimensional solution may not capture all of the 

details necessary to fully describe the thermal response of a particular geometry or 

material.   Regions where the geometry is highly curved, high temperature gradients exist 

and the in-plane thermal conductivity is significant, or pyrolysis gas flow is not normal to 

the heated surface, are examples where a one-dimensional solution is inadequate.   

Researchers in the 1960’s recognized the importance of multi-dimensional effects in 

rocket nozzles where the geometry is highly curved, multiple materials exist in the cross 

sectional plane, and high temperature gradients with significant in-plane conduction are 

observed [66, 67].  Although these two references were advanced from the stand point of 

being multi-dimensional, they lacked a general treatment of the surface energy balance.  

Both use heat of ablation correlation data in the form of a transpiration coefficient and a 

heat of vaporization term to represent the energy absorbed due to ablation.  In addition, 

both references solve the governing differential equations using the finite difference 

technique.     

Friedman, et. al. [67] compared 2-D temperature results to rocket firing test data for 

an axisymmetric rocket nozzle throat.  While these temperature predictions compare very 

well, no recession prediction was performed and as such, verification can only be 

performed with test results that do not exhibit any recession.   

Hurwicz, et al., [66] compared two, and three-dimensional computational results with 

a one-dimensional analysis of an ablative wing leading edge and a spin control fin.  For 

the wing leading edge, they found the one-dimensional solution over predicted the 
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bondline temperature compared to the multi-dimensional results.  For the spin control fin, 

they found the one-dimensional analysis under predicted the recession. 

Current efforts to analyze ablation in multi-dimensions have been successful [68, 69, 

70], but rely on the finite difference technique to discretize the geometry.  In planar 

problems where the high in-plane conduction demands the multi-dimensional solution, 

finite difference schemes are well suited.  However, in problems which have complex 

geometry such as the shoulder region of an entry vehicle heatshield, or forebody 

heatshield compression pad, a finite difference scheme may not provide the best 

representation.  Also, in [69 and 70], the pyrolysis gas flow is assumed to be one-

dimensional and normal to the heated surface.  This assumption may not be valid where 

the geometry is highly curved, the virgin material is porous, or there are multiple 

materials in the cross sectional plane. 

A three-dimensional finite element code which utilizes the general thermochemical 

formulation of the ablation problem would have the ability to address the shortcomings 

addressed above.  In addition, a finite element code would be directly compatible with 

modern design and analysis tools and allow for an integrated TPS design process.  

Moreover, modern CFD tools are now capable of three-dimensional solutions for the 

aerodynamic heating; having a three-dimensional thermal response tool is vital to being 

able to use those aerothermal environment results directly.  This feature becomes 

especially important near a compression pad, where a spatially distributed heating 

environment will be present.  While a three-dimensional finite element code will be more 

computationally intensive than the traditional one-dimensional analysis, modern 

computers along with a parallel processing computational scheme will alleviate this 

challenge.                  
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1.5 Reliability, Robust Design, and Uncertainty 

While this dissertation does not attempt to quantify heatshield reliability, the concepts 

of reliability, robustness and uncertainty and how they are used in design warrants a brief 

review.  The concept of reliability in design is not confined to the aerospace industry and 

in particular space vehicle TPS design.  Reliability analysis in its most basic form tries to 

answer the question, for a given component, what is the probability that component will 

fail under the uncertain conditions in which it is used?  In other words it is a statistical 

measure of how often a given component will fail.  Product reliability is usually 

generalized and related to the quality of a product.  Quality and reliability have been 

drivers in the automotive industry for years and in some cases designs which possess the 

highest reliability often give companies a competitive edge.  Reliability is also present in 

the electronics and software industries where the competition is enormous and product 

reliability directly affects a company’s reputation.  In the aerospace industry, reliability is 

of very high importance because of the human element involved in air travel and human 

spaceflight, and the great expense at which aerospace systems are produced.   

  Reliability and robust design are interrelated concepts and the terms are often 

incorrectly used.  Making a design robust, or insensitive to uncertainties, tends to increase 

the reliability of the design [71].  Park et. al. [71] reviewed three methodologies for 

robust design.  The first, and earliest method developed is known as the Taguchi method.  

Taguchi proposed methods of determining variables to make performance insensitive to 

noises present in the manufacturing process [72, 73, 74].  Applying the Taguchi method 

to the design of a product has been accomplished by modifying the method slightly.   

The second method Park et. al. [71] reviewed is called the robust optimization 

method.  In this method, the concept of robustness is added to conventional optimization 

techniques.  The basic premise of the method is that the objective function and 

constraints are redefined using robustness indices [75, 76, 77].   
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The third method reviewed by Park et. al., is known as the axiomatic design method.  

Axiomatic design is a systems design methodology which uses matrix methods to 

systematically analyze customer needs into functional requirements, design parameters 

and process variables.  The method gets its name from its use of design principles or 

design axioms (e.g., given without proof) governing the analysis and decision making 

process in developing high quality system designs [78, 79].   

Robust optimization can be modified to include reliability by calculating the 

probability of exceeding design specifications via a Monte-Carlo Simulation and using 

this probability as the objective function instead of the robustness indices.  The 

constraints of the problem are either physical, such as a geometric constraint, or notional 

such as a bondline temperature constraint in terms of heatshield design.  The constraints 

also take the standard form of either being equality or inequality constraints.   

The key piece of information required by all of the above methods is the need to 

quantify the uncertainty in the design parameters of interest.  Wright et. al. [6] describes 

three types of uncertainties that are present in the thermochemical models used in 

aerothermal and thermal response analysis.  The types of uncertainty are:  stochastic 

variability, structural uncertainty, and parametric uncertainty. 

Stochastic uncertainties arise due to natural fluctuations that exist in the physical 

environment.  These types of uncertainty are also known as irreducible uncertainties, 

since they can be characterized, but not reduced.  In TPS design, natural fluctuations 

would include atmospheric conditions.  These types of uncertainties are routinely 

modeled in entry trajectory simulations such as those found in POST [80]. 

Structural uncertainties arise in numerical simulations due to the fact that these 

simulations employ mathematical models to simulate physical phenomenon occurring.  

The mathematical models are approximations of reality where simplifying assumptions 

are often made to make the problem more tractable.  These simplifying assumptions in 

general, are valid only over a limited range of conditions, and as such can be a significant 
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source of uncertainty.  An example of a structural uncertainty is the Tauber-Sutton 

radiative heating correlation [116].  This correlation is valid only at the stagnation point, 

over a range of vehicle nose radii and atmospheric densities for Earth and Mars.  Using 

the Tauber-Sutton radiative heating correlation for a Venus entry would be incorrect 

since the correlation is only valid for Earth and Mars.  Other sources of structural 

uncertainty arise from discretizing the governing equations of the phenomenon being 

modeled.  Discretizing the equations puts them in a form suitable for numerical 

simulation; however, this simplification introduces discretization, or truncation errors in 

the computational model.  Stated another way, structural errors arise when either the 

physical models employed or their numerical approximations are incorrect.   

Parametric uncertainty arises from the model input parameters.  A typical 

aerothermodynamic and TPS sizing calculation requires hundreds of input parameters, 

such as virgin and char thermal conductivity, decomposition kinetic constants, pyrolysis 

gas enthalpy, chemical reaction rates, surface catalicity, shock-layer radiation emission, 

and many others.  Only a small subset of the many input parameters required for the 

calculation have generally been measured experimentally, or theoretically calculated at 

relevant conditions.  A large majority of the input parameters are estimated either by 

indirect or purely empirical techniques.  For those that have been measured 

experimentally or calculated theoretically, uncertainty still exists due to the limitations of 

the experimental equipment used or theoretical methods employed.  Parametric 

uncertainty can be reduced through testing or analysis, but not eliminated. 

A statistical definition of uncertainty is simply the standard error of the mean of a 

sample of measurements [81].  Mathematically, it is the square root of the variance about 

the mean, or in other words the standard deviation.  Wright, et. al. [6] also list six 

methods for estimating the parameter uncertainties. 
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1. Compile data from multiple sources and compute the standard error of the 

mean.  This approach is statistically rigorous and should be used 

whenever possible. 

2. Perform an independent assessment of a single data source.  This method 

requires detailed analysis of the experimental setup, data reduction, 

and/or theoretical formulation. 

3. Use recommendations from relevant review articles or compiled 

databases.  This approach is essentially having someone else perform 

method 1 or 2 for us.  Care should be taken that the data quoted in the 

reference were taken at conditions relevant to the problem being studied. 

4. Use the uncertainty value quoted directly from the original data source.  

This approach basically skips the independent assessment as in the 

second approach. 

5. Apply similarity rules.  In this approach the uncertainty of one parameter 

is estimated on the basis of another related parameter whose uncertainty 

was determined via methods 1-4. 

6. Rely on expert judgment.  This approach is both the simplest and least 

accurate method.  Most often, this approach is used out of necessity, 

simply because relevant data does not exist.  The best way to use this 

method is to poll multiple experts and take an average from the quoted 

sources.        

In this dissertation, the following approach will be used.  Uncertainties for numerical 

model inputs for which there exists a sufficient database, method 1 will be used and the 

standard error will be computed directly from the data.  For uncertainties for model 

inputs which do not have a sufficient database method 6 will be used.  Specifically, a 

subjective Bayesian probability technique will be used to develop probability density 
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functions from which the uncertainty can be derived.   The Bayesian technique involves 

polling multiple experts and taking an average from the quoted sources [82, 83]. 

1.6 Dissertation Organization 

The following chapters of this dissertation develop the finite element formulation of 

the thermochemical ablation problem; present a methodology for assessing the robustness 

of a thermal protection system design, and present an application of its use in the design 

of the Crew Exploration Vehicle’s heatshield compression pads.   

Chapter 2 is concerned with describing the nature of the thermochemical ablation 

problem, formulating the governing differential equations, and establishing the boundary 

conditions of the problem.   

Chapter 3 develops the one-dimensional finite element formulation of the governing 

differential equations.  The solution of the one-dimensional finite element ablation 

problem is compared to FIAT, an existing one-dimensional finite difference numerical 

procedure.  The development in Chapter 3 also serves as the building block for extending 

the solution to three dimensions, in Chapter 4. 

Chapter 4 extends the one-dimensional formulation from Chapter 3 to three-

dimensions.  The pyrolysis gas flow is no longer assumed to be one-dimensional and is 

solved in three-dimensions using Darcy’s law.  The same verification cases run in 

Chapter 3 are run with the three-dimensional code operating in a one-dimensional mode.  

Te Genesis entry trajectory is run in full 3-D mode to illustrate the differences between 

the one-dimensional mode and three-dimensional solutions.    

Chapter 5 links thermal protection system design with the analysis.  The three-

dimensional finite element ablation code is used to demonstrate probabilistic design and 

is illustrated by example using the CEV heatshield compression pads.   The probability of 

exceeding design specifications for this problem is presented.  Thermal response 

parameter sensitivities are investigated.  
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Chapter 6 provides conclusions drawn from the work presented in the dissertation as 

well as recommendations for areas of further research. 

1.7 Summary of Contributions 

This dissertation presents the development of a three-dimensional finite element 

analysis tool and its application.  This dissertation also presents a method for utilizing 

this analysis tool in the design of thermal protection systems.  The following summary 

lists the contributions of this work. 

1.7.1  Three-Dimensional Finite Element Formulation for Ablative Thermal 

Response 

This work develops a three-dimensional finite element formulation for the differential 

equations governing thermochemical ablation.  Existing heatshield thermal response tools 

utilize the finite difference technique.  The applicability of the finite element 

methodology is demonstrated by comparing the one-dimensional finite element 

formulation with existing one-dimensional finite difference solutions.  The finite element 

formulation allows the modeling of complex three-dimensional shapes.  Including the 

three-dimensional momentum equation, in the form of Darcy’s Law, along with the 

conservation of mass and energy equations in the formulation allows the calculation of 

three-dimensional recession and recession rates.  A moving mesh strategy is employed 

which allows post processing visualization of the ablated geometry.  The governing 

differential equations for linear elasticity are solved with the finite element method and 

used for two purposes:  to move the three-dimensional mesh, and calculate thermal stress.  

While developed for application to heatshield penetrations, this analysis approach is 

generally applicable to the acreage heatshield as well. 

1.7.2  Linking Thermal and Structural Analysis to Design  
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A new methodology to probabilistically design a heatshield penetration is 

presented.  Linking the design to analysis is demonstrated by calculating the probability 

of exceeding the design specifications of the heatshield penetration subsystem.  The 

multidisciplinary nature of the problem is captured by including both the thermal and 

structural response.  Design parameter sensitivities are determined and presented.  A 

contour plot displaying the variation of the bondline temperature design specification 

over the range of the design variables is generated.  The optimum heatshield penetration 

design is determined and a Monte Carlo simulation is performed on it to determine the 

probability that the design specifications are exceeded.  The three-dimensional finite 

element tool developed for this dissertation is used to perform the coupled thermal and 

structural analysis.   

1.7.3  Application of the Finite Element Thermal Response Tool 

The finite element thermal response tool is used to analyze the thermal response of 

the Orion heatshield penetration subsystem.  Specifically, the three-dimensional 

geometry of the heatshield compression pad is modeled.  Spatially varying heat flux 

boundary conditions due to local heating augmentation are easily incorporated and 

applied to the compression pad.  The importance of accurately modeling the local heating 

environment and its effect on recession around the compression pad is demonstrated.  

The probability of exceeding the compression pad thermal and structural design 

specifications is determined.  The finite element thermal response tool is compared to 

solutions from the one-dimensional finite difference code FIAT.   
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CHAPTER 2 

 PHYSICAL DESCRIPTION OF THE THERMOCHEMICAL 

ABLATION PROBLEM 

 

Ablative thermal protection systems for entry into planetary atmospheres have been 

an important topic of research since the late 1950’s and early 1960’s.  As a result, 

numerous works exist which describe the process of ablation both physically and 

mathematically [26, 29-39, 84, 88-96].  Ablation is the process of absorbing energy by 

removal of surface material by melting, vaporization, sublimation, or chemical reaction 

[85].  Any or all of these mechanisms may be present depending on the specific 

application.  Mechanical removal of the surface material may also occur, but this process 

does not absorb a significant amount of energy.     

The fundamental problem in ablative heat and mass transfer analysis is to predict the 

temperature and density histories of a thermally decomposing material which is exposed 

to a heating environment which may also erode the material surface.  Many of the early 

studies of ablation solve for the in-depth thermal response using the one-dimensional 

energy equation and make use of the semi-infinite solid assumption as well as the plane 

wall assumption [86, 87].  These assumptions allow the in-depth energy equation to be 

solved analytically which simplifies the analysis, but accuracy and generality are lost 

since those assumptions only apply to a narrow range of problems and boundary 

conditions.  In these studies, attempts at predicting the density variation within the 

material were made using engineering approximations. Most of the early attempts at 

predicting surface recession were made utilizing correlations of heat of ablation data [87].  

It is important to state that the heat of ablation is not a property of the material, but a data 

correlation parameter and is only valid at steady state ablation conditions.  Comparison 

between steady state ablation and transient ablation results are quite different.  These 

methods have been shown to produce reasonable results, but only for specific problems 
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where either the correlations are defined, there is enough data to encapsulate the surface 

conditions and imposed heating environment, or the condition of steady state ablation had 

been reached.    All of these approximate methods suffer from the same shortcoming in 

that they lack generality. 

In the mid to late 1960’s, Moyer, Rindal, Kendall, and Bartlett developed a general 

thermochemical ablation model [27, 88, 114] which made use of the work done by 

Goldstein [98, 99] on material decomposition.  Their general formulation solves for the 

in-depth temperatures, and density variations starting from first principles, and is based 

on the work done by Kratsch, et. al. [89].  Figure 2.1 illustrates the physical processes 

occurring during hypersonic reentry which make up the ablation process.  It is convenient 

to break up the physical processes into two groups and discuss them as either part of the 

in-depth response or in terms of an energy balance at the surface. 

 

Figure 2.1:  Physical processes occurring during ablation 

2.1 In-Depth Thermal Response 

The in-depth thermal response is the term used to group the physical phenomenon of 

heat conduction through the material, material decomposition and pyrolysis gas 
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generation, energy absorption and flow through the material.  The pyrolysis gas is 

generated as the material undergoes decomposition, thus, the two phenomena are 

coupled.  The decomposition of the material is a function of temperature, so it is coupled 

to the conduction of heat through the material.  The physical processes occurring at the 

surface (described in Section 2.2) form the boundary conditions for conduction of heat 

through the material and transfer of mass to the boundary layer.  Therefore, the in-depth 

response is coupled to the surface energy balance and any surface material removal 

which occurs. 

Figure 2.1 shows the solid ablative material is broken into three regions.  The bottom 

region is known as the virgin material and is generally followed by a non-ablative 

structural back-up material.  The virgin material is the term used to describe the solid 

ablative material that has not been exposed to any heating and has not yet begun to 

decompose.  The zone between the heated surface and the pyrolysis zone is known as the 

char zone, or char layer.  The char layer is all that is left after the virgin material has 

completely decomposed.  For most of the current ablative materials in use today, the char 

layer is a porous carbonaceous material, possibly reinforced with refractory fibers or 

cloth.  The pyrolysis zone is the region where the material is no longer fully virgin and is 

not yet fully charred.  It is an intermediate region where the material decomposition is 

taking place and the pyrolysis gases are being generated.  During atmospheric entry, the 

vehicle’s outer surface is heated causing the virgin material’s temperature to increase.  As 

the temperature increases, the material begins decomposing and generating pyrolysis gas.  

After a period of time at high temperature, the virgin material will become fully 

decomposed, leaving only a char residue.  

Included with this basic description of the in-depth problem are a number of other 

complex events [27].  The pyrolysis gases flowing through the porous char layer may 

undergo further chemical reactions, and may react with the char, either eroding it or 

depositing additional residue upon it.  The process of the pyrolysis gas depositing 
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additional residue within the char is called “coking”.  Coking tends to increase the 

density of the char layer in the regions where it is occurring, the end result being lower 

recession.  Additionally, the char itself may collapse or fragment from mechanical or 

thermal stresses, and the refractory fiber reinforcements may melt or suffer mechanical 

damage.   Various mechanical forces such as the pressure gradient developed between the 

internal pyrolysis gas and surface pressure may cause the char to spall, or be ejected into 

the boundary layer.  Finally, the various species within the char structure may react 

chemically with each other to change the nature of the char. 

Despite these complex events, the overall process may be described by the following 

simple relation. 

 virgin char gas   (2.1)  

Events such as coking, mechanical removal, melting, and subsurface reactions are less 

common and will be ignored in this dissertation.  References [27, 85, 89, 90, 91, 92, 93, 

94, 95, 96, 98] provide a representative sampling of the theory and analysis of the in-

depth thermal response of charring materials, but for the remainder of this dissertation, 

the focus will be on the general thermochemical formulation presented in references [27, 

56, 88, 103].   

The control volume shown in Figure 2.2 represents an infinitesimal volume within the 

solid and shows the two sources of energy entering and leaving the control volume.  The 

first energy source is due to heat conduction into and out of the control volume, qx and 

qx+dx respectively.  The second source of energy is due to the flow of pyrolysis gas into 

and out of the control volume.  There are three components of energy associated with the 

pyrolysis gas flow, the convection of sensible energy, 
gghm , the kinetic energy,   
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Figure 2.2:  One-dimensional control volume for the in-depth thermal response 

2

2u
gm , and the potential energy, gZmg

 .  The pyrolysis gas energy enters the control 

volume from the x+dx side and leaves from the x side.  Figure 2.2 shows the mass flow 

entering and leaving the control volume as well.  Notice that in this control volume the 

heat flux is opposite the direction of the mass flow and energy associated with the mass 

flow.  Following the development in references [27, 89, and 98], the one-dimensional 

conservation of mass and energy equations, in a fixed coordinate system, can be readily 

formulated assuming for the time being that the conduction as well as the pyrolysis gas 

flow through the material is one-dimensional.  The kinetic and potential energy terms will 

be assumed to be small in comparison to the sensible energy convection term and will be 

dropped from the formulation. 

2.1.1  Conservation of Mass 

The principle of conservation of mass states that mass can neither be created nor 

destroyed [97].  Figure 2.2 illustrates this principle and shows that the net mass flow into 

the control volume must equal rate at which mass accumulates inside the control volume.  

Mathematically, this can be written as, 
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The mass inside the control volume, mcv, is related to the density of the solid material and 

the dimensions of the control volume as, 

 cvm Adx  (2.3) 

Where A is the constant cross sectional area of the control volume perpendicular to the x 

direction.  The mass flow into the control volume can be expressed in the form of a 

Taylor series expansion as, 

 
x

x dx x

g

g g

m
m m dx

x


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
 (2.4) 

The mass flow out of the control volume is simply 
xgm .  Substituting the expressions for 

the mass inside the control volume, and the mass flows into and out of the control volume 

into (2.2) gives, 
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   (2.5) 

Canceling like terms on the right hand side, dividing by Adx, and recognizing that the 

mass flow per unit area, denoted by the double prime superscript, is simply the mass flux, 

the final form for the conservation of mass per unit volume is given as,  

xgm

t x

 
 

 
    (2.6) 

Equation (2.6) shows that the decomposition of the virgin material is equal to the rate at 

which pyrolysis gas is generated.  Therefore, evaluation of (2.6) requires that the 

decomposition rate be specified.  A large amount of experimental thermogravimetric 

analysis (TGA) data [98, 99] have shown that the virgin material decomposition rate 

follows an Arrhenius type relation.  In physical chemistry, an Arrhenius equation relates 

the rate constant to temperature change.  In the case of material decomposition, it relates 

the rate of change of density to temperature.   Following the work by Goldstein [98, 99] 

the form of the Arrhenius relation adopted here gives the decomposition rate as, 
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 (2.7)  

Goldstein also showed that for most phenolic based resin/fiber systems, there are 

three independent decomposition reactions occurring over the temperature range for 

which decomposition occurs.  Two reactions represent the resin component of the 

composite and one reaction represents the fibrous reinforcement.    The total density of 

the composite material is given by, 

    1A B C         (2.8) 

Each density component may decompose according to a relationship like (2.7).  There 

are other ways in which to treat the density decomposition; however, (2.7) is physically 

realistic and straightforward numerically [27, 98, 99]. 

2.1.2  Conservation of Energy 

The principle of conservation of energy states energy can neither be created nor 

destroyed only changed in form [97].  The two types of energy entering and leaving the 

control volume of Figure 2.2 are associated with pyrolysis gas flow and heat conduction.  

Some simplifying assumptions about the pyrolysis gas flow through the control volume 

can be made.  The first assumption is that the pyrolysis gas formed is in thermal 

equilibrium with the material within the control volume and the second is that the 

residence time within the control volume is small.  These assumptions imply that the 

temperature of the pyrolysis gas is the same as that of the solid at any given point in the 

control volume and that the pyrolysis gas has no time to chemically interact with the solid 

in the control volume respectively.  Additionally, the potential energy of the pyrolysis gas 

may be neglected since the change in height across the control volume is negligible.  The 

kinetic energy of the pyrolysis gas may also be neglected since it is of small magnitude 

relative to the pyrolysis gas enthalpy [89].     
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In general, the rate form of the first law of thermodynamics for a control volume may 

be written as,  

    outoutinincvcv
cv PvemPvemWQ

dt

dE
 

  (2.9) 

The 1
st
 law states that the time rate of change of energy in the control volume is equal to 

the net rate of heat transfer to the control volume minus the net work done by the control 

volume plus the net energy transported by mass flow and flow work into the control 

volume.  The e in (2.9) is the total energy per unit mass and includes kinetic, potential 

and internal energy.  Using the definition of enthalpy, the internal energy and flow work 

terms may be combined.  

Pvuh       (2.10) 

Note that there is no shaft work done by this control volume so 0cvW  in (2.9).  To 

derive the governing differential equation for the in-depth thermal response equation 

(2.9) will be rewritten in a simpler form, 

outin
cv EE

dt

dE       (2.11) 

Equation (2.11) simply states that the rate at which energy is stored in the control volume 

is equal to the rate at which energy enters the control volume minus the rate at which 

energy leaves the control volume.  Looking at the control volume in Figure 2.2 and 

recalling the assumptions made about the pyrolysis gas energy, the energy in-flow and 

out-flow can be written as, 

 

 
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dxxggxin
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



   (2.12) 

Expressing the heat conduction leaving the control volume and the convection of 

energy by the pyrolysis gas entering the control volume as Taylor series expansions give, 
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The rate of energy storage within the control volume can be expressed in terms of the 

density and enthalpy of the solid as, 

 Adxh
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Substituting (2.12) into (2.11) and using the definitions in (2.13) and (2.14) gives, 
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Canceling like terms on the right hand side, dividing by Adx and recognizing that the heat 

rate and mass flow divided by the area are simply the heat flux and mass flux respectively 

gives, 
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    (2.16) 

Assuming that there is no mass diffusion within the control volume, the heat transfer, 

expressed as heat flux, can be expressed using Fourier’s Law as, 

x

T
kq xx




     (2.17) 

Substituting (2.17) into (2.16) gives the desired form of the governing differential energy 

equation for the in-depth thermal response,  

     
xx g g
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h k m h

t x x x

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  
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 (2.18) 

Moving from left to right, the first term in (2.18) is the energy storage, the second is 

the conduction through the material, and the third is the convection due to pyrolysis gas 

flow through the material.   
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2.1.3  Transformation of the Governing Equations to a Moving Coordinate System 

For organic ablators, the dominate ablation mechanism, given a high enough heat flux 

and an oxidizing surface environment, is the chemical reaction of the char with the 

boundary layer gas near the surface.  These oxidizing chemical reactions at the surface 

consume the char and cause the surface to recede [96].  For a glassy ablator, as the 

surface temperature reaches the melting point of the glass, the dominate ablation 

mechanism is vaporization of the liquid layer of glass, which will cause the surface to 

recede.  Glassy materials may also be more susceptible to shear induced mechanical 

failure which removes the liquid layer.  In both types of ablators, the surface of the 

ablator moves with respect to and towards the fixed back wall of the ablator.  The back 

wall of the ablator is commonly referred to as the bondline since ablators are typically 

bonded to the spacecraft structure.   

Other numerical solutions of (2.18), (2.6), (2.7), and (2.8) have found it convenient to 

attach the computational grid to the receding surface [27, 57, 100, 101].  Attaching the 

computational grid to the receding surface has several advantages.  First, the solution 

domain remains in the physical domain of the problem.  This is important because if the 

grid were fixed, approximations of the properties across an element would have to be 

made as material within an element is removed [49].  With a moving grid, these 

approximations do not need to be made as the material is removed.  Instead the element 

length is simply adjusted and the properties are recomputed based on the new element 

size.  Another advantage of the moving grid is that the grid location is tracked, making 

post-processing of the ablated shape straightforward.  In order to solve the governing 

equations in a moving frame of reference, the governing equations must be transformed 

into the moving frame.  Transforming the equations into a moving frame introduces a 

convective energy term into the governing differential equations. 

Building off of the development in [27] and referring to Figure 2.3, the constant  
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Figure 2.3:  one-dimensional moving coordinate system 

 

area, one-dimensional geometry being considered and the coordinate system being 

employed is illustrated.  The x-coordinate is used to denote the position in the material 

with respect to the location of the original surface, where the origin is fixed to the 

location of the original surface.  The coordinate xS is the position in the material with 

respect to the receding surface where the origin is located at the receding surface.  From 

Figure 2.3, the amount of surface recession, S, is related to the x and xS coordinates by, 

Sx S x  .  Also, infinitesimal changes in x and xS, denoted as dx and dxS are equal at 

any fixed point in time.   

2.1.3.1 Transformation of the Conservation of Mass 

The conservation of mass stated by (2.6) was written for a control volume fixed in 

space where the derivatives with respect to time were taken holding x constant.  Equation 

(2.6) must now be rewritten to relate these density changes at constant x to density 

changes at constant xS.  In the fixed x coordinate system, at any instant in time, the 
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density may be expressed as a function of position and time, ( , )x t  , from which we 

may write using the chain rule, 

 
t x

d dx dt
x t

 
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 
 
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 (2.19) 

Differentiating (2.19) with respect to time at constant xS yields 
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 (2.20) 

Using the relation between the amount of recession and the x and xS coordinates, we may 

write for constant xS, 
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In the case of a compressing computation grid, xS is not constant and the change in x over 

time is slightly more complicated and can be expressed as, 

 1 , 0S S
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dx xx
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  
     
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 (2.22) 

The surface recession rate S in (2.21) is written as a total derivative since it is a function 

of time only.  Substituting (2.21) into (2.20) and noting that dx=dxS at constant t yields, 
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 (2.23) 

    Equation (2.23) along with (2.7) and (2.8) represent the conservation of mass in the 

moving coordinate system. 

2.1.3.2 Transformation of the Conservation of Energy 

Transforming the energy equation to the moving coordinate system requires the 

assumption that the following functional relationships are valid.  
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Rewriting equation (2.18) to show which variables were held constant during the partial 

differentiation gives, 
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The energy storage term on the left hand side which was written for a point in the fixed 

coordinate system will need to be related to its counterpart in the moving frame.  The 

energy storage term can be expanded using the chain rule as:  

 
     

( , )

t x

h h x t

d h h dx h dt
x t

 

  



 
 
 

 (2.26) 

Performing a partial differentiation with respect to time at constant xS yields,  

      
S Sx t x x

x
h h h

t x t t
  

   
 

   
 (2.27) 

Using (2.21), rearranging, and recalling that differentiation with respect to x is equivalent 

to differentiation with respect to xS at constant time yields,   

      
S

x Sx t

h h S h
t t x
  

  
 

  
 (2.28) 

Substituting (2.28) into (2.25) and again recalling that differentiation with respect to x is 

equivalent to differentiation with respect to xS at constant time yields, 

      
x

S

x g g

x S S S St tt

I III IVII

T
h k m h S h

t x x x x
 

     
   

     
 (2.29) 
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While equation (2.29) represents the energy equation in the moving coordinate 

system, it is convenient to express the rate of change of enthalpy in term I of (2.29) in 

terms of temperature and density change rates [27].  Since the enthalpy of the solid 

changes between fully virgin and fully charred material during the transient, a model for 

the enthalpy of the partially pyrolyzed material must be established.  Past flight and arc 

jet test experience has shown [27, 56, 57] that it is a reasonable assumption to consider 

the partially pyrolyzed solid as a mixture of pure virgin and pure char material.  Let 
v  

denote the volume fraction of undecomposed virgin material within the control volume.  

For pure virgin material, 
v  is 1.0, for pure char it is 0.0, and for intermediate states of 

decomposition it may be anywhere in between.  With this definition, the density 

anywhere in the solid may be written, 

 (1 )v v v c        (2.30) 

The total enthalpy per unit volume, h , may now be written in terms of the volume 

fraction v  and the enthalpy of the virgin and char as, 

 (1 )v v v v c ch H H        (2.31) 

The total enthalpy of virgin and char material includes both the chemical and sensible 

enthalpies and is given as, 

 

0

0

0

0

v

c

T

v v p

T

c c p

H h c dT

H h c dT

 

 




 (2.32) 

Differentiating (2.31), (2.32), and (2.30) with respect to time noting that the heat of 

formation, and the density of the virgin and char is constant yields, 

  v v c v c
v v v v c c c c v

H H H
h H H

t t t t t t


       

    
    

     
 (2.33) 
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v c

v c
p p

H T H T
c and c

t t t t

   
 

   
 (2.34) 

 
1v

v ct t

 

 

  
  

   
 (2.35) 

Substituting (2.34) and (2.35) into (2.33) produces, after some algebra, the desired 

relation between the rate of change of enthalpy, rate of change in temperature, and rate of 

change in density is given as,  

    1
v c

S S S S

v v c c
v p v v c p

x x x xv c

H H T T
h c c

t t t t

  
    

 

    
    

     
(2.36) 

Defining mass weighted averages for the enthalpy and the specific heats of the virgin and 

char as, 

 (1 )
v c

v v c c
p v p v v c p

v c

H H
h and c c c

 
    

 

 
    

 
 (2.37) 

Equation (2.36) may be rewritten as, 

  
S S S

p

x x x

T
h h c

t t t


 

  
 

  
 (2.38) 

Term II in equation (2.29) does not require any special modification, however, term 

III may be expanded as, 

   x

x x

gg

g g g g

S S St t t

mh
m h m h

x x x


  

  
 (2.39) 

Recognizing again that differentiation with respect to x and xS are equivalent at constant 

time, substituting (2.6) into (2.39) yields, 

  
x x

g

g g g g

xS St t

h
m h m h

x x t

 
  

  
 (2.40) 
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where the expression for the time rate of change of density in the fixed coordinate system 

is given by (2.7). 

Term IV in (2.29) does not require modification, however, it is convenient to expand 

it to express the enthalpy per unit volume in terms of temperature and density.  

Differentiating (2.31), (2.32), and (2.30) with respect to xS, dropping the “constant-t” 

notation, and noting that the heat of formation, and the density of the virgin and char is 

constant yields,  

  v v c v c
v v v v c c c c v

S S S S S S

H H H
h H H

x x x x x x

 
       

    
    

     
 (2.41) 

 
v c

v c
p p

S S S S

H T H T
c and c

x x x x

   
 

   
 (2.42) 

 
1v

S v c Sx x

 

 

  
  

   
 (2.43) 

Substituting (2.42) and (2.43) into (2.41) and using the definitions from (2.37) produces, 

   p

S S St t t

T
h h c

x x x


 

  
 

  
 (2.44) 

Now, substituting (2.38), (2.40), and (2.44) into (2.29) gives, 

 
S S

x

p x p

x xS S S St tt

g

g g

xS t

T T T
c k h S S c

t x x x t x

h
m h

x t

 
 



       
     

         

 
 
 

 (2.45) 

Using the definition of the conversation of mass (2.23), dropping the constant xS and 

constant t notation and only noting where differentiation is in the fixed coordinate 

system, (2.45) can be simplified as, 
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  
x

g

p x g p g

xS S S S

I III IV VII

hT T T
c k h h S c m

t x x t x x


 

     
     

      
 (2.46) 

Each term in (2.46) has a specific physical meaning.  Term I represents the rate of 

sensible energy storage, term II is the net conduction through the material, term III 

represents the creation of sensible energy due to pyrolysis, term IV represents the energy 

convected due to coordinate system movement, and term V is the energy convected away 

due to pyrolysis gas generation at that point.  Note that the pyrolysis gas flow rate at any 

point in the material, 
xgm , is the total flow rate per unit area past that point relative to the 

back face of the ablator which has zero pyrolysis gas flux.  

2.2 Surface Energy Balance Yields Boundary Conditions 

An energy balance at the surface may be written as the summation of all the energy 

fluxes entering and leaving the surface of the material and equating to zero.  These 

energy fluxes represent the boundary conditions that are applied to the system of 

equations (2.23) and (2.46).  The control volume in Figure 2.4 shows a detailed view of 

the physical phenomenon occurring at the surface of a material undergoing ablation. 

 

Figure 2.4:  Surface energy flux terms 

 

The physical phenomenon occurring at the surface depicted in Figure 2.4 can be 

grouped in terms of energy entering the control volume and energy leaving the control 

qdiff qrad in qrad out 

q
* 

( )w wu h

qchem 

qcond 
c cm h  g gm h
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volume.  Energy entering the control volume consists of a diffusive energy flux, 
diffq , a 

radiative heat flux, 
rad inq , energy flux due to pyrolysis gas reaching the surface, 

g gm h , 

and an energy flux associated with char mass flux due to char consumption, c cm h .  

Energy leaving the control volume consists of a radiative flux away from the surface, 

rad outq , conduction into the solid, condq , energy due to the flow of condensed phase 

material, 
*q , and energy associated with gross blowing into the boundary layer, 

  .ww
u h   The condq  term is the net heat conducted into the solid and is the link between 

the governing in-depth differential energy equation and the surface boundary conditions.  

The heat conduction through the material is governed by the equations developed in 

Section 2.1 of this dissertation. 

Using the control volume of Figure 2.4, the surface energy balance may be written as 

 
*( )diff rad c c g g rad w w

in out

dT
k q q m h m h q u h q

dx
          (2.47) 

Equation (2.47) is written with the qcond term in its familiar form of Fourier’s Law and 

being in this form turns out to be convenient in terms of applying the boundary 

conditions in the finite element formulation which will be discussed in Chapter 3.    

2.2.1  Convective Heat and Mass Transfer in a Multicomponent Boundary Layer 

Equation (2.47) shows that an intimate coupling exists between the in-depth thermal 

response of an ablative material and the boundary layer transport phenomenon.  The left 

hand side of this equation represents conduction into the solid material that is 

characterized by the differential equations presented in section 2.1.  The terms on the 

right hand side of this equation represent the boundary layer phenomenon and energy 

fluxes at the surface due to material decomposition and recession. These terms in the 

surface energy balance must be characterized.  In particular, the qdiff term which 

represents the total heat transfer rate to the wall due to molecular conduction and 
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diffusion from the boundary layer gas must be determined.  Equation (2.48) shows qdiff 

broken down into its constituent components,   

 
0

diff g iw i

iw

T
q k j h

y


 


  (2.48) 

To characterize the boundary layer transport terms in the surface energy balance, 

either the complete set of boundary layer equations must be solved and coupled to the in-

depth thermal response equations, or suitable correlations to the boundary layer equations 

must be employed that represent a wide range of boundary conditions and material 

compositions.  

Generalized correlations to the boundary layer equations independent of boundary-

layer-edge gas and ablation material composition have been developed assuming equal 

diffusion coefficients [102] and unequal diffusion coefficients [88, 103].  The approach 

adopted here will be that of using the correlations with unequal diffusion coefficients.  

There is a loss of some generality in using the correlations to the boundary layer 

equations, but with respect to the design problem presented in this dissertation, this 

approach is sufficient.  This sufficiency is demonstrated by the work presented in 

references [56, 57, 104] where good correlation between arc jet data and the material 

thermal response have been demonstrated using the correlation approach, and in [105] 

where the correlations have been shown to match the solutions to the boundary layer 

equations over a wide range of boundary conditions and ablative material compositions.       

The goal of the correlations is to express the qdiff term in the surface energy balance in 

terms of bulk heat and mass transfer coefficients.  To develop the correlations to the 

boundary layer equations, we must start with the laminar, 2-D axisymmetric boundary 

layer conservation equations for a chemically reacting gas shown in (2.49) [103, 106, 

107, 108].  Since the boundary layer equations will not be solved directly, their 

development from a control volume is not presented.  
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 (2.49) 

Taking the species conservation equation and applying the Shvab-Zeldovich 

transformation which multiplies it by the mass of element k in molecule i, denoted by ki , 

and then sums over all species produces [102, 109]. 

 

k k
ki i

i

k ki i

i

K K
u v j

x y y

Where K K

  



  
  

  






 (2.50) 

In the absence of pressure diffusion and body forces, the diffusional velocity can be 

expressed using the Stefan-Maxwell relations as 

 

ln lnT T

j j i i
i ji

i ij j i

T T
j D j D

y y

y K K

 



  
    

  
  

  


D

 (2.51) 

 In the absence of thermal diffusion and if all the diffusion coefficients, Dij, are equal, 

(2.51) reduces to Fick’s Law which relates the diffusional mass flux explicitly to its mass 

fraction gradient. 

 
i

i ij

K
j

y



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
D  (2.52) 
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In this case the diffusion coefficients are not equal and the approximation developed by 

Bird [110] for the binary diffusion coefficients is used, which permits an explicit solution 

of (2.51) for the diffusional mass flux ( ji) in terms of gradients and properties of species i 

and the system as a whole.  The approximation is in the form of, 

 ij

i j

D

F F
D  (2.53) 

where D  is a property of the given multicomponent mixture and is a function of 

temperature and pressure.  The Fi and Fj are functions of temperature only and are 

properties of the i
th

 species in the mixture.  Equation (2.53) is essentially a correlation 

equation for actual binary diffusion coefficient data. 

 Substituting (2.53) into (2.51) and rewriting in terms of the mass fractions yields 

 

2
j j j ji i i i i

j ji j i j

J F K FK F F J

y D





 
     

 
M

M M M M
 (2.54) 

where M and Mi represent the mixture and species molecular weights.  For convenience, a 

total diffusional mass flux is defined as the sum of the molecular and thermal diffusion 

fluxes, 

 
lnT

i i i

T
J j D

y


 


 (2.55) 

Multiplying each side of (2.54) by i iFM , and summing over all species, i, noting that 

the sum of all diffusive fluxes is zero and the sum of all mass fractions is unity, yields 

 2 2

j j j j ji

j i jj i j

J F D D

F y F y

  
 

 
  

M M

M M M
 (2.56) 

Substituting (2.56) into (2.54) results in the following relation 

 

2
j j j ji i i i i

j ji j i j

K FK F F J

y F y D






 

 
 
M M

M M M
 (2.57) 
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To simplify (2.57), it is convenient to define several new quantities: 

 
2

i i
i

i

Z
F





M

 (2.58) 

 
1 j j

j

F   (2.59) 
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j j

j jF


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M
 (2.60) 

 3 2

j j

j j

K dF

F dT


  
    

  
  (2.61) 

Multiplying (2.58) by 2 and differentiating with respect to y yields, 

 
2

22

i i i i i i
i

i i

F Z
Z

F y F y y y

  


   
  

   

M M
 (2.62) 

 Substituting (2.55), (2.58)-(2.61), and (2.62) into (2.57) and noting the sum of Zi over all 

species, i, is unity and that the Fi are functions of temperature only yields, 

 2 2
32

1

( )ln 1T i i i i
i i i

i

Z Z K FT D T
j D K

y y y F y y

 




     
       

      M M
 (2.63) 

Equation (2.63)  provides an explicit expression for the diffusional mass flux of species i 

in terms of the properties and gradients of species i and of the system as a whole and is 

the relationship which is desired.  Further simplification of (2.63) can be made by 

assuming the Fi are constant with respect to temperature.  Kendall, et al [103] constructed 

least-squares fits of diffusion coefficient data to obtain Fi as a function of temperature 

and found that if the Fi are assumed constant over a temperature range of 4000° to 

16,000°R for a Carbon-Nitrogen-Oxygen system, the maximum error incurred is less than 

1%.  Therefore, if the Fi are assumed constant, equation (2.63) becomes,  

 
2 2

1 2

( )lnT i i i
i i

Z Z KDT
j D

y y y

  

 

   
    

   M
 (2.64) 
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   Substituting equation (2.64) into the boundary layer species conservation equation 

of (2.49) yields the modified boundary layer conservation equation for chemical elements 

in a multicomponent boundary layer with unequal diffusion coefficients and thermal 

diffusion. 

 

2 2

1

ln ln
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, ,

Tk k k
k k k

T T

k ki i k ki i k ki i

i i i

K K ZD T
u v Z K D

x y y y y y

K K Z Z D D

  
 



  

      
      

        

    

M

 (2.65) 

Recasting the species conservation equation in this form represents a major 

simplification to the set of boundary layer equations shown in (2.49) and is also a 

necessary step in deriving the correlations to the full set of boundary layer equations.  

Consider a typical graphite-air system consisting of Hydrogen, Carbon, Nitrogen, and 

Oxygen, where the number of significant species would be in the neighborhood of 30.  

Equation (2.65) permits characterizing the diffusional process in such a boundary layer 

using only 31 coefficients, (30 Fi diffusion factors and 1 D  ) rather than 870 

multicomponent diffusion coefficients, each of which is dependent upon species 

concentrations and upon 435 binary diffusion coefficients [103]. 

In the late 1960’s the computational power available to engineers was limited, and as 

a result it was impractical to solve the complete set of boundary layer equations for each 

design application.  While modern computational resources are adequate to solve the 

complete set of equations, development of this aspect is deferred to future work. Instead, 

this dissertation will focus on using the boundary layer correlation equations. 

2.2.1.1 Correlation Equations to the Multicomponent Boundary Layer for an 

Ablating Material  

In order to solve these complex thermochemical ablation problems practically, 

engineers of the 1960’s era developed correlations to the boundary layer equations that 
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characterized the solutions of the complete set of equations in terms of bulk heat and 

mass transfer coefficients [88, 102, 103, 111].  The form chosen for these correlation 

equations is based on analogies between the species conservation equation given in (2.65) 

for unequal diffusion coefficients and the species conservation equation for equal 

diffusion coefficients.  The requirements for the correlation equations are that they be 

valid for a wide range of boundary conditions and include parameters appropriate to 

transient ablation for both charring and non-decomposing homogenous materials.  The 

equations should also be valid for arbitrary ablative material composition and boundary-

layer-edge gas chemical composition. 

In the absence of thermal diffusion effects, the species conservation equations, (2.65) 

take the form 
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k k

K K ZD
u v Z K

x y y y y

  
 


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     

       M
 (2.66) 

When all of the diffusion coefficients are equal the following are true,     

 1 21.0, , ( / ) ,i j ij k kF F D and Z K     D M  (2.67) 

Equation (2.66) then reduces to the conventional laminar boundary-layer species 

conservation for equal diffusion coefficients with no thermal diffusion: 

 12
k k kK K K

u v
x y y y

  
   

   
    

D  (2.68) 

Solution of (2.68) can be correlated by an expression relating the diffusion mass flux of 

element k independent of molecular configuration, 
wkj , to the product of a mass transfer 

coefficient and mass fraction difference by [102], 

  
w w ek e e m k kj U C K K   (2.69) 

Where the mass transfer coefficient is approximately related to the Stanton number, or, 

heat transfer coefficient, by the Lewis number using the Reynolds analogy as, 
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2

3
M HC C Le  (2.70) 

Where the Lewis number is defined as, 

 12 /Le D  (2.71) 

and  is the thermal diffusivity.  The species conservation equation (2.66) may be put in 

the form of equation (2.68) by generalizing an approximation that Kendall, et. al. [114] 

found to be appropriate for a number of gas mixtures.  Kendall, et. al. [114] observed that 

the second term on the right hand side of (2.66) is much smaller than the first, 

   2ln k
k k

Z
Z K

y y

 
 

 
 (2.72) 

 Making use of this approximation and defining an effective diffusion coefficient as 

 
2

1

eff

D
D





M

 (2.73) 

The species conservation equation for unequal diffusion coefficients becomes, 

 
k k k

eff

K K Z
u v D

x y y y
  

   
   

    
 (2.74) 

The left hand sides of (2.68) and (2.74) represent flow of species due to convection, and 

the right hand sides due to diffusion.  Based on this observation, the similarity of 

equations (2.68) and (2.74), and the form of the diffusional mass flux correlation equation 

for equal diffusion coefficients, Kendall, et. al. [88, 103] postulated that a similar 

correlation equation to characterize the solutions of the species equation for unequal 

diffusion coefficients could be written similar to equation (2.69) as, 

  * *

w e wk e e m k kj U C Z Z   (2.75) 

The previous relationship of (2.70) between the mass transfer coefficient, Stanton number 

and Lewis number holds, except that the Lewis number defined in (2.71) is now a 

function of the effective diffusion coefficient.  The new variable *

iZ is introduced to 



 64 

 

 

reflect the fact that the net mass transfer is influenced by the convective terms on the left 

hand side of (2.74) in most boundary layer flows where the mass fractions retain 

significance.  In order to account for the relative mass transfer by diffusional process, the 

driving potential for diffusion is defined on a weighted basis between i iZ and K as, 

 

1
* * *

1

i i
k ki i i

i j j

j

Z K
Z Z Z

Z K

 

 







 





 (2.76) 

Kendall, et. al. proposed a value for  of 2
3  for boundary layer flows, based on analogy 

with the relative magnitudes of the conductive and convective terms in the energy 

equation.  Figure 2.5 shows the elemental mass balance at the surface of a charring 

ablative material.   

 

Figure 2.5:  Surface elemental mass balance 

 

The conservation of chemical elements at the surface of the ablator can be written from 

Figure 2.5 using equation (2.75) to express the diffusional mass flux as, 

  * * * *( )
c g w e wc k g k e e M k k w k km K m K U C Z Z u K m K       (2.77) 

In a similar manner to the conservation of species, a correlation equation for the 

multicomponent, chemically reacting boundary layer conservation of energy, with 

unequal diffusion coefficients may be developed by drawing analogies with those 

correlations used for equal diffusion coefficients.  Rosner [111] used a chemical 

wkj

qdiff 

* *

km K  

( )
ww ku K

qchem 

cc km K  
gg km K  

Gaseous boundary layer 

Ablative material surface, y=0 
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engineering approach and proposed the following correlation equation for conservation of 

energy assuming equal diffusion coefficients and a non-ablating surface based on 

similitude theory,  

    0 0

w g iw i e e H sr sw e e M ie iw i

i iw

T
q k j h U C H h U C K K h

y
 


     


   (2.78) 

The terms on the left hand side make up the total heat transfer rate to the wall by 

molecular conduction and diffusion, and are in fact the same as the qdiff  energy flux 

shown in Figure 2.4.  The terms on the right represent the sensible chemical energy 

transfer, where the first is characterized by a heat transfer coefficient and enthalpy 

difference between the wall and boundary layer edge, the second by a mass transfer 

coefficient, a mass fraction difference between the wall and boundary layer edge, and the 

species chemical enthalpies.  Rosner compared the correlation equation given in (2.78) to 

detailed boundary layer calculations performed by Fay and Riddell [112] at the stagnation 

point for a fully catalytic surface and found it to be accurate to within 5%.  For unequal 

diffusion coefficients, making arguments similar to those used to derive the correlation in 

(2.78) yields, 

    0 * * 0

w g iw i e e H sr sw e e M ie iw i

i iw

T
q k j h U C H h U C Z Z h

y
 


     


   (2.79) 

For unequal diffusion coefficients, (2.79) shows the chemical transport is characterized 

by the Z-driving potential for mass transfer.  Referring back to Figure 2.4 and equation 

(2.47), the surface energy balance may be rewritten substituting the relation given by 

(2.79) for the boundary layer heat transfer term, qdiff, as   

 

   * * 0

*( )

e e H sr sw e e M ie iw i c c g g

i

w w rad rad
out in

dT
k U C H h U C Z Z h m h m h

dx

u h q q q

 

 

       

   


 (2.80) 
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It is convenient to define non-dimensional ablation rates based on the mass transfer 

coefficient as, 

 

*( )
, , ,

gw c
g c fail

e e M e e M e e M e e M

mv m m
B B B B

U C U C U C U C



   

  
        (2.81) 

Where B is the total normalized ablation rate, 
gB is the normalized ablation rate due 

pyrolysis gas liberation, cB is the normalized ablation rate due to char consumption, and 

failB is the normalized ablation rate due to mechanical removal.  For further clarification, 

the total mass blowing into the boundary layer can be expressed as the sum of the 

individual mass fluxes entering the surface as, 

   *

g cw
u m m m       (2.82) 

Looking at equation (2.82) the following observation can be made with regard to the total 

normalized ablation rate, 

 

*( )g c

g c fail

e e M

m m m
B B B B

U C

 
        (2.83) 

Making use of the definitions in (2.81) the surface energy balance may be written for 

unequal diffusion coefficients and M HC C  as, 

 
   * * 0

*

e e H sr sw e e M ie iw i c c g g w

i

rad rad
out in

dT
k U C H h U C Z Z h B h B h B h

dx

q q q

 



 
          

 

  


 (2.84) 

Equation (2.84) is also valid for homogeneous materials for which case the gas 

generation rate, 0gm  .  If the diffusion coefficients are assumed to be equal, then 

*

k kZ K  by the definitions in (2.58)-(2.61) and therefore, 
* w

e w

T

i i e

i

Z h h and 

* w

w

T

i i w

i

Z h h .  If it is also assumed that the Lewis and Prandtl numbers are unity, then 

by (2.70) CM = CH.  With both of the assumptions, (2.84) simplifies to, 
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   *

e e H sr sw c c g g w rad rad
out in

dT
k U C H h B h B h B h q q q

dx
             (2.85) 

Equation (2.85) is the form of the surface energy balance that is most commonly used in 

solving ablative thermal response problems.  Deriving the less common, more general 

surface energy balance (2.84) increases the flexibility and applicability of the design tool 

and methodology to be presented in this dissertation. 

2.2.1.2 Heat Transfer Coefficient 

The heat transfer coefficient e e HU C , given in equations (2.84) and (2.85) is typically 

calculated using a cold wall heat flux, qcw and recovery enthalpy, Hr, by, 

 2
0where , 0

2

cw
e e H

r

r i i w

i

q
U C

H

u
H r K h and h

 

  
 (2.86) 

The recovery factor, r, can be approximated by Pr  [106, 108], and is typically between 

about 0.82-0.85 for air.  Often times, the hot wall heat flux is known, qhw, in which case 

the hot wall heat transfer coefficient is calculated as, 

 
 

hw
e e H

r w

q
U C

H h
 


 (2.87) 

where hw is the enthalpy at the wall at an assumed wall temperature.  The assumption of 

radiative equilibrium at the surface is typically used to approximate wall temperature at 

the given hot wall heat flux.  The underlying assumption of radiative equilibrium 

temperature is that all the incoming energy is reradiated, neglecting the effects of 

conduction and ablation.  Ideally, there would be iteration between the surface 

temperature and the calculation of the hot wall heat transfer coefficient since radiative 

equilibrium results in surface temperatures higher than reality. 
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 Up to now the dependence of HC  on the actual mass transfer rate to the boundary 

layer has been ignored.  The assumption has been that HC  may be determined by the 

boundary layer edge conditions alone.  In practice, this is known to be incorrect, with the 

value of HC  being strongly dependant on the value of m , the total mass flux entering 

the boundary layer.  This total mass flux m is known as blowing and if the unblown ( m

=0) heat transfer coefficient is denoted as 
0HC , the dependence has been shown by data 

correlation and analysis to be represented by the following relation [104], 

 

0

ln(1 2 )

2

injH

H inj

BC

C B









 (2.88) 

2.2.1.3 Non-Dimensional Ablation Rates and Chemical Equilibrium  

Returning to equation (2.77), substituting in the expressions for the non-dimensional 

ablation rates (2.81), assuming equal diffusion coefficients, and solving for the mass 

fraction of element k at the wall gives, 

 
1

c g f e

w

c k g k f k k

k

B K B K B K K
K

B

    



 (2.89) 

Given the relative amounts of the chemical elements in the char and pyrolysis gas, the 

chemical and thermodynamic state of the gases adjacent to the ablating surface may be 

calculated using equilibrium relations.  For unequal diffusion coefficients, equation 

(2.77) contains two unknowns 
*

w wk kZ and K .  Fortunately, 
*

w wk kZ and K may be expressed 

in terms of the species partial pressures using equilibrium relations as, 

 

1

*

1

w

w

m
k

k ki i

ig

m
k ki i

k

ig i

K C P
P

F C P
Z

P F 













M

M

M

M

 (2.90) 
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Where kM is the molecular weight of element k, gM is the mean molecular weight of the 

gas phase, and F is the mean of 
iF    defined as,      

 
1

1

m

i i

i

m
i i

i i

P

F
P

F 










M

M  (2.91) 

Substituting (2.90) into (2.77) and using the definitions of the non-dimensional ablation 

rates in (2.81) gives, 

  *

1 1

w

w e g g

m m
ki i w g

ki i k g k g k

i i i k

C P P
B C P F Z B K B K

F 
 

      
M

M
 (2.92) 

The assumption of chemical equilibrium is the basis for both equation (2.89) and (2.92). 

It is also possible to calculate the species concentrations and hence the non-dimensional 

ablation rates using the species rate equations.  Using the rate equations would allow 

calculation of non-equilibrium ablation rates.  This would be especially important at low 

temperatures where the equilibrium assumption begins to break down.  In this 

dissertation, the equilibrium assumption is used exclusively and the incorporation of the 

non-equilibrium rate equations is left as future work. 

Typically, an equilibrium chemistry code such as Aerotherm’s Chemical Equilibrium 

Program (ACE) [113, 114] is used to solve (2.89) or (2.92) for the chemical state at the 

surface of the ablator.  A parametric table of the non-dimensional ablation rates along 

with the pressure, temperature, and relative amounts of the elements in the virgin, char 

and pyrolysis gas is input into ACE and a “surface thermochemistry” table is output 

which contains solutions for * w

w

m
T

i i

i

Z h and hw as a function of pressure, temperature, gB , 

and cB .  For equal diffusion coefficients and unity Lewis and Prandtl numbers the 

thermochemistry table contains hw as a function of pressure, temperature, gB , and cB .  
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  The char mass flux is computed using the value of cB  obtained during the solution 

of the in-depth and surface energy balances.  The amount of surface recession is related 

to cB  and hence the char mass flux by, 

 e e M c cU C B m S      (2.93) 

where  is the density at the surface where the recession is occurring and S  is the 

recession rate. 

 If the material experiences melting, and liquid layer removal, the liquid layer 

mass flux ( *m ) can also be calculated using the same chemical equilibrium, or kinetic 

procedure as defined for the char mass flux [27]. 

The pyrolysis gas flow rate, gm , is calculated from the conservation of mass and the 

governing decomposition model given in (2.23) and (2.7).  The pyrolysis gas and char 

enthalpies at the surface are both a function of the temperature at the surface.  The 

boundary layer gas enthalpy at the wall is a function of the surface temperature, pressure, 

and chemical species concentrations.  Calculating the pyrolysis gas enthalpy is a complex 

problem.  The simplest model is to assume that the pyrolysis gas is in thermal equilibrium 

with the char and compute the enthalpy as a function of temperature and pressure.  This 

assumption requires that the pyrolysis gas elemental composition be known.  The 

pyrolysis gas composition can be calculated based on measurements of the virgin and 

char elemental compositions as well as the virgin and char densities [27, 114].  With the 

elemental gas composition known, the thermodynamic properties can be determined 

assuming chemical equilibrium, or using detailed reaction kinetic relations [113, 114].  

2.2.2  Radiative Heat Flux 

Radiation away from the surface follows the non-linear Stefan-Boltzmann relation 

given as [115], 
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  4 4

rad ij s surr
out

q f T T   (2.94) 

Radiation from the boundary layer gas to the surface is a complex function of gas 

temperature, chemical composition, and vehicle geometry (which contributes to the shock 

shape around the body).  In this dissertation, the radiative heat flux input to the surface 

will be approximated by the Tauber-Sutton stagnation point relation for Earth and Mars 

atmospheric entries [116] given as,  

 ( )a b

r nq Cr f V  (2.95) 

The actual amount of radiation absorbed by the surface is governed by the surface 

absorptivity, and is related to the boundary layer gas radiation as, 

 rad in rq q  (2.96) 

The Tauber-Sutton relation in (2.95) has only been defined for entry in either Earth or 

Mars atmospheres and is valid over finite ranges of nose radius, velocity, and free stream 

density.  The valid ranges for these quantities are summarized in Table 2.1. 

Table 2.1:  Range of validity for the Tauber-Sutton relation 

 Earth Mars 

Lower Limit Upper Limit Lower Limit Upper Limit 

Velocity (km/s) 10 16 6.5 9 

Density (km/m
3
) 6.66x10

-5 
6.31x10

-4 
1.0x10

-4
 1.0x10

-3
 

Nose radius (m) 0.3 3.0 1.0 23.0 
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CHAPTER 3 

 ONE-DIMENSIONAL FINITE ELEMENT FORMULATION OF THE 

GOVERNING DIFFERENTIAL EQUATIONS, VERIFICATION, 

ASSUMPTIONS, AND LIMITATIONS 

3.1 The Finite Element Method 

The finite element method seeks to find approximate solutions to the governing 

differential equations of continuum problems.  Huebner, et. al., [58] define a continuum 

as body of matter either solid, liquid, or gas, in which some kind of phenomenon is 

occurring.  In a continuum problem of any dimension, the field variable, be it pressure, 

temperature, displacement, stress, etc., possesses an infinite number of values since it is a 

spatial function throughout the body.  The problem then has an infinite number of 

unknowns.  The finite element discretization process reduces the problem to one with a 

finite number of unknowns by dividing the continuum into elements and expressing the 

unknown field variables in terms of assumed known approximating functions within each 

element.  The approximating functions are called interpolation functions and are defined 

in terms of the nodal values of the field variables and their spatial coordinates within the 

element.  The nodal values of the field variable and the interpolation functions 

completely define the behavior of the field variable over the element.  The nodal values 

of the field variable become the unknowns of the problem and upon their solution along 

with the interpolation functions, define the field variable over the entire assemblage of 

elements and hence the solution over the continuum. 

The power and advantage of the finite element method over other numerical 

procedures comes from the ability to formulate solutions for individual elements before 

putting them together in a global system to represent the entire continuum.  At its core, 

the finite element method takes a complex problem and reduces it to a series of much 

simpler problems.  These solutions over the element are referred to as the element 
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equations.  There are two main methods by which to formulate the element equations for 

individual elements, the variational approach and the method of weighted residuals. 

 The variational approach relies on using calculus of variations and involves 

rendering a functional stationary.  In solid mechanics, the functional turns out to be the 

potential energy, complimentary energy, or some variant of these.  The variational 

approach can only be used when a corresponding variational principle exists, as in the 

examples stated for solid mechanics.  For heat transfer problems, anything more complex 

then the basic nonlinear heat conduction equation does not possess a variational principle 

and therefore requires some other means to obtain the element formulation.  Since the 

problem being solved here is highly nonlinear and includes numerous additional energy 

terms associated with the ablation process, no variational principle exists.  Therefore, the 

method of weighted residuals will be used to derive the element equations. 

Regardless of the method used to derive the element equations, the finite element 

method follows a logical, step-by-step process.  The logical steps of the finite element 

method will be briefly introduced here and discussed in greater detail in the sections that 

follow. 

The first step in the finite element method is to discretize the continuum.  That is, 

the solution region needs to be divided into a series of elements.  The solution region may 

be divided by any number or types of elements, usually determined by engineering 

judgment.   

The second step in the finite element method is to select interpolating functions.  

Interpolation functions will be developed further in Section 3.2.2.   

The third step is to derive the element equations.  In this dissertation, the method of 

weighted residuals will be used due to the nature of the differential equations being 

solved.   

The fourth step is to assemble the element equations into a global system of 

equations.  A unique feature of the finite element method is that the system equations are 
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generated by assembling individual element equations.  In contrast, in the finite 

difference method the system equations are generated by writing individual nodal 

equations.   

The fifth step in the process is to impose the boundary conditions of the problem on 

the system of equations.  This is the step where known values of the nodal variables are 

assigned and surface energy balances are applied.   

The final step is to solve the system of equations.  The set of equations that need be 

solved can be linear steady state, non-linear steady state, linear transient, or non-linear 

transient.  The ablation thermal response problem being solved here is of the non-linear 

transient type.  Non-linear solution algorithms such as the Newton-Raphson method and 

the non-linear conjugate gradient method are common methods used to solve the non-

linear set of equations.         

3.1.1  The Method of Weighted Residuals 

The method of weighted residuals is a general technique for obtaining approximate 

solutions to linear and non-linear partial differential equations [58, 59].  There are two 

steps in applying the method of weighted residuals.  The first involves assuming a 

functional form of the dependent variable which satisfies the differential equation and 

boundary conditions.  In the case of the ablation problem, the dependent variable is the 

temperature.  Substituting this assumed function into the differential equation and 

boundary conditions results in an error.  This error or residual is then required to vanish 

in an average sense over the solution domain. 

Solving the equations developed in step one transforms the assumed function to a 

specific function, which becomes the sought after approximate solution.  To be more 

specific, consider the following general differential equation,    

 ( ) 0A f    (3.1) 
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where A is a differential operator, f is the forcing function, and  is the unknown field 

variable.  Let the domain of this differential equation be denoted as   bounded by the 

surface  .  The function f is a known function of the independent variables and the 

boundary conditions are prescribed on  .  Applying the method of weighted residuals, 

the exact solution  , is approximated by  given as, 

0

1

m

i i

i

N N C


        (3.2) 

Where N0 and Ni are the assumed functions, called interpolation, or shape functions and 

the Ci are either unknown functions or parameters of one of the independent variables.  

The upper limit m specifies the number of known Ni functions and the number of 

unknown Ci functions.  The functions N0 and Ni are chosen in such a way as to satisfy the 

boundary conditions.  When (3.2) is substituted back into (3.1), it is likely that (3.1) will 

not be satisfied and there will be some error, or residual R which results from 

approximating  by . 

( )A f R       (3.3) 

Step two of the method of weighted residuals is to solve for the Ci unknowns such 

that R is small over the entire solution domain.  This is accomplished by forming a 

weighted average of the error and requiring that it vanish over the solution domain. 

( ) 0, 1,2,....i iA f W d R W d i m
 

              (3.4) 

Therefore m, linearly independent weighting functions, Wi, are chosen such that 0R  .  

In order to obtain a solution for the unknown Ci’s and hence an approximation for the 

unknown variable  , we must choose the form of the weighting functions. 

 There are a variety of weighting functions to choose from, however, one of the 

more traditional used in deriving finite element equations is the Bubnov-Galerkin method 

[58].  The Bubnov-Galerkin method, or more commonly called Galerkin’s method, 
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chooses the weighting functions to be the same as the functions used to approximate  , 

in other words i iW N .   Therefore Galerkin’s method requires that, 

  ( ) 0, 1,2,.....,iA f N d i m


       (3.5) 

The method of weighted residuals and hence Galerkin’s method deal with the entire 

solution domain.  However, because (3.1) holds for any point in the domain, it also holds 

for any number of points which define a subdomain, or element of the whole domain.  

For this reason Galerkin’s method may be applied to a single element to define a local 

approximation of the governing equations.  The familiar finite element representations of 

the unknown variable now become available and the functions Ni become the 

interpolating functions defined over a single element ( )e

iN  and the Ci’s are the values of 

the unknown parameters which may be the nodal values of the dependent variable, or its 

derivative.  The superscript notation (e) will be used throughout to denote when a 

function or parameter is defined over only a single element. 

3.1.2  Galerkin’s Weak Form of the Governing Partial Differential Equations 

The goal is to transform the governing differential equations developed in Chapter 2 

for the ablation problem into a form suitable to be solved by the finite element method.  

To accomplish this Galerkin’s method will be used.  The first step is to assume a 

functional form for the temperature, which is the dependent variable in this application.  

Hence we write, 

( )

1

n
e

i i

i

T N T


     (3.6)  

Next we write the weighted residual statement of equation (2.46) with i iW N  for 

one element, where “i” is the number of nodes in one element. 
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(3.7) 

It is desirable to reduce the order of the equation in (3.7) which reduces the inter-

element continuity requirements on the interpolation functions.  To eliminate the second 

derivative with respect to temperature, the first term in (3.7) must be integrated by parts.  

Noting that in one-dimension d dx  gives, 

2 2 2

1 11

2 2 2

1 1 1

( ) ( ) ( )

( )( ) ( )

( )
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S SS

S S S

x

S S S

x x xe e e

i
i x x S g i S

S S Sx x xix

x x xee e
g

p i S g i S p i S

S Sx x x

NT T
N k k dx h h N dx

x x x t

hT T
S c N dx m N dx c N dx

x x t



 

  
  

   

 
   

  

 

  
 (3.8) 

Integrating by parts reduces the order of differentiation on the governing equation and 

reduces, or weakens the continuity restrictions on the interpolating functions.  Therefore 

the integral equation in (3.8) is referred to as Galerkin’s weak form.  Integration by parts 

also introduces the natural boundary conditions into the formulation which are 

represented by the first term of (3.8). 

Equation (3.8) can be simplified by using the approximate definition for the 

temperature in an element given in (3.6), where its derivative can be expressed as, 

( )

1

e n
i

i

iS S

T N
T

x x

 


 
     (3.9) 

Further simplification can be achieved by expressing (3.6) and (3.9) in matrix notation 

given as, 
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   

   

( )

( )

Te

e
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S

T N T

T
B T

x








    (3.10) 

The matrix N is called the temperature interpolation matrix and the matrix B is called the 

temperature gradient interpolation matrix.  B is calculated for a general three dimensional 

problem by, 

 
 

1 2

1 2

1 2

r

r

r

dN dN dN

dx dx dx

dN dN dN
B

dy dy dy

dN dN dN

dz dz dz

 
 
 
 


 
 
 
  

 (3.11) 

where r is the number of nodes in the element. 

Similarly, the pyrolysis gas enthalpy and its derivative with respect to xS over an 

element can be expressed as, 

 

   

   

( )

1

( )

1

i

i

n
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g i g g

i
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h B h

x x





 

 
 

 




 (3.12) 

Substituting (3.10) and (3.12) into (3.8) gives Galerkin’s weak form of the governing 

differential equations for one-dimensional ablation thermal response in matrix form, 

 

 

              

          

2 2 2

1 1 1

2 2 2

1 11
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x x x

T T
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x x xe
T T

x g g S g S

S x xx

c N N T dx B k B T dx S c N B T dx

T
N k m B N h dx h h N dx

x

 



 


         

  

 
(3.13) 
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3.2 Element Equations 

With the governing differential equations written in Galerkin’s weak form, the 

individual element equations can be expressed and the natural boundary condition term 

introduced by the integration by parts procedure may be evaluated.  Formation of the 

element equations requires examination of not only the surface boundary conditions, but 

also the appropriate form of the interpolations functions.  Before the interpolation 

functions can be specified, the solution domain must be discretized into elements and the 

element topology defined. 

3.2.1  Discretization and Element Topology  

In this Chapter we are dealing with a one-dimensional problem which can be shown 

schematically in Figure 3.1.  In this example, the solid is broken down, or discretized, 

into six elements of equal length with seven nodes.  The global numbering scheme for the 

nodes and elements is arbitrary.  However, following a sequential numbering scheme 

minimizes the global matrix bandwidth and is beneficial from a computer memory 

storage and computation time standpoint [58].  The process of discretizing a given 

geometry, commonly called meshing, is highly dependent on the particular problem  

 

Figure 3.1:  One-dimensional finite element discretization 
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being solved.  Some problems can be solved without a great loss in accuracy with only a 

few elements and nodes.  Other problems, where the unknown variables are changing 

rapidly as a function of both time and space, require a much finer mesh.  A general rule 

of thumb for finite element meshing of thermal problems is to increase the number of 

nodes and elements in regions where there are large temperature gradients.  In the context 

of the ablation thermal response problem being solved here, that region would be near the 

heated surface.   

Selecting the proper mesh density is a tradeoff between solution accuracy, 

computational time, and convergence.  For the ablation problem, a proper mesh density is 

developed based on past experience in solving problems where the gradients are large, 

the material properties are functions of temperature, and the boundary conditions are non-

linear.  Increasing the number of elements reduces the spacing between nodes, which 

increases the solution accuracy.  This is due to the fact that the approximation to the 

differential equation introduced by the interpolation functions becomes closer to the exact 

solution as the distance between nodes decreases.  There is a limit as to how fine a mesh 

can be analyzed.  Increasing the number of elements in a problem requires additional 

computer memory in order to store the data associated with those elements.  In addition, 

computational time is adversely affected by the number of elements since each element 

added to the system introduces more unknowns that must be solved.  Convergence can 

also be an issue in selecting mesh size and will be further explored in section 3.5.  Once 

the geometry has been satisfactorily meshed, the element topology is defined.    

On the element level, topology refers to the ordered numbering of the nodes within an 

element.  On a more global scale, topology is the record of which nodes belong to each of 

the elements, in other words it defines how the elements are connected to one another.  

Each element has its own local numbering scheme as shown in Figure 3.1, as well as a 

global numbering scheme.  For one-dimensional elements, the nodes are numbered 1 and 

2, for two-dimensional quadrilaterals, the nodes are numbered 1 through 4, and for three-
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dimensional hexahedral elements, 1 through 8.  Table 3.1 shows the relation between the 

local node numbers within an element and the global node numbering scheme for the 

example mesh in Figure 3.1. 

Most commercial finite element programs accomplish both the task of meshing the 

geometry and determining the element topology automatically within the software.  For 

example, in MSC software’s PATRAN Thermal, the user meshes the geometry using 

built-in functions within the software, then internally, the software numbers the nodes 

and elements and determines the connectivity, or topology.  In developing the finite 

element code for this dissertation, the geometric meshing was performed using PATRAN 

Thermal.  After meshing, a data file containing the element and nodal coordinate data as 

well the element topology was exported from PATRAN and is used as input to the code 

developed here.  This is the first step in assuring compatibility with PATRAN for design 

applications.  The next step is to remap results back to PATRAN and NASTRAN for use 

in other thermal and structural analyses.  The mesh from other software packages may 

also be used; however a conversion routine would be needed to convert to the proper 

format. 

Table 3.1:  Topology for the example finite element mesh in Figure 3.1 
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3.2.2  Interpolation Functions 

Once the finite element mesh and topology have been defined, the behavior of the 

unknown field variable over each element must be approximated.  The behavior of the 

temperature over the element is approximated by a continuous function expressed in 

terms of the nodal values of the temperature and the nodal spatial coordinates.  It is the 

collection of these approximating functions over the solution domain that provides the 

piecewise approximation to the temperature and is the heart of the finite element method.  

These interpolation functions will now be more thoroughly defined. 

   In order to ensure that the approximate solution converges to the correct solution as 

the number of elements increases and to ensure that the expression for the variation of 

temperature across an element shown in (3.6) holds, the interpolation functions, Ni, must 

meet certain requirements.  Rewriting (3.6) in a more general form, 

 
( ) ( ) ( ) , 1,2,....

T
e e eN e m      (3.14) 

where  is any unknown field variable.  The interpolation functions, N
(e)

 must be chosen 

such that the following requirements are met [58, 117]: 

1. At the element boundaries, the field variable   and any of its partial 

derivatives should be one order less than the highest-order derivative 

appearing in the weak form of the governing differential equations. 

2. All uniform states of   and its partial derivatives up to the highest order 

appearing in the weak form of the governing differential equations should 

have representation in 
( )e when, in the limit, the element size shrinks to zero. 

These requirements were put forth in reference [117], justified in reference [118], and are 

known as the compatibility and completeness requirements, respectively.  Since the 

highest order derivative that appears in (3.13) is a first-order derivative, the simplest 
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interpolation function that satisfies both the compatibility and completeness requirements 

is a linear function. 

Interpolation functions can take a variety of forms, but generally, polynomials are 

chosen due to the ease at which they can be manipulated mathematically.  In one 

dimension, a general n
th

 order polynomial can be written as, 

 
1

( ) ,
nq

i

n k

k

P x x i n


   (3.15) 

 Where  1nq n  and for a  linear polynomial, n = 1, which gives, 

 1 1 2( )P x x    (3.16) 

The order of the polynomial used and the number of degrees of freedom assigned to the 

element are related.  Notice from (3.16) that there are two unknown coefficients which 

means there needs to be two independent equations to uniquely define them.  The 

unknown field variable  , expressed in terms of the polynomial in (3.16) over the 

element gives, 

 
( ) ( ) ( )

1 2( )e e ex x     (3.17) 

Physically, (3.17) gives the linear variation of  , in terms of the coefficients i , which 

are known as the generalized coordinates of the element.  The generalized coordinates are 

independent parameters and describe the magnitude of the variation of   across the 

element, where the order of the polynomial describes the shape of the variation.  The 

coefficients ( ) ( )

1 2

e eand  , may then be expressed in terms of the nodal values of   and 

the spatial coordinates of each node by evaluating (3.17) at each node as, 

 
1 1 2 1

2 1 2 2

x

x

  

  

 

 
 (3.18) 

For convenience, (3.18) can be placed in matrix notation as, 
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    

     1 1 1

2 2 2

1
where, , ,

1

G

x
G

x

 

 
 

 



     
       
     

 (3.19) 

Solving (3.19) for the generalized coordinates gives, 

      
1

G 


  (3.20) 

If the original polynomial expression for  (3.17), is written in terms of the product of a 

row vector and a column vector we can write, 

 

  

 

( )

where 1

e P

P x

 



 (3.21) 

Substituting (3.20) into (3.21) yields, 

 

    

    

1( )

1
where

e P G

P G N

 








 (3.22) 

The matrix N, contains the interpolation functions we seek.  Using the symbolic matrix 

manipulation capability of Mathematica [119], the interpolations functions can be found 

by their definition in (3.22) as, 

 
2 1

1 2

1 2 2 1

,
x x x x

N N
x x x x

 
 

 
 (3.23) 

The procedure outlined above is general and will work for one, two, or three 

dimensional problems.  The result for the interpolation functions in one-dimension is 

relatively simple and computing the inverse of the G matrix is fairly simple; however, 

moving to two and three-dimensions makes calculating the inverse more challenging, and 

the resulting relations become complex functions of the nodal coordinates.  For 
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convenience and to simplify the form of the interpolation functions, these terms can be 

expressed in terms of natural coordinates.  Natural coordinates are local coordinates 

based on the element geometry and who’s nodal coordinates range between zero and 

unity.  Natural coordinates describe the location of a point within an element in terms of 

that elements nodal coordinates.  For the one dimensional problem presented above the 

local coordinates are,  x1=0, and x2=L, where L is the length of the element.   Substituting 

the local coordinates into (3.23) and rearranging gives, 

 

 

1 21 ,

1

in matrix form

x x
N N

L L

x

L
N

x

L

  

 
 

  
 
  

 (3.24) 

Each of the interpolation functions in (3.24) varies from zero to unity, which is the 

desired result.   Both components of the interpolation matrix in (3.24) are simple 

polynomial expressions which satisfy the compatibility and completeness requirements.  

Furthermore, they can be easily differentiated to obtain the gradient interpolation matrix 

B as, 

  
1 1

B
L L

 
  
 

 (3.25) 

The interpolation functions and gradient matrix for the one dimensional problem have 

been developed.  Further development of the interpolation functions and gradient 

matrices in two and three dimensions will be presented in Chapter 4.  
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3.2.3  Surface Boundary Conditions 

Returning back to Galerkin’s weak form of the governing differential equation in 

(3.13), definitions for every term have been described with the exception of the natural 

boundary condition term that was introduced as a result of the integration by parts.  With 

the interpolation functions defined, the natural boundary condition terms may now be 

evaluated.  The boundary condition term is evaluated at the element end points where the 

interpolation functions are either zero or unity.  Using the definition of the interpolation 

functions and the local coordinates given in (3.24), the natural boundary condition term is 

evaluated as, 
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 (3.26) 

Placing (3.26) in matrix form gives, 

 
 

x

S

bc

x

S

dT
k

dx
Q

dT
k

dx

 
 
 
 
 
 

 (3.27) 

  

The terms at each of the nodal points in (3.26) and (3.27) physically represent the net 

amount of energy conducted into the material from the surroundings.  

Assembly of the element equations into the global system of equations will not be 

fully discussed until section 3.3; however, we state here without proof that the boundary 

condition terms for all interior nodes will cancel leaving only the boundary condition 

terms on the external nodes exposed at the surface.  Referring back to Figure 3.1, if it is 

further specified that the back wall is insulated, then there is no heat conducted into the 
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solid from the surroundings at that point and therefore the only term left is the one on the 

heated surface.  Returning now to the surface energy balance given in equation (2.84) and 

the simplified form for equal diffusion coefficients in (2.85), the link between the finite 

element method and the ablation surface boundary conditions is now evident.         

3.2.4  Final Form of the Element Equations 

The element equations can now be written substituting the definition of the 

boundary condition term and changing the integration bounds to use the local 

coordinates, 

 

              

          
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 
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 

        

  

 
(3.28) 

Further simplification of (3.28) can be achieved by combining the matrix multiplications 

and integrations into single matrices as, 

            
( )( ) ( ) ( ) ( ) ( )ee e e e e

c sC T K K T R    (3.29) 

Where the matrices in (3.29) are defined as, 
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 (3.30) 
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and the vectors in the residual vector are defined as, 
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 
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 

   

   





 (3.31) 

The matrices C, Kc, and R are standard matrices that appear in every finite element 

formulation for heat transfer [58, 59, 61].  The matrix C, is referred to as the capacitance 

matrix, Kc is the conductivity matrix, and R is the load vector.  The matrix sK and the 

matrices Qp and Qd in the load vector are specific to the finite element formulation of the 

ablation thermal response problem.  sK arises because the finite element grid moves as 

the material recedes and it is analogous to a convection matrix that would arise from the 

finite element formulation of a fluid flow problem.  Hence, sK will be referred to as the 

convection matrix.  Qp is the load vector due to the pyrolysis gas flow through the 

material and will be referred to as the pyrolysis load vector.  Qd contains the term 

( )gh h  which is known as the heat of decomposition; hence Qd will be referred to as the 

decomposition load vector.     

The matrix multiplications and integrations for (3.30) and (3.31) are provided in 

Appendix B.  For simplicity, the components of the matrices will be referred to 

symbolically herein.  For example the conductivity matrix for an element would be 

referred to as, 

   11 12

12 22

c c

c

c c

K K
K

K K

 
  

  
 (3.32) 
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Notice that the conductivity matrix is symmetric.  Also note that the negative signs are a 

result of the matrix multiplication and integration. 

3.3 Global System of Equations 

With the element equations defined, the task is now to take all of the element 

equations and assemble them into a global system of equations.  The assembly procedure 

developed in [58 and 59] is followed here and is based on the insistence of compatibility 

at the element nodes.  At the nodes, where elements are connected, the value of the 

unknown field variable is the same for all elements connected by that node.  This rule 

forms the basis for the assembly procedure.    

3.3.1  Assembly of the Element Equations 

The element matrices and load vectors developed in section 3.2 can simply be 

thought of as submatrices and subvectors for the entire global system.  The assembly 

procedure integrates the element submatrices and subvectors together.  This is not done in 

a random fashion, since matrix addition is only defined for matrices and vectors of the 

same size.  Therefore, before the element matrices can be added, they must be expanded 

to the size of the global system matrix.  In Figure 3.1 there are 6 elements and 7 nodes.  If 

the unknown field variable is the temperature, then each node has one degree of freedom 

and therefore for the 7 node example there needs to be 7 equations.  Therefore the system 

matrix would be a square n x n matrix with n=7.  The expanded element matrices are 

constructed using the original element matrices, only the coefficients of the original 

matrices are placed into the proper position within the expanded matrix using the element 

topology.  For example consider the conductivity matrix for element number 3 in Figure 

3.1.  Using the topology defined in Table 3.1 for element number 3, the relationship 

between the local coefficients in the local element conductivity matrix and the global 

expanded conductivity matrix can be obtained directly, 



 90 

 

 

 

11 33

22 44

12 34

21 43

(3)

(3)

(3)

(3)

c c

c c

c c

c c

Local Global

K K

K K

K K

K K









 (3.33) 

In matrix notation, using the expanded matrix, the contribution of element number 3 to 

the global system becomes, 

 
 
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 
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 
 
 
 
 

 (3.34) 

The above procedure can be followed for all of the elements in Figure 3.1 and the global 

conductivity matrix is then just the sum of all the expanded element conductivity 

matrices which gives, 
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(3.35) 

For clarity, the superscript numbers in parenthesis refer to the element from which that 

coefficient came.  This procedure is the same for all of the element matrices and applies 
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to the element load vectors as well.  Writing the assembly procedure mathematically 

gives, 

 

   
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


 (3.36) 

Where  K and R  are any matrix and load vector and m is the number of elements in the 

system. 

The assembly procedure was demonstrated for a simple 6 element example.  In 

practice, there will be many more elements to assemble.  Typically the assembly 

procedure is automated within the computer program used to solve the global system of 

equations.  The assembly procedure summarized by Huebner, et. al. [58] is as follows: 

1. Setup n x n and n x 1 matrices with zero entries, where n is the number of 

system nodal variables. 

2. Starting with one element, transform the element equations from local 

coordinates to global coordinates if these two coordinate systems are 

coincident. 

3. Perform any necessary matrix operations on the element matrices. 

4. Using the element topology relating the local element node numbers to the 

global node numbers, change the subscript indices of the coefficients in 

the element matrices and the single subscript index of the element load 

vectors 

5. Insert those terms in the corresponding n x n and n x 1 matrices in the 

locations designated by their new indices.  Each time a term is placed in a 

location where another term has already been placed, it is added to 

whatever value is there. 
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6. Return to step 2 and repeat this procedure for all the elements in the 

system.  The result will be the global system of equations expressed 

mathematically as, 

     
1 1n x n xn x n

K x R  (3.37) 

After assembly, the global system of equations becomes, 

           c sC T K K T R    (3.38) 

The system of equations in (3.38) are in the same form as the element equations in 

(3.29) and the matrices retain their meaning, only now they are all global matrices and 

vectors.  The system of equations in (3.38) are highly non-linear for several reasons.  

First, the surface energy balance on the heated surface boundary includes re-radiation to 

the surroundings.  Radiation to the surroundings is a function of the nodal unknown 

temperature on the boundary raised to the fourth power, producing a non-linear response.  

Second, the material properties and ablation parameters are functions of temperature 

which also causes the response to be non-linear.  Specifically, the thermal conductivity k, 

specific heat cp, hw, hg, h ,
*

iZ , 
'

gB , and '

cB are functions of temperature.  
*

iZ ,
'

gB , 

'

cB , and hg are also functions of pressure, but this pressure dependence does not 

contribute to the nonlinearity since the pressure is constant at any given point in time.  

Finally, the density, which in most heat transfer problems is a constant, is a temperature 

dependant variable in the ablation problem.  

3.4 Nonlinear Transient Solution 

The system of equations presented in (3.38) is a set of non-linear equations in which a 

transient solution is sought.  To solve the transient problem, a time marching scheme is 

needed.  There are two main methods used to solve transient finite element problems, the 

method of mode superposition and numerical integration [58].  Mode superposition is 
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better suited for second-order matrix equations than for first-order equations, and is 

widely used in structural dynamics.  The matrix equations here are first-order and since it 

is also desirable to output results at discrete points in time, a numerical integration time 

marching scheme will be used. 

3.4.1  Numerical Integration 

Numerical integration relies on recurrence relations developed by making finite 

difference approximations in the time domain.  Let tn denote a time in the transient 

response, such that 1n nt t t    , where t is the time step.  If an intermediate time is 

defined within a time step, denoted  t , then a general family of algorithms results such 

that nt t t    , where 0 1  [58, 120].  The system of equations is then evaluated 

at time t  and written in a form to indicate which matrices have a functional dependence 

on temperature and time, 

             ( ) ( , ) ( , ) ( , )c sC T T K T t K T t T R T t      
      (3.39) 

The subscript  indicates the temperature vector is evaluated at time  .  Defining the 

temperature vector and the derivative of the temperature with respect to time as, 
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 (3.40) 

Substituting (3.40) into (3.39) gives, 
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(3.41) 
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Where  
1n

T


 and  T


 are unknowns and  
n

T is known from the previous time step.  

The family of algorithms represented by (3.41) can be classified as either explicit or 

implicit based on the value of  .  If  =0, the algorithm is explicit and reduces to a set of 

uncoupled algebraic equations.  If  >0, the algorithm is implicit and requires solution of 

a set of coupled algebraic equations.  Hughes [121] shows (3.41) to be unconditionally 

stable when 1
2

  .  When 1
2

  , (3.41) becomes conditionally stable and is subject to 

time step restraints.  In other words, the time step must be chosen such that it is smaller 

than a critical time step given as, 

 
2 1

1 2
cr

m

t
 

 


 (3.42) 

where m is the largest eigenvalue of the system.  Since the solution of these equations 

will be used in a repetitive design calculation, it is desirable to avoid issues related to the 

time step and make the solution insensitive (from a computational standpoint) to the time 

step chosen.  Therefore the fully implicit, or backward difference algorithm was chosen 

for this implementation ( =1).  With  =1, the transient system of equations becomes, 

 

       

    

   

1 1 1 1

1 1

1

1
( , ) ( , ) ( )

1
( ) ( , )

where

c n s n n n

n nn

n

K T t K T t C T T
t

C T T R T t
t

T T

 





   

 



 
      

 




 (3.43) 

3.4.2  Newton-Raphson Method  

Since the coefficient matrices in (3.43) are functions of temperature and therefore 

are nonlinear, an iterative solution must be used.  The Newton-Raphson method is an 

iterative scheme used to solve non-linear equations and is one of the most common 

methods for solving nonlinear sets of equations due to the ease at which it can be 
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implemented.  The details of the Newton-Raphson Method are given in Appendix A [58, 

109, 122, 123].      

3.4.3  Sparse Matrix Solver PARDISO 

The matrices developed as a result of the global matrix assembly process contain a 

large number of elements that are zero.  In mathematical terms, this is known as a sparse 

matrix.  In order to efficiently utilize computer memory, only the non-zero elements of 

the matrix should be stored and manipulated by the solver.  To accomplish this, the 

matrix is stored in Compression Sparse Row, or CSR sparse matrix format and the solver 

PARDISO is used to solve the linear matrix that arises from the Newton-Raphson 

method.  PARDISO is an acronym which stands for Parallel Sparse Direct Solver and is 

included as part of the Intel Math Kernel Library [124].      

3.5 Comparison of the One-Dimensional Analysis with FIAT 

In this investigation, a numerical procedure for the solution of the one-dimensional 

finite element ablation problem and has been written in a mixture of C++ and 

FORTRAN.  C++ was chosen to control the data management and input/output 

operations of the program over FORTRAN because of its superior capabilities in this 

area, albeit at the expense of some efficiency.  The matrix computations and solver are 

written in FORTRAN due its superior numerical computation speed and the ease at 

which computations can be parallelized.  

In this section the present tool is compared with the industry standard, one-

dimensional finite difference tool FIAT for series of verification cases that exercise 

various components of the code.  The approach taken was to exercise this new analysis 

method starting with a simple case then moving forward to validate cases with increased 

complexity.  The first case is a simple transient conduction problem where the material is 

Titanium, a non-ablator.  The second case examines reinforced carbon-carbon, a material 
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that will ablate, but is not a pyrolyzing material.  The third case analyzes MX4926N 

carbon phenolic which is a material that will both pyrolyze and ablate.  A low peak heat 

flux entry trajectory is used for this case because it will not cause the material to ablate 

and only pyrolysis will occur.  The final verification test case is an arc jet test boundary 

condition on MX4926N carbon phenolic.  The arc jet test condition is a severe test case 

that will cause the material to both ablate and pyrolyze.  The boundary conditions in all 

cases, except the arc jet case, consist of an applied heat flux as a function of time and 

radiation away from the surface.  In the arc jet case the applied heat flux is a constant and 

there is also radiation away from the surface.  For all the cases run, both codes have the 

same number of computational nodes, but the physical depth of the interior nodes varies 

slightly.  A summary of the test problems and their conditions is shown in Table 3.2 and 

the corresponding heating boundary condition profiles for the first three cases are 

provided in Figure 3.2.  The geometry chosen for each verification case consisted of a 

one-dimensional slice through the material which was 7.62cm in length and had 39 

elements and 40 nodes.  The same number of nodes was used for the FIAT solution in 

each verification case.    

Table 3.2:  Verification case summary 

Case Description Material Boundary Conditions 
1 Entry trajectory Titanium (Ti-6Al-4V), 

thermal properties a 

function of temperature 

Input convective and radiative heat 

flux a function of time, surface 

radiation away from the heated 

surface, no pyrolysis, no ablation  

2 Entry trajectory Reinforced Carbon-

Carbon, thermal 

properties a function of 

temperature 

Input convective and radiative heat 

flux a function of time, surface 

radiation away from the heated 

surface, no pyrolysis, ablation 

3 Entry trajectory MX4926N Carbon 

Phenolic, thermal 

properties a function of 

temperature 

Input convective and radiative heat 

flux a function of time, surface 

radiation away from the heated 

surface, pyrolysis, no ablation 

4 Arc jet test, i.e. 

constant heat flux 

MX4926N Carbon 

Phenolic, thermal 

properties a function of 

temperature 

Input convective and radiative heat 

flux constant, surface radiation away 

from the heated surface, pyrolysis, 

ablation 
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Figure 3.2:  Verification case heat flux profiles 

3.5.1  Verification Case 1:  Low Peak Heat Flux Trajectory, No Ablation, No 

Pyrolysis  

The first verification case is a simple heat conduction problem which eliminates the 

complicating effects of surface recession and pyrolysis.  The goal of this case was to 

demonstrate that the finite element codes’ conduction model and the non-linear sparse 

matrix solver were functioning correctly.  The non-linearity in the problem arises due to 

the surface radiation boundary condition and the thermal properties that are functions of 

temperature.  

The material chosen for this verification run was Ti-6Al-4V titanium alloy, which is a 

metallic, non-ablative material.  The heating environment consisted of a simulated 

trajectory containing both convective and radiative heating.  The peak heat flux for this 

trajectory is 73 W/cm
2 

which is low enough to avoid the complicating effects of melting. 

The heat flux was applied over 160 seconds, and was followed by a cool down period 

of 640 seconds where surface radiation away was the only active boundary condition.  
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Comparison of the time history of the surface temperature and selected in-depth 

temperatures for the present tool with FIAT is shown in Figure 3.3.  In Figure 3.3, there 

is no difference in temperature between the present tool and FIAT.  This case validates a 

number of features in the present tool.  It validates the internal conduction calculations 

and the implementation of the non-linear solver.  This comparison also validates the 

application of boundary conditions and the interpolation of the temperature dependent 

material properties.       

 

Figure 3.3:  Temperature comparison for Titanium alloy, 73 W/cm
2
 peak heat flux   

3.5.2  Verification Case 2:  Moderate Peak Heat Flux Trajectory, With Ablation, No 

Pyrolysis   

The second verification case analyzes a reinforced carbon-carbon specimen.  This 

case demonstrates that the present tool accurately calculates surface recession and 

exercises the code’s moving grid scheme in the absence of the complicating effects of 

decomposition and pyrolysis gas flow.  In this case, there was no radiative heating input 

as a surface boundary condition, only convective heating input as a simulated trajectory.  

The peak heat flux was 200 W/cm
2
 and was chosen so that the material would reach a 
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temperature regime where recession would occur.  The results from this analysis match 

closely to those generated by FIAT.  A graphical comparison of the temperatures is 

provided in Figure 3.4 

 

Figure 3.4:  Temperature comparison for reinforced carbon-carbon, ablation, no pyrolysis 

The root mean square (RMS) errors for the surface and in-depth temperatures 

over the entire 800 second trajectory are summarized in Table 3.3.  The percent 

difference in peak temperature for the surface and the selected in-depth locations are 

given in Table 3.3 as well.  The total recession predicted by the present tool matches the 

total recession predicted by FIAT well.  A comparison of the recession and recession rate 

is provided in Figure 3.5.   The recession rates also match, albeit there is some jaggedness 

in the FIAT recession rate.  This is an artifact of calculating the rate after the fact using 

the FIAT recession output which does not contain enough significant figures to provide a 

smooth recession rate.  The recession calculated by the present tool was 1.434mm, and 

that calculated by FIAT was 1.435mm.  This case demonstrates that the present tool  

Table 3.3:  Temperature error and percent difference in peak temperature 

 Surface  1.5 cm  2.6 cm  3.6 cm  4.6 cm  

RMS 11.7°C 13.4°C 14.3°C 13.5°C 12.5°C 

Peak diff. 0.65% 2.31% 3.46% 3.25% 2.79% 
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Figure 3.5:  Recession and recession rate comparison for reinforced carbon-carbon, 130 W/cm
2 

is calculating B
’
c and using it correctly in the surface boundary conditions. 

It is important to point out a significant difference between the present tool and 

FIAT.  In FIAT, the set of nodal equations developed do not solve for the nodal 

temperatures, but solve for the nodal heat flux.  FIAT forms the surface energy balance 

given in (2.85) which has been repeated here for convenience as (3.44).  The left hand 

side of (3.44) is the net conductive flux into the material at the surface.  For each iteration 

within a given time step, FIAT solves for this conductive flux at the surface.  FIAT uses  

  *

e e H sr sw c c g g w rad rad
out in

dT
k U C H h B h B h B h q q q

dx
             (3.44) 

the conductive flux at the surface as a boundary condition for the in-depth solution.  The 

in-depth solution in FIAT simultaneously solves for each of the nodal heat fluxes.  Then, 

the nodal temperatures are calculated using Fourier’s law.  The resulting surface 

temperature is fed back into the surface energy balance to update the terms that are 

functions of temperature.  This series of calculations is repeated until convergence is 

achieved.  In the present tool, the surface energy balance is included directly in the matrix 

Time (sec)

R
e

c
e

s
s
io

n
ra

te
(m

m
/s

)

R
e

c
e

s
s
io

n
(m

m
)

0 50 100 150 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FIAT Sdot (mm/s)

FIAT S (mm)

Present Sdot (mm/s)

Present S (mm)



 101 

 

 

equations which solve simultaneously for the nodal temperatures.  The boundary 

condition terms that are functions of temperature are updated every iteration and the 

simultaneous solution is repeated.  This process continues until convergence is achieved.     

 While the two methods are fundamentally similar and reach the same desired 

result of computing temperatures, the numerical path taken to achieve that goal is 

different.  This difference makes it unlikely that the present tool and FIAT will achieve 

an exact match for the temperatures.  If the surface temperatures don’t match exactly, 

then as a result, the recession and recession rates will be slightly different.  If different 

amounts of material are being removed from the surface, the in-depth temperatures will 

be affected since there is a different amount of thermal mass in each mesh.  Note 

however that the character of the curves is the same. 

3.5.3  Verification Case 3:  Low Peak Heat Flux Trajectory, No Ablation, With 

Pyrolysis  

Comparison of the temperatures for the present tool with FIAT for a low peak heat 

flux trajectory is shown in Figure 3.6.  The material chosen for this verification run was 

MX4926N carbon phenolic, which is a high density carbon based ablator.  The carbon 

phenolic was 7.33cm thick and was stacked on top of 0.635cm of Ti-6Al-4V titanium 

alloy.  The peak heat flux of 110 W/cm
2
 was not high enough in this case to cause the 

material to recede, but was high enough to cause material decomposition and pyrolysis 

gas flow.  The goal of this verification case was to verify the finite element code was 

calculating the in-depth decomposition and pyrolysis gas flow correctly in the absence of 

the complicating effects of surface recession.   

The present solution over predicts the peak surface temperature by 23.5°C (less than 

2%), but the character of the curves are the same and the difference away from the peak 

is minimal.  The in-depth temperatures match well, even though there is a difference in 

the surface temperature at the peak.  There are two small anomalies in the surface 
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temperature, one near the peak, the other at about 155 seconds.  Both the present solution 

and FIAT show sudden temperature discontinuities at those locations.  These anomalies 

are due to sudden changes in the heating boundary conditions at those times (see Figure 

3.2).  Near the peak, the radiative heating drops sharply to zero.  At 155 seconds, the 

recovery enthalpy component of the convective heating drops rapidly.    

 

Figure 3.6:  Temperature comparison for MX4926N carbon phenolic, no ablation, with pyrolysis 

 Figure 3.7 shows the pyrolysis gas flow at the surface of the material over the 

entire trajectory.  The shape and timing between the two solutions matches quite well 

with the exception near the peak where the finite element solution shows oscillatory 

behavior.  The finite element solution for the pyrolysis gas mass flux oscillates because it 

is calculated explicitly.    In the solution of the finite element equations, the temperatures 

are calculated implicitly, however, the decomposition of the material is calculated first 

using the temperature at the beginning of the time step, i.e. the old temperatures.  This 

explicit decomposition rate is then used to calculate the pyrolysis gas flow.  FIAT on the 
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Figure 3.7:  Pyrolysis gas mass flux at the surface  

other hand, solves for the decomposition rates and pyrolysis gas mass flux 

simultaneously with the calculation of the nodal heat flux; as a result it is fully implicit 

and oscillates much less.  The consequence of the explicit decomposition calculation is 

that these pyrolysis gas mass flux oscillations will be transferred to gB when it is 

calculated via equation (2.81) and as a result, the recession calculation between the two 

codes will be slightly different.  The oscillating decomposition may also cause the in-

depth temperatures to be different as well since the char and pyrolysis depths will not 

match exactly which will cause small differences in the in-depth densities, thermal 

conductivity and specific heat.   

 The oscillation in the pyrolysis gas mass flux is a limitation of the current method 

that can be mitigated by using a finer mesh in the finite element code.  The affect of the 

time step on the oscillations will be discussed in Section 3.5.5.  For this case as well as 

the previous two verification cases, the mesh used in both the present tool and FIAT were 

the same and contained 40 nodes.  The mesh in both the FIAT solution and the present 

solution are biased towards the heated surface so there are more nodes near the region 

where pyrolysis is occurring.  For this current verification case, the mesh was refined and 
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31 elements were added to the mesh.  After mesh refinement the same biased grid 

strategy was used.  The improved pyrolysis gas mass flux calculation is presented in 

Figure 3.8.  The temperatures for the refined mesh case did not change appreciably.  This 

result demonstrates that a finer mesh density, as required for the decomposition 

calculation, is not required to increase the accuracy of the temperature predictions.  The 

surface temperature and the temperature at the 2.6cm in-depth location are shown in 

Figure 3.9 for the coarse and refined mesh runs.  As seen in Figure 3.9, the temperature is 

insensitive to the mesh density for this verification case.  

 

Figure 3.8:  Pyrolysis gas mass flux at the surface with the refined mesh 

In lieu of increasing the mesh density which can have a detrimental effect on the 

computational run time, there are two possible solutions to this oscillation problem.  

Evaluation of these potential solutions is considered as future work.  The first approach is 

to make the decomposition calculation implicit along with the temperature calculation.  

The second is to develop higher order elements where the number of nodes per element is 

increased.  Both of these options will be expanded upon in Chapter 6 in the future work 

section. 
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Figure 3.9:  Temperature sensitivity to mesh density 

3.5.4  Verification Case 4:  High Heat Flux Arc Jet Test Condition  

The final verification case compares the present tool and FIAT with data from an 

arc jet test at a high heat flux for a 200 second exposure, followed by a 400 second cool 

down period.  The centerline enthalpy for the test was estimated from facility correlation 

equations to be approximately 80 MJ/kg.  The pressure achieved during the test was less 

than 0.1 atm.  In addition, a simple Monte Carlo simulation was run using the present tool 

and the results compared to the data.  The material exposed in the arc jet test was 

MX4926N carbon phenolic with a thickness of 6.35cm.  For insulation, 6.02cm of LI-

2200 was placed behind the carbon phenolic.  The arc jet model used for the test series is 

shown in Figure 3.10. 

The arc jet condition provides a constant heat flux boundary condition environment 

which is high enough in magnitude and long enough in duration to cause surface 

recession for this material.  The heat flux is input as a step function, so it is also a good 

test of the solution algorithms’ stability under a high gradient condition.  During the cool 

down, the material radiates heat away and conducts heat into the material away from the  
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Figure 3.10:  MX4926N carbon phenolic arc jet test model 

 

exposed surface.  During cool down a significant temperature gradient develops through 

the thickness of the material and allows comparison of in-depth temperatures.     

The temperatures calculated by both the present tool and FIAT are shown along 

with the data taken from test number 2784 in Figure 3.11.  The surface temperatures 

predicted during the heated portion of the run for the present tool match FIAT quite well, 

differing by less than 4.0°C over the duration of the exposure Comparing with the 

pyrometer data, both FIAT and the present tool match well until the pyrometer becomes  

 

Figure 3.11:  Temperature comparison for MX4926N arc jet test condition 
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unstable and drops suddenly at around 90 seconds into the run.  It is important to note 

that small differences in surface temperature can lead to significant differences in the 

calculation of B
’
c and hence the predicted recession.  For example, for MX4926N carbon 

phenolic at 0.1 atm, and a B
’
g equal  to 0.4, a 25°C temperature difference causes a 12.5% 

difference in B
’
c.  In this verification case, the magnitude of the difference in the surface 

temperature does not appear to have adversely affected B
’
c and the calculated recession 

which differed by less than 4% between the present tool and FIAT.  There was a fairly 

significant difference between the measured recession and the calculated recession which 

can be attributed to the arc jet test conditions. 

 The actual arc jet test conditions are estimated via correlation equations and 

calorimeter data taken during the testing.  The two most important parameters related to 

the recession are the estimated centerline enthalpy and the heat flux.  Recall from Section 

2.2.1.2 that the heat transfer coefficient is calculated by dividing the heat flux by the 

recovery enthalpy.  More importantly, recall from Section 2.2.1.3, the non-dimensional 

ablation rate is calculated by dividing the char mass flux at the surface by the heat 

transfer coefficient.  There is a large amount of uncertainly in estimating the centerline 

enthalpy with a correlation equation; this uncertainly propagates into the calculation of 

the heat transfer coefficient and into the recession calculation.  Given that the actual test 

conditions have some uncertainty associated with them, it is not surprising the calculated 

recession differs from the measured value.     

 The in-depth temperatures at five different locations are shown in Figure 3.11 as 

well.  The depths for this case are provided in Table 3.4 and correspond to the actual 

locations of the thermocouples in the arc jet model.  The in-depth temperatures, without 

the surface temperature plotted, are shown in Figure 3.12 and show that, in general, the 

present tool compares well with the FIAT results showing the same character in the 

curves.  Relative to FIAT, the present tool however over predicts the temperatures 

slightly and the over prediction becomes larger as you move from the surface towards the   



 108 

 

 

Table 3.4:  In-depth thermocouple locations for arc jet test specimen 

Location 

Designation 

Depth 

(cm)  
TC1 0.442 

TC2 1.153 

TC3 1.786 

TC4 3.208 

TC5 4.265 

 

bondline.  This behavior is a result of the manner in which the present tool and FIAT 

calculate decomposition, leading to different char and pyrolysis penetration depths. 

 The char penetration depth at any instant in time is the location where the fraction 

of virgin material present is less than 2%.  The pyrolysis front is the location where there 

is still greater than 98% virgin material remaining.  In the present tool, the char 

penetration depth is 2.57cm after the 200 second exposure period, which is 12.89% 

deeper than that predicted by FIAT.  By the end of the 600 second run, the char in the 

present tool has penetrated to a depth of 2.98cm, or 13.70% deeper than the FIAT  

 

Figure 3.12:  In-depth temperature comparison for MX4926N arc jet test condition 
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prediction.  The thermal conductivity of the char is much greater than that of the virgin 

material and allows more heat to be conducted through it, so the consequence of having 

the char penetrate deeper into the specimen is higher in-depth temperatures. 

The first in-depth location for the present tool, TC1, compares well with the 

results from FIAT and both the present tool and FIAT compare well with the arc jet data.   

Moving from TC1 to TC5 the over prediction between the present tool and FIAT grows 

because of the difference in char depth.  Additionally, both the present tool and FIAT 

over predict the in-depth thermocouple data.  This over prediction is likely caused by the 

difference in the material property model being used in the calculation and in the actual 

material being tested.  The material response model was derived from arc jet test data for 

a different version of carbon phenolic known as FM5055.  This type of carbon phenolic is 

made from different precursor rayon fibers and a different phenolic resin than the 

MX4926N.  Although the two versions of carbon phenolic are very similar, there are 

small differences in the decomposition kinetics and the virgin and char thermal 

conductivities which could very well lead to the differences seen here.    

Figure 3.13 shows the surface recession and recession rates calculated by the 

present tool and FIAT.  Also given in Figure 3.13 is the average recession history for the 

arc jet test calculated using an average recession rate and the total measured recession.  

As the plot shows, the total recession calculated by the present tool compares well with 

the FIAT prediction and is 0.173mm, or 4.05% higher.  This small difference can be 

attributed to the small difference in surface temperature.  Both the present tool and FIAT 

under predict the experimentally measured recession by 2.591mm and 2.764mm 

respectively. 

Figure 3.14 shows a comparison of the pyrolysis gas flow rate at the surface.  

Figure 3.15 shows a close up view of the pyrolysis gas flow during the first 60 seconds of 

the arc jet exposure.  This plot is consistent with the behavior observed in the third 



 110 

 

 

 

Figure 3.13:  Recession and recession rate comparison for MX4926N arc jet test condition  

verification case, and in large part the third verification case proved valuable in choosing 

an appropriate mesh density for this case.  One interesting feature is that although FIAT 

is fully implicit, this extreme boundary condition causes its pyrolysis gas flow to oscillate 

as well which can be seen in Figure 3.15.  For this verification case, there were 18 more 

nodes in the present tool’s grid than in the FIAT grid.  This suggests that the implicit 

solution scheme alone cannot totally eliminate the oscillations in the pyrolysis gas flow 

calculation and that there is also dependency on the computational grid size. 
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Figure 3.14:  Pyrolysis gas flow rate comparison at the surface for MX4926N  arc jet test condition 

 

Figure 3.15:  Pyrolysis gas flow rate comparison at the surface for MX4926N, first 60 seconds  

3.5.4.1 Arc Jet Monte Carlo Simulation 

In addition to comparing the results from the present tool and FIAT with the arc jet 

data, a 2000 sample Monte Carlo simulation was performed with the present tool.  The 

goal was to determine whether the arc jet data could be bounded by the 3  

temperatures for the thermocouples and surface temperature.  To keep the analysis 
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simple, five parameters were chosen to be statistically varied and are summarized in 

Table 3.5.      

Table 3.5:  Summary of statistically varied parameters 

Property 
3 Uncertainty 

Uncertainty 
Evaluation 

Method 
Virgin thermal 
conductivity 

±0.45 W/m-K 1 

Char thermal conductivity ±0.88 W/m-K 1 

Virgin density (room 
temp) 

±6.3% kg/m3 1 

Char Emissivity ±0.06375 1 

Heat transfer coefficient ±20.00% kg/m2-s 6 

 

The surface temperature upper and lower bounds compared to the data are given in 

Figure 3.16.  The surface temperature pyrometer data is bounded by the 3  temperature 

bounds, and more importantly, the calculated recession also bounds the measured 

recession.   

     

 

Figure 3.16:  Surface temperature bounds 
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The in-depth temperature data along with the 3  temperature bounds are given in 

Figure 3.17.   In general the data is bounded by the 3  temperature, however, it is very 

close to the lower bound.  This is due once again to the differences in the material 

response model and the actual material being tested.  Furthermore, the Monte Carlo 

simulation only varied five parameters.  Many more parameters could have been 

statistically varied and accounted for additional uncertainty and served to widen the 3  

temperature bounds.    

 

Figure 3.17:  In-depth temperature bounds 

3.5.5 One-Dimensional Mesh and Time Step Sensitivity 

The element length, as well as the time step can directly affect the convergence and 

numerical stability of the solution.  Non-linearities, such as material properties that are a 

function of temperature, radiation boundary conditions, and high temperature gradients 

may also affect convergence.  In Section 3.5.3, it was observed that an increased number 

of elements decreased the oscillations in the pyrolysis gas flow solution.  It was also 

observed that the temperature difference between the two different mesh densities was 

negligible but the heat flux for that case was fairly benign.  In this section the effect of 
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the mesh density and also time step will be examined under a high heat flux boundary 

condition.     

 A simulation using the Genesis entry vehicle trajectory was run using three 

different one-dimensional mesh densities.  Then the medium mesh density case was run 

for three different constant time steps.  The combined Genesis entry heating reaches 608 

W/cm
2
 and is given in Figure 3.18.  The one-dimensional geometry was a 7.62cm thick 

MX4926N carbon phenolic rod.  The mesh for the first case had 24 elements of equal 

length (25 nodes), the second had 42 elements of equal length (43 nodes), and the third 

had 79 elements of equal length (80 nodes).         

 

Figure 3.18:  Genesis convective and radiative heating 

 

 The pyrolysis gas flow for the three mesh densities is shown in Figure 3.19.  It can be 

clearly seen that for each successive mesh refinement, the oscillation in the pyrolysis gas 

mass flux diminishes.  This shows the decomposition and hence the pyrolysis gas flow 

calculations are highly sensitive to the element length.  This is mainly due to the explicit 

nature in which these calculations are made.   
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Figure 3.19:  Comparison of the pyrolysis gas mass flux at the surface 

 

The temperature comparisons between the three mesh densities are provided in Figure 

3.20.  The temperatures for the 42 and 79 element cases are nearly identical with the 

largest difference occurring at the peak on the surface by 3.2°C.  The temperature for the  

 

Figure 3.20:  Temperature comparison between three different mesh densities 

 

24 element case, when compared to the 79 element case at the peak for the surface node, 

differs by 15.42°C and occurs 1 second later in the simulation.  The surface temperature  
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for the 24 element case oscillates a bit due to the highly oscillating pyrolysis gas flow.  A 

zoomed in view of the surface temperatures and the temperatures at a depth of 0.75cm is 

provided in Figure 3.21.  At the surface, the oscillations in the temperature for the 24 

element case can be clearly seen as well as the subtle oscillation in the 42 element case.  

At a depth of 0.75cm, the 24 element case still shows some oscillation, while the 42 and 

79 element cases show no oscillations.   

 

Figure 3.21:  Temperature comparison at the surface and 0.75cm depth   

 

The 42 element mesh was run using the same Genesis entry trajectory using three 

different fixed time steps.  The time steps chosen were 0.5, 0.1, and 0.05 seconds under a 

fully implicit time marching scheme ( 1.0  ).  The variation in the oscillation in the 

pyrolysis gas mass flux as a function of the time step appears to be negligible and is 

shown in Figure 3.22.  The temperature remained virtually unchanged for each time step 

and was nearly identical to the temperature shown in Figure 3.20 and Figure 3.21 

confirming that it is also insensitive to time step.  

The conclusion that can be made is that the pyrolysis gas flow calculation is more 

sensitive to mesh density than the temperature and as such will be the determining factor 

when preparing a mesh within PATRAN or any other meshing software.  Furthermore,  
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Figure 3.22:  Pyrolysis gas mass flux as a function of time step 

 

the solution for both the pyrolysis gas mass flux and the temperature were found to be 

insensitive to the time step being used.   It can also be concluded that some pyrolysis gas 

oscillation can be tolerated without an adverse affect on the temperature as seen in the 42 

element and 79 element cases.  The case of choice would be the 42 element case because 

the computational time would be lower since there are fewer nodes and elements, and 

most importantly, the temperatures are not adversely affected. 

3.6 Limitations of the One-Dimensional Finite Element Formulation 

The one-dimensional code developed here has several limitations and caution should 

be exercised by those inexperienced in solving thermochemical ablation thermal response 

problems. 

First of all, the code (in its present) form does not include an automatic mesh 

generation routine.  Meshing is left up to the user with the assumption that the user is also 

performing related analysis in either NASTRAN or PATRAN Thermal.  Mesh generation 

for the thermal response problem takes practice and experience.  The best advice to the 

novice is to learn by trial and error; keeping in mind the basic principle in finite element 
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analysis is that more elements are usually required in regions of high temperature 

gradients. 

The second limitation of the code is the fact that it is one-dimensional.  The reasons 

for needing a three-dimensional finite element code have already been discussed and the 

effort to correct this limitation is presented in Chapter 4 of this dissertation. 

Another limitation is in the choice of applying the heating boundary conditions.  

There are two options, one is to read a trajectory output file and calculate the recovery 

enthalpy and heat transfer coefficient based on the trajectory.  The other input option is a 

CMA and FIAT style input where the user supplies a table of recovery enthalpy, pressure, 

radiative heating, and heat transfer coefficient as a function of time.  The trajectory 

option is extremely useful in performing design and mission trade studies, but the heating 

information extracted from these types of codes generally employs Chapman’s, or the 

Sutton-Graves’ equations which are valid at the stagnation point only. 

Another limitation already mentioned in detail is the explicit calculation of the 

decomposition and pyrolysis gas mass flux.  The solution to this limitation is to add the 

density, decomposition rates, and pyrolysis gas mass flux to the nodal degrees of freedom 

and simultaneously solve for all of the unknowns.   

Finally, there is a limitation inherent in supplying a pre-calculated table of gB , and 

cB .  Using a table introduces interpolation and extrapolation errors.  Since extrapolation 

is in general not a good engineering practice, the solutions for gB , and cB  are bounded 

by the table itself, which is another possible source of error.  In general a separate 

analysis must be performed to generate the thermochemistry data when it doesn’t 

currently exist.  This limitation will be addressed in the future work section of Chapter 6 

where a discussion on computing the surface chemistry directly during the solution will 

be made.  Implementing surface chemistry as a subroutine increases the flexibility of the 
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code and makes it straight forward to implement kinetic reaction rate chemistry models in 

addition to the standard equilibrium model being used.   
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CHAPTER 4 

 EXTENSION OF THE FINITE ELEMENT FORMULATION TO 

THREE-DIMENSIONS 

 

In Chapter 2, the governing differential equations for the thermochemical ablation 

problem were developed in one dimension.  In Chapter 3, the method of weighted 

residuals was used to derive the one-dimensional element equations from the governing 

equations.  In this chapter, following the same general procedure developed in Chapters 2 

and 3, the governing differential equations for the three-dimensional thermochemical 

ablation problem will be developed and the method of weighted residuals will be used 

once again to derive the three-dimensional element equations.  In addition, the concept of 

isoparametric elements will be introduced and utilized in the solution of the three-

dimensional finite element equations. 

4.1 Governing Differential Equations of the Three Dimensional Thermochemical 

Ablation Problem  

Starting with a three-dimensional differential control volume, and following the same 

procedure developed in Chapter 2, the governing differential equations for the three-

dimensional thermochemical ablation problem will be developed.  The three dimensional 

control volume is given in Figure 4.1.  This control volume represents an infinitesimal 

volume within the solid.  The two energy terms and the mass flux term are exactly the 

same as in the one-dimensional case, the difference now being that energy and mass are 

allowed to flow in the y and z directions in addition to the x direction.  Similarly, for the 

three dimensional control volume it is assumed that the kinetic and potential energy terms 

are small in comparison to the sensible energy convection terms in the x, y, and z 

directions and will be dropped from the formulation.  
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Figure 4.1:  Three-dimensional control volume for the in-depth thermal response 

 

4.1.1  Conservation of Mass 

Using the principle of conservation of mass, Figure 4.1 shows that the net mass 

flow into the control volume must equal rate at which mass accumulates inside the 

control volume.  Mathematically, this can be written as, 

 
cv

in out

m
m m

t


 


   (4.1) 

The mass inside the control volume, mcv, is related to the density of the solid material and 

the dimensions of the control volume as, 

 cvm dxdydz  (4.2) 

The flow of mass per unit time and area, or mass flux through a surface is the product of 

the velocity normal to the surface and the density.  In the x direction, the product of 
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velocity and density leaving the control volume is expressed in Figure 4.1 as
xgu m  .  

Similarly, the mass flux out of the control volume in the y and z directions respectively is 

ygm , 
zgm .  The components of mass flux into the control volume in the x, y, and z 

directions can be expressed in the form of Taylor series expansions as, 
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 (4.3) 

Summing all of the mass fluxes into and out of the control volume, and substituting the 

expressions for the mass inside the control volume, and the mass flux into and out of the 

control volume into (4.1) gives, 
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 

   (4.4) 

Canceling like terms on the right hand side, and dividing by dxdydz, (4.4) becomes, 

 
yx z

gg g
mm m

t x y z

   
   
   

 (4.5) 

The three component Arrhenius relation developed in Chapter 2 for the density 

decomposition and the relation for total density given in equations (2.7) and (2.8) 

respectively are still valid for the three dimensional case, the only difference here is that 

now there are two additional directions mass may flow as the solid material is converted 

to pyrolysis gas. 
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4.1.2  Conservation of Momentum 

In the one-dimensional finite element formulation, three assumptions were made 

about the flow of pyrolysis gas through the charred ablator.  The first was that the 

pyrolysis gas was in thermal equilibrium with the char and the residence time within the 

char was small.  The second was that the potential and kinetic energies of the pyrolysis 

gas could be neglected.  The third was the pyrolysis gas flows in one-dimension, normal 

to the heated surface, i.e. along the line of nodes in the one-dimensional discretization of 

the problem, and the drop in pressure through the char is negligible.   

In the three-dimensional formulation, the first two assumptions will be retained.  

The third assumption however, will be dropped requiring solution of the momentum 

equation simultaneously with conservation of mass.  The result of this approach is that, 

along with the magnitude of the pyrolysis gas flux, the direction of flow and the pressure 

within the material can be determined.  Determining the direction of gas flow is 

especially critical in regions where the both the virgin and char forms of the ablative 

material are porous and the material’s permeability is orthotropic.  Two additional factors 

could cause the pyrolysis gas to flow in multiple directions.  One would be a pressure 

gradient along the surface of the ablator and the other a temperature gradient in the in-

plane direction of the material causing localized differences in the pyrolysis gas 

generation rate.   

In 1856 Henri Darcy established experimentally that the instantaneous discharge 

rate through a porous medium is proportional to the pressure drop over a given distance 

and inversely proportional to the dynamic viscosity of the fluid.  This assumes that the 

flow is both fully developed and steady.  In one-dimension, Darcy’s law may be written 

as,   

 
p P

q
x





 



 (4.6) 
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The constant of proportionality, p, is known as the permeability and q is the discharge 

flux with units of length per unit time which is also known as the Darcy flux.  The Darcy 

flux is not the velocity which the fluid passing through the pores is experiencing.  The 

pore velocity is related to the Darcy flux through the material’s porosity given in (4.7). 

 
q

u


  (4.7) 

Darcy’s Law may be written in terms of the mass flux by substituting (4.7) into 

(4.6) and multiplying both sides of the equation by the fluid density.  Equation (4.6) in 

terms of the mass flux becomes, 
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In equation (4.8), the dynamic viscosity has been replaced by the kinematic viscosity 

which is simply the dynamic viscosity divided by the density.  In three dimensions, 

Darcy’s Law is given by (4.9), 
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 (4.9) 

where the major difference is that the pressure gradient is three-dimensional and 

permeability is a tensor.      

4.1.3  Conservation of Energy 

Conservation of energy in three dimensions is similar to that for the one-

dimensional case developed in Chapter 2; the difference is that there is energy flow in the 

y and z directions in addition to the x direction.  The additional energy fluxes are 
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identical to those in the x-direction as shown in the control volume of Figure 4.1.  The 

same simplifying assumptions about the pyrolysis gas used in Chapter 2 are retained 

here; specifically, the pyrolysis gas formed is in thermal equilibrium with the material 

within the control volume and the residence time within the control volume is small.  The 

kinetic and potential energies of the pyrolysis gas are neglected for the same reasons as 

stated in Chapter 2. 

The general form of the first law of thermodynamics for a three-dimensional 

control volume is the same as that given for the one-dimensional case in Chapter 2; only 

here, all the vector quantities have three directional components.  The simplified form of 

the first law of thermodynamics given in (2.11) is rewritten here for convenience, 

 
cv

in out

dE
E E

dt
    (4.10) 

Equation (4.10) simply states that the rate at which energy is stored in the control volume 

is equal to the rate at which energy enters the control volume minus the rate at which 

energy leaves the control volume.  Looking at the control volume in Figure 4.1 and 

recalling the assumptions made about the pyrolysis gas energy, the energy in-flow and 

out-flow per unit area normal to each surface of the control volume can be identified and 

summed as follows, 
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(4.11) 

 The components of the heat conduction vector leaving the control volume can be 

expressed as a Taylor series expansion by, 
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 (4.12) 

Similarly, the components of the pyrolysis gas convection vector can be written as Taylor 

series expansions as follows, 
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 (4.13) 

The rate of energy storage within the control volume can be expressed in terms of the 

density and enthalpy of the solid as, 

  cvdE
h dxdydz

dt t






 (4.14) 

Substituting (4.11) into (4.10) and using the definitions in (4.12), (4.13), and (4.14) gives, 

 

         

     

 

x x y y

z z x

y

x g g g g y g g g g
x x y y

x
z g g g g x g g

z z x

y

y g g
y

h dxdydz q m h m h dx dydz q m h m h dy dxdz
t x y

q
q m h m h dz dxdy q dx m h dydz

z x

q
q dy m h dxd

y


    

                 

   
               

 
    

 
 

z

z
z g g

z

q
z q dz m h dxdy

z

 
     

(4.15) 

 Cancelling like terms and dividing by dxdydz gives, 

        
x y z

yx z
g g g g g g

zx y

qq q
h m h m h m h

t x y z x y z


     
        

      
(4.16) 
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Once again as in Chapter 2, assuming there is no mass diffusion within the control 

volume, the components of the heat flux vector can be written, using Fourier’s Law, as, 

 

x x

y y

z z

T
q k

x

T
q k

y

T
q k

z


  




  




  



 (4.17) 

 Substituting (4.17) into (4.16) gives the desired form of the governing differential energy 

equation for the in-depth thermal response in three dimensions, 

 

 

     
x y z

x y z

g g g g g g

T T T
h k k k

t x x y y z z

m h m h m h
x y z


          

      
          

  
    

  

 (4.18) 

Notice now that orthotropic material properties have been introduced into the governing 

differential equations by including directional dependant thermal conductivity. 

4.1.4  Transformation of the Governing Equations to a Moving Coordinate System   

The governing differential equations developed in the previous section are valid for a 

fixed coordinate frame.  As in Chapter 2, the governing differential equations must be 

transformed into a moving coordinate frame to account for the material’s motion due to 

ablation.  Figure 4.2 shows the three-dimensional control volume after a time, t, where 

the material has ablated in all three directions.  The x, y, z-coordinates are used to denote 

the position in the material with respect to the location of the control volume in the fixed 

coordinate system.  The coordinates xS, yS, and zS are the position in the material with 

respect to the receding surface where the origin is located at the corner of the receded 

control volume.  From Figure 4.2 the amount of surface recession in all three directions, 

Sx, Sy, Sz is related to the x, y, z, xS, yS, and zS coordinates by the following relations, 
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x S

y S

z S

x S x

y S y

z S z

 

 

 

 (4.19) 

Also, infinitesimal changes in x, xS, y, yS, z and zS are denoted as dx, dxS, dy, dyS, dz and 

dzS respectively and are equal at any fixed point in time. 

 

Figure 4.2:  Three-dimensional control volume at time, t, after ablation 

4.1.4.1 Transformation of the Three-Dimensional Conservation of Mass 

The conservation of mass given by (4.5) was written for a control volume fixed in 

space where the derivatives with respect to time were taken holding x, y, and z constant.  

Equation (4.5) must now be rewritten to relate these density changes at constant x, y, and 

z to density changes at constant xS, yS, and zS.  In the fixed coordinate system, at any 

instant in time, the density may be expressed as a function of position and time, 

( , , , )x y z t  , from which we may write using the chain rule, 
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, ,t t x y zt

d dx dy dz dt
x y z t

   


   
   
   

 (4.20) 

Differentiating (4.20) with respect to time at constant xS, yS, and zS gives, 

 
, , , ,S S S S S Sx y z t x y t z x y zt

x y z

t x t y t z t t

           
   

       
 (4.21) 

Using the relationships between the components of recession and the fixed and moving 

coordinates, we may write for constant xS, yS, and zS, 

  

S S S

x S y S z S

yx z
x y z

x y z

x S x y S y z S z

dSdS dSx y z
S S S

t dt t dt t dt

     

  
     

  

 (4.22) 

The recession rates are written as total derivatives since they are functions of time only.  

Substituting (4.22) into (4.21) and recalling that dx=dxS, dy=dyS, and dz=dzS at a fixed 

point in time yields, 

 
, , , ,S S S

x y z

x y z t t x y zt

S S S
t x y z t

        
   

    
 (4.23) 

 Equation (4.23) along with (4.5), (2.7), and (2.8) represent the three-dimensional 

conservation of mass in a moving coordinate system.  

4.1.4.2 Transformation of the Three-Dimensional Conservation of Momentum 

Since the steady flow assumption was made, no derivatives with respect to time 

appear in the Darcy flow equations.  Therefore transformation to the moving coordinate 

system is not required for this set of equations.  

4.1.4.3 Transformation of the Three-Dimensional Conservation of Energy 

Transforming the energy equation to the moving coordinate system requires the 

assumption that the following functional relationships are valid. 
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( , , , )

( , , , )

( )

( , ) ( , , , )

T T x y z t

x y z t

S S t

h h T h x y z t

 









 

 (4.24) 

Rewriting equation (4.18) to denote which variables are held constant during the partial 

differentiation gives, 

 

 

     
x y z

x y z

x t tt

g g g g g g

t tt

T T T
h k k k

t x x y y z z

m h m h m h
x y z


          

      
          

  
    

  

 (4.25) 

The energy storage term, written for a point in the fixed coordinate system will need to be 

related to its counterpart in the moving coordinate system.  Using the functional 

relationships given in (4.24), the energy storage term may be expanded using the chain 

rule as, 

          
, ,

( , , , )

t t x y zt

h h x y z t

d h h dx h dy h dz h dt
x y z t

 

    



   
   
   

 (4.26) 

 Performing a partial differentiation with respect to time at a point constant in the moving 

coordinate frame, (constant xS, yS, zS) yields, 

          
, , , ,S S S S S Sx y z t x y t z x y zt

x y z
h h h h h

t x t y t z t t
    

       
   

       
(4.27) 

Using the relations in (4.22), recalling that differentiation with respect to x, y, and z is 

equivalent to differentiation with respect to xS, yS, and zS at constant time yields, 

          
, , , ,S S S

x y z

x y z S S St t tx y z

h h S h S h S h
t t x y z
    

    
   

    
(4.28) 

Substituting (4.28) into (4.25) and recalling that differentiation with respect to x, y, and z 

is equivalent to differentiation with respect to xS, yS, and zS at constant time yields, 
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 

     

     

, ,S S S

x y z

x y z

x y z S S S S S St t t

I II

g g g g g g

S S St t t

III

x y z

S S St t t

IV

T T T
h k k k

t x x y y z z

m h m h m h
x y z

S h S h S h
x y z



  

           
       

           

  
    

  

  
  

  

 (4.29) 

 Equation (4.29) represents the three-dimensional conservation of energy in a 

moving coordinate system.  As in the one-dimensional case it is convenient to express the 

rate of change of enthalpy in term I in terms of the temperature and density rates of 

change.  The expansion and simplification of term I is identical to that derived in Chapter 

2, so the final result may be written as,  

  
, , , , , ,S S S S S S S S S

p

x y z x y z x y z

T
h h c

t t t


 

  
 

  
 (4.30) 

Similarly, term II in (4.29) does not require any modification and term III may be 

expanded as, 

 

      x

x y z x

y z

y z

gg

g g g g g g g g
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g gg g

g g g g
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m h m h m h m h

x y z x x

m mh h
m h m h

y y z z

  
      

    

  
    
   

 (4.31) 

Recognizing that differentiation with respect to x, y, and z is equivalent to differentiation 

with respect to xS, yS, and zS at constant time, and rearranging (4.31) gives, 

 

     
x y z x y

yx z

z

g g

g g g g g g g g

S S S S St t t t t

gg gg
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S S S St tt t

h h
m h m h m h m m

x y z x y

mm mh
m h

z x y z

   
       

    

   
     

    
 

 (4.32) 
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Notice that the term in parenthesis that is multiplied by the pyrolysis gas enthalpy, hg, is 

the expression for the time rate of change of density in the fixed coordinate system given 

by (4.5).  Substituting (4.5) into (4.32) gives, 

 

     

, ,

x y z x y

z

g g

g g g g g g g g

S S S S St t t t t

g

g g

x y zS t

h h
m h m h m h m m

x y z x y

h
m h

z t



   
       

    

 
 
 

 (4.33) 

 Term IV in (4.29) does not require expansion, but again it is now convenient to 

express the enthalpy per unit volume in terms of temperature and density gradients.  The 

expansion and simplification process is identical to that shown in Chapter 2; except here, 

there are two additional terms associated with the y and z directions.  The result of the 

expansion and simplification is, 

 

 

 
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T
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
 


 


 

  
 

  

  
 

  

  
 

  

 (4.34) 

 Substituting (4.30), (4.33), and (4.34) into (4.29) and rearranging gives, 

 

, , , ,
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p x y z g
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

   

 

            
        

            

       
         
        
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
z p

S St t

T
S c

y z





 

(4.35) 

Using the definition of the conservation of mass in the moving coordinate system, (4.23) 

and dropping the notation for constant differentiation, except where it occurs in the fixed 
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coordinate system, the final form of the three-dimensional conservation of energy in a 

moving coordinate system may be written as,  

 

 
, ,

x y z

p x y z g

x y zS S S S S S

g g g

g g g x p y p z p

S S S S S S

T T T T
c k k k h h

t x x y y z z t

h h h T T T
m m m S c S c S c

x y z x y z




  

            
         

            

     
       
     

(4.36) 

The terms in equation (4.36) have the exact same meaning as in the one-dimensional 

version; only now, energy transport occurs in all three directions.    

4.2 Three-Dimensional Finite Element Formulation of the Governing Partial 

Differential Equations 

In Chapter 2, the theory and procedure for the finite element method was 

introduced.  Specifically the method of weighted residuals and Galerkin’s weak form for 

the one-dimensional thermochemical ablation problem was discussed.  In this section, the 

method of weighted residuals will be used once again and Galerkin’s weak form for the 

three-dimensional governing differential equations will be developed.  

4.2.1  Galerkin’s Weak Form of the Three-Dimensional Energy Equation 

The procedure to put the governing differential equations into Galerkin’s weak form 

is essentially the same as that for the one-dimensional problem.  The biggest difference in 

going from 1-dimension to 3-dimensions is the method used to perform the integration.  

For the one-dimensional problem the weighted residual statement of the governing 

differential equations could be integrated by part to reduce the order of the equation.  For 

the three-dimensional problem, integration by parts is known as Gauss’s theorem and is 

slightly different than the standard one-dimensional integration by parts formula.  

Gauss’s theorem for integration by parts is, 

    ˆu d u n d ud
  

        v v v  (4.37) 
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As in the one-dimensional problem, the first step in arriving at Galerkin’s weak 

form is to assume a functional form for the dependent variable.  Hence we write for the 

dependent variable and its derivatives showing their functional relationships, 
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 (4.38) 

Next, the weighted residual statement of equation (4.36) is written with i iW N  for one 

element, where “i” is the number of nodes in one element. 
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Now using Gauss’s theorem to integrate the term shown in (4.40), 
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Setting  u=Ni and 
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The result of the integration is the Galerkin’s weak form, 
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The surface integral introduced by the integration by parts provides the connection to the 

surface boundary conditions present on any surface of the element.  The surface integral 

represents the net conductive flux into the volume, 
e

, from any surface bounded by 

and can be expanded to represent any number of boundary conditions by summation 

over all surfaces bounded by .  Since equation (4.42) is for one element, includes all 

of the surfaces of the element.  For example, in the case of an ablative material, the 

surface boundary conditions are given by equation (2.85) for any element surface 

exposed to the aerodynamic heating.  Equation (2.85) written in terms of the surface 

integral of (4.42) is, 
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   Equation (4.42) can be simplified by expressing the temperature and its spatial 

derivatives in matrix notation as, 
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The pyrolysis gas enthalpy and its spatial derivatives may also be expressed in matrix 

notation as, 
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 (4.45) 

The components of the pyrolysis gas mass flux and the recession rates may be combined 

into a pyrolysis gas mass flux and a recession rate vector as follows, 
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 (4.46) 

Substituting (4.44), (4.45), and (4.46) into (4.42) and rearranging gives the three-

dimensional matrix equations for the thermochemical ablation problem for one element, 
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q  (4.47) 

Where the matrix B is the three-dimensional gradient interpolation matrix defined in 

(3.11) and N is the element interpolation matrix which will be discussed in the next 

section. 

 The thermal conductivity tensor is defined for an orthotropic material as, 
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This definition for thermal conductivity assumes that the local element axes are aligned 

with the material principle directions.  For elements where the local axes are not aligned 

with the material principle axes, the thermal conductivity tensor must be rotated by a 

direction cosine matrix, (C),  
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 (4.49) 

Performing the matrix multiplications results in a symmetric anisotropic thermal 

conductivity matrix with respect to the element, 
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 (4.50) 

4.2.2  Galerkin’s Weak Form of the Conservation of Mass and Momentum 

Equations 

To solve the conservation of mass and Darcy Flow equations, we choose the 

velocity components, u, v, w, in the x, y, z directions respectively and the pressure, p as 

the field variables.  Using the three velocity components along with the pressure in the 

development of Galerkin’s weak form is known as the mixed velocity-pressure 

formulation [58].  The first step in developing Galerkin’s weak form is to assume a 

functional form for the field variables.  The functional form for the mass flux components 

and pressure over one element are given by, 
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 (4.51) 

 The interpolation functions , ,u v w

i i iN N N are identical to the interpolation functions 

used to describe the temperature and enthalpy in the energy equation.  Several different 

approaches [125, 126, 127] have established that the interpolation functions for the 

pressure should be one order lower than the velocity components.  The interpolation 

functions for the velocity components are linear, therefore the interpolation functions, P

iN

, are constant.  The consequence of choosing interpolation functions in this manner is that 

while the velocity components maintain C
0
 continuity from element to element, the 

pressure from element to element is discontinuous.  For example, for an 8-noded 

hexahedral element, there would be three unknown velocity components at each node and 

the variation of the velocity would be described by the functions given in (4.51); whereas 

for each hexahedral element there would only be one unknown for the pressure.  In order 

to maintain continuity for the pressure, high order elements would need to be utilized 

making the velocity component interpolation quadratic and the pressure interpolation 

linear.  The formulation presented in this dissertation will utilize linear, 8-node 

hexahedral elements so the pressure interpolation functions are constant and 

discontinuous. 

 The next step is to write the weighted residual statement of (4.5) and (4.9) using 

the Bubnov-Galerkin approach, where , ,u v w

i iW N and P

i iH N , 
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 (4.52) 

To eliminate the pressure derivatives, Gauss’s theorem is used to integrate the three 

components of the momentum equation by parts.  Setting  iu N  for each component 

and  
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The result is Galerkin’s weak form given as, 
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 (4.54) 

The surface integrals on the right hand side of the momentum equation 

components were introduced by the integration by parts procedure.  The first surface 

integral represents the surface tractions and the second represents a specified mass flow 

boundary condition.  Substituting the definitions from (4.51) yields, 
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Equation (4.55) can be expressed more compactly in matrix form as, 
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(4.56)      

4.3 Isoparametric Element Formulation 

In the one-dimensional formulation of Chapter 3, a simple two node bar element 

was developed.  The simple 1-D bar element, while equivalent to a 1-D finite difference 

mesh, does not quite capture the power of the finite element method.  The simplest forms 

of elements for three-dimensional problems are the four-noded tetrahedral and the eight-

noded hexahedral element.  To ensure that we may apply the finite element method to 

complex geometries, the three-dimensional formulation must go beyond these simple 

representations.  To accomplish this, a class of elements known as isoparametric elements 

that are based on the simple tetrahedral and hexahedral elements will be developed.  

These isoparametric elements are formed by distorting the edges of the simple elements 

thereby producing curved sided elements.  With curved sided elements, it is possible to 

better fit the boundaries of complex geometries with fewer elements.  As a practical 
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matter, reducing the number of elements for a 3-D problem can lessen the computational 

burden.   

In this dissertation, the general formulation for eight-noded isoparametric 

elements will be presented.  In the implementation of the finite element solution however, 

this dissertation will be limited to eight-noded hexahedral elements with straight sides 

because the code relies on the mesh from Patran which does not have the ability to 

produce curved sided elements.  In addition to curve-sided elements, the general 

isoparametric formulation is valid for straight sided elements and will still be in place for 

a future higher order curve-sided element upgrade.        

4.3.1  Coordinate Transformation 

The underlying idea in developing isoparametric elements of any order is to 

transform, or map simple geometric shapes in some local coordinate system into distorted 

shapes in the global Cartesian coordinate system; then, evaluate the resulting element 

equations [58, 60, 61].  In the following discussion, the terms distorted and mapped will 

be used to identify the element in the global Cartesian coordinate system and the local 

element coordinate system respectively. 

Figure 4.3 shows a distorted eight-noded general hexahedral element in the global 

coordinate frame and its mapped counterpart in the local coordinate frame. 

 

Figure 4.3:  Isoparametric coordinate transform 
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The local nodal coordinates range from -1 to +1 and are related to the global coordinates 

through the element interpolation functions as follows, 
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1

1

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

n

i i

i

n

i i

i

n

i i

i

x N x

y N y

z N z

     

     

     






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







 (4.57) 

Where xi, yi, and zi are the nodal coordinates in the global coordinate system.   

Incidentally, the dependant variable is also written in terms of the local coordinates as, 

 
1

( , , ) ( , , )
n

i i

i

T N T     


  (4.58) 

Unlike the one-dimensional interpolation functions developed in Chapter 3 which 

were based on simple polynomials written in terms of global coordinates between two 

nodes, the interpolation functions for the three-dimensional isoparametric formulation are 

written in terms of the local coordinates.  The interpolation functions are formed by 

writing products of Lagrange interpolating polynomials.  The definition of a Lagrange 

interpolating polynomial in the global and local coordinate systems written for the x and 

 coordinates respectively is, 
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 


  
 

 
 

 
   (4.59) 

The Lagrange polynomials for the y, z and coordinates are identical to those in 

(4.59); one simply needs to insert the respective coordinate.  Lagrange polynomials 

possess the desired property of either being a unit value when evaluated at the node they 

are defined for, or zero when evaluated at any other node.  The Lagrange polynomials are 

products of n factors and are clearly polynomials of order n.  In relation to an element and 

its nodes, the order of the polynomial is related to the element order.  The eight-noded 
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hexahedral element shown in Figure 4.3 is linear since there are only nodes in the 

corners.  If there where nodes placed between each of the corner nodes, there would be 

20 total nodes and the element and its subsequent Lagrange polynomial would both be 

quadratic.  Since a curve is defined by a minimum of three points, in order to support 

curve-sided elements, the order of the element must be at least quadratic.  

In three-dimensions, the interpolating functions are formed by writing the 

product, 

 ( , , ) ( ) ( ) ( )i i i iN L L L       (4.60) 

Evaluating (4.60) for the linear eight-noded hexahedral element shown in Figure 4.3 in 

which i=1 to 8, gives the interpolation functions for the isoparametric formulation,  

 1
8

( , , ) (1 )(1 )(1 )i i i iN           (4.61) 

In matrix notation, the transpose of N may be written, 

  
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8

1
8

1
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1
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  
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  

  

  

  

  

   
 

  
 
   
 

   
   
 

   
   
 

    

 (4.62) 

4.3.2  Evaluation of the Element Matrices 

After expressing the interpolation functions and the dependant variable in terms of 

the local coordinates, the task now is to evaluate the element equations which in general 

will be in the following form, 
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Where 
e)

 is the volume of the distorted element in the global coordinate system.  Since 

the dependant variable, T has been expressed in terms of the local coordinates, the spatial 

derivatives of T and dxdydz must also be expressed in the local coordinates.  From (4.58) 

the derivatives can be written as, 

 

( ) ( ) ( )
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    (4.64) 

  Hence, , ,  and i i iN x N y N z      must be expressed in terms of and .  Using 

the chain rule , 
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 (4.65) 

or in matrix notation as, 
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                

 (4.66) 

Where the matrix J defines a Jacobian matrix, 

  

x y z

x y z
J

x y z

  

  
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  
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 
   

 (4.67) 
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The Jacobian is evaluated by using the coordinate transformations given in equation 

(4.57).  Finally, to find the desired derivative of the dependant variable in terms of the 

local coordinates, the inverse of the Jacobian must be calculated and therefore the 

derivatives may be expressed as, 
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1 2
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1 2
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        

 (4.68) 

To complete the evaluation of the integrals in the element equations, dxdydz needs to be 

expressed in terms of  and .  Text books on advanced calculus show that [140],  

 dxdydz J d d d    (4.69) 

Where J  is the determinant of the Jacobian matrix.  The final form of the element 

equations in terms of the local coordinates may now be written as, 
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q (4.70) 

Where the interpolation functions N have been defined in equation (4.62) and the 

gradient interpolation matrix is now defined as, 
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 (4.71) 
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The integrals present in the matrix equations of (4.70) cannot be evaluated analytically.  

They must be evaluated numerically.  The numerical integration scheme used is 

described in detail in several texts on the finite element method [58, 60, 61], and is called 

Gauss-Legendre integration. 

4.4 Three-Dimensional Grid Movement and Coupled Structural Analysis 

In the formulation presented here the mesh is attached to the ablating surface and 

moves with the surface.  Unlike the one-dimensional mesh where the adjacent nodes were 

all aligned with the x-axis, the three-dimensional mesh may have nodes that do not align 

with the axes, i.e. an unstructured mesh.  For the one-dimensional mesh, it was relatively 

easy to move the mesh as the surface receded.  The mesh was contracted linearly from 

the surface to the last ablating node, where the last ablating node was fixed in position.  

For the three-dimensional case, it is not as straightforward since the mesh may not be 

aligned with any particular coordinate axes and the points on the surface may be ablating 

at different rates due to variable surface boundary conditions.  Building on the work of 

Lynch and O’Neil [128], and Hogan, et al., [100] the mesh movement in this dissertation 

will be modeled assuming the mesh behaves as a linear elastic solid. 

It is a fortuitous coincidence that the grid movement scheme makes use of the linear 

elastic equations to displace the mesh.  Having already included the logic necessary to 

implement the linear elastic equations, solving for the thermal stress during the thermal 

response transient becomes trivial.  In this section the three-dimensional finite element 

equations for thermal stress will be presented.  Since the structural problem being 

analyzed in this dissertation is a relatively standard engineering problem, the governing 

differential equations will not be derived in detail.    

4.4.1  Grid Movement Scheme  
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Although the approaches developed by Lynch and O’Neil, and Hogan et al., are for a 

two-dimensional problem, their scheme can be extended to three-dimensions by using the 

three-dimensional versions of the linear elasticity equations.  The goal is to write the 

governing three-dimensional differential equations for linear elasticity and put them into 

Galerkin’s weak form in terms of forces and displacements.   

After a converged solution of the finite element thermal code over a time interval t, 

the surface recession calculated during that interval for each ablating surface node 

becomes the displacement boundary condition for the linear elasticity solution.  Nodes of 

the ablative material that are on the boundary of a non-ablative backup structural material 

are fixed with zero displacement.  Additionally, all non-ablative material nodes are fixed 

with zero displacement.   The linear elasticity finite element equations are then solved for 

the remaining nodal displacements and the nodal coordinates are altered according to that 

solution. 

 The first step is to write the governing differential equations for linear elasticity.  

For linear elasticity, the governing equations are the equilibrium equations [58, 60],     
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 (4.72) 

Writing (4.72) in matrix form gives, 

       0
T

bL F    (4.73) 

Where  L is a differential operator,   is the vector of stress components, and  bF is 

the vector of body force components per unit volume and are defined as, 
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 (4.74) 

The second equation needed is the strain-displacement relationship given by, 

     L   (4.75) 

Where the strain vector   and displacement vector   are defined as, 
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 (4.76) 

The third relation needed is Hooke’s law which relates the stress to the strain given in 

matrix form as, 

        0e eC C     (4.77) 

Where the matrix  eC is the 6x6 linear elastic modulus matrix and  0 is the vector of 

initial strains due to non-uniform temperature distribution.  The components of the elastic 

modulus matrix vary depending on whether the material is isotropic, orthotropic, or 

anisotropic (see Appendix B)
129

.  For the purposes of the grid movement scheme, the 

elastic modulus matrix will be assumed to be isotropic.  For the grid movement scheme, 
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the actual stresses and strains are of no consequence so this simplification posses no real 

problems.  

 The next step is to substitute equation (4.75) into (4.77) which gives, 

         0e eC L C     (4.78) 

Equation (4.78) is then substituted into the governing differential equations of (4.73) to 

yield, 

            0 0
T

e e bL C L C F     (4.79) 

Equation (4.79) is the matrix form of the three-dimensional equilibrium equations of 

linear elasticity.  The weighted residual statement of (4.79) can now written as,  

              0 0
T

e e bW L C L C d W F d 
 

      (4.80) 

Where the 3x3 matrix W is the weighting function matrix defined as, 
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 (4.81) 

Next, the first term of (4.80) is integrated by parts using Gauss’s theorem and yields the 

weak form,  
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 (4.82) 

The integration by parts has introduced a surface integral which includes surface tractions 

which are defined by, 

       c eT n C L   (4.83) 

Where  n is a 3x3 matrix with the diagonal elements equal to the components of a unit 

vector, n.  Equation (4.82) is the global system equation valid for the entire volume, to 
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obtain the equations for an individual element; the displacement field is approximated 

using the interpolation functions Ni as, 

     
( )e

N   (4.84) 

The weighting functions are set equal to the interpolation functions and the product of the 

interpolation matrix and the differential operator L, is the element strain interpolation 

matrix defined as, 
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 (4.85) 

Substituting (4.84) and (4.85) into (4.82) yields Galerkin’s weak form for one element, 
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For the grid motion scheme, the initial strains are zero and there are no body forces and 

no surface tractions.  The boundary conditions for each ablating node are of the form, 
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 (4.87) 

Upon assembly, (4.86) represent a linear system and can be solved by any direct linear 

solver. 
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4.4.2  Thermal Stress Analysis        

Having developed Galerkin’s weak form in the previous section, it is straight 

forward to repeat that result here, 
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The difference now is that the initial strain vector is non-zero and if surface tractions and 

body forces are present they may be included as well.  Another difference is that for the 

thermal stress solution, the material properties used are the actual properties which for 

most ablative materials are orthotropic material properties.  Therefore the elastic modulus 

matrix will be the orthotropic modulus matrix (see Appendix B). 

 Unlike the grid movement scheme, for the thermal stress analysis, the stresses are 

the desired result.  After solving (4.88) for the nodal displacements due to thermal 

expansion, body forces, and surface tractions, the resulting stresses for any element may 

be calculated by, 
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4.5 Verification of the Three-Dimensional Analysis Code 

In this dissertation, the three-dimensional code has been written in a mixture of C++ 

and FORTRAN with its foundation being the one-dimensional code developed in Chapter 

3.  The three-dimensional code is built around the finite element library libMesh and the 

Portable, Extensible Toolkit for Scientific computation (PETSc) [130, 131, 132, 133].  

The libMesh library provides data structures and routines that aid in creating the sparse 

global finite element matrices and provides an interface to the PETSc suite of linear and 

non-linear sparse matrix solvers. PETSc includes the routines and data structures 

necessary to solve sparse matrix problems.   In this section, the three-dimensional code 
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has been exercised in a similar fashion as the one-dimensional code.  The first case is a 

thick square, metallic, plate with constant thermal properties and a constant heat flux 

boundary condition and is compared to the transient analytic solution for a semi-infinite 

solid.  The second case is a metallic, square plate with constant thermal properties and is 

compared to NASTRAN Thermal.  The boundary conditions for this case consist of a 

constant heat flux on one surface and radiation away from the opposite surface.  The third 

verification case is identical to the third verification case from Chapter 3, Section 3.5.3.  

The fourth verification case is identical to the second verification case of Chapter 3, 

Section 3.5.2.  The final verification case is identical to the fourth verification case of 

Chapter 3, Section 3.5.4.  The heat flux profiles for cases 3-5 are shown in Figure 3.2.  A 

summary of the test problems and their conditions is shown in Table 4.1.  The geometry 

for the first two cases is identical and consists of a 7.62 x 7.62 x 7.62cm square cube.  

The geometry for cases 3-5 consists of a 2.54 x 2.54 x 7.62cm rectangular block, with the 

7.62cm dimension being the through the thickness direction.  All cases are planar so that 

relevant comparisons to the one-dimensional FIAT results can be made. 

Table 4.1:  Summary of verification cases 

Case Description Material Boundary Conditions 
1 Planar, semi-infinite 

solid, linear 
Titanium (Ti-6Al-4V), 
constant thermal 
properties  

Constant input convective heat flux, 
no pyrolysis, no ablation  

2 Planar, non-linear Titanium (Ti-6Al-4V), 
constant thermal 
properties 

Constant input convective heat flux, 
no pyrolysis, no ablation, surface 
radiation away from the backwall 

3 Planar, non-linear, 
entry trajectory 

Reinforced Carbon-
Carbon, thermal 
properties a function of 
temperature 

Input convective and radiative heat 
flux a function of time, surface 
radiation away from the heated 
surface, no pyrolysis, ablation 

4 Planar, non-linear, 
entry trajectory 

MX4926N Carbon 
Phenolic, thermal 
properties a function of 
temperature 

Input convective and radiative heat 
flux a function of time, surface 
radiation away from the heated 
surface, pyrolysis, no ablation 

5 Planar, non-linear, 
arc jet condition 

MX4926N Carbon 
Phenolic, thermal 
properties a function of 
temperature 

Input convective and radiative heat 
flux constant, surface radiation away 
from the heated surface, pyrolysis, 
ablation 
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4.5.1  Verification Case 1:  Constant Heat Flux, Constant Thermal Properties, Semi-

Infinite Solid 

The first verification case is a thick square block of Ti-6Al-4V Titanium alloy.  The 

thermal properties are constant and isotropic and there is no pyrolysis or ablation.  Since 

the slab is very thick, for short transients, the material can be considered a semi-infinite 

solid.  A semi-infinite solid is one in which the material extends to infinity in all but one 

direction.  Under the semi-infinite solid assumption, the in-depth energy equation (4.36) 

reduces to, 
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With a constant heat flux boundary condition and initial condition of, 
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For the semi-infinite solid, an analytic solution exists for the transient thermal response of 

equations (4.90) and (4.91) and is given as, 
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Equation (4.92) is solved for the temperature as a function of time.  A comparison of the 

three-dimensional finite element solution to this analytic solution is presented in Figure 

4.4.  The temperature comparison between the 3-D finite element code and the analytic 

solution for this case is almost an exact match at the surface and at a chosen depth of 

3.81cm.  At depths inside the solid towards the backwall, this comparison begins to break 



 154 

 

 

down as the semi-infinite solid assumption starts to deteriorate.  This case demonstrates 

that the 3-D conduction solution and the application of boundary conditions are working 

properly. 

 

Figure 4.4:  Temperature comparison between 3-D finite element and analytic solutions 

4.5.2  Verification Case 2:  Constant Heat Flux, Constant Thermal Properties, 

Radiation Away (Non-Linear) 

The second case is a square plate made of Ti-6Al-4V Titanium alloy.  The thermal 

properties are constant and isotropic and there is no pyrolysis or ablation.  There is a 

radiation boundary condition placed on the surface directly opposite to that which has the 

constant heat flux applied.  The radiation boundary condition makes the problem non-

linear and requires the use of a non-linear solution scheme.  There is no analytic solution 

for this case, so a comparison is made between the current finite element solution and 

NASTRAN Thermal, a commercially available finite element code.  The nodal 

temperature plotted in Figure 4.5 corresponds to the node at the exact center of the top 

surface and is compared to the NASTRAN solution of a node at the same location.  This 

is possible since both codes used the same mesh.  The nodal temperature plotted in Figure 

4.6 corresponds to the node at the exact center of the bottom surface.     
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Figure 4.5:  Surface temperature comparison between present solution and NASTRAN Thermal 

 

 

Figure 4.6:  Temperature comparison on the bottom surface between present and NASTRAN 

Thermal 
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4.5.3  Verification Case 3:  Low Peak Heat Flux Trajectory, No Ablation, With 

Pyrolysis 

The boundary conditions and material choice for this verification case are identical 

to verification case 3 from Chapter 3.  In this section, the problem is solved with the 

three-dimensional tool in a simulated one-dimensional mode.  To simulate one-

dimensional behavior, the thermal conductivity for the y and z directions was set equal to 

the thermal conductivity in the x-direction.  The pyrolysis gas flow calculation is active, 

but the permeability for the y and z directions was set artificially low so that the flow 

would be constrained to flow only in the x-direction.  The temperature for the three-

dimensional tool running in a one-dimensional mode is compared to both the FIAT 

results and the result from the one-dimensional finite element tool developed in Chapter 3 

in Figure 4.7. 

 

Figure 4.7:  Temperature comparison for MX4926N carbon phenolic, pyrolysis, with no recession 

The surface temperature of the three-dimensional tool matches FIAT well and is a 

better match than that of the one-dimensional finite element tool.  The in-depth 

temperatures match quite well and the character of the curves are similar; however the in-
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depth temperatures for the present one-dimensional and three-dimensional solutions are 

slightly higher.  The temperature difference reaches a peak of 3.7% at the 1.5cm location.   

Although it had little effect on the in-depth temperatures for this verification case, in 

the three-dimensional calculation, it is possible for the gas to travel in both the positive 

and negative x direction because of the approach used to compute the pyrolysis gas 

pressure and mass flow.  Since the peak pressure occurs at the in-depth location where 

the decomposition rate is the largest, a pressure gradient is formed with respect to that 

location and the surface as well as that location and the bottom surface of the ablator.  

Even though there is a solid boundary at the backface of the ablator which is a no flow 

boundary condition, the permeability in the y and z directions, albeit very small, was non-

zero.  This allows the gas to flow towards the backface eventually reaching zero at the 

backface.  Since the pyrolysis gas traveling towards the backface is at a higher 

temperature than the material it passes through in that direction, heat can be transferred 

from the gas to material via the pyrolysis gas convection term in the governing equations; 

hence for cases that have large pressure gradients and high flow rates towards the 

backface, the in-depth temperatures could potentially be higher. 

A comparison of the pyrolysis gas flux at the surface is provided in Figure 4.8.  

Notice that like the present one-dimensional solution, the three-dimensional solution also 

exhibits oscillations.  The oscillations are present since the Darcy flow and conservation 

of mass equation systems are solved explicitly.  As described in Chapter 3, Section 3.5.3, 

the oscillations can be reduced by making the calculation implicit or refining the mesh by 

adding nodes and elements near the surface.  The affect of mesh refinement on the 

pyrolysis gas flux will be illustrated in Section 4.5.6.  Although there are oscillations, the 

three-dimensional pyrolysis mass flux is similar in character and magnitude to the FIAT 

result and the present one-dimensional result.  This validates that the Darcy flow system 

of equations are being solved correctly.       
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Figure 4.8:  Pyrolysis gas mass flux at the surface 

4.5.4  Verification Case 4:  Moderate Peak Heat Flux Trajectory, With Ablation, No 

Pyrolysis 

This verification case is the same as verification case 2 from Chapter 3.  The three-

dimensional code was run in a one-dimensional mode so as to compare the results with 

the one-dimensional FIAT results.  This case demonstrates that the present tool 

accurately calculates surface recession and exercises the code’s moving grid scheme in 

the absence of the complicating effects of decomposition and pyrolysis gas flow.  In this 

case, there was no radiative heating input as a surface boundary condition, only 

convective heating input as a simulated trajectory.  The peak heat flux was 200 W/cm
2
 

and was chosen so that the material would reach a temperature regime where recession 

would occur.  The temperature for the three-dimensional tool running in a one-

dimensional mode is compared FIAT and is shown in Figure 4.9.  The surface 

temperature for this case matches the FIAT solution well.  The in-depth temperatures for 

this case are slightly higher than FIAT, as was the case for the one-dimensional solution. 
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Figure 4.9:  Temperature comparison for reinforced carbon-carbon, recession with no pyrolysis 

4.5.5  Verification Case 5:  High Heat Flux Arc jet Test Condition   

This verification case is the same as verification case 4 from Chapter 3.  Here the 

three-dimensional code was run in a one-dimensional mode so as to compare the results 

with the one-dimensional FIAT results.  This case is an arc jet test condition with a high 

heat flux for a 200 second exposure, followed by a 400 second cool down period.  The 

material exposed to the arc jet condition was MX4926N carbon phenolic with a thickness 

of 6.35cm.  For insulation, 6.02cm of LI-2200 was placed behind the carbon phenolic.  

The arc jet condition provides a constant heat flux boundary condition environment 

which is high enough in magnitude and long enough in duration to cause surface 

recession for this material.  The heat flux is input as a step function, so it is also a good 

test of the solution algorithms’ stability under a high gradient condition.  During the cool 

down, the material reradiates and heat soaks into the material away from the exposed 

surface.  During cool down a significant temperature gradient develops through the 

thickness of the material and allows comparison of in-depth temperatures.  The surface 

temperatures calculated by the present tool and FIAT are shown in Figure 4.10.  The 

surface temperatures match    



 160 

 

 

 

Figure 4.10:  Surface temperature comparison for MX4926N arc jet test condition 

  

well.  However, the surface temperature calculated by the present three-dimensional tool 

is 6°C higher than that calculated by the one-dimensional version of the present tool 

which may have been caused by differences in the mesh densities.  In the three-

dimensional mesh it was not known a priori what mesh density at the surface would be 

sufficient, so a finer mesh density at the surface was chosen for this three-dimensional 

case.  The in-depth temperatures match well and are presented in Figure 4.11.  It is  

 

Figure 4.11:  In-depth temperature comparison for MX4926N arc jet test condition 
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interesting to note that the overall match between the present three-dimensional tool and 

FIAT is better than the one-dimensional tool.  This can be attributed to the more robust 

non-linear solver provided by PETSc as well as a better treatment of the pyrolysis gas 

flow solution via Darcy's Law which oscillates less. 

4.5.5.1 Mesh Movement Verification 

The equations for linear elasticity are solved after every time step in which recession 

was calculated.  The linear elastic properties used in the mesh movement calculation are 

constant, isotropic properties for Titanium.  The mesh is moved by imposing the 

calculated recession as a fixed displacement boundary condition.  In this dissertation, 

verification of the mesh movement scheme was performed by inspecting the x,y,z 

coordinates in the output file, and comparing with the total amount of recession 

calculated during the arc jet case simulation.  Additionally, a simple case of displacement 

due to thermal expansion was run and compared to the displacement calculated with 

MSC Software’s NASTRAN. 

For the arc jet case, the boundary conditions were applied uniformly over the top 

surface of the mesh where the initial value for the x-coordinate of all the nodes on that 

surface was 0.0.  If the mesh movement scheme is working correctly, all the nodes on the 

surface should move uniformly and have a new x-coordinate value equal to the total 

amount of recession calculated.  The initial surface location at the beginning of the 

simulation and the final ablated shape at the end of the simulation are shown in Figure 

4.12.  Visually, it can be seen that all of the surface nodes have moved uniformly.  Within 

the output file, the x-coordinate location at the end of the simulation was moved to 

0.004268 m compared to the actual calculated recession of 0.0042682 m, is a 0.468% 

difference.  
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Figure 4.12:  Grid movement scheme verification 

 

The NASTRAN and present 3D tool models were simple columns with 24 equally 

spaced elements each.  Since the grid movement scheme utilizes the material properties 

of Titanium, it was used as the material for this case as well.  The column was 

constrained in all degrees of freedom on the bottom surface and a uniform temperature of 

500K was applied to each element.  The reference temperature for this case was 298K.  

The displacement for both the present tool and NASTRAN are given in Figure 4.13.  The 

x-component of displacement, shown in Figure 4.13, shows the present solution matches 

the displacement calculated by NASTRAN well.  The percent difference between the 

present solution and NASTRAN for the maximum x-component displacement was 

0.97%.  The y and z displacements were identical to each other and differed from 

NASTRAN by 2.87%. 

Comparing the stress between the present code and NASTRAN becomes problematic 

since the present code only includes three degrees of freedom for the displacement 

components for each node.  NASTRAN on the other hand includes six degrees of 

freedom, three for displacement and three for rotation.  Given this current limitation in 

the present code, to verify the stress calculation, the problem had to be fully constrained  
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Figure 4.13:  X-component displacement comparison, (a) present, (b) NASTRAN 

 

so that there would be no displacement and no rotation.  For a fully constrained problem 

the stress in the column is constant and a comparison between the present tool and 

NASTRAN is provided in Figure 4.14.  There is a slight difference between the two 

solutions which is very much less than 0.1%.  This partial verification will suffice for this 

dissertation since fully constrained problems produce conservative results.  The important 

point to note is the displacement calculation is validated which is of the utmost 

importance for the mesh movement scheme in the thermal response solution. 

Not having the three additional rotational degrees of freedom in the current 

formulation is a limitation of the current code.  Adding those degrees of freedom to the 

elasticity equations will be handled as part of the future work.  Full verification of the 

stress calculation will be deferred until that is accomplished.  Adding those degrees of 

freedom will allow more general structural problems to be solved.  For example, a 

distributed pressure load on the surface of a heatshield could be included in addition to 

the thermal loading.  
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Figure 4.14:  Fully constrained stress distribution (MPa), (a) NASTRAN, (b) present 

4.5.6  Three-Dimensional Mesh and Time Step Sensitivity  

As in Section 3.5.5, the sensitivity to mesh density and time step was run using the 

Genesis entry trajectory for three different mesh densities and three different time steps.  

The convective and radiative heating for this trajectory were provided in Figure 3.18.  

The three-dimensional geometry used here was the same as verification cases 3-5 which 

consisted of a 2.54 x 2.54 x 7.62cm MX4926N carbon phenolic column.  The mesh for 

the first case had 96 elements and 255 nodes, the second had 378 elements and 688 

nodes, and the third had 2844 elements 3920 nodes.  Three different time steps were 

examined with the 378 element mesh.  Additionally, for each time step, the fully implicit 

time marching scheme ( 1.0  ) and the Crank-Nicholson time marching scheme (

0.5  ) were examined.  Using the lessons learned from previous verification cases 

about proper meshing, each mesh was biased towards the heated surface.  The three 

different meshes with arrows pointing to and away from the surfaces where the boundary 

conditions were applied are shown in Figure 4.15.  Each column was meshed with 8-

noded linear hexahedral elements.  As shown in Figure 4.15, the coarse mesh case had 



 165 

 

 

four elements in the Y-Z plane, the medium case had nine elements in the Y-Z plane, and 

the fine mesh case had 36 elements in the Y-Z plane. 

 

Figure 4.15:  Mesh and geometry for mesh sensitivity, (a) coarse, (b) medium, (c) fine 

 

  A comparison of the pyrolysis gas mass flux at the surface in the center of each 

column is provided in Figure 4.16.  The mesh sensitivity cases were all run in 1-D mode 

and as a result there was no variation in the pyrolysis gas flux in the Y-Z plane.  A plot 

showing the pyrolysis gas mass flux distribution at 123 seconds into the simulation is 

provided in Figure 4.17.  Notice that the mass flux in the Figure 4.17 is negative; this is a 

result of calculating the pyrolysis gas mass flux using Darcy's Law.  The pyrolysis gas 

mass flux is now a vector quantity where the sign indicates the direction of the mass flux.  

All the two dimensional plots showing the pyrolysis gas mass flux thus far have had their 

negative values changed to positive in order to be compared to FIAT which always 

outputs this quantity as positive.  Also note that had these cases not been run in 1-D 
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mode, i.e. constraining the gas to flow only in the x-direction, plots of the pyrolysis gas 

mass flux distribution for the y, and z directions could have also been displayed.   

 

Figure 4.16:  Pyrolysis gas mass flux at the surface at column center 

 

 

Figure 4.17:  x-Direction pyrolysis gas mass flux distribution at 123 seconds, (a) coarse mesh, (b) 

medium mesh, (c) fine mesh  

 

As in Section 3.5.5, the pyrolysis gas at the surface oscillates for each of the three 

cases and diminishes as the mesh is refined.  Unlike the one-dimensional pyrolysis gas 
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mass flux, the three-dimensional flux oscillations are much less in magnitude.  This can 

be attributed to three things.  First, the governing equations for Darcy flow are solved 

using the finite element method for the pyrolysis gas mass flux.  Here, the density 

decomposition rate is input as a source term in the resulting system of equations.  Solving 

for the flux in this manner appears much more stable than in the one-dimensional case 

where the pyrolysis gas flux is determined by integrating the decomposition rate over the 

line of nodes from the backside to the surface.  Second, the three-dimensional cases have 

more nodal points in plane which adds stability to the calculation.  The pyrolysis gas flux 

in CMA is calculated similarly to the one-dimensional calculation presented here, 

however, CMA creates artificial nodelets around each node in the solution domain.  

Adding the nodelets proved to add stability to the pyrolysis gas mass flux [27].  Finally, 

the biased mesh towards the surface provides smaller elements near the surface which 

increases the stability of the Darcy flow and decomposition calculations.        

A comparison of the temperatures, given in Figure 4.18, shows that like the one-

dimensional cases of Section 3.5.5, the temperature is mostly affected by the oscillations 

in the pyrolysis gas mass flux.  A zoomed in view of the surface temperatures and the  

 

Figure 4.18:  Temperature comparison between three different mesh densities 
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temperatures at a depth of 0.75cm is provided in Figure 4.19.  Notice that due to the 

lower magnitude oscillations in the pyrolysis gas mass flux, the temperatures for the three 

cases are very close, with the difference in the surface temperature between the fine and 

medium being only 3.5°C.  The temperature for the coarse case shows some minor 

oscillations and doesn't quite reach the same peak temperature being 9.5°C lower than the 

fine mesh case.  Since the heating and radiation boundary conditions were applied 

uniformly across the surface in the Y-Z plane and the pyrolysis gas mass flux did not 

vary in-plane, the temperature distribution were also invariant in the Y-Z plane. 

 

Figure 4.19:  Temperature comparison at the surface and a depth of 0.75cm 

 

As in the one-dimensional cases, the three-dimensional solution for pyrolysis gas 

mass flux appears to be insensitive to the time step used for the problem.  Additionally, 

there also appears to be no dependence on the time marching scheme being used as there 

was virtually no difference between the fully implicit and Crank-Nicholson time 

marching schemes.  The pyrolysis gas mass flux as a function of the time step is shown in 

Figure 4.21.  Like the pyrolysis gas mass flux, the temperatures was also insensitive to 

the time step and the time marching scheme and varied very little from that shown in 

Figure 4.18 and Figure 4.19.     
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Figure 4.20:  Temperature distribution at 123 seconds, (a) coarse mesh, (b) medium mesh, (c) fine 

mesh 

 

 

Figure 4.21:  Pyrolysis gas mass flux as a function of time step and time marching scheme 

 

The conclusion here is the same as that from Section 3.5.5, the pyrolysis gas flow 

calculation is more sensitive to mesh density than the temperature and as such will be the 

determining factor when preparing a mesh within PATRAN or any other meshing 
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software.  It has also been shown both the pyrolysis gas mass flux and the temperature 

are insensitive to the time step and time marching scheme being used for the problem.  

Again, it can be concluded that some pyrolysis gas oscillation can be tolerated without an 

adverse affect on the temperature as seen in all three cases.  For the three-dimensional 

solution any of these meshes would suffice.  For 1-D mode and uniformly distributed 

boundary conditions, the best mesh would be a combination of the coarse mesh and 

medium mesh.  Combining the four in-plane elements of the coarse mesh with the 

element distribution through the thickness of the medium mesh would minimize 

computational costs and increase solution fidelity. 

4.6 Comparison of the “1-D Mode” with the Full 3-D Solution 

  The verification cases and mesh sensitivity have been run in a 1-D mode where the 

pyrolysis gas was constrained to flow only in the x-direction and the thermal properties 

were isotropic.  Using the medium dense mesh from the previous section, the genesis 

entry trajectory was run once again, however, this time orthotropic material properties 

were used.  There is no data available for the permeability for the in-plane components of 

the MX4926N material, so it was assumed that the in-plane permeability was half that of 

the across ply permeability.  The across ply direction was inclined 30° with respect to the 

y-z plane.  The temperature distribution for the orthotropic case at 123 seconds is 

compared to the 1-D mode case in Figure 4.22.  Notice that the temperature for the 

orthotropic case is inclined with respect to the y-z plane and that it reaches a peak 

temperature 135.9°C higher than the 1-D mode case.  The temperature inclination 

becomes more pronounced towards the end of the trajectory as the heat soaks into the 

material as shown in Figure 4.23.   
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Figure 4.22:  Temperature distribution at 123 seconds, (a) orthotropic, (b) 1-D mode 

 

 
Figure 4.23:  Temperature distribution at 500 seconds, (a) orthotropic, (b) 1-D mode 

 

The higher peak temperature is related to the pyrolysis gas flow.  Since the gas is no 

longer constrained to flow only in the x-direction, some of the gas is flowing out the sides 

in the y and z directions.  With the pyrolysis gas flowing in all directions, less gas reaches 

the surface and therefore there is less cooling.  The pyrolysis gas flow in the x, y, and z 

directions is provided in Figure 4.24.  It is interesting to note that since the virgin porosity 
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and permeability are non-zero, there is a small amount of pyrolysis gas that flows 

towards the bondline.  This phenomenon was not observed in the 1-D mode cases again 

because it was constrained to flow only in the x-direction. Also notice that the y and z 

pyrolysis gas flow are similar, but are not the same.  This is due to the across ply 

direction of the material being inclined 30° with respect to the y-z plane.  

The recession for the 1-D mode was calculated to be 0.118 mm, for the orthotropic 

case it was 0.53 mm.  The difference here is due to the both the higher temperature and 

the lack of gas reaching the surface. 

 

Figure 4.24:  Pyrolysis gas mass flux, (a) x-component, (b) y-component, (c) z-component 

4.7 Limitations of the Three-Dimensional Finite Element Formulation 

The limitations of the three-dimensional code developed here are the same as those 

described in Section 3.6, with the except that the one-dimensionality and the pyrolysis 

gas being restricted to flow in only one direction are no longer limitations.  Additionally, 

a limitation, which is not the fault of the code itself, is the fact that most materials are 

missing key orthotropic material properties in their databases, especially the properties 

required for the Darcy flow calculation.  Given that limitation, assumptions about the 

properties must be made by the user.  The code is currently limited to 8-noded hexahedral 
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elements.  Future work will focus on allowing the use of other families of elements 

including higher order elements. 

As described in Section 4.5.5.1, the stress due to thermal expansion has been 

validated only for the case where the component is fully constrained.  This is a limitation 

of the current implementation but over all produces conservative results for the induced 

thermal stresses.  The additional rotational degrees of freedom will need to be included to 

provide a more general framework for stress calculations.  

Another limitation is that the Message Passing Interface Chameleon (MPICH2) must 

be configured properly on the computer or cluster being used otherwise the code will 

only operate in serial mode.  PETSc, libMesh, and the present tool are capable of parallel 

processing; however, the Linux cluster available for this work was did not have MPICH2 

properly configured to take advantage of that capability.     
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CHAPTER 5 

 LINKING ANALYSIS TO DESIGN   

5.1 Introduction 

Design of a heatshield and its penetration subsystem is multidisciplinary in nature; it 

includes both the structural response to the flight loads, and the thermal response to the 

entry heating.  Entry heating can also induce thermal stresses in the materials due to 

thermal expansion.  To perform heatshield and compression pad thickness sizing, the 

analyst relies on trajectory inputs from the guidance, navigation, and control team, 

aerodynamic heating distribution inputs from the aerothermodynamics team, and the 

geometric configuration from the mechanical design team.  To perform the structural 

sizing of a compression pad, the analyst relies on the loads inputs from the loads and 

dynamics team, and again the geometric configuration from the mechanical design team.   

The structural analyst generally takes advantage of the fact that the three-

dimensional CAD geometry from the mechanical design team can be imported directly 

into the finite element analysis codes.  Currently there is no commercially available three-

dimensional thermal analysis code capable of performing high fidelity analysis and sizing 

of heatshield materials.  The thermal analyst typically uses the three-dimensional 

geometric configuration to create a one-dimensional slice through the geometry at a 

specific point on the heatshield or compression pad and performs a one-dimensional 

analysis using FIAT or some other analogous solution method.  This one-dimensional 

analysis is repeated until the thickness is such that the sizing constraint, typically 

bondline temperature, is satisfied.  The thermal analyst repeats this process for multiple 

locations on the heatshield to develop a thickness distribution, often without regard to any 

geometric constraints that exist.  On a blunt body, sphere-cone type of vehicle, the points 

selected generally lie along radial lines emanating from the stagnation point to the vehicle 

shoulder.  The mechanical design team is left to interpret these results and incorporate 
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them into the system design.  The analyst is generally unable to provide guidance in 

terms of how the design variables can be modified to meet geometric constraints and not 

exceed the thermal design specifications.   

To perform a thermostructural analysis to assess thermal stresses, the structural 

analyst must interpolate the one-dimensional temperature data onto the larger three-

dimensional structural model.  Interpolating the thermal results from a limited set of 

points on the heatshield can cause sharp gradients when mapped to the structural model.  

These sharp gradients can lead to erroneous thermal stresses and cause the design team to 

modify the design in a suboptimal way.               

Uncertainties exist in the parameters that are used as inputs to the thermal and 

structural response and yield uncertainty in the results of any subsequent analysis.  

Uncertainty in the numerical modeling of the associated physical phenomenon also 

contributes to the uncertainty of the results.  Designing systems to meet their operational 

requirements and design specifications under these uncertain conditions is difficult and 

often factors of safety, or margin, are introduced to both the inputs and the results of the 

analysis to mitigate the effect of uncertainty.  Applying margin to the design has proven 

to be successful in the past, but often produces design solutions that are massive, 

suboptimal and lacking in insight into the probability that a system will exceed its design 

specifications or meet its operational requirements. 

The Finite Element Ablation and Thermal Response Design and Analysis Program, 

or FEAR, developed for this dissertation will be used to analyze the thermal response of a 

heatshield compression pad.  For the structural response, the finite element equations for 

linear elasticity have been integrated into FEAR.  These analysis tools are then integrated 

into a Monte-Carlo simulation where the probability of exceeding design specifications 

can be assessed, parameter sensitivities can be performed, and probabilistic ranges of the 

design variables can be examined.   
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5.1.1  Motivation:  Orion Heatshield Compression Pad 

The Orion Crew Exploration Vehicle will be the first entry vehicle built by NASA 

to have a man-rated ablative heatshield since the Apollo program.  Like Apollo, the 

vehicle includes six hard-point compression pads that must transfer the launch loads to 

the command module during launch as well as survive the thermal environment during 

reentry.   

There is a striking similarity between the Apollo and the Orion command modules.  

However, the Apollo Program had a different set of design requirements and a different 

risk posture than the Orion Program.  The Orion Program has tested its engineers with 

quantifying the risks associated with the design each system.  One of the most scrutinized 

systems is the heatshield.  There is no redundancy built into the heatshield system; it must 

work and must work even under uncertain operating conditions.  The use of legacy 

heatshield sizing tools such as CMA and FIAT provide no insight into the ability of the 

heatshield to perform its function under off-nominal environmental conditions or variable 

material properties.   

A new design approach must be utilized to answer the question of how a heatshield 

or compression pad performs under uncertain conditions.  In addition, the push to reduce 

the heatshield mass fraction must be considered.  Simply adding heatshield thickness, 

which directly translates into mass, to increase the designs robustness is not generally 

acceptable.  This is particularly true for the Orion vehicle where arguments over tenths of 

kilograms are commonplace.  Given this desire, the current one-dimensional ablative 

thermal analysis and design process is inadequate, especially when considering the Orion 

heatshield compression pads.  The compression pad subsystem is a complex three-

dimensional system which interfaces with many different materials.  The boundary 

conditions near the compression pad are complex, and spatially varying in the plane 

normal to the compression pad's external surface as shown in Figure 5.1 [134].  The flow 
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is assumed to be turbulent so the augmentation factors shown are the factors for turbulent 

flow.  

 

Figure 5.1:  DAC-3 heating augmentation near the 120° compression pad location [134] 

 

The Orion CEV smooth body heating reaches a peak combined convective and 

radiative heat rate of 829 W/cm2.  The heating augmentation factors show in Figure 5.1 

are applied to the smooth body convective heating rate only   The trajectory used in this 

dissertation comes from the third Orion CEV Design and Analysis Cycle (DAC-3) lunar 

return and is provided Figure 5.2.  The nominal trajectory heating is anchored to a CFD 

solution at discrete time points and is for a smooth body vehicle which does not account 

for any shape change.  The complexity of the heatshield compression pads, the 

requirements placed on them, and the complex boundary conditions around them 

provides the motivation for this dissertation.  
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Figure 5.2:  CEV DAC-3 lunar return trajectory heating near the 120° compression pad  

5.1.2  Objectives 

The objective of this design methodology is to link the design of the compression pad 

to its thermostructural analysis.  The link to the analysis includes both the thermal and 

structural response of the compression pads.  The analysis parameters of interest in this 

application, which could also be thought of as the driving design specifications, are the 

bondline temperature and the maximum thermal stress.  The link to design comes from 

understanding the variation in the thermostructural response over the range of the design 

variables.  The design variables of interest are the compression pad thickness, material 

ply layup inclination angle, and the Titanium insert structure thickness behind the pad.  

These are only a small subset of analysis parameters and design variables available to the 

designer; many others may be included in the methodology.  However, for demonstration 

purposes, we limit the selection to these three.     

It is important to mention that a link to the fluid flow analysis is not directly made in 

this dissertation.  The link to the flow environment represents an important aspect of 

heatshield and compression pad design but is beyond the scope of this dissertation and is 

a topic for future work.  For this work, it is assumed that a high fidelity computational 
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fluid dynamic (CFD) solution for the flow field exists at several discrete time points 

along the entry trajectory for the three-dimensional entry vehicle.  It is further assumed 

that the heating from the entry trajectory code has been modified to match the results of 

the CFD at those discrete time points.  Additionally, it is assumed that the augmented 

heating near the compression pads has been calculated and exists in the form of spatially 

distributed scale factors, also known as bump factors.  These bump factors are simply 

multipliers to the smooth body heating. 

Uncertainties in the CFD calculations and in the trajectory are also assumed to exist.  

In this dissertation, the heating and trajectory will be inputs to the analysis and already 

include their associated uncertainties.  Using the bondline temperature and thermal stress 

as the measure, sensitivities to the analysis input parameters provide insight into how 

much the uncertainty in each input contributes to the response of the system.  Moreover, 

characterizing the sensitivity to each input helps determine which uncertainties and input 

parameters should be included in a Monte Carlo simulation.  As an example, sensitivities 

to the material properties will be assessed for a three-dimensional compression pad under 

CEV lunar return entry conditions.  This is the first step in the design process. 

The next step is to examine how the thermostructural response varies over the ranges 

of the design variables.  As mentioned above, for the Orion CEV compression pad, the 

pad thickness, ply angle and Titanium insert backup structure thickness were chosen as 

the design variables.  The objective is to discretize the design space by selecting discrete 

points for each design variable from within the range of its variation.  For example, 

breaking the ply angle into three levels one could choose the minimum, maximum, and a 

value in the middle of the range.  Once the design space has been discretized, a matrix of 

designs is created where each one represents a different combination of the design 

variables.  The process of systematically varying the design variables is known as design 

of experiments and there are many ways it can be performed.  In this dissertation a full 

factorial scheme will be utilized since it covers all possible combinations in the 



 180 

 

 

discretized space, albeit at the expense of having to run a maximum number of cases in 

the analysis.  Other schemes such as the central-composite design reduce the number of 

runs, but at the expense of not using all possible combinations of the design variables.  

FEAR is run for each design in the matrix and the bondline temperature and thermal 

stress are recorded. 

After the matrix of designs has been analyzed, a contour plot showing the variation in 

bondline temperature over the design space is generated.  Within the contour of bondline 

temperature any design constraints present can be superimposed on it.  Utilizing the plot, 

the optimum design based on minimizing the objective function, in this case the bondline 

temperature can be determined.      

To design for uncertainty, the input parameters and their associated uncertainties must 

be incorporated into the design and analysis.  The most influential uncertainties, as 

determined by the sensitivity study are selected for use in a Monte Carlo simulation.  The 

optimum design determined above, is the candidate design that the Monte Carlo 

simulation is performed on.  From the results of the simulation, the probability that the 

design will exceed its design specification can be quantitatively determined.  A histogram 

showing the distribution of the bondline and thermal stress can be generated and the 99%, 

95%, and 90% bondline temperature and thermal stress can be displayed.  If the 

probabilities are satisfactory then the process is complete.  If they are not satisfactory, the 

constraints can be modified and the process of finding the optimum design and running 

the Monte Carlo are repeated.   The design process is summarized in Figure 5.3. 
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Figure 5.3:  Design process flow 

5.1.3  Orion Crew Exploration Vehicle Heatshield and Penetration Subsystem 

In Chapter 1, a general heatshield penetration system was described.  The Orion CEV 

heatshield possesses a similar system.  Specifically, the Orion penetration subsystem is 

made up of six reinforced hard points on the forebody TPS.  Each hard point consists of 

an MX4926N carbon phenolic compression pad and an Inconel tension tie.  The 

MX4926N plies are inclined 20° with respect to the bottom of the pad and aligned with 

the centerline flow streamline.  The compression pad is inserted into the Titanium carrier 

structure, then the acreage Avcoat TPS is built up around it.  There is a 20° bevel cut into 

the Avcoat both to provide clearance for the service module connection and to minimize 

the effects of heating augmentation.  The tension tie rod passes through the center of the 

pad and connects directly to the vehicle structure.  The tension tie is preloaded to balance 

the weight of the vehicle plus added factors of safety.  The preload is distributed over the 

six compression pad/tension tie subsystems.  The compression pad is bonded and bolted 

to its Titanium carrier structure.  There is a small gap between the compression pad and 
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the Avcoat and the gap is filled with a compliant gap filler material.  The gap reduces the 

stress in the surrounding materials by allowing for a small amount of differential thermal 

expansion.  A cross section of the Orion heatshield compression pad with its surrounding 

Titanium structure and Avcoat heatshield is shown in Figure 5.4 where the tension tie has 

been removed for clarity.   

 

Figure 5.4:  Cross section of the Orion heatshield compression pad, surrounding structure, and 

acreage heatshield 

 

From Figure 5.4 it is clear that the compression pad design, with its surrounding 

structure, and TPS has a complex geometric shape.  The geometry along with a 

distributed heating boundary condition similar to that shown in Figure 1.4, and 

orthotropic material properties makes this system difficult to characterize with a one-

dimensional analysis.   

5.2 Analysis Tool Runtime Evaluation      

The finite element code FEAR is a high fidelity code which solves up to four 

different equation systems per time step and may have excessive run times, especially in 

the three-dimensional version, which could preclude it from being effectively used in a 

Monte Carlo simulation.  The first two equation systems are the Darcy flow and thermal 

response equation systems and are required at every time step.  The other two equation 

systems are for the thermal stress and the grid motion.  The grid motion is run whenever 

there is any recession.  The thermal stress system is solved at user specified intervals.  
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The run time for the one-dimensional version of FEAR was evaluated in Chapter 3 and 

was found to be no more expensive to run then FIAT.   In this section the run time for the 

three-dimensional genesis cases used during the mesh sensitivity as well as a full scale 

compression pad under a CEV lunar return trajectory are evaluated. 

5.2.1  Evaluation of the Three-Dimensional Finite Element Code Computation Cost 

The computational time for FEAR was evaluated on an Intel 2.93GHz Xeon quad 

core processor running 64 bit Fedora Core 9 Linux operating system.  FEAR was run in 

serial mode meaning only one processor was used.  As mentioned in Chapter 4 Section 

4.7, libMesh, PETSc, and FEAR have parallel processing capabilities, however, the 

cluster available for this work was not properly configured to take advantage of this.  

This limitation will be corrected in the future.  The genesis entry trajectory was chosen 

since it produces heating high enough to cause recession, so every equation system would 

be active.  Comparison of the computational time for the three different mesh densities 

described in Chapter 4, Section 4.5.5.1 is provided in Figure 5.5. 

 

Figure 5.5:  Computational cost for the simple column geometry with the Genesis entry trajectory  
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   The computational time, shown in Figure 5.5, increases nearly linearly as the 

number of degrees of freedom increases.  Recall that four equation systems are being 

solved and that for every 8-noded hexahedral element the Darcy flow equations 

contribute four degrees of freedom, the stress and grid motion contribute three, and the 

thermal response contributes one, for a total of eight degrees of freedom for every node in 

the mesh. 

The full scale compression pad along with the Titanium insert structure was meshed 

with two different mesh densities using 8-noded hexahedral elements.  The first was a 

coarse mesh with 9,744 elements and 11,016 nodes.  The second had 19,240 elements 

and 21,560 nodes.  Both meshes were biased towards the heating surface.  A cross section    

   

 

Figure 5.6:  Compression pad mesh, coarse mesh (top), fine mesh (bottom) 
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of each mesh showing the element distribution through the thickness is provided in 

Figure 5.6.  The main difference is that the coarse mesh has fewer elements 

circumferentially and slightly less elements through the thickness.  Both compression pad 

models were run with FEAR in serial mode using the smooth body heating from the 

trajectory given in Figure 5.2.  Heating augmentation was not included for this run time 

evaluation.  The computational costs of running the compression pad models are given in 

Figure 5.7. 

 

Figure 5.7:  Compression pad computation cost using DAC-3 lunar return trajectory 

 

Comparing the run times between the simple column geometry and the compression 

pad geometries shown in Figure 5.8, the slope of the lines as the number of degrees of 

freedom increases is quite different.  There are a few factors that are influencing this, one 

reason is because there are a lot more element faces in the compression pad models that 

have boundary conditions applied.  For each non-linear iteration during every time FEAR 

must loop through each of the elements that have boundary conditions applied.   Another 

reason is due to the CEV trajectory which is a skip trajectory that has two peaks in the 

heating.  It has been observed that near peak heating conditions the time step being used 
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by FEAR becomes small so therefore the compression pads experience two instances 

where the solution is marching through time slowly.     

 

Figure 5.8:  Comparison of run times for different geometries 

5.3 Thermal Response Sensitivity to Material Properties  

One of the objectives discussed in section 5.1.2 was to demonstrate how sensitivity 

studies could be performed using the high fidelity one-dimensional and three-dimensional 

finite element codes.  In this section the sensitivity to variations in the material properties 

is examined.  Along with the properties, Table 5.1 lists each property's associated 3- 

uncertainty and by which method the uncertainty was determined, as described in 

Chapter 1, Section 1.5.  The uncertainties listed are for the MX4926N carbon phenolic.  

Material property data for the MX4926N carbon phenolic was obtained from an extensive 

database developed by ATK Launch Systems and NASA [135].  The data in this report 

falls under the purview of the U.S. Munitions List as defined in the International Traffic 

in Arms Regulations (ITAR) and therefore cannot be presented in this dissertation. 

To establish the relationship between the material properties, their uncertainty, and 

their affect on the thermal and structural response, the three-dimensional compression 

pad using the DAC-3 lunar return entry given in Figure 5.2 is examined.  For this 
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material property sensitivity study heating augmentation was not applied to the 

compression pad model.  Moreover the compression pad model chosen was the coarsely 

meshed model which had 9,744 elements and 11,016 nodes.     

Table 5.1:  Sensitivity study properties and associated uncertainties 

Property† 
3 Uncertainty 

Uncertainty 
Evaluation 

Method 
Virgin thermal 
conductivity 

±0.45 W/m-K 1 

Char thermal conductivity ±0.88 W/m-K 1 

Virgin specific heat ±19.1 J/kg-K 1 

Char specific heat ±30.7 J/kg-K 1 

Virgin density (room 
temp) 

±6.3% kg/m3 1 

Char Emissivity ±0.06375 1 

Virgin heat of formation ±15% J/kg 6 

Pyrolysis gas enthalpy ±15% J/kg 6 

Permeability – Log (Kp) ±10.2% cm2 1 

Porosity  ±8.7% 1 

Coefficient of thermal 
expansion (CTE) 

±46.17% m/m/°C 1 

Compressive Modulus ±28.98% Pa 1 
†
Uncertainties calculated in the database are given as functions of temperature and principle direction 

they are given as average values here unless otherwise noted  
 

5.3.1  Compression Pad Material Property Sensitivity     

Using the property variations listed in Table 5.1 FEAR was run 24 times where each 

run a single property was set to its minimum or maximum 3-σ uncertainty which isolated 

that property as being the only factor influencing the bondline temperature and thermal 

stress.  Results of the material property sensitivity are shown in Figure 5.9 and Figure 

5.10.  The bondline temperature is most sensitive to the variations in the virgin and char 

thermal conductivity, and to a lesser extent by the virgin density and virgin heat of 

formation variations.  The pyrolysis gas enthalpy, char emissivity, and the virgin specific 

heat have only a minor influence on the bondline temperature influencing it less than 

1.0%.  The compressive modulus, permeability, porosity, and CTE have little to no affect  
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Figure 5.9:  Bondline temperature sensitivity  

 
Figure 5.10:  Across-ply tensile stress sensitivity 
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on the bondline temperature each influencing it less than 0.20%.  The across-ply tensile 

stress is most sensitive to the CTE, compressive modulus, and virgin thermal 

conductivity.  All other property variations produced less than a 2.5% change in the 

across-ply tensile stress. 

As a result of the material property sensitivity study, the input parameters having the 

most influence on the design specifications have been identified for use in the final step 

in the design process outlined in Figure 5.3.  The material property input parameters that 

have been selected for the Monte Carlo simulation of the optimum compression pad 

design are summarized in Table 5.2.    

Table 5.2:  Most influential material property inputs 

Material Property 

Change in Design Specification  
Bondline 

Temperature 
Across-ply Tensile 

Stress 

-3σ +3σ -3σ +3σ 

Virgin thermal 
conductivity 

-18.40% 14.02% 3.50% -3.80% 

Char thermal 
conductivity 

-7.20% 9.30% -0.09% 0.17% 

Virgin density 3.90% -3.10% -0.28% 0.50% 

Virgin heat of 
formation 

2.80% -2.10% -0.13% 0.96% 

CTE 0.09% 0.06% -38.39% 11.99% 

Compressive 
modulus 

0.26% 0.25% -17.63% 8.85% 

5.3.2  High Fidelity Thermal Response Models 

It is important to discuss how the inputs for a thermal response model are assembled 

and how the quality and level of uncertainty of those inputs affects the solution.  A high 

fidelity thermal response model contains the material property inputs which go into high 

fidelity ablation and thermal response analysis.  The performance of any high fidelity 

thermal response code and its ability to predict the thermal response of a material under 

test or flight conditions is directly related to the quality of its inputs.    
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If the inputs have high uncertainties or were poorly measured, it is likely the 

temperature and recession predictions will not match the test or flight data.  In the early 

stages of a project, knowledge about the material properties and its performance under its 

planned environment is generally lacking.  This is one of the main sources of uncertainty 

in the material response model.   Uncertainties in the heating environment and planned 

entry trajectory are also present and impact material performance, but are not attributable 

to the material itself.  Through the life of a project, knowledge about the material, its 

mission, and the entry environment is gained through analysis, ground and sometimes 

flight tests.  Through testing, the uncertainties shrink over the lifecycle of the project, but 

do not vanish.  The most common tests are material property tests, arc jet tests, wind 

tunnel tests, and structural tests.  It is from material property and arc jets tests that the 

high fidelity thermal response model is constructed.    

The properties that go into a high fidelity thermal response model can be separated 

into four groups:  the density and decomposition parameters, thermophysical properties, 

pyrolysis gas properties, and surface thermochemistry.  Some of the properties can be 

measured in a laboratory; others have to be derived from other known quantities or 

calculated. 

The virgin density is typically measured by either a water displacement test, or by 

weighing a specimen of the material, measuring the dimensions, and then dividing the 

weight by the volume.  The decomposition kinetic constants that are used in the 

Arrhenius equation (2.7), are derived from Thermo-Gravimetric Analysis (TGA 

experiments).  A sample of the material is heated in an inert gas, usually at 10°C/min.  

The mass loss as a function of temperature is recorded and the residual mass at the end of 

the experiment defines the char yield and char density.  The derivative of mass loss with 

respect to temperature is subsequently used to determine the remaining Arrhenius 

constants. 
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Table 5.3 summarizes the thermophysical properties and how they are generally 

obtained.  The pyrolysis gas enthalpy is calculated using the elemental composition and 

data from the TGA experiment.  Typically, the elemental composition is input into an 

equilibrium chemistry code and the enthalpy is calculated as a function of pressure and 

temperature.  While the equilibrium assumption is valid at high temperatures, it begins to 

deteriorate at low temperatures and its use could predict  

Table 5.3:  Thermophysical properties 

Property How Determined 

Virgin thermal conductivity 
Measured as a function of temperature using a comparative rod 
apparatus and radial inflow apparatus 

Virgin specific heat 
Measured as a function of temperature using an adiabatic 
calorimeter, ice calorimeter, or differential scanning calorimeter 

Virgin emissivity 
Measured as a function of temperature by measuring the total 
normal emittance and comparing it to the black body total 
normal emittance 

Virgin absorptivity 
Measured as a function of temperature by measuring the total 
normal absorptivity and comparing it to the black body total 
normal absorptivity 

Virgin elemental composition Measured by mass spectrometry 

Virgin heat of combustion Measured using a bomb calorimeter 

Virgin heat of formation Derived from heat of combustion 

Char elemental composition Derived from known constituents and char yield data 

Char heat of formation Derived from known constituents and existing data 

Char specific heat 
Derived from elemental composition and using method of 
mixtures 

Char thermal conductivity 
Measured as a function of temperature, with great difficulty 
since oven char is different than in-situ char 

Pyrolysis gas elemental 
composition 

Derived from virgin and char elemental composition  

 

unrealistic exothermic decomposition reactions in some materials.  This is where the 

TGA data is generally used.  If the TGA apparatus is outfitted with a digital scanning 

calorimeter, the heat of reaction of the pyrolysis reactions can be measured as a function 

of temperature.  Ladacki, at el [136] found that for phenolic resin composites, the low 

temperature pyrolysis gas enthalpy can be represented by ( )ph H , where h is the 

weighted average solid enthalpy defined in (2.37) and pH  is the heat of pyrolysis.  

Curve fits of the heat of pyrolysis data can be constructed and the quantity ( )ph H can 
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be plotted along with the equilibrium pyrolysis gas enthalpy as a function of temperature.  

The high temperature equilibrium enthalpy is then merged with the low temperature 

( )ph H solution between 1500 – 2200K depending upon the pressure.  

 The surface thermochemistry data is calculated using the virgin, char, and 

pyrolysis gas elemental composition and is typically obtained using the equilibrium 

assumption similar to the pyrolysis gas enthalpy.  The surface thermochemistry data 

includes the quantities * w

w

m
T

i i

i

Z h and hw as a function of pressure, temperature, gB , and cB

.  As in the pyrolysis gas composition, the equilibrium assumption also affects the surface 

thermochemistry data at low temperatures.  A plot of the non-dimensional char rate as a 

function of temperature at 1 atm for a phenolic resin composite is given in Figure 5.11.  

There are three distinct regions on this plot, the sublimation region where the  

 

Figure 5.11:  Non-dimensional char rate as a function of surface temperature for a phenolic resin 

composite 

 

char is being instantly converted to gas, the diffusion limited plateau where the rate of 

char consumption is limited by the amount of oxygen diffusion to the surface, and the 
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rate limited region where the char consumption is limited by the actual chemical reaction 

rates.  A full equilibrium solution, as shown in the plot extends the diffusion limited 

plateau to unrealistically low temperatures.  As a result, the full equilibrium solution 

would then over predict the amount of recession that occurs below 2000K.  To correct 

this, reaction rate data must be used and a non-equilibrium solution must be generated.  

This is not typically done and most experienced engineers either use the full equilibrium 

solution as a conservative approach or, as in the case of Figure 5.11, modify the data 

manually based on experience.    

It is fortuitous for the Orion CEV TPS compression pads that MX4926N carbon 

phenolic possesses an extensive database which includes properties in all three principle 

directions.  It also includes permeability and porosity data which is vital to the Darcy 

flow pyrolysis gas flux calculation.  Most materials do not possess this level of detail in 

their material property database.  With the advent of the three-dimensional tool 

developed in this dissertation, it must be emphasized that future material property testing 

must include mechanical and thermal tests in all three principle directions and porosity 

and permeability measurements.  The consequence of not performing these tests is that 

assumptions with large uncertainty would have to be used in regard to these material 

properties.    

5.4 Design for Uncertainty 

 Uncertainty is present in almost any aerospace vehicle system; in particular, for 

heatshield and penetration system design, there are many uncertainties.  Some of the 

largest uncertainties pertaining to heatshield and penetration design are the CFD 

calculation of the entry heating environments, and the entry trajectory parameters, which 

directly affects the heating environment.  The other uncertainties that are present come 

from the material response to that environment by way of the material properties.  Given 
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that uncertainties are present, the goal is to account for them in the design.  Such a design 

would increase the robustness of the system and increase system reliability.     

5.4.1  Deterministic Analysis 

5.4.1.1 As Designed Compression Pad Analysis 

The 1-D compression pad sizing for the DAC-3 lunar return entry environment was 

been performed by the CEV TPS Advanced Development Project (ADP) compression 

pad team [137], which the author of this dissertation was the lead of.  The compression 

pad design at the TPS Subsystem Design Review (SSDR) is shown in Figure 5.4 and 

shows all the pertinent dimensions and features.  The mass of the as designed 

compression pad and Titanium insert system is 5.39kg.  The as designed DAC-3 

compression pad was analyzed with FEAR and is the baseline for comparing to the 

optimum design which will be determined in Section 5.4.1.3   The boundary conditions 

applied to the compression pad are shown in Figure 5.12.  The heating augmentation 

factors are mapped to the FEAR mesh from the CEV Aerosciences Project (CAP)  

 

Figure 5.12:  Compression pad boundary conditions 

 

team's aeroheating database using Tecplot's internal inverse distance interpolation routine 

[138].  The augmentation factors used are shown in Figure 5.1 and the result of the 
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mapping can be visualized in either Tecplot or MSC PATRAN.  The mapped 

augmentation factors are shown from within PATRAN in Figure 5.13.  Notice that the 

coarse circumferential mesh of the compression pad provides a low resolution of the 

augmentation factors on the FEAR mesh.  Unfortunately, to minimize the run time this 

limitation will have to be endured until parallel processing can be utilized.   

 

Figure 5.13:  Heating augmentation factors mapped to FEAR 

 

The resultant temperature distribution through the compression pad at peak heating 

and at the end of the trajectory is given in Figure 5.14 and Figure 5.15 respectively.  The 

bondline temperature limit for the compression pad is 315.2°C, it is interesting to observe 

that the maximum bondline temperature even under augmented heating conditions was 

only 152.8°C.  There are several reasons for this which demonstrates the reason a three-

dimensional analysis of the pad and a new design methodology are required. 

The first reason has to do with the current design philosophy and way the 

compression pad's 1-D sizing is performed.  The pad is sized using FIAT with three 

different cases.  The first sizing case uses the nominal smooth body heating and applies 

trajectory dispersion factors to the convective and radiative heating.  The second case  
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Figure 5.14:  Compression pad temperature distribution 4 seconds after peak heating 

 

 
Figure 5.15:  Compression pad temperature distribution at parachute deployment 

 

uses the smooth body heating and applies the trajectory dispersions factors and factors 

due to the uncertainty in the aeroheating CFD calculations.  The third case uses the same 

environment as the first case, but this time the pad is sized to a bondline temperature of 

255.5°C, reducing the bondline limit is meant to simulate the uncertainty in calculating 

the thermal response of the material. The third case turns out to be the most limiting in 
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terms of sizing, however, the second case represents the highest heating and total heat 

load.  The thickness that results from these sizing cases are root sum squared together and 

then an additional amount of thickness is added to account for uncertainty in the amount 

of recession being calculated.  This becomes the minimum design thickness necessary to 

prevent the bondline temperature from being exceeded.  Additionally, 0.889cm are added 

to create a feature for the Service Module connection to transfer the shear loads into the 

compression and the rest of the Command Module.   

For the analysis shown in Figure 5.14 and Figure 5.15, the case 2 aeroheating was 

used since it would produce the highest surface temperatures and most thermal soak back 

into the pad.  As the FEAR analysis has shown the bondline temperature limit does not 

come close to being violated which suggests the current design methodology is 

conservative.   

In addition to the current deign practice; there are effects that the 1-D analysis cannot 

capture.  The first effect is the fact that the in-plane virgin thermal conductivity of the 

compression pad material is roughly 35% greater than the through the thickness thermal 

conductivity.  The in-plane char thermal conductivity is 36-50% greater depending on the 

temperature.  Even though there is heating augmentation present, the higher in-plane 

conductivity tends to spread the heat out across the compression pad and away from the 

bondline.  Another effect not captured by the 1-D sizing analysis is the 3-D geometric 

effect of having extra mass not directly in the path of the surfaces that are being heating.  

The area in question is highlighted with a circle in Figure 5.16.  Notice there is additional 

compression pad material and the side wall of the Titanium insert in this region; both 

provide additional thermal mass and serve to regulate the heat being soaked towards the 

bondline.  The CEV TPS ADP compression pad team designated this region as the "top 

hat" feature.  The side which has the circle is also the side that has the highest heating 

augmentation factors.  On the augmented heating side, notice the heat penetrates deeper 

into the top hat region, but the temperature towards the bondline is no more severe than 
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the side without the augmented heating.  Again this is due to the extra thermal mass 

absorbing energy and the in-plane thermal conductivity allowing conduction in this 

direction.  Had heating augmentation been applied to a 1-D analysis, the extra heat from 

the augmentation would be conducted directly to the bondline and would have given an 

incorrect higher bondline temperature.    

 

Figure 5.16:  Zoomed in view of the compression pad lower corner 

 

Another feature of FEAR is the computation of thermal stress during the simulation.  

The interval for stress computations is set by the user and in this case was set to 5 second 

intervals.  It has been shown that the most critical stress in the MX4926N material is the 

across ply tensile stress [135, 139].  This is mainly due to the fact that there are no 

reinforcing fibers in-between plies and that the majority of the strength in this direction 

comes from the phenolic resin which is generally lower than the reinforcing fiber.  In this 

dissertation, the across ply tensile stress will be tracked as the stress design specification. 

There are many different opinions on the subject of when a charring material is 

considered to have failed.  Some believe that if the stress allowable is exceeded at any 

time, whether it is in the char or virgin material, then it is a failure.  Others ignore high 

stresses that occur in the char material all together.  Another complicating factor is the 
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material's allowable stress is a function of temperature.  For these reasons, failure of the 

MX4926N material will not be assessed in this dissertation, the goal will be to minimize 

the across-ply stress without adversely affected the stresses in the other directions and 

violating other imposed constraints which will be discussed in Section 5.4.1.3. 

The peak across ply tensile stress occurs several seconds after peak heating at 150 

seconds into the trajectory and is given Figure 5.17.   The density distribution through the 

compression pad at 150 seconds is given in Figure 5.18.  Notice the peak tensile stress is 

occurring where all the material has been converted to char and that the peak compressive 

stress is occurring at the leading edge of the pyrolysis zone. 

 

Figure 5.17:  Peak across ply thermal stress at 150 seconds 

 

Recall that the heating augmentation only gets applied to the convective heating, so at 

peak heating it will reach a maximum at the point where the augmentation is the highest 

which is approximately 2,300 W/cm
2
. There is a non-trivial difference between the 

recession at the edge where the heating augmentation is the highest and where the heating 

augmentation is the lowest.  The affect of the heating augmentation will be examined in 

the following section.        
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Figure 5.18:  Density distribution at 150 seconds 

5.4.1.2 Affect of Heating Augmentation on Recession 

The recession rate for MX4926N carbon phenolic remains fairly low until surface 

temperatures reach the sublimation region of the B table.  This is evident in the 

compression pad analysis from the previous section where the side that had the highest 

heating augmentation significant recession and the downstream side of the pad where the 

augmentation was low showed very little recession.  To examine the affect of heating 

augmentation, a closer look at the two regions of the compression pad is shown in Figure 

5.19. 

  The surface temperature on the augmented side of the compression pad where the 

augmentation factors reach nearly 5.0 was 3,149.9°C at its peak.  The temperature on the 

opposing side where augmentation factors were less than 1.0 was 2,757.5°C, or a 

difference of 392.4°C.  This increase in temperature was significant enough to produce 

visible differences in recession.  A comparison of the recession on the augmented side 

with the non-augmented side is given in Figure 5.19.  In this case the recession on the 

augmented side is 3.178mm and on the non-augmented side 0.800mm, or a 297.3% 

difference. 
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Figure 5.19:  Affect of heating augmentation on recession
 

5.4.1.3 Optimum Compression Pad Design  

Now that the baseline design has been analyzed, the objective is to optimize the 

design.  This is the second step in the design process outlined in Figure 5.3. As 

mentioned in Section 5.1.2, the key design parameters of pad thickness, Titanium insert 

thickness, and material ply angle will be examined.  Before the design space can be 

discretized, the ranges of design variable must be defined.  Using engineering judgment 

and general knowledge of the design, the design variable values that would produce 

viable designs were defined and are summarized in Table 5.4. 

Table 5.4:  Design variable range 

Design Variable Maximum Minimum 
Compression pad thickness (cm) 5.486 8.026 

Titanium insert thickness (cm) 0.254 1.270 

Ply angle (degrees) 0.0 90.0 

 

Once the design variable ranges have been defined, the process of discretizing them 

can begin.  Generally, it is not known a priori how many levels each of the design 

variables should be broken into.  A rule of thumb would be to discretize them into as few 

levels as possible in order to minimize the number of runs required, examine the results, 

and then add levels based on how each design variable affects the design specifications 

being tracked, which in this case would be the bondline temperature and across ply 
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tensile stress.  The initial discretization for the design variables listed in Table 5.4 was 

three levels each.  Upon examining the results, it was found that the across ply tensile 

stress was a strong function of ply angle, so the ply angle was broken down further so 

that it had seven levels.  The design variable values were coded so that they varied 

between -1 and +1.  Since the scale of each variable was significantly different, coding 

the variables in this way normalizes them with respect to one another and aids in the 

visual display of the results.  The discrete values used and the corresponding coding is 

given in Table 5.5.            

Table 5.5:  Design variable discretization 

Design 
Variable 

Coding 
-1.0 -0.667 -0.333 0.0 0.333 0.667 1.0 

Values 

Pad thickness 
(cm) 

5.486 ---- ---- 6.756 ---- ---- 8.026 

Ti insert thickness 
(cm) 

0.254 ---- ---- 0.762 ---- ---- 1.270 

Ply angle 
(degree) 

0.0 15.0 30.0 45.0 60.0 75.0 90.0 

 

The 3x3x7 full factorial design of experiments required 63 runs of FEAR to define 

the variation of the bondline temperature and across ply tensile stress over the ranges of 

the design variables.  A contour plot showing the variation of the bondline temperature 

with the design variables is shown in Figure 5.20.  It can be clearly seen that the bondline 

temperature varies non-linearly with the design variables.  Also shown on Figure 5.20 are 

the known constraints of the compression pad and Titanium insert system.  

The constraints can be categorized into three groups: material limitation, geometric 

configuration, and mission, or project management imposed.  Generally, most of the 

constraints will fall into the material limitation category like the maximum bondline 

temperature, the maximum across ply stress, and ply angle. Often there are mission, or 

project management imposed constraints.  System mass usually falls into this category  
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Figure 5.20:  Compression pad bondline temperature variation with imposed constraints 

 

since mass is a premium on any spacecraft.  Sometimes there are configuration specific 

geometric constraints like the maximum total allowable thickness for the compression 

pad and Titanium insert.  On the Orion CEV TPS, this is a real geometric constraint that 

must be met in order to allow a common service module interface height at every pad 

location and to avoid a forward facing step with respect to the upstream Avcoat TPS due 

to differential recession between the two. 

Including the constraints on the bondline temperature contour shows how they affect 

the possible combinations of design variables and shows which combinations are viable.  

The constraints make finding the optimum somewhat easier since some combinations of 

the design variables can be eliminated immediately. 
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Finding the optimum design can be accomplished either numerically or by picking the 

values of the design values off the contour plot.  In this example, the contour plot was 

used to get a reasonable estimate for the design variables which represented the starting 

point in the numerical determination of the optimum compression pad design.  The 

starting point is shown on Figure 5.20 as a small circle at the intersection of the mass, 

stress, and total thickness constraints.   

From the data generated from the 63 run full factorial design of experiments, a linear 

least squares fit of the bondline temperature was generated as a quadratic function of all 

the design variables.  The across ply stress was also fit with a linear least squares fit and 

was found to be best represented by a sixth order polynomial which was quadratic in pad 

thickness and sixth order in ply angle.  The system mass was a simple linear function of 

the pad and Titanium insert thicknesses.  The ply angle and total thickness constraints 

were simply constants. 

Since no assessment of failure is being made in terms of the across ply tensile stress, 

a metric, or target value for the across ply tensile stress must be established.  Since the 

goal is to improve the as designed compression pad, the metric chosen was simply that 

the across ply tensile stress must be less than the 22.1 MPa calculated in the as designed 

compression pad and that no more than a 10% increase in the stresses in the other 

directions could be tolerated.     

Using Microsoft Excel, a simple constrained optimization problem was set up and 

run.  The result of the optimization was that the pad thickness should be 6.706cm, the 

Titanium insert thickness 0.655cm, and the ply angle 26°.  Note that the ply angle was 

rounded up to the nearest degree since it is not practical to control the ply angle to the 

tenth of a degree, doing so introduces manufacturing inconsistencies and can lead to 

material failures [139].  The mass of the compression pad and Titanium insert system was 

increased slightly to 5.43kg; a 0.74% increase in mass compared to the as designed 

compression pad.  This increase is deceiving since the optimized pad analysis included 
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heating augmentation.  To make a better comparison, the one-dimensional RSS sizing 

process was performed again, this time with heating augmentation included.  The result 

of performing the 1-D sizing with heating augmentation is that the required pad thickness 

would have to increase to 8.407cm making it 25.36% thicker than the optimized pad.  

The mass of the 1-D sized pad with heating augmentation would be 6.14kg making it 

13.1% heavier than the optimized pad. 

The bondline temperature for the optimized pad was calculated to be 169.9°C which 

is an increase of 17.1°C compared to the as designed compression pad.  The temperature 

distribution at peak heating and at the end of the trajectory is shown in Figure 5.21 and 

Figure 5.22.  Compared to the pad sized with heating augmentation, the bondline 

temperature increased 95.1°C.  This suggests that performing a 1-D sizing for geometry 

that has three-dimensional features is highly conservative. 

The maximum across ply tensile stress was reduced by 19.9% to 17.7MPa compared 

to the as designed compression pad.    The design variables and objective functions, or 

design specifications, for the baseline as designed compression pad, the design including 

heating augmentation as determined by 1-D analysis, and the optimum design are 

summarized in Table 5.6.  What remains to be determined is how these design changes 

affect the probabilities of exceeding the design specifications of bondline temperature 

and tensile stress.  

Table 5.6:  Design variable and specification comparison 

Current 1-D Sized Compression Pad Design 
3-D 

Optimized 
Design 

 
Baseline 

Heating 
Augmentation 

 

Compression Pad Thickness (cm) 6.782 8.407 6.706 

Titanium Insert Thickness (cm) 0.635 0.635 0.655 

Ply Angle (degrees) 20 20 26 

Mass (kg) 5.39 6.14 5.43 

Max. Bondline Temperature (°C) 152.8 74.8 169.9 

Max. Across Ply Tensile Stress (MPa) 22.1 22.1 17.7 
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Figure 5.21:  Optimum compression pad design temperature distribution at 78 seconds 

 
Figure 5.22:  Optimum compression pad design temperature distribution at parachute deployment       

5.4.2  Probabilistic Analysis 

In the previous section, the optimum compression pad design which minimizes the 

bondline temperature and satisfies all the constraints was determined.  The final step in 

the design process outlined in Figure 5.3 is to determine the probabilities that the 

bondline temperature and the across ply tensile stress target are exceeded.  To do this, a 

Monte Carlo simulation is performed on the optimum design.  Going back to the material 
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property sensitivity study, the top six properties influencing the thermostructural response 

were identified.  These six properties were varied randomly according to an assumed 

Gaussian distribution.  Other distributions are possible and may better represent a 

particular property, but for simplicity, all properties are assumed to follow Gaussian 

distributions. 

A 500 sample Monte Carlo simulation was run on an Intel 2.93GHz Xeon quad core 

processor running 64 bit Fedora Core 9 Linux operating system.  Only 500 samples were 

run due to the long run time for each sample.  For demonstration purposes this is 

sufficient, however, in reality many more samples would need to be run to ensure enough 

samples were available to fit a suitable distribution through the response.  The resulting 

distribution for the bondline temperature is given in Figure 5.23.  According to the  

 

Figure 5.23:  Bondline temperature distribution 

 

distribution, the probability of exceeding the bondline temperature of 315.15°C is 0.43%, 

or in other words there is a 99.57% chance the bondline temperature will be below its 

limit.  If this probability of exceeding the bondline temperature is not low enough, the 

constraints of the design space must be modified and a new optimum found.  The 

designers, analysts, and mission managers are now armed with specific information as to 
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the probability the system will perform its function under the uncertain conditions 

encountered during flight.  If mission managers desire a lower probability, the most 

obvious constraint to be modified would be the system mass.   There is now a clear 

picture of how the mass affects bondline temperature and its relationship to the 

probability of exceeding it.     

The across ply tensile stress distribution is shown in Figure 5.24.  Since there is no 

assessment of failure being made due to stress, the stress will be measured against the as 

designed across ply tensile stress.  According to the distribution, the probability of 

exceeding the across ply tensile stress in the as designed compression pad is 1.88%, or 

there is a 98.12% chance the stress will be below the as design stress.  Again, an 

argument similar to that of the bondline temperature can be made with the across ply 

tensile stress.  If the probability is not satisfactory, the design constraints would need to 

be modified and a new optimum derived.  

 

Figure 5.24:  Across ply tensile stress distribution 

 

The design process outlined in Figure 5.3 has been demonstrated with positive results.  

The link between the analysis and design has been established providing an increased 

knowledge about the design of the compression pad and the integrated compression pad-
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Titanium insert system.  Only a few parameters relating to the material properties were 

selected as the randomly varying variables in the Monte Carlo simulation.  In reality 

many more parameters could have been chosen such including uncertainty in the 

aerodynamic heating.  Also, there are more material properties that could have been 

selected for screening in the property sensitivity study phase of the process.  Including 

specific material properties, or other parameters will depend on the specific problem 

being solved and should be evaluated each time this design process is used. 
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CHAPTER 6 

 CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In this dissertation, a review of ablative thermal protection systems analysis was 

presented.  Specifically, the Orion CEV heatshield compression pads were described and 

the issues surrounding them were discussed.  Historical compression pad designs were 

reviewed and their features compared.  The need for a modern approach for designing 

and analyzing thermal protection systems was described.  The governing differential 

equations for ablative thermal response were derived.  In this dissertation, the finite 

element method was used to discretize and solve the resulting system of equations.   

Galerkin’s weak form of the governing differential equations was derived in both one 

and three-dimensions.  Additionally, for the three-dimensional formulation, Darcy’s Law 

was used to solve for the pyrolysis gas flow.  Galerkin’s weak form for Darcy’s Law was 

derived and solved in conjunction with the thermal response.  The equations for linear 

elasticity are solved alongside the thermal response equations.  The linear elasticity 

equations serve two purposes; the first is to move the finite element mesh when there is 

recession, the second to calculate thermal stress.  A computer code named FEAR has 

been developed to solve the system of equations in both one and three-dimensions.  One-

dimensional results were validated by comparing results for a selection of sample 

problems to the one-dimensional finite difference code FIAT.  Three-dimensional results 

were validated by restricting the pyrolysis gas flow to one-dimension and using isotropic 

thermal properties and comparing to FIAT.  The linear elasticity calculations for the mesh 

movement were validated by comparing the calculated recession by the resulting change 

in physical coordinates of the mesh in the output. 

A new design approach was outlined and demonstrated by analyzing a CEV 

compression pad under augmented heating conditions.  A link between the analysis of 
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thermal protection systems and their design was established.  The link to design comes 

from understanding the variation in the thermostructural response over the range of the 

design variables.   

6.2 Future Work 

During the course of performing this research a number of features and additions to 

the code were identified but at this stage their implementation would have been 

premature or distracting from the primary goals and contributions of this research.  

Additionally, there were a few limitations identified with the current implementation that 

could be corrected with additional effort.  The collection of features and additions, and 

limitation corrections are described in the sections that follow.   

6.2.1  Coupled In-depth Thermal Response and Computational Fluid Dynamics 

Solution 

One of the limitations of FEAR is that it uses trajectory heating which may, or may 

not be anchored to CFD calculations.  A high fidelity method of supplying the distributed 

aerodynamic heating environment would be to couple a CFD calculation directly with the 

solution of the in-depth thermal response calculations.  Another benefit of this scheme 

would be an improved prediction of the heating environment since the CFD solution 

would have direct access to a time accurate solution of the chemical species entering the 

boundary layer due to ablation of the heatshield. 

Coupling of the CFD flow solution to the thermal response analysis must also include 

the affects of shape change on the resulting flow solution.  This aspect would require the 

CFD computational grid to move along with the solid material finite element mesh.  It 

may be possible to use the linear elasticity model used in this dissertation to move the 

CFD mesh, however caution would need to be exercised since the CFD mesh would be 

expanding vice contracting like the thermal response mesh. 
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The technique used to map the heating augmentation factors from the CFD results to 

the PATRAN mesh needs to be improved.  Due to the dissimilarity of the CFD and 

PATRAN mesh, there may be some loss of fidelity when mapping from a fine mesh to a 

coarse mesh as was the case for the example shown in Chapter 5.  Consistency in either 

the heat flux or total heat load must be maintained between the CFD result and the final 

mapped result.  A modified mapping technique which maintains consistency should be 

developed.  Furthermore, instead of mapping to the nodes, the mapping should be 

performed at the Gaussian points to maintain consistency with the finite element matrix 

integration.  While this new technique won't be required for cases run in a coupled 

fashion, it will be important for cases that are run in an uncoupled mode.          

6.2.1.1 Real Time Calculation of Surface Thermochemistry Data 

One of the features identified which is related to the surface heating environment and 

would be required for a coupled CFD solution is the calculation of the thermochemistry 

data and non-dimensional ablation rates as the in-depth solution marches through time.  

Currently the thermochemistry data is supplied as a pre-calculated table as a function of 

pressure, temperature and  B
’
g.  The tables generally attempt to cover a wide range of 

conditions, but in doing so there is some loss of accuracy since the data is interpolated 

linearly based on the current pressure, temperature and B
’
g.  If the two adjacent table 

entries are far apart in terms of one of the dependant variables, the linear interpolation 

may not be representative of the true solution.  Generating an entire ACE table takes 

milliseconds on the 2.93Mhz Intel Xeon processor so the real time calculation would be 

no more expensive computationally than performing the triple interpolation of the table 

look up. 

6.2.2  Implicit Decomposition Calculation 
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In Chapter 3 and Chapter 4, oscillations in the calculation of the pyrolysis gas flow 

were revealed.  It was also shown that an increased number of elements and nodes in the 

regions undergoing pyrolysis could drastically reduce the oscillations albeit at the 

expensive of computation time.  A potential solution to this problem could be bringing 

the pyrolysis flow calculation into the iterative non-linear in-depth temperature solution, 

thus making the solution fully implicit.  Computational time, especially for three-

dimensional problems could benefit from having the overhead of one of the equation 

systems removed.  Additionally, the requirement to have a fine mesh in the regions 

undergoing pyrolysis may be able to be relaxed which would also reduce computational 

time.       

6.2.3  Higher Order Elements 

One of the direct benefits of the finite element method is the ability to employ higher 

order elements.  Higher order elements utilize more nodes per element and thus allow 

quadratic, cubic, etc. interpolation functions.  The benefit here is that curved boundaries 

can be approximated nearly perfectly which would reduce the number of elements 

required in the mesh and therefore decrease computational time.  High order elements 

would also improve the Darcy flow calculation.  Currently with 8-noded hexahedral 

elements, the pressure can only be calculated at the center of each element.  This is due to 

the velocity-pressure formulation used where the interpolation functions for the pressure 

must be one order less than the interpolation functions for the velocity components.  With 

the current linear 8-noded hexahedral element, the velocity components are interpolated 

linearly and defined at all eight nodes.  Since the pressure must be one order lower, it 

becomes a constant for each element.  With a quadratic 20-noded hexahedral element, the 

velocity components would again be known at every node, but this time the pressure 

would now be known at the eight corner nodes. 
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With an increase in the fidelity of the pressure calculation, the internal pressure could 

then be used with confidence in the structural analysis.  By including the internal pressure 

as a boundary condition in addition to the temperature for the thermal stress, a more 

complete picture of the resultant stress could be provided.  The ability to predict 

spallation, which is a phenomenon mostly related to the internal pressure, would greatly 

enhance the utility of FEAR.  

6.2.4  Thermal Stress Improvements, General Stress Calculations 

There is a limitation in the current implementation of the thermal stress calculation.  

In this dissertation, the linear elasticity equations only include the displacement degrees 

of freedom.  Comparing the stress results for anything other than a completely 

constrained problem with NASTRAN is problematic since NASTRAN includes the 

rotational degrees of freedom in addition to the displacement.  The rotational degrees of 

freedom allow for bending to occur.  Although the displacement calculation has been 

fully validated, because of this limitation, the thermal stress has only been validated for a 

case where the problem is fully constrained and unable to displace.  While this is a 

conservative assumption, it does not mirror reality.  In the case of the compression pad, 

the top surface is unconstrained and free to expand in that direction and the stress would 

be lower than a fully constrained prediction.  The rest of the compression pad is 

surrounded by either titanium or the Avcoat acreage TPS.  In the region where the 

compression pad is surrounded by the Titanium, the Titanium would be strong enough to 

constrain the MX4926N carbon phenolic so the constrained assumption is valid.  Around 

the perimeter, the Avcoat constrains the carbon phenolic from displacing, but the relative 

strength of the Avcoat is less than the carbon phenolic, so it would only partially 

constrain the compression pad. 

As part of the future work, the rotational degrees of freedom need to be added to the 

formulation.  This would allow more general problems to be solved in addition to being 
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able to validate the results against NASATRAN.  With the ability to analyze more 

general stress problems, a distributed pressure load may be applied to the heatshield 

surface to simulate the pressure loading during entry.  This additional capability would 

also require the ability to include an inertial constraint due to the mass of the vehicle.  

Implementation of such a constraint is not fully understood by the author at this time and 

additional research would be needed to accomplish this.               

6.2.5  Code Optimization 

Currently, the one-dimensional and the three-dimensional codes are separate entities.  

Additionally, the one-dimensional code does not make use of libMesh and PETSc 

libraries and there is currently no two-dimensional capability.  In Section 5.2 the run time 

for the three-dimensional code was evaluated and was found to be fairly significant for 

large problems with long solution trajectories.  These two limitations must be addressed 

and are described in the sections to follow.   

6.2.5.1 Convert Three-Dimensional FEAR to General Multi-Dimensional 

The libMesh finite element library is capable of solving finite element problems in 

one, two, or three dimensions.  To make FEAR more versatile, the one-dimensional 

version must be converted to use the libMesh and PETSc libraries.  Additionally, support 

for two dimensional elements must be added to make FEAR a true multi-dimensional 

analysis tool. 

Another versatility issue with FEAR is that it currently only supports 8-noded 

hexahedral elements in the three-dimensional version, and 2-noded bar elements for the 

one-dimensional version.  There are numerous other families of elements available which 

libMesh has the ability to employ.  Some examples would be 4-noded tetrahedral, and 5-

noded prism elements in three-dimensions, 4-noded quadrilateral, and 3-noded triangle 

elements in two-dimensions. 
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The current set of boundary conditions included in FEAR are specific to the 

compression pad problem being solved in this dissertation.  Expansion of the allowed 

boundary conditions, such as including contact resistance between dissimilar materials 

would also make FEAR more versatile.    

6.2.5.2 Increase Efficiency and Enable Parallel Processing 

FEAR was developed by the author who does not have a computer science 

background and who is also a self-taught C++ programmer.  Now that the FEAR code is 

functional and produces accurate results, coding inefficiencies must be identified and 

replaced with more efficient coding constructs.  Data structures that are slow and can be 

replaced with faster structures must be identified as well.  Other optimizations such as not 

looking up the thermal properties for every iteration in the non-linear solution must be 

examined to determine whether a computational benefit can be derived without adversely 

affecting the solution. 

FEAR, along with libMesh and PETSc are capable of running in parallel on multiple 

processors.  Unfortunately, this capability could not be demonstrated due to an 

improperly configured Linux cluster.  This was an unfortunate unforeseen problem and 

will be the author’s first priority after completion of this dissertation.    
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 APPENDIX A 

 

Newton-Raphson Method for Non-Linear Simultaneous Equations 

A typical nonlinear problem where there are N functions to be zeroed, and N 

variables xi may be written as [122], 

 1 2( , ,...., ) 0i NF x x x   (G.1) 

Let x denote the vector of xi variables and F denote the vector of functions Fi.  In the 

neighborhood of x the functions Fi can be expanded in a Taylor series as, 
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x x x x  (G.2) 

The matrix of partial derivatives appearing in the second term on the right hand side is 

known as the Jacobian matrix J and is given by, 
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x
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

 (G.3) 

Using matrix notation, neglecting terms of order 2 x and higher, and setting 

( ) 0 F x x gives a set of linear equations for the corrections x that move each 

function closer to zero simultaneously, 

   J x F  (G.4) 

The matrix equation given in (G.4) may then be solved for the correction terms  x by 

either LU decomposition, Gaussian elimination, Gauss-Seidel iteration, or other standard 

matrix solver.  The corrections are then added to the solution vector.  Taking a full step 

with the corrections may be counterproductive and cause instability, so a fraction of the 

full step is taken based on comparing the new function vector norm with the previous 

function vector norm.  The new solution vector is given as, 

 new old    x x x  (G.5) 
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The norm of a vector is given as, 

   
1

n

i

i

norm F x


  (G.6) 

If the norm of the new function vector is greater than that of the old, then assume that 

taking a full step would not be productive and take a partial step, , defined as, 

 
5

x
   (G.7) 

The process of forming the unbalanced load vector F and the Jacobian J, then solving for 

 x  is repeated until convergence is achieved. 

In relation to the finite element equations in (3.43), the xi’s would be the nodal 

temperatures, and the functions Fi would be 
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 (G.8) 

The Newton-Raphson method is a good all around method, but relies on an initial guess 

that is sufficiently close to the solution in order to guarantee convergence. 

 

1-D Integration by parts [140]  
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 APPENDIX B 

 

One-Dimensional Element Equation Matrix Multiplication and Integration 
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Linear Elastic Matrix 

Isotropic 
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 APPENDIX C 

 

Source Code Listing 

The source code for the FEAR code is contained in the C++ source and header files 

shown in Table C-1.  Some files contain ITAR restricted code and are not provided in 

their entirety; others are listed in their entirety within this appendix.  The PETSc and 

libMesh libraries are open source and are not provided here. 

Table C-1 

File Name Description 
stdafx.h Standard header used to include all other necessary header files 

Stdafx.cpp Standard driver for stdafx.h 

Main.h Header file to declare global functions and variables 

Main.cpp Main program entry point; global function definitions; global 

variable definitions 

StaticHex8.h Header file defining static objects 

FEM.h Header File for Hex8, Bar2, element classes, as well Node, 

Material and Decomp classes 

FEM.cpp Definitions of functions for Hex8, Bar2, element classes, as well 

Node, Material and Decomp classes 

Flow.h Header file for ENVIR class 

Flow.cpp Definitions of functions for ENVIR class 

Math_Util.h Header for mat utility functions 

Math_Util.cpp Math and vector utility functions, unit conversion functions 

SolHelper.h Header file for solution helper class 

SolHelper.cpp Helper class for solution management 

 

THE COMPLETE SOURCE CODE IS ITAR RESTRICTED AND EXPORT CONTROLLED              
                                                                     

RECIPIENT understands that this SOFTWARE falls under the purview of the U.S. Munitions List 

(USML), as defined in the International Traffic in Arms Regulations (ITAR), 22 CFR 120-130, and is 

export controlled.  It shall not be transferred to foreign nationals in the U.S. or abroad, without specific 

approval of a knowledgeable NASA export control official, and/or unless an export license/license 

exemption is obtained/available from the United States Department of State.  Violations of these 

regulations are punishable by fine, imprisonment, or both.  The ITAR notice provided on the SOFTWARE 

shall not be removed by RECIPIENT, and the ITAR notice shall remain on any modified versions of the 

SOFTWARE. 
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