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SUMMARY

In the advanced launch vehicle design community, there exists considerable interest

in fully reusable, two-stage-to-orbit vehicle designs that use ‘branching trajectories’ during

their missions.  For these reusable systems, the booster must fly to a predetermined landing

site after staging occurs.

The solution to this problem using an industry-standard trajectory optimization code

typically requires at least two separate computer jobs — one for the orbital branch from the

ground to orbit (in some cases, this can be broken into two computer jobs) and one for the

flyback branch from the staging point to the landing site.  These jobs are tightly coupled

and their data requirements are interdependent.  In addition, the objective functions for each

computer job differ and conflict.

This research produces a method to solve these distributed branching trajectory

problems with respect to an overall system-level objective while maintaining data

consistency within the problem.  This method is used to solve the trajectories of two relevant

two-stage-to-orbit vehicles:  the Kistler K-1 and the Stargazer launch vehicles.  Both of

these vehicles require a powered flyback.  Thus, optimization contingent on the feedback of

the flyback fuel is a relevant part of this study.

The solutions of the branching trajectory problems via traditional methods, termed

‘One-and-Done’ and manual iteration, are compared with those involving the

multidisciplinary design optimization techniques of fixed-point iteration, optimization-based

decomposition, and collaborative optimization.  Optimization-based decomposition was

used to solve each problem; the K-1 trajectory includes a fixed-point iteration solution.  The

use of collaborative optimization as an solution technique for branching trajectories is

introduced in the solution to each problem.
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Results show that proposed method involving collaborative optimization and

optimization-based decomposition performed well for both the K-1 and Stargazer

branching trajectories.  The use of these methods for the Kistler K-1 problem shows that an

increase in payload weight of 1.0%, on average, could be obtained.  Similarly, a reduction in

Stargazer’s dry weight of approximately 0.8% was achieved through the MDO methods.

Conclusions concerning the method outline, comparisons of the method with differing

solution techniques, staging flight path angle trends, and the automation of the optimization

process are included.
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CHAPTER I

INTRODUCTION

Fully reusable two-stage-to-orbit vehicle designs that incorporate ‘branching’

trajectories during their ascent are of current interest in the advanced launch vehicle design

community.  Unlike expendable vehicle designs, the booster of a reusable system must fly

to a designated landing site after staging.  Therefore, in addition to the ascent trajectory, both

the flyback, or booster return, branch and the orbital upper stage branch are of interest and

must be simultaneously optimized in order to achieve an overall system objective.  Current

and notable designs in this class include the U. S. Air Force Space Operations Vehicle

designs with their ‘pop-up’ trajectories, the Kelly Astroliner, the Kistler K-1, one of the

preliminary designs for NASA’s Bantam-X and Bimese studies, and NASA’s proposed

liquid flyback booster designs (Space Shuttle solid booster upgrade).

1.1  The Definition of Branching Trajectories

In an effort to lower costs, designers of advanced two-stage-to-orbit (TSTO) launch

vehicles are beginning to consider launch systems in which the booster stage can be

recovered, serviced, and reflown.  Often the reusable booster is required to land at a

predesignated recovery site either near the original launch site (RTLS-style trajectory,

Figure 1) or downrange of the staging point (Figure 2).  In these cases, the entire trajectory

is composed of three parts.  The ascent trajectory follows the vehicle from launch to staging.

At this point, the trajectory is assumed to split into two ‘branches.’  One is the orbital

branch beginning at staging and following the orbital upper stage all the way to orbit.  The
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second branch, or flyback branch, starts at the staging point and follows the reusable

booster to its landing site.  Due to recovery distance or out-of-plane maneuvers required, the

booster is often powered for its flight to the landing site.  In simulations where the booster

is jettisoned from an orbital vehicle, it may be convenient to combine the ascent trajectory

and the orbital branch to create one computer job.  The same may be said about a launch

vehicle with an upper stage that is jettisoned; the ascent trajectory and the flyback branch

may be combined.

Figure 1: RTLS Branching Trajectory
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Figure 2:  Downrange Branching Trajectory

In general, both the orbital branch and the flyback branch rely upon the ascent

trajectory for their respective initial conditions.  These initial conditions are vectors

composed of geographical position, altitude, velocity, flight path angle, velocity azimuth, and

staging weight.  The ascent trajectory also depends on both branches.  Assuming that the

booster is powered, the amount of flyback fuel required by the booster influences the gross

lift-off weight of the vehicle and thus the ascent path.  The weight of the upper stage (which

is dependent upon initial staging conditions) also affects the gross lift-off weight of the

vehicle and thus the ascent path.  Consequently, all the parts of the entire trajectory are

coupled or interdependent.

1.2  Motivation for Research

In the public domain or otherwise open literature, no computationally efficient

method exists for solving branching trajectories, as defined above, that include the feedback

of data.  This pertains specifically to those trajectories in which separate branches are

simulated and the data from the trajectory branches that occur after staging is required by

the ascent path.
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Faced with the lack of a suitable solution method, today’s trajectory analysts are

forced to either 1) compromise the optimality of their solutions, or 2) create large, complex

optimization problems that are difficult to solve numerically.  In the former case, later

referred to as the manual iteration method, the analyst may choose to decompose the

branching trajectory into several subproblems (one for each branch) that are individually

and sequentially optimized.  In most situations, this approach will undermine any natural

compromise between the branches and lead to a suboptimal overall objective. The latter case,

later referred to as the fixed-point iteration approach, generally requires the analyst to create

a large, slow computer simulation in which all independent variables and all constraints for

each branch are treated by a single optimizer.  This problem is made more difficult by the

presence of the natural coupling between the ascent and the branches of the trajectory and

the resulting iteration that must occur between them.  A branching trajectory solved in this

way often exhibits numerical convergence problems and does not scale well to very large

problems.

The shortcomings in the two current state-of-practice approaches above can be

significant.  At current payload delivery prices of more than $3,000/lb of payload to orbit, a

suboptimal solution that loses just 0.1% of payload for a typical medium-sized booster

would result in a loss of potential revenue of more than $500,000 per flight.  Alternately,

with engineering time costing as much as $100/hour, a new solution method, that might save

25% of the time it would take an engineer fill out a payload performance map with 100’s of

branching trajectory cases, might save almost $20,000. These effects are significant and

provide some of the motivation for the present research.  

As was mentioned previously, the manual iteration method results will not exploit

the compromises of the branches.  These compromises are revealed through the staging

vector components.  Thus, another motivating factor for this research involves identifying

potential staging vector compromises for branching trajectories in general.
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1.3  Research Goals

It is the goal of this research, and ultimately its contribution to the field of trajectory

optimization, to develop and demonstrate a new open-literature method for solving

branching trajectories in which feedback data is accurately and efficiently modeled.

It is further a goal of this research that the new method be computationally efficient

by allowing the problem to be decomposed into smaller, more numerically manageable

subproblems (one for each branch) that can be solved in a distributed fashion.  The new

method must be as simple and straightforward as possible without introducing extensive

set-up complexities or set-up times.  It cannot produce a series of suboptimal solutions for

each branch nor can it produce solutions that are internally inconsistent between branches.

(Internal consistency meaning that the coupling variables produced by the branches are

numerically identical to those same variables passed into the ascent and vice versa).  Lastly,

the new method should be scalable and adaptable to a wide variety of large and small

branching problems having this particular coupling characteristic.

1.4  Research Objectives

In support of the aforementioned research goals, specific research objectives (or

targets) were established to measure the success of the methodology development effort.

Some of the objectives are qualitative in nature, while others represent specific quantitative

targets. These research objectives for the new method are outlined as follows:

• Demonstrate an efficient computation approach that can be distributed on several

computing processors to reduce overall solution time enough such that the solution

process would be applicable in a vehicle design framework.

• Demonstrate an improvement of 1% or greater in the objective function relative to

the suboptimal solution of the manual iteration method.

• Decrease the computing time relative to a fixed-point iteration approach by 10% or

more for a single trajectory solution.
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• Maintain a reasonable level of method complexity and a set-up time that is no more

than 50% greater than the set-up time of a suboptimal method like the manual iteration

method.

• Guarantee internal data consistency between the individual branches at the solution.

• Demonstrate the scalability and robustness of the new method for small and large

branching trajectory problems.

• Formulate generalities of staging vector compromises for the branching trajectory

problem.

1.5  Approach

After the current solution techniques for branching trajectories and their deficiencies

was researched, a rough framework for the new solution method was established (the full

details of the new method will be disclosed in subsequent chapters).  Since an objective of

this research was that the new method be computationally efficient in terms of computation

time and distribution of computing resources, the proposed method advocates the

decomposition of the individual branches of the trajectory into separate subproblems.

Subsequently, these distributed subproblems had to be coordinated into a consistent and

optimal solution.  

The field of multidisciplinary design optimization (MDO) provided several

techniques that have been successfully applied to the decomposition and subsequent

coordination of the individual subproblems.  Therefore, a key element of the present

research was to examine several pertinent MDO techniques to determine their applicability

to this class of branching trajectory.  Based on the results of this investigation, one MDO

solution technique was recommended for use in the overall method.

Two ‘test case’ applications were formed to help guide the development of the

method and to demonstrate its utility toward reaching the research goals and objectives.  The
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first testcase, the Kistler K-1 launch vehicle, was a relatively small, coupled branching

trajectory problem.  The second testcase, the Stargazer design, was a more complex

problem in which the branching trajectory analysis was tightly coupled with other

disciplines.  The evaluation of all of these analyses was necessary to evaluate the branching

trajectory performance.  

In addition to their implementation in the selection of the MDO technique chosen

for the proposed method, these two testcases were also used to establish the benchmark (the

manual iteration method solution) from which comparisons could be made. These

comparisons were analyzed with respect to execution times, set-up complexity, and objective

values at the solution.

While solving the branching trajectory problem, a significant amount of time was

invested in order to understand the details of each method, automate or script many of the

analyses in the optimization process, and run thousands of individual analyses needed to

generate supporting data.  This data was then used to draw conclusions and evaluate any

improvements and concurrence with the stated objectives.  Based on these conclusions,

recommendations for future work were made.

1.6  Organization of the Thesis

The thesis is organized in the following manner.  This chapter, Chapter I, introduces

the problem of branching trajectories and the contribution of the research.  Chapters II and

III review background information on trajectory optimization, both in general and for the

branching trajectory formulation, and on multidisciplinary design optimization (MDO),

respectively.  Decomposition methods are the specific methods used for analysis in this

thesis.  Thus, background information and prior research with respect to MDO

decomposition methods are presented in Chapter IV.  In Chapter V, the general branching

trajectory problem is formulated as MDO problems.  This chapter shows specific

illustrations of the branching trajectory problem when formed using the decomposition

methods of Chapter IV.  The first application, the Kistler K-1 launch vehicle, is described in

Chapter VI.  Specifically, the vehicle characteristics, trajectory, and objective function are

accounted for in detail.  The results for the K-1 analysis are reported on in Chapter VII.
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Results for both traditional methods and MDO methods are analyzed.  Chapter VIII

introduces the second application, Stargazer, its design structure, trajectory, and objective

function.  Results with respect to traditional methods and MDO methods for the Stargazer

vehicle are examined in Chapter IX.  Chapter X closes the thesis with conclusions and

recommendations for future work.
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CHAPTER II

TRAJECTORY OPTIMIZATION:  AN OVERVIEW

Much research has been performed in the area of trajectory optimization [1,2,3].

This chapter presents the background of trajectory optimization with emphasis on that

which is necessary for launch vehicle missions.  The additional considerations required for

branching trajectory optimization with powered flyback, along with past research in that

specific area, is discussed.

2.1  Trajectory Optimization in General

Trajectory optimization can be defined as finding the ‘best’ path from an initial

condition to some final condition based on a certain performance index [3].  This is

achieved subject to gravitational, propulsive, and aerodynamic forces.  The ‘best’ path is

contingent on the performance index, or objective function, to be optimized.  The objective

function can be to maximize final weight, minimize time, or maximize distance covered.  The

optimization of the trajectory usually occurs in phases, such as take-off, cruise, and landing.

Typically, the phases are optimized given initial and final events, which are subject to path

constraints.
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2.2  A General Vehicle in Flight

A vehicle in flight can be approximated by a point mass.  Figure 3 shows an

illustration of a point mass subjected to forces in flight.  

L

V

D

mg

Tε

γ
γ

y

x

Figure 3:  A Point Mass in Flight

Summing about each axis, the dynamic equations for velocity, V, and flight path

angle, γ, are given in equations 1 and 2.  

m ˙ V  = - D - mgsin(γ) + Tcos(ε) (1)

mV ˙ γ  = L + Tsin(ε) – mgcos(γ) (2)

where L is the lifting force, D is the drag force, T is the thrust, or propulsive force, and mg is

the gravitational force.  These equations can be rearranged to form the general nonlinear

longitudinal equations of motion for a vehicle [4], similar equations can be formulated for

lateral motion [4].  The general equations are then used to model the flight path.  When

combined with aerodynamic, propulsive, and weight models, the equations of motion can be
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integrated through time to produce the entire trajectory.  Once an initial trajectory is

obtained, optimization can occur.

2.3  Solution Schemes for Trajectory Optimization

Solution methods for trajectory optimization problems are typically identified as

either indirect methods or direct methods [5, 6].  Indirect methods use calculus of variations

techniques [7] to characterize the optimization problem as a two-point boundary-value

problem [8, 9].  At the initial time, the costate variables, or Lagrange multipliers, must be

guessed.  Since these variables are just multipliers and have no physical meaning, guessing

their initial values is very difficult and may lead to problems with convergence to the

optimum.  Direct methods discretize the optimization problem through events

(distinguishing initial/final conditions) and phases (that part of the trajectory occurring

between events.)  The subsequent problem is solved using nonlinear programming

techniques [10, 11].  Some indirect and direct optimization methods are considered below.

2.3.1  Optimal Control

The optimal control scheme [12] is an indirect method.  It has been used to solve

many trajectory optimization problems for launch vehicles [13, 14, 15, and 16].  Optimal

control uses first variation techniques to determine necessary conditions, for an optimum,

and second variation techniques to determine sufficient conditions, to find out what kind of

optimum.  Optimal control requires analytical differentiation of the equations of motion,

including the models for propulsion, atmosphere, weights, etc.  In fact, to determine

satisfaction of the sufficient conditions, the equations and models must be twice

differentiable.  The models are usually highly complicated equations and vehicle specific.

Thus, optimal control problems are difficult to make modular.  Because these problems are

posed as two-point-boundary-value problems, a priori knowledge of the initial state

variables, final costate variables, and occurrence of path constraints is an advantage.

Without this knowledge, improper initial guesses can lead to convergence difficulty.
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2.3.2  Direct Numerical Methods

The direct schemes which use nonlinear programming include simple shooting,

multiple shooting, and transcription, or collocation.  In the shooting methods, the control

history is discretized as a polynomial, with the trajectory variables a function of the

integrated equations of motion.  In the collocation method, the vehicle’s flight path is

discretized, over time intervals, as a set of polynomials for both the trajectory variables and

controls.  To ensure that a physically feasible to trajectory is calculated, satisfaction of the

equations of motion is enforced at discrete points throughout the trajectory.

In both cases, nonlinear programming techniques are used to find the optimal

trajectory.  These methods require gradient calculations to analyze the sensitivities of the

design variables (either controls, or controls and trajectory variables) to the objective and

constraints.  These gradient calculations usually require many function calls (trajectory

simulations).  However, numerical optimization schemes of shooting methods and

collocation are easily coded and allow for varying models, resulting in their being popular

methods for implementation in trajectory optimization software [17, 18, 19].  As with

indirect techniques, these methods are sensitive to the weighting scheme and initial guess.

Two popular trajectory optimization codes are described in the next section.  Both

use direct methods.

 2.4  Trajectory Optimization Programs:  OTIS and POST

OTIS [17], Optimal Trajectories by Implicit Simulation, is a trajectory simulation

program that primarily uses nonlinear programming and collocation, although shooting is

an option.  OTIS was originally developed by the Boeing Company under contract to the

Air Force and is popular throughout the trajectory optimization community.  OTIS can

accommodate varying models of propulsion, weights, atmospheres, and aerodynamics.  As a

result of the trajectory variables being parameterized over specific time intervals, constraint

boundaries, such as a dynamic pressure boundary, are easily simulated in OTIS.
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The Program to Optimize Simulated Trajectories — POST I [18] was developed by

Lockheed-Martin under contract to NASA and is widely used for trajectory optimization

problems in advanced vehicle design.  POST is a generalized event-oriented code that

numerically integrates the equations of motion of a flight vehicle given definitions of

aerodynamic coefficients, propulsion system characteristics, atmosphere tables, and

gravitational models.  Guidance algorithms used in each phase are user-defined.  Numerical

optimization, specifically nonlinear programming and direct shooting, is used to satisfy

trajectory constraints and minimize a user-defined objective function by changing

independent steering and propulsion variables along the flight path.  POST runs in a batch

execution mode and depends on an input file (or input deck) to define the trajectory event

structure, vehicle parameters, independent variables, constraints, and objective function.

Both the OTIS and POST codes have various limitations and approximations

associated with their trajectory models.  Table 1 lists the various options offered by these

codes.  POST and OTIS each offer three- and six-degree-of-freedom simulations and point

mass approximations of the vehicle being simulated.  

More intricate differences occur between the table modeling options and guidance

and steering algorithms employed.  Table inputs are linearly interpolated in POST.  In

OTIS, tables are modeled more complexly.  Table data is curve fit with the choices of a

linear fit, cubic or quintic spline fits, or, in the most recent version of the code, a chamfered

spline fit.  In addition, steering in OTIS is essentially achieved open-loop and a ramp

steering option acts as guidance for the simulations.  Guidance and steering options for

POST are more varied and include:  vehicle body rates, aerodynamic angles, euler angles,

and pitch plane steering; open/closed loop guidance; generalized acceleration steering; and

predictor-corrector guidance.  
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Table 1:  Modeling Options for OTIS and POST

Model OTIS POST

Atmospheric Model 17 model options, including

options for wind models and

user-defined models

17 model options, including 4

for winds, 3 for turbulence, and

2 for gusts and user-defined

models

Aerodynamic Model Tables for Axial & Normal

or Lift & Drag Coefficients

Tables for Axial & Normal or

Lift & Drag Coefficients

Gravity Model 2nd  –4th harmonics in the

gravity potential function

Oblate and spherical planet

options

2nd  –8th harmonics in the

gravity potential function

Oblate and spherical planet

options

Numerical

Integration Methods

6 options including 4th order

Runge-Kutta, variable step

methods, and implicit

integration.

7 options including 3 Runge-

Kutta methods, variable step

methods, and methods

specialized for orbit

simulations

POST and OTIS are being improved and additions are made regularly.  In addition,

users have the option to write their own supplemental algorithms.  The options and

approximations listed in Table 1 are only highlights of some choices that are common in

trajectory simulation models.  Ultimately, the main difference occurs in the optimization

methods employed, as previously mentioned.

2.5  The Optimization of Branching Trajectories

As explained in Chapter I, there are many different TSTO mission profiles that

exhibit branching trajectories.  Future RLV’s depend on this type of trajectory because the

reusability of the vehicle is furthered by it.  In the previous sections, the motivation for

trajectory optimization was reviewed.  Branching trajectories are no different in that they

must also be optimized.  
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Branching trajectories can be posed as non-distributed or distributed simulations.

Non-distributed problems require one simulation that can accommodate multiple vehicle

models, which would be needed after staging.  The optimizer for this problem will be large,

as it contains all the design variables and constraints for the entire branching trajectory.

This has the potential to lead to long simulation times.  Distributed problems simulate the

branching trajectory as two or three separate simulations.  They can be decomposed at the

staging point to result in an ascent trajectory and an upper stage trajectory and/or a flyback

trajectory.  Optimization can occur at the trajectory level, at an overall system-level, or at

both levels.  These solutions are explained below and in Chapter V.  Simulation, or CPU,

time can be saved by posing the branching trajectory in this distributed manner.  

2.5.1  Branching Trajectory Optimization for this Research

In the public domain, research is lacking with respect to branching trajectories with

powered flyback.  In the same domain, it is nonexistent for such trajectories solved in a

distributed manner with an overall objective and consistent data between subproblems.

For the research presented in this thesis, branching trajectories with powered

flybacks were decomposed into distributed problems.  POST, described in the previous

section, is the program that was used to simulate the trajectories.  POST is currently used

for launch vehicle trajectory simulation in the Space Systems Design Lab at Georgia Tech

and is the code of which the author is intimately familiar.  The use of POST dictated that the

branching trajectory optimization be achieved in a distributed manner.  Branching

trajectories cannot be modeled in POST as a non-distributed problem.

The fact that there are now two, or even three, different parts of the overall branching

trajectory makes the optimization more complex.  The existence of the staging point means

that compromises must be made between the orbital and flyback branches.  An example is

that typically the upper stage wants a larger flight path angle at staging.  This helps it

achieve its orbit goals in a shorter amount of time (than with a smaller flight path angle) and

thus aids in minimizing its fuel consumed during the orbital portion of the trajectory.  At the

same time, the booster desires a smaller flight path angle.  The closer the velocity vector is to
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the horizontal, the faster the booster can achieve that negative flight path angle that is needed

to aim the vehicle back to the earth.  This also helps to minimize fuel.  It is evident that a

compromise is needed when the overall trajectory is considered.

Another important aspect of the branching trajectory is the feedback of the flyback

fuel and the upper stage fuel.  Figure 4 illustrates the fuel locations for a typical TSTO.

Unnecessary extra fuel in the booster or the upper stage means that either extra payload can

be taken to orbit or smaller vehicles (booster and upper stage) can be used.  Not enough

fuel means that orbit conditions may not be met and the booster does not return to its

designated landing site.  Thus, the feedback of these fuels is required.

Figure 4:  Example of a TSTO’s Stages with Fuel

2.5.2  The ‘One-and-Done’ and Manual Iteration Methods

Unfortunately, a common method currently used in industry for optimizing a

branching trajectory problem (henceforth the 'One-and-Done’ Method), while recognizing

the coupling of the ascent trajectory and orbital branch, ignores the flyback fuel dependency

from the flyback branch to the ascent trajectory.  The ascent trajectory, orbital branch, and

flyback branch are treated as separate, but sequential optimization subproblems.  A

reasonable guess at upper stage mass, flyback fuel, and associated structure is made to

establish an initial booster weight.  Then, the ascent is optimized for maximum weight at

staging (or some other similar criteria).  The ascent trajectory will produce a staging state

vector used to initiate the orbital branch and the flyback branch.  This vector includes

altitude, velocity, flight path angle, velocity azimuth, latitude, longitude, and sometimes

staging weight.  The orbital branch will typically be optimized with respect to maximizing
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the upper stage burnout weight, while the flyback branch will typically be optimized with

respect to minimizing the flyback fuel consumed.

There are a number of deficiencies in the ‘One-and-Done’ method.  A major

deficiency is that the final solution is not ‘internally consistent,’ in other words, it is not

guaranteed to be converged between the subproblems.  The feedback is not there; the

problems that this creates have been discussed above.

This aforementioned deficiency can be eliminated through iteration between the

ascent, upper stage, and the flyback branches.  From this point on, this method will be

referred to as the Manual Iteration method.  A significant deficiency still exists with this

method as with the ‘One-and-Done’ method.

At a fundamental level, these methods are inherently flawed.  The objective functions

of the subproblems are not the same; therefore, they can be in conflict.  If the system-level

objective is to deliver a certain payload to orbit with a minimum weight booster, then why

expect an optimum solution from a method that first maximizes the payload to orbit for the

orbital branch, then minimizes the flyback fuel for the flyback branch?  A compromise in

the staging conditions can be made such that it reduces the flyback fuel and thus decreases

the booster weight.  A proper solution to this problem requires simultaneous and coupled

treatment of all branches of the trajectory, and the establishment of a single, consistent

objective function between them (i.e. a system-level optimization).

A mathematical example of conflicting objective functions can be seen in equations

3 – 8.  F is the overall equation that is to be optimized.

F = f1 + f2 = 2 x −1( )2 + x (3)

Decomposed, F can be written as two equations, f1 and f2.  When optimized

separately, equations 6 and 7 are produced and x results in two differing answers that

optimize each decomposed problem individually.

f1 = x − 1( )2
(4)
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f2 = f1 + x = x −1( )2 + x (5)

df1

dx
= 0 = 2 x −1( ) ⇒ x = 1 (6)

df2

dx
= 0 = 2 x −1( ) +1 ⇒ x = .5 (7)

The overall optimization of F in equation 8, however, shows that a compromise in x

was made so that the true optimum was found.  Table 2 summarizes the end products of this

simple example.  An example of a compromise that could be made in the branching

trajectory problem was discussed in Section 2.5.1.

dF

dx
= 0 = 4 x −1( ) +1 ⇒ x = .75 (8)

Table 2:  Results for Mathematical Conflicting Objective Functions Example

Function Optimum x Optimum F

f1 1 1

f2 .5 1

F .75 .875

2.5.3  Branching Trajectory Optimization in the Launch Vehicle Community

Many in industry have recognized the deficiencies of the ‘One-and-Done’ and

manual iteration methods.  Some have employed optimizers that solve the branching

trajectory problem as a non-distributed problem.  OTIS has the ability to simulate the entire
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branching trajectory [20], in this manner, as a single simulation.  Descriptions and results

for applications of branching trajectory research with OTIS are not currently available in the

public domain.  

Shuttle-IUS trajectories with branches have been simulated at the Aerospace

Corporation [21].  An ascent trajectory was attained for the orbiter from launch to a 100 nmi

park orbit.  From this orbit, trajectories required for the Shuttle deorbit and upper stage

(IUS) mission were generated.  The overall problem was a parameter optimization problem

with variables that were the STS and IUS burns and constraints for the mission

requirements.  An overall optimization using a sequential quadratic programming algorithm

was performed to satisfy the mission constraints of the two branches while maximizing the

payload weight of the IUS.  Although these trajectories differ from the branching trajectory

definition of Chapter I, the solution with an overall optimizer found that compromises, in

shuttle deorbit requirements and IUS performance, were necessary to find the desired

system optimum of maximum payload.  Feedback of the fuels was not considered.

At NASA Langley, POST has been used to solve some branching trajectories.

Branching trajectory research has included investigations of a bimese-type vehicle [22] with

a glideback, or non-powered, return to the launch site.  Separately optimized ascent and

glideback POST decks were used for the simulation.

A Sänger-like vehicle with an orbiter and a ramjet-powered return to the launch site

is discussed in [23].  The study was used to analyze the effects of various amounts of

airbreathing and rocket propulsion during ascent.  Thus, optimization for an overall

objective was not the goal of the analysis and thus not addressed.  The trajectory

simulations for the ascent, orbiter, and flyback were run separately with the staging

conditions (including altitude, velocity, and flight path angle) fixed for staging at Mach 6.

The sizes of the booster and the orbiter were also fixed.  Propellant volume in the booster

could vary however.  While trying to find the booster gross weight needed to lift the orbiter,

cruise-back propellant weight was estimated.  Feedback of the flyback, or cruise-back, fuel

weight was not modeled, but would have been beneficial since the cruise distance and

booster staging weight changed for each different gross weight.
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POST I’s sequel, POST II [24], is currently being tested and is not yet available to

the general public.  POST II can simulate multiple vehicles and thus branching trajectories

as one non-distributed trajectory simulation.  At this time, fuel feedback is not an option

specific to the code, but has the potential to be included as user-defined calculations.

2.5.4  Summary

The solution methods of the ‘One-and-Done’ and manual iteration methods rely on

at most three separate POST input decks — one for the ascent to staging trajectory

subproblem, one for the orbital branch subproblem, and one for the flyback branch

subproblem.  Each subproblem has its own independent variables, constraints, and objective

function.  The current research has retained the POST code and the use of at most three

separate input decks (one job for each part), but also eliminated any objective function

conflict and lack of data consistency between them.  Feedback of the flyback fuel weight

(and varying upper stage weight) was modeled in this research.  This has produced a

solution that resulted in internally consistent data (the fuels’ feedback is reflected in the

initial gross weight, etc.) and a single system-level objective function (without conflicting

objective functions for each subproblem).
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CHAPTER III

A BRIEF SYNOPSIS OF MULTIDISCIPLINARY

DESIGN OPTIMIZATION

This chapter reviews background information concerning the multidisciplinary

design optimization.  The significance of optimization with respect to design is explained

and a standard representation of the coupling in a design process, the design structure

matrix, is illustrated.  Two classes of multidisciplinary design optimization, parametric and

stochastic methods and decomposition methods, are briefly reviewed.

3.1  The Standard Optimization Form

Numerical optimization can be defined as the process that arrives at the best possible

solution to a problem with respect to an objective function and constraints.  The objective

function, F(x), is the goal of optimization; it is the quantity that must be maximized or

minimized.  The objective function is dependent on the inputs, x, called design variables.

The constraints are the limitations of the design.  They may be given as equalities, h(x), or

inequalities, the bounded function g(x).

There exists a standard form in which the optimization problem is stated [25].

Equations 9 – 12 define the standard optimization form.  

Minimize:  F(x)      x = x1, x2, …xn          (9)

                     Subject to:  gj(x) ≤ 0 j = 1, m (10)
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                   hk(x) = 0 k = 1, l (11)

                   xi
l ≤ xi ≤ xi

u i = 1, n (12)

where xi
l and xi

u are the lower and upper bounds of xi, respectively.  Given this form, the

mathematical equivalent to maximizing the objective function is to multiply F(x) by negative

one.  Similarly, if an inequality constraint is given as being greater than or equal to zero, the

constraint is multiplied by a negative one so that it follows the standard optimization form.

3.2  Design and Optimization

3.2.1  Design

Finding the optimal analytical answer to a simple mathematical equation of one

dependent variable is relatively trivial when compared to finding the optimal solution to a

design problem.  Typically, the root to the first derivative of that equation is found and

substituted into the original equation, giving the extremum (maximum or minimum).

Within the design set-up, that simple analysis can become thousands of independent

variables with numerous constraints.  

A typical design structure is shown in Figure 5 in the form of the Design Structure

Matrix (DSM) [26].  Blocks A, B, and C represent design analyses, or disciplines, and may

themselves contain several sub-analyses. The lines to the right of the analyses represent

feedforward loops, while the lines to the left represent feedback loops.  Typically, when

such loops are present, coupling exists in the design.  The circles at each intersection

represent coupling of the design variables between the analyses.  For a design coupled as in

Figure 5, iteration must occur to ensure compatibility among the analyses.  
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Figure 5:  Design Structure Matrix

Design teams, or organizations, can be modeled by DSM’s similar to that of Figure

5, although many more analyses usually exist.  These teams are typically tightly integrated,

or coupled, and designs are produced by iteration.  Members of the teams execute the

analyses and are referred to as ‘disciplinary experts.’  These experts usually have a store of

knowledge pertaining to the analysis he or she controls.  Communication of the coupled

design variables between the disciplinary experts can be as simple as yelling across the

room or as complicated as transferring files across the country.  A converged design, one

whose inputs to the analyses and outputs from them are considered the same, may take

anywhere from minutes to years to complete, depending on the complexity of the design

and the level of detail required.

3.2.2  Optimization of Designs

An algorithm can be used to find the optimal design as evaluated by the DSM.  In

this design scenario, numerical optimization may reduce design time.  It can easily be

automated and applied to large design problems, and it is not biased by subjective intuition.

However, these advantages may be counteracted by significant set-up times and numerical

noise within the analyses.  Many numerical optimizers require a continuous, or ‘smooth’

(first-order or second-order differentiable) design space (that n-dimensional region in which

potential designs lie).  This is a disadvantage because some of the design variables may be
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discrete (e.g., number of engines, TPS type, etc.) or piecewise linear.  Typically, in

optimization, analyses must be evaluated quickly and numerously, a disadvantage because

many design analysis programs can take days to run.  Often, these obstacles can be

overcome in order to obtain the valuable optimal solution.  

The question remains as to the arrangement of the optimizer with the design

structure.  An introduction to various types of formulations is given in the following

sections.  Techniques for setting up the optimization problem fall under the category of

Multidisciplinary Design Optimization (MDO) methods.  

3.3  Multidisciplinary Design Optimization

Multidisciplinary Design Optimization (MDO) is a branch of research dedicated to

the formulation of optimization techniques, algorithms, and improvements for the many-

disciplined design problem such as that shown in Figure 5.  A relatively new field, MDO

has its roots in structural optimization [27, 28].  Among many other applications, MDO

techniques have been used to optimize numerous vehicle design problems, to the extent of

which survey papers have been written for launch vehicle design [29], aircraft design [30],

and helicopter design [31].  

For the purpose of this introduction, MDO formulations are presented in the next

sections by the way in which the optimization is performed:  through use of parametric and

stochastic methods or through use of decomposition techniques.  The crux of the research

proposed in the following chapters is in the use of the latter techniques; the former is

included for completeness.

3.4  Parametric and Stochastic Methods

Parametric MDO methods use domain spanning techniques to formulate equations

that approximate the analysis to be optimized.   These methods include Taguchi and Design

of Experiments (DOE) methods that are usually combined with response surface methods

(RSM).  Taguchi methods [32] and DOE methods [33] span the entire design space
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through a selection of values for each design variable within a user-defined lower and upper

range.  Commonly, the representation of each design variable is by its maximum, minimum,

and mean values.  Through combinations of each of these values for every design variable, a

arrays can be established to represent the whole design space.  For each array combination,

a response, or design objective, is obtained if a feasible design exists for the given values.

Once the objective functions are known, RSM can be used to fit the Taguchi or DOE

analysis to an equation that can be quadratic, cubic, etc., in order.  Subsequently, the design

analysis is now modeled by an equation that can easily be used for optimization.

Taguchi/RSM methods have been used successfully in the design of a single-stage-

to-orbit, rocket-based combined cycle launch vehicle [34, 35].  DOE/RSM methods have

been used to successfully design that same vehicle [35] and an aeroelastic wing [36, 37].

When the probabilistic nature of the design variables is added through Monte Carlo

simulation, even more robust results can be obtained [38, 39].

Stochastic methods are those that offer the most advantages to optimization

problems that have discontinuous or discrete design variables.  Random walk [25], genetic

algorithm (GA), and simulated annealing are examples of such methods.  They find

problem solutions for various combinations of the design space, the optimized answer being

that which has the lowest objective function.  The GA uses processes from evolution, a

survival of the fittest scheme, to optimize a design.  A GA has been used successfully in

interplanetary trajectory design [40].  Combined with RSM, a GA performed well for

launch vehicle design as well [41].

One advantage of these methods is that no gradients are required.  However,

disadvantages occur due to the approximate and random nature of parametric and stochastic

methods.  Only near-optimum solutions can be guaranteed by these methods.  In addition,

problems may occur when trying to meet constraints, producing infeasible designs.

3.5  Decomposition Methods
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In terms of optimization, decomposition methods change the iterative or coupled

structure of the DSM of Figure 5 by breaking the feedforward/feedback loops and adding a

numerical optimizer to the new structure [42, 43].  The optimizer is now at what is referred

to as the system-level, while the contributing analyses are at a sub-level.  The breaking of the

feedback loops poses the original problem as a noniterative problem in which the analyses

are evaluated in a sequential order.  A noniterative parallel problem results with the

additional breaking of the feedforward loops.

Given that the design space is continuous, the analyses can be integrated into a

decomposition scheme with no loss of fidelity in the analysis.  Since the analyses are not

approximated, the optimal solution of the system-level problem can be found.  The

numerical optimizer controlling the system-level problem is often gradient-based, which

may lead to many function calls of the analyses being required as gradients are calculated.

As a result, discrete and piecewise linear design variables are not allowed and are typically

fixed in the analyses.  Despite these obstacles, the advantages of decomposition methods are

enough to warrant their usefulness in design optimization.

Basically, two categories exist for decomposition methods:  single-level

decomposition  and multi-level decomposition.  The difference between the two being that

for single-level decomposition, optimization occurs on the system-level and for multi-level,

optimization occurs at the system and subsystem levels.  

Single-level decomposition techniques include optimization-based decomposition,

also referred to as “simultaneous analysis and design,” SAND, or all-at-once, approaches.

In these schemes, analysis iteration is avoided by giving all the control to the system-level

optimizer.  This leaves the analysis as a function call only.  These methods have been used

successfully in wing and trajectory design [44, 45], launch vehicle design [46], aircraft

design [47], building design [48], and common mathematical problems [49].  These

applications are discussed in detail in the next chapter.

The multi-level decomposition technique of collaborative optimization allows the

subsystem (or analysis) level control and optimization of its own analysis and the system-

level optimizer ensures compatible design variable choices for all analyses.  This method

has been used successfully in building design [48], launch vehicle design [50, 51, and 52],
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aircraft design [45, 53], lunar ascent trajectory optimization [50, 54], bridge design [55], and

satellite constellation design [56].  Investigations of the combination of collaborative

optimization and response surface methods (to model the optimal subsystem) have been

performed for an oil tanker, a tailless unmanned aircraft, the High Speed Civil Transport

(HSCT) [57], and wing designs for the HSCT [58].  These applications are detailed in

Chapter IV.  Other approaches for multi-level decomposition have been proposed and used

in structural and helicopter design, in common mathematical problems, and for launch

vehicle trajectory design [49, and 59 - 62].  These other multilevel methods differ from

collaborative optimization with respect to how the coordination between the system and

subsystem levels is performed and how the coupling variables are accounted for.

The research detailed in this thesis will incorporate both single and multi-level

decomposition. Optimization-based decomposition will be the single-level decomposition

method used.  Collaborative optimization will be the method representing the multi-level

decomposition methods.  These methods are explained in greater detail in Chapter IV.
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CHAPTER IV

MDO DECOMPOSITION METHODS IN DETAIL

Multidisciplinary design optimization techniques are expounded upon in this

chapter.  The methods of fixed-point iteration, optimization-based decomposition, and

collaborative optimization are illustrated in detail; in addition, reviews of previous research in

this area are included.  Constraint gradient formulation for the collaborative optimization

method, with regard to post-optimality analysis is discussed.  The first MDO method listed,

the fixed-point iteration method, is not a decomposition method.  It is illustrated in this

section so that the decomposition methods, optimization-based decomposition and

collaborative optimization, can be better understood.

4.1  Fixed-Point Iteration

A diagram of the fixed-point iteration (FPI) method [63], also known as “nested

analysis and design,” NAND, is shown in Figure 6 for the generic DSM of Figure 5.  The

optimizer has control of all the system-level design variables, x, which are fed to the

analyses, A, B, and C.  A, B, and C are still allowed to iterate through use of their

feedforward and feedback loops.  From the analyses, the system-level constraints are sent to

the optimizer.  The standard optimization form, equations 9-12, can be used to represent the

job of the optimizer for this method.

The major advantage of the FPI method, over the ‘One-and-Done’ method, is that it

will find the true system optimum without conflicting objectives from the subproblems.  It
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has several disadvantages.  The disciplinary experts running the analyses do not have much

say in the optimization process.  The system optimizer can become large due to the fact that

it controls all system-level design variables and constraints.  A, B, and C must execute

iteratively, consuming more real time than if they executed in parallel.  Also, noisy gradients

occur due to the presence of an iteration tolerance, which causes convergence problems.

Figure 6:  Generic FPI Diagram

4.2  Optimization-Based Decomposition

The single-level decomposition method, optimization-based decomposition (OBD)

[63], is illustrated in Figure 7.  In this method, the feedforward loops and the feedback

loops of the DSM have been broken.  Since there is no longer any iteration between the

analyses, the system-level optimizer must take over an additional job of ensuring

compatibility between A, B, and C.  The variables that once were represented by the

feedforward and feedback loops, intermediate variables A’, B’, and C’, are now controlled

by the system-level optimizer as additional design variables.  Along with the system-level

constraints, the coupling variables calculated by the analyses, A, B, and C, are also passed to

the optimizer.   To ensure compatibility between the inputs, A’, B’, and C’, and outputs, A,

B, and C, new constraints, called compatibility constraints are formed.  These are additional

constraints on the system level.

The optimizer’s job for OBD can be written in the standard form as follows:
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 Minimize:  F(x, A’, B’, C’)      x = x1, x2, …xn          (13)

Subject to:  gj(x, A’, B’, C’) ≤ 0 j = 1, m (14)

       hk(x A’, B’, C’) = 0 k = 1,l (15)

       xi
l ≤ xi ≤ xi

u i = 1, n (16)

       Al ≤ A’ ≤ Au

       Bl ≤ B’ ≤ Bu

       Cl ≤ C’ ≤ Cu

where g includes the compatibility constraints, an example of which is given by

equation 17.

gj(x,A)= ||A’ – A|| ≤ 0 (17)

Figure 7:  Generic OBD Diagram

Note that the OBD scenario illustrated in Figure 7 is a completely parallel method

with respect to execution of the analyses.  Another scenario for OBD is when only the

feedback loops are broken.  This is a partial decomposition (POBD) as opposed to the full

decomposition in Figure 7.
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An advantage of this parallel scheme is that A, B, and C can be run simultaneously,

reducing the execution time even more.  This is because there is no iteration (between A, B,

and C) for this method.  That coupling is handled by the compatibility constraints.

Disadvantages are that the size of the optimizer can become quite large and system experts

have little say in terms of optimality in their respective analyses.

As stated before, the OBD MDO method has been investigated for various

problems, ranging from mathematical problems to launch vehicle design.  In [44], fully

parallel OBD was used to simultaneously optimize an aircraft and its flight path.

Decomposition was achieved on two levels, the flight segments and the disciplinary

analyses.  This type of decomposition is referred to as ‘2-dimensional decomposition.’

Specific details for that problem appear in [45].  Fixed-point iteration and the partial OBD

method were used to solve a single-stage-to-orbit launch vehicle in [46].  Comparisons of

the results are included in Section 4.5.  In [47], different formulations of the compatibility

constraints are listed and each is used to solve a fully parallelized aircraft design problem.

With a sequential quadratic system-level optimizer, a compatibility constraint posed as in

equation 18 had the highest percentage of converged solutions, while that posed like

equation 19 gave the fastest solutions in terms of CPU time.

x

′ x 
= 1± ε  (18)

x − ′ x ( )2 ≤ ε  (19)

In [48], single-level optimization was used to solve the overall minimization of the

weight of the exterior frame of a 50-story building subject to structural constraints.

Approximately12.5 hours of CPU time was required for one iteration.  The problem was

solved using collaborative optimization and those results are listed in the next section.  

4.3  Collaborative Optimization



32

The collaborative optimization (CO) [50] method, which is illustrated in Figure 8, is

a multi-level decomposition method.  For the design represented in the DSM of Figure 5,

the application of the CO method would require optimization at the analysis level (indicated

by the dashed lines in the analysis boxes) and the system level.   In this type of

decomposition, the system-level optimizer’s job is to coordinate the subsystems’

optimization while minimizing the overall objective.  In addition to the system-level design

variables, the design variables for the system include the coupling variables, now termed

targets, A , B , and C .  Each analysis is sent a complete set of its targets, regardless if these

variables are an input or output of the analysis.   Each analysis has a local version of the

targets that are selected by the local optimizer or calculated by the analysis.  

The system constraints are the sum-squared errors, JA, JB, and JC, between the targets

and the local values from each analysis and any system-level constraints.  The objective of

the subsystems is to minimize its respective error, JA, JB, and JC, while satisfying all its

subsystem level (or local) constraints.

Figure 8:  Generic CO Diagram

Because the optimization in this method is on two levels, the goals of the

collaborative optimization method can be stated by two standard forms.  The system-level

optimization is given by equations 20 – 22.  
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Minimize:  F(x)      x = x1, x2, …xn          (20)

Subject to:  gj(x) ≤ 0 j = 1, m (21)

       xi
l ≤ xi ≤ xi

u i = 1, n (22)

where x includes any system-level design variables and the targets (A , B , and C ),

and g includes the errors, Jj(x), and any system-level constraints required, an example of

which is given in Chapter IX.  In this case, the errors are given by equations 23 - 25; ε is a

small tolerance.

JA =  ||BA – B ||2 + ||CA – C ||2 + ||A – A ||2– ε ≤ 0 (23)

JB =  ||CB – C ||2 + ||AB – A ||2 + ||B – B ||2– ε ≤ 0 (24)

JC =  ||AC – A ||2 + ||BC – B ||2 + ||C – C ||2– ε ≤ 0 (25)

BA and CA represent A’s version (a local version) of the target coupling variables,

CB and AB are B’s version, and AC and BC are C’s version.  A, B, and C are the output

vectors.  These values are calculated by analyses A, B, and C, respectively.

The subsystem optimization is given by equations 26 – 29.

Minimize:  F(xss, cl) = Jl      x = x1, x2, …xn, l = A, B, or C         (26)

Subject to:  gj(xss) ≤ 0 j = 1, m (27)

       hk(xss) = 0 k = 1,l (28)

       xi
l ≤ xi ≤ xi

u i = 1, n (29)
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where xss  is the vector of the subsystem’s local design variables, cl is the vector of

the local versions of the coupling targets, both inputs and outputs (like A, BA and CA in

equation 23), and g is the vector of local constraints.

A main advantage of the CO method is that disciplinary experts can control their

own analyses so that the local objective functions (minimizing the errors) and constraints

are met.  The system optimizer is relatively small (containing only the target variables,

system-level constraints, and the overall objective function) and A, B, and C execute

simultaneously, conserving time.  CO lends itself well to the design process since the

experts’ knowledge is still a part of the subsystem optimization processes which is run in a

time-saving parallel manner.  This method, too, finds the true system-level optimum.

Collaborative optimization has some disadvantages as well.  There may be coding or

robustness problems given that the analyses have their own optimization problem.  This will

also contribute to a greater execution time at the local level.

As previously stated, the CO MDO method has been used in the solutions for

various problems.  Just like for OBD methods, these range from mathematical problems to

launch vehicle design problems.  References [50] and [54] discuss the development of the

collaborative optimization architecture.  In addition, lunar trajectory designs and design of

an SSTO launch vehicle with cost analysis are solved with this architecture [50, 54].  The

lunar trajectory solution was segmented into increasing numbers of paths.  When compared

to solutions from a standard approach, the CO method was found to perform better, from a

CPU and objective function standpoint, as the number of segments was increased.

In [51], the comparisons of the different decomposition methods that were used to

solve the SSTO design of [46] are summarized.  The addition of the cost analysis is

summarized in [52].  Summaries of these comparisons are given in Section 4.5.  

The optimal solution of the sizing of the medium range transport aircraft of [44] is

solved with collaborative optimization in [53].  The aircraft problem of [47] was also solved

with the CO method and comparisons are listed in Section 4.5.  CO was used in the design

of a cable-supported bridge in [55].  Two subsystems existed at the sub-level.
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Nonlinear subspaces can present problems with solution convergence in the CO

method.  If multiple solutions exist, the subspace optimizer may ‘jump’ from one solution

to the next creating invalid gradient information at the system-level, thus leading to poor

performance at the system-level.  This problem of design space solution sensitivity was

addressed with the introduction of slack variables as the most applicable potential solution

to this problem [50].  

Since it is a multilevel decomposition scheme, the CO method results in many

function call and long CPU times at the subsystem level.  In more recent years, research has

been performed to reduce these function calls and CPU times.  A promising way to achieve

this is through use of response surfaces methods to approximate the optimization at the

subsystem level.  This was implemented in the vehicle designs of [57] and HSCT wing

designs of [58] with results incorporated significantly reduced function calls and CPU

times.

All of the previously mentioned solutions with the collaborative optimization method

used the sequential quadratic programming optimization scheme for the system-level

optimization.  In [56], CO was used for space based infrared system constellation design.

The system-level optimization scheme in that case was a penalty function method.  This was

due to the fact that gradients were not available for the subsystem analysis solutions, which

involved grid search and heuristics in their optimization.  However, results were successfully

obtained with this system-level optimization that differed from earlier work.  

4.4  Post-Optimality Conditions for Collaborative Optimization

Post-optimal sensitivity analysis can be used to investigate trade-offs in design and

it can also be used in optimization to aid in finding the optimal solution [64, 65].  Basically,

given an optimal solution, post-optimality sensitivity analysis is a useful tool for

investigating the effects, on that solution, of varying a parameter that plays a role in the

analysis.  In general, the crux of the analysis is given by Equation 30.  The first term

represents the change in the optimal objective function, F*, due to a change in the parameter,

p.  The second term is the change in F due to a change in p evaluated at the optimum.  In the

third term, g is the constraint vector, x* is the set of design variables at the optimal solution,
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λ is the Lagrange multiplier vector used to satisfy the Kuhn-Tucker necessary conditions

[25], and r is the set of constraint boundaries, or ε in the previous equations.

dF*

dp
=

∂F

∂p

 
 
  

 
x *

− λT ∂g(x* ,p,r)

∂p
(30)

The use of post-optimality sensitivity analysis has been successfully demonstrated

for collaborative optimization [50, 55, 57, and 58].  Expensive gradient function calls can be

eliminated through the knowledge that the subsystems (analyses A, B, and C above) give

optimal solutions at each system-level iteration.  These optimal solutions, the sum-squared

errors, Jl, from Section 4.3, are the constraints for the system-level problem.  Thus, the

constraint gradients for the system-level optimization problem can be formulated using

post-optimality sensitivity analysis.  Equation 31 gives the result when equation 30 is

applied to the subsystem optimal solutions and is true for each optimized subsystem

analysis.  For this case, c* is the vector of the local versions of the coupling targets, x, at the

optimum J, and g represents the vector of subsystem constraints.

dJ *

dx i

=
∂J *

∂x i

− λT ∂g(xss ,c*,ε)

∂xi

(31)

Since the subsystem constraints, g, are explicit functions of the subsystem variables

(xss and c*) only, the second term of equation 31 becomes zero and equation 32 results

[50].  This result is true for all subsystems and target variables, x.

dJ *

dx i

=
∂J *

∂x i

 = −2(ci
* − xi) (32)

where the generic form of J is

J = ci
* − xi( )2

i =1

n

∑ (33)
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Post-optimality sensitivity analysis will be used for the solutions of the collaborative

optimization schemes of the problems detailed in Chapters VI and VIII.  Equation 33 will be

used to calculate the system-level constraint gradients.

4.5  Summary of Decomposition Methods

Several comparisons of decomposition methods exist for aircraft wing design [44,

53], SSTO design [46, 51, and 52], common mathematical problems [49], a civil engineering

building problem [48], and ten coupled problems from diverse design fields [66, 67].  Not

all methods worked for all design problems, so broad generalizations can be made, but may

not be entirely accurate.

For the multidisciplinary wing design problem of [44] and [53], comparisons

between the OBD and CO methods revealed that each solution resulted in the same

optimum.  For that problem, the CO method took several hours to complete while the OBD

method was finished in several minutes.  In [46], FPI was found to be less computationally

efficient than OBD, which had a smoother design space.  For the same problem, CO was

applied in [51].  Lack of subsystem smoothness in the trajectory discipline created

obstacles.  That optimizer was taken out and the entire problem was solved in a much

greater amount of time than the solutions of [46].  For a similar problem, [52], which added

cost to the weights and sizing analysis, the CO method was solved with the trajectory

subsystem optimization.  It was less computationally efficient than OBD with, on average,

many more function calls.  However, computationally, it was at the same level with the FPI

method.  For the problem of [52], the CO method exhibited a much faster set-up time than

either the FPI or OBD methods and the communication requirements between the system

and subsystem levels were the least for the CO method.

For some problems, CO was found to have fewer function calls than single-level

decomposition methods and was found to be less robust [67]. In [49], single-level

decomposition techniques were found to be an order of magnitude more computationally

efficient than multi-level techniques for ‘trivial’ problems.  However, for a ‘non-trivial’,

highly coupled problem found in building design, collaborative optimization more

computationally efficient [48].  The authors propose that this was due to the facts that the
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large problem was segmented info many smaller problems, like that of the lunar trajectory

of [50], and that ‘engineering intuition’ was included to simplify the design.  More

applications should be tested before any general conclusions can be made regarding the

later reason as this result could be problem dependent.

Table 3 summarizes the characteristics of the four proposed MDO solution

techniques — fixed-point iteration (FPI), two variations of optimization-based

decomposition (OBD), and collaborative optimization (CO).  In addition, an entry labeled

‘Manual Iteration’ is included for comparison.  Manual Iteration is simply the ‘One-and-

Done’ (sequential) method iterated to ensure that the coupling variables are internally

consistent between the two analyses. The Manual Iteration method is not a preferred

solution however, since the conflict between the competing objective functions of the

contributing analyses is not resolved.  The second column of Table 3 refers to whether the

coupled variables are consistent between the analyses at the solution, as is true for all the

methods listed.  The fourth and fifth columns are interdependent in that if the system-level

optimizer is not present conflicting objective functions may occur and vice-versa.

Table 3: Proposed MDO Solution Techniques

Method Internally
Consistent

Data

Iteration
Required
Between
Analyses

Potential for
Conflicting
Objective
Functions

Requires
System-level

Optimizer

Contributing
Analysis
Execution

Optimizer Strategy

Manual Iteration Yes Yes Yes No Sequential Distributed

Fixed Point
Iteration (FPI)

Yes Yes No Yes Sequential System Level
(large)

Partial OBD Yes No No Yes Sequential System Level
(very large)

Full OBD Yes No No Yes Parallel System Level
(extremely large)

Collaborative Yes No No Yes Parallel Distributed
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CHAPTER V

THE BRANCHING TRAJECTORY PROBLEM

FORMULATED USING MDO

Since its structure consists of at least two highly coupled subproblems, the

branching trajectory problem resembles more common multidisciplinary problems such as

the coupling between structures and aerodynamics (even though, in this case the

subproblems are actually of the same discipline!).  For that reason, solution techniques from

the field of Multidisciplinary Design Optimization (MDO) can be advantageously applied

to its solution.  MDO methods have been successfully proposed for and/or used in the

solutions to highly coupled subproblems from a single discipline.  These disciplines

include:  wing design of the HSCT [58], fluid dynamics [68], and propulsion with respect to

the linear aerospike [69].

This study utilized the Program to Optimize Simulated Trajectories (POST I) in

order to simulate the branching trajectories.  In the following figures, the orbital branch will

be designated as ‘Orbit.’  The flyback branch will be denoted as ‘Flyback.’  The ascent

trajectory will be labeled ‘Ascent.’  When the internal optimization capability in POST is

enabled, a box with a diagonal line will indicate that POST is being used for trajectory

analysis plus local optimization.  A plain box will indicate that POST is simply being used

to integrate along a given trajectory.  
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5.1  The Fixed-Point Iteration Method

In the FPI method of Figure 9, the system optimizer has control of all trajectory

variables and constraints.  Each trial step from the system optimizer requires a series of

iterations between Ascent, Orbit, and Flyback.  Given guesses for upper stage and flyback

fuel weights and its initial trajectory variables from the optimizer, Ascent runs in non-

optimizing mode (i.e. it simply integrates the equations of motion along the given trajectory

and returns the results).  The resultant staging vector (Ps ) is then input to Orbit and

Flyback.  With these initial conditions as a starting point and their subset of trajectory

variables from the system optimizer, Orbit runs in non-optimizing mode, followed by

Flyback.  The new upper stage weight, wus, and the new flyback weight, wfb, are fed back to

Ascent through a resizing process.  The iterations between Ascent, Orbit, and Flyback

continue until the convergence criterion is met to within a certain tolerance.  After the

iteration process is completed, the outputs from each POST analysis are fed back to the

system optimizer to determine the objective function and system constraints.  The control

variables are then changed in order to minimize/maximize the system-level objective.

Figure 9: FPI for Branching Trajectories
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Figure 10:  POBD for Branching Trajectories

5.2  The Optimization-Based Decomposition Methods

The optimization-based decomposition methods also require a system optimizer

with an objective function to optimize the system-level objective.  In the partial OBD

method, the feedback loops from Orbit and Flyback to Ascent in the FPI method are

broken.  Two additional design variables for Ascent are now needed to replace the weights,

which were originally fed back.  These are the prescribed upper stage weight, wus ', and the

prescribed flyback fuel weight, wfb', which are controlled by the system-level optimizer. Two

compatibility constraints added to the system optimizer are used to ensure agreement

between the prescribed weights and the true weights output from Orbit and Flyback at the

solution.  As a result, iteration is no longer required between Ascent, Orbit, and Flyback to

ensure data consistency.  A diagram of this method can be seen in Figure 10.  The booster

will be resized, as a function of the flyback fuel requirement, during the optimizer’s

execution.

In the full OBD method of Figure 11, both the feedback and the feedforward loops

that can be seen in the FPI method diagram are broken.  In addition to the new design

variables and compatibility constraints from the broken feedback loops (defined in the

previous paragraph), a set of intermediate variables representing the prescribed staging
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conditions is created at the system level (Ps’) to be provided directly to Orbit and Flyback.

This effectively breaks the feedforward loops as well, and creates a parallel set of

subproblems.  Compatibility constraints are also added to the system optimizer to ensure

that, at the final optimum, the intermediate variables (Ps’) match the actual conditions (Ps)

produced by Ascent.

Figure 11:  FOBD for Branching Trajectories

5.3  The Collaborative Optimization Method

In the collaborative optimization technique, a system optimizer is incorporated with

an objective function of optimizing the system-level objective (Figure 12).  The system

optimizer chooses target initial condition vectors and weights (P s ,w us , and w fb  targets)

which are to be used in Ascent, Orbit and Flyback which are all run in optimizing mode.

Each tries to satisfy its own (local) constraints (ascent, orbital, or landing) with its own

trajectory variables while minimizing the error between its local versions of the staging

variables and the system optimizer’s targets.  The sum of the squares of the local errors (JA,

JO, and JF) become additional constraints for the system optimizer.  The system optimizer

changes the new target staging conditions until the errors are zero and the system-level
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objective function is optimized.  In this method, the resizing event will occur during the

system optimizer execution.

Figure 12:  CO for Branching Trajectories
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CHAPTER VI

THE FIRST APPLICATION:  THE KISTLER K-1

LAUNCH VEHICLE

To provide applicability to this research, the missions of two candidate TSTO launch

vehicle designs have been chosen to serve as reference missions.  In this chapter, the Kistler

K-1 launch vehicle is described.  The results for this application are analyzed in Chapter

VII.  In Chapters VIII and IX, the second application and its results, respectively, are

reported.

6.1  The Kistler K-1 Launch Vehicle

Many launch vehicles are currently being developed by commercial industries with

the goal of capturing a profitable share of the growing satellite launch market.  Such is the

case of the Kistler K-1 launch vehicle [70, 71].  The K-1 (Figure 13, [72]) will be a fully

reusable, two-stage vehicle that incorporates branching trajectories.  The vehicle’s booster

will use three Aerojet modified NK33 engines [73, 74].  The K-1’s upper stage will be

propelled by one Aerojet modified NK43 engine [73, 74].  There will be different versions

of the vehicle to accommodate various payload classes.  One of its missions will be to

deliver a certain payload to a 50 nmi x 846 nmi x 51˚ orbit.  This is the mission that will be

analyzed in this study.  
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The data (weights, trajectory constraints, engine data, etc.) pertaining to the

aforementioned mission was provided directly by Kistler Aerospace [75].  An outline of the

weights used, dry and propellant weights, for both stages are listed in Appendix A.  

As mentioned in Section 2.4, POST requires inputs to evaluate the aerodynamics of

a vehicle.  The tool, Aerodynamic Preliminary Analysis System, APAS [76], was used to

generate the aerodynamic data for this problem.  In particular, for this case, three sets of

aerodynamic data were generated.  A table of lift, drag, and moment coefficients, as a

function of Mach number and angle of attack, was created for each of the three

configurations for the K-1:  the vehicle as a whole, the booster by itself, and the upper stage

by itself.  Appendix B lists more detailed information about the aerodynamics for the K-1.

POST also requires propulsion data input.  Also contained in Appendix B is information

about the engines’ performance for the K-1.

Figure 13:  The K-1
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Figure 14:  The K-1 Flight Profile

6.2  The Kistler K-1 Trajectory

The trajectory of the K-1 launch vehicle can be seen in Figure 14 [72].  It will

consist of an RTLS type branching trajectory as in Figure 1.  After launch from the site at

Woomera, Australia, (1) the entire K-1 will fly until staging approximately 120 seconds later

(2).  After staging, the booster performs a pitcharound maneuver that will guide itself back

to within 10,000 ft of the launch site, to land with airbags and parachutes.  The upper stage

will continue on to the designated orbit (3).  For the purposes of this study, the simulation

will end when the orbital targets have been attained.  In reality, after expulsion of the

payload (4) the K-1’s upper stage will deorbit (5) and return to the launch site (6).
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Figure 15:  The DSM for the K-1

The trajectory is simulated through two POST decks as indicated by the DSM for

the K-1’s trajectory as shown in Figure 15.  The first POST deck follows the vehicle from

launch to orbital injection of the upper stage.  Note that this specific simulation combines

the Ascent and Orbit jobs.  The second, or flyback branch, follows just the booster from

staging to its return to the launch site.  In addition to a three-degree-of-freedom simulation,

each POST deck uses the following modeling options:  1976 standard atmosphere, lift and

drag aerodynamic coefficients, fourth order Runge-Kutta integration with a one second

integration step size, and a spherical Earth approximation.

Table 4:  POST Controls and Constraints for the K-1

POST

Deck

Number of Independent

Variables

Number of

Constraints

Ascent 13 5

Flyback 6 2

Total 19 7

Table 4 lists the number of controls and constraints used by the ascent and flyback

trajectory decks.  The reference K–1 ascent trajectory deck’s independent variables are

twelve pitch angles and payload weight.  The ascent has five constraints involving orbital

insertion criteria and dynamic pressure boundaries.  The vehicle is steered by a table look-
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up of inertial pitch angles.  Nominally, the objective of the orbital branch is to maximize the

payload for a given set of propulsion characteristics, vehicle aerodynamics, K-1 weights, and

ascent propellant.

The reference flyback trajectory deck uses six independent variables:  four pitch

angles, azimuth of the pitcharound maneuver needed to initially head the vehicle in a

direction back to the launch site, and engine burn time.  The two constraints guarantee a

smooth rocket pull-up and landing within a certain downrange distance.  Given a set of

engine propulsion characteristics, aerodynamics, and a staging point, the flyback trajectory

nominally tries to minimize flyback fuel weight. The required staging point data from the

ascent branch includes altitude, flight path angle, latitude, longitude, velocity, and velocity

azimuth.  The booster is steered initially by an angle of attack of 180 degrees used to head

the vehicle back to the launch site.  The turnaround maneuver is achieved with pitch angle

steering.

6.3  The Objective Function for the Kistler K-1

Note that there are many ways to optimize the trajectories of both the upper stage

and the booster.  Should the booster ascent propellant be resized if necessary?  Should all

inert weights remain fixed?  Should the system-level objective be maximum orbital payload

or minimum booster weight?  

For the K-1 simulation, fixed weights were used for all weights except for booster

ascent propellant weight, flyback fuel weight, and payload weight.  Consequently, the

exterior of the vehicle stayed the same throughout thus did the aerodynamics as well.  The

constant total propellant weight, given by equation 34, was the sum of the booster ascent

propellant weight and the flyback fuel weight used.  (Note that pre-liftoff propellants are

subtracted from the total propellant.)  This equation was very easily coded into the system-

level optimizer.  The payload weight was the objective to be maximized.

487,823 lbs = ascent_propellant + flyback_propellant (34)
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CHAPTER VII

RESULTS FOR THE K-1 LAUNCH VEHICLE

Results for solutions to the Kistler K-1 branching trajectory problem are presented

in this chapter.  Solutions for the ‘One-and-Done’ method, manual iteration method, and

the distributed method using MDO techniques are analyzed.  All executions of the POST

decks, system-level optimization code, and any associated codes were performed on the

Silicon Graphics Octane platform with a 300 MegaHertz IP30 processor using an R12000

processor chip.

7.1  Methods with Conflicting Objective Functions

7.1.1  ‘One-and-Done’ Method

The solution for the ‘One-and-Done’ method for the K-1 is outlined in Figure 16.

The method does not account for the iterative, coupled nature of the ascent and flyback

branches.  The data extraction/insertion from one POST deck to the next was performed

manually.  The results for this method appear in Table 5.   The solution for this method will

be the starting point for all the methods following this one.  As a result, computational time

is not listed for this method.  The main reason to show this method’s results is to see the

large difference in the objective function (recall that the goal is to maximize payload weight)

that can be achieved when iteration occurs.
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Table 5: ‘One-and-Done’ and Manual Iteration Method Results (K-1)

Method Payload
Weight (lbs)

POST Computational
Time

Number of
Iterations

‘One-and-Done’ 3314.7881 - 0

Manual Iteration 3528.7911 201.4 sec (3.36 min) 6

Figure 16: ‘One-and-Done’ Method Flowchart, K-1

For this method, the initial guess for booster ascent propellant is significant.  The

percentage of booster ascent propellant, with respect to the total available, used for this

simulation was 92.88%.  This left a little more than 7% for the flyback fuel.  After the serial

execution of the two POST decks, it was found that 14.6% of the initial flyback fuel was left

over, or not used.  If the guess for booster ascent propellant percentage was too high, then

the possibility of not having enough flyback fuel would have existed.  In that case, as far as

the flyback simulation is concerned, the constraints would have been met, however, negative

propellant would be used.  In other words, the POST deck would have used the dry weight
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as propellant, resulting in an obviously wrong answer.  That scenario highlights an example

of one of the many deficiencies of this method.

As stated previously, the next method and the MDO methods will all begin with the

solution to the ‘One-and-Done’ method.  Thus, the initial guesses are as follows:

percentage of flyback fuel – 6.08% (the original initial guess less 14.6% of that guess,

resultant percentage of booster ascent propellant – 93.92%, and payload weight – 3,314.79

lbs.

7.1.2  Manual Iteration Method Results

The manual iteration method uses two subproblem optimizers and no system-level

optimizer.  A flowchart of the method can be seen in Figure 17.  Execution is sequential and

iterative between the ascent deck and the flyback deck.  The flyback weight is updated as the

iterations occur.  Again the data extraction/insertion is manual.  Iteration information and

execution time results are shown in Table 5.  For this case, iteration was performed between

the two basic subproblems to ensure data consistency (unlike the ‘One-and-Done’ method),

however the conflicting objective functions were not addressed.  The convergence criterion

for the manual iteration method was flyback fuel weight.  The K-1 was considered

converged when this variable came within .01% of the result from the previous iteration.

This result will be used as a comparison case in the MDO method assessments.  The final

design variables used for this method are listed in Appendix C.



52

Figure 17:  Manual Iteration Method Flowchart, K-1

7.2  The System-Level Optimizer

The Design Optimization Tool, DOT™ [77], is a commercial optimization program

that is supplied without charge for academic research.  It provides several algorithms for

optimization that have been used to generate the results for the MDO methods.  The

program contains optimization methods for constrained and unconstrained problems.  For

branching trajectories, the MDO methods used result in constrained problems.  The

available algorithms are:  modified method of feasible directions (MMFD), sequential linear

programming (SLP), and sequential quadratic programming (SQP).  Each uses gradient

information to find a new direction to look for the optimal solution.  The new direction for

MMFD, or search direction, is based on lowering the constraint violation while minimizing

the objective function.  For the SLP and SQP methods, Taylor Series approximations of the

objective function and constraints are used in optimization.  The SLP method solves the
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linear approximate optimization problem.  The SQP method solves the optimization

problem using a search direction based on the quadratic approximate problem optimization

problem with linearized constraints.

7.3  Multidisciplinary Design Optimization Results

Table 6 shows the system optimizer size for the K-1 case.  DOT™ requires that

equality constraints be formulated as inequality constraints.  The equality constraints for all

the POST decks were posed as two inequality constraints.  Three of the constraints from

Table 4 were equalities; formulated as inequality constraints, this brings the total number of

constraints for the FPI method to ten.  Note that for the POBD method, there were either

one or two more constraints in addition to those of the FPI method.  The compatibility

constraint can be posed as either a squared inequality constraint (eleven total constraints,

equation 35) or two inequality constraints (twelve total constraints, equation 36.)  The

compatibility constraints for the full OBD method were posed as seven pairs of inequality

constraints, thus the total number of constraints was twenty-four.  Note that the

compatibility constraints, like all the other constraints, are normalized to aid in the numerical

conditioning of the problem.

Table 6: Size of System Optimizer for Kistler K-1 Cases

Variables Constraints

Manual Iteration - -

FPI 19 10

Partial OBD 20 12/11

Full OBD 26 24

Collaborative 8 2

gi =
fbw − fbw'

10,000

 
 
 

 
 
 

2

≤ 0 (35)
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gi, i+1 = ±
fbw − fbw'

10,000

 
 
 

 
 
 ≤ 0 (36)

It is imperative to note that while the number of target variables for the collaborative

optimization scheme is expected to be seven (flyback fuel weight plus the six staging vector

components), eight appear in Table 6.  This will be expounded upon in Section 7.3.4.

7.3.1  Fixed-Point Iteration Method

The flowchart for the FPI method can be seen in Figure 18. The entire process,

including data extraction/insertion and gradient calculation was automated.  The ‘grayed’

boxes in the figure represent those parts of the process that were coded in C++ such as the

main execution program of the optimizer.  Data extraction/insertion was achieved with

PERL (Practical Extraction and Report Language) and is represented, in the figure, by

dashed arrows.  The system-level optimizer used was the Modified Method of Feasible

Directions.

The Fixed Point Iteration method involves use of a system-level optimizer and

POST deck iterations.  The POST decks are not optimized for this method.  They are used

to integrate the equations of motion using the set of controls given by the system-level

optimizer.  The POST deck iterations were considered converged when the flyback fuel

weight was within 0.01% of itself, just like in the manual iteration method.  The gradients

for the system-level optimizer were calculated using central finite differences with varying

perturbation sizes that were dependent on the size and type of the original design variable.  

Quantitative results for this method were obtained using the optimization scheme of

the Modified Method of Feasible Directions and detailed results can be seen in Tables 8 &

9 in Section 7.4.  The FPI method gave an optimized solution of 3,544 pounds of payload

weight in 16.3 minutes with eighteen system-level iterations.  Appendix C lists the final set

of design variables for this method.  Figure 19 shows how the payload weight varied with

function call.  In addition, the plot shows the number of MMFD iterations, the line searches

needed to define the search direction, per function call.  Figure 20 shows the log of the
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active constraints at each MMFD iteration.  Active constraints are those that were either

violated or greater than –0.5.  

In Figure 20, the line denoting the ‘feasible solution’ was found by calculating the

log of the 2-norm of the accepted tolerances of the active constraints.  For example, all of

the constraints for the FPI method were scaled such that a single tolerance, ε, of 0.0001 was

used for all the constraints.  If ‘n’ constraints were active, the equation used for the feasible

solution at iteration one would be that of equation 37.  The ‘feasible solution line for all

MDO methods was similarly calculated based on the number of active constraints, n, and

acceptable tolerances, ε.

log nε 2( ) (37)
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Figure 18:  FPI Flowchart, K-1
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7.3.2  Partial Optimization-Based Decomposition

The flowchart for the POBD methods, with the compatibility constraint posed as

either one or two inequalities as described in Section 7.3, can be seen in Figure 21.  For

these methods, the compatibility constraint is needed for the flyback fuel weight only.

Like the FPI method, the POBD methods involve use of a system-level optimizer

and POST decks that are not optimized, however, feedforward of the staging vector still

exists.  The gradients for the system-level optimizer for these methods were also calculated

using central finite differences with a varying perturbation size.  Again, the entire process,

including data extraction/insertion and gradient calculation was automated.  Those parts of

the process that required a C++ program are shown as gray boxes in Figure 21.  Data

extraction/insertion was achieved with PERL and is indicated by dashed arrows in the

figure.

The system-level optimizer was the MMFD for these methods as well.  The POBD

methods resulted in an optimized payload weight of 3,567 pounds in twenty system-level

iterations requiring 15.7 minutes.  Detailed numerical results are listed in Tables 8 & 9 in

Section 7.4.  Appendix C lists the final set of design variables for this method.  Figure 22

shows how the payload weight changed at each function call. Additionally, the plot shows

the number of MMFD iterations per function call.  Figure 23 shows the log of the active

constraints at each MMFD iteration.  Data for the POBD method that had the flyback fuel

weight compatibility constraint posed as two inequalities is shown in Figures 22 & 23; the

data for the POBD method that had the flyback fuel weight compatibility constraint posed

as one inequality was nearly identical.
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Figure 21:  POBD Flowchart, K-1



60

3300

3350

3400

3450

3500

3550

3600

3650

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

18

20

Payload Weight 
MMFD Iteration Number

Figure 22:  Payload Weight Tracking for POBD Methods

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
0 2 4 6 8 10 12 14 16 18 20

3300

3350

3400

3450

3500

3550

3600

log(||gi||)
Feasible Solution
Payload Weight

Figure 23:  Active Constraint History for the POBD Methods

M
M

FD
 Iteration N

um
ber

Pa
yl

oa
d 

W
ei

gh
t (

lb
s)

Payload W
eight (lbs)

L
og

 ||
g i

||

Function Call

MMFD Iteration Number



61

7.3.3  Full Optimization-Based Decomposition

Figure 24:  FOBD Flowchart, K-1

The flowchart for the FOBD method, with the compatibility constraints posed as

pairs of inequalities as described in Section 7.3, can be seen in Figure 24.  There are seven

compatibility constraints needed for this method:  flyback fuel weight and the staging vector
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of altitude, velocity, azimuth velocity, flight path angle, latitude, and longitude.  All of these

constraints are normalized in the problem set-up.

The FOBD method requires the use of a system-level optimizer and POST decks

that do not themselves optimize. For this method, there is no feedback or feedforward and

the POST decks are executed in parallel.  The gradients for the system-level optimizer for

this method were also calculated using central finite differences with a varying perturbation

size.  The entire process, including data extraction/insertion and gradient calculation was

automated.  Those parts of the process that required a C++ program are shown as gray

boxes in Figure 24.  Data extraction/insertion was achieved with PERL and is indicated by

dashed arrows in the figure.
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The system-level optimizer was the MMFD for the FOBD method.  The

optimization had to be restarted once due to a lack of progress the first time.  After this

restart, an optimal solution of 3,585 pounds of payload weight was found.  This took about

sixteen minutes total in thirty-four system-level iterations for the entire problem.

Quantitative results are listed in Tables 8 & 9 in Section 7.4.  Appendix C lists the final set
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of design variables for this method.  Figure 25 shows how the payload weight changed at

each function call. Additionally, the plot shows the number of MMFD iterations per

function call.  Figure 26 shows the log of the active constraints at each MMFD iteration.  
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Figure 26:  Active Constraint and Objective History for the FOBD Method

7.3.4  Collaborative Optimization

Figure 27 shows the flowchart for the CO method.  The CO method involves the

use of a system-level optimizer and a parallel analysis structure.  However, for this multi-

level decomposition scheme, the POST decks are optimized using the NPSOL optimizer

included in the POST software.  

The entire process, including data extraction/insertion and gradient calculation was

automated.  Those parts of the process that required a C++ program are shown as gray

boxes in Figure 27.  Data extraction/insertion was achieved with PERL and is indicated by

dashed arrows and box lines in the figure.  The dashed lines in the analysis (POST) boxes

indicate that the POST optimizer is in use.  After each gradient call, the local POST design
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variables are copied into the corresponding POST decks as the new controls.  This was

done in an effort to minimize the number of function calls required at the subsystem level.

The CO method gave an optimal solution of 3,569 pounds of payload weight.  This was

attained in seven system-level iterations requiring 1.84 hours.  More results are given in

Section 7.4.

Figure 27:  CO Flowchart, K-1
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There were eight target variables required for this method.  These included the

payload and flyback fuel weights and the six variables that composed the staging vector.

Table 7 shows how these target variables were perceived by the ascent and flyback POST

decks, as either inputs or outputs.  The system-level constraints, or J’s, were calculated

accordingly.

Table 7:  Targets’ Relationship to POST Decks for K-1

Ascent Deck Flyback Deck

Payload Weight Input -

Flyback Fuel Weight Input Output (as a function of Eqn. 26)

Staging Altitude Output Input

Staging Velocity Output Input

Staging Azimuth Velocity Output Input

Staging Flight Path Angle Output Input

Staging Latitude Output Input

Staging Longitude Output Input

Constraint gradient calculations were performed using the post-optimality sensitivity

analysis introduced in Section 4.4.  The benefit from this analysis, in that numerous

analysis calls can be eliminated, is exploited if the objective function gradient can also be

calculated analytically.  This can be achieved by adding the objective function, in this case,

payload weight, to the vector of targets.  In addition, it is now included in the error, J, for the

ascent deck and is perceived as an output from the ascent deck (but an input/control in the

ascent deck).  Consequently, the objective function gradient can now be easily and

analytically derived.  This target’s inclusion in the flyback deck is not required since it is

neither an input nor an output for that analysis.

Figure 28 shows how the payload weight varied per system-level function call.  This

plot also shows how the payload weight from the ascent deck follows the payload weight

target.  They are matched almost exactly because the payload weight is a control, or
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dependent variable, in the POST deck and it can easily be changed to meet the target

requirement.  
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Figure 28:  Payload Weight Tracking for the CO Method

Figure 29 illustrates the active constraint history for the seven system-level iterations

needed to solve this problem.  Because the initial targets came from the solution to the

‘One-and-Done’ method, the first iteration (zero on the graph) was a feasible solution at the

system level.  After this iteration, all other iterations then had a feasible solution.

Figures 30 and 31 show the subsystem level target achievement for the first three

system-level iterations (0, 1, and 2) for the ascent propellant and payload weight,

respectively. .  The number of subsystem iterations is indicated by the number scale on the

x-axis.  The flyback deck was usually very flexible in finding a feasible solution.  In Figure

30, the ascent propellant weight was matched at the beginning of the flyback deck’s

iterations and is difficult to see in the plot.  In Figure 31, it is shown that the payload weight

increased at every iteration.  This was allowed because the ascent deck optimization matched

the target at each iteration.
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7.4  Summary

Tables 8 and 9 give quantitative results for the Kistler K-1 MDO methods.  In Table

8, POST computational time refers to the total amount of time to run the POST decks for all

calls, including function calls and gradient calls.  Although the actual method executions

were performed with one processor, the CPU time results are reported as if two processors

had been available (for example, in the FOBD and CO results, times are given as if the

ascent POST deck ran on one processor while the flyback POST deck ran on another

processor).

As indicated in Table 8, all methods increased the payload weight of the K-1.  The

fixed-point iteration method improved the payload weight by about 15 pounds.  The partial

optimization-based decomposition improved the payload weight of the K-1 by

approximately 23 pounds over the FPI method.  The full optimization-based decomposition

results in about a 42 pound increase in the payload weight over the FPI method.  Use of the

collaborative optimization method increased the payload by approximately 32 pounds.  The

decomposition methods gave an approximate 40 – 55 pound increase over the manual
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iteration method, a 1.6% increase, which is relevant considering the high costs per pound to

launch payloads.

Table 8:  K-1 Results Comparison (MDO)

Method Optimized

Payload Weight (lbs)

POST Computational

 Time

FPI 3,543.64 976.8 sec (16.3 min)

POBD 1 3,566.82 939.52 sec (15.7 min)

POBD 2 3,566.85 941.44 sec (15.7 min)

FOBD 3,585.06 968.33 sec (16.1 min)

CO 3,569.04 5,008 sec (1.39 hr)

It was expected that the FPI, POBD, FOBD, and CO methods would result in the

same objective function; however, the lack of performance by the FPI method may be

attributed to the numerical noise introduced by the flyback fuel weight convergence

tolerance on the internal POST iterations.  This noise also affects the gradient calculations

for the engine-on time design variable because for that gradient, internal POST iterations

occur.  This tolerance then affects the flyback fuel weight and consequently the optimized

payload weight.  The marked difference in the FOBD method may partially be attributed to

the existence of tolerances for the staging vector since the feedforward no longer existed.

These tolerances would have affected the final payload weight.  The variance in optimum

design variables can be seen in Appendix C.

Some definitions for the columns in Table 9 are required.  The third column, ‘POST

calls,’ refers to how many times an analysis evaluation occurred, including system-level,

gradient (except for the CO method), and line search evaluations.  For the FPI and POBD

methods one ‘POST call’ is a sequential execution of both POST decks.  For the FOBD

method, one ‘POST call’ is a parallel execution of the two POST decks.  Note that there are

two numbers given for the CO method.  The first is the number of simulation function calls

for the ascent deck, the second is for the flyback deck.  As would be expected the number of
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‘POST calls’ for the collaborative optimization method is significantly larger than that for

the other methods because many function calls were needed for optimization.  While the

number of system-level iterations is smaller for CO, many function calls with the

subsystems at each iteration were required.

Table 9:  K-1 Detailed Results Comparison (MDO)

Method System-

Level

Iterations

POST Calls Average CPU Time

per

POST Call

Gradient

Calls

FPI 18 884 1.105 sec 17

POBD 1 20 843 1.114 sec 19

POBD 2 20 843 1.117 sec 19

FOBD 34 1622 0.911 sec 29

CO 7 2271/4745 1.326 min 5

In the fourth column, CPU time refers to the average time it took for one POST call

to run, be that iteratively, sequentially, or in a parallel manner.  At first glance, the average

CPU times per function call listed in Table 9 are not what one would expect.  The average

time for the FPI method is usually larger than that for the OBD methods because the

internal iterations for convergence are many.  For the Kistler case, internal convergence

occurred in zero or one iteration, usually zero for gradient calculation (this is because the

flyback fuel weight is controlled by ‘engine-on’ time, one of the design variables).  Thus

for the majority of ‘POST calls’, one POST call for the FPI method would take

approximately the same amount of time as one POST call for the POBD method.  This is

the case as shown in Table 9.  The time for the FOBD method was smaller since the POST

decks were executed in a parallel manner.  The Ascent POST deck required a longer amount

of execution time than that of the Flyback deck.  Even though the POST decks for the CO

method were executed parallelly, the CPU time was longer because the optimization of the

POST decks required a longer amount of time than a simple integration of the equations of
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motion did.  Gradient calls’ refers to how many times the objective and constraint gradient

vectors were calculated in their entirety.

Note that the results for the POBD method were the same regardless of which way

the compatibility constraints were posed.  This was not the case, however, for the FOBD

method.  When the compatibility constraints were formed as one inequality per design

variable, a feasible solution was not found.

More quantitative results can be seen in Table 10, which shows the difference in

staging vectors for the methods.  Included for comparison is the staging vector for the

manual iteration method.  Since the results for the two POBD methods were almost exactly

the same, just one is included in the table.  Assuming that convergence tolerances affect the

FPI method staging vector, the results from the other MDO methods imply that a smaller

flight path angle can lessen flyback fuel weight consumed and thus, the increase the payload

weight.  (In the FOBD case, the lower staging altitude also has a similar effect.)  The

returning booster desires this lower angle so that it can perform its pitcharound maneuver

more efficiently.

Table 10:  Staging Vector Results for the K-1

MIM FPI POBD 2 FOBD CO

Altitude, ft 138,028 138,019 138,014 137,542 138,028

Velocity, ft/s 4,172.28 4,169.27 4,166.92 4,160.34 4,171.15

Gamma, deg 33.337 33.520 33.272 32.892 32.667

Vel. Azimuth, deg 43.519 43.517 43.520 43.527 43.526

Latitude, deg -30.893 -30.893 -30.893 -30.900 -30.902

Longitude, deg 137.029 137.028 137.027 137.020 136.996

Figures 32, 33, and 34 show plots of the trajectory data for the different MDO

methods.  Through the ascent, the trajectories are very similar with regards to altitude and

velocity.  In fact, as can be seen in Table 10, the staging points are relatively close to one
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another.  The angles of velocity azimuth, latitude, and longitude are expected to be identical

considering there are no yawing movements during the ascent and the results of the table

recognize that fact.  In Figure 32, it is shown that the flyback altitudes, especially, exhibit

differences.  Differing pitch angles during the flyback pitcharound maneuver affect the

flyback trajectory seen in Figure 33, as does the staging altitude.  
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Figure 32:  Altitude versus Time for the K-1

The velocity plot of Figure 34 illustrates the flyback engine-on phase well.  For all

methods, from about 130 seconds to 155 seconds the engine is on and the pitcharound to

the launch site occurs. A slight dip in the velocity after the pitcharound occurs as the vehicle

attains a zero degree angle of attack for its ballistic entry.  The lowest velocity corresponds

to the highest altitude, after which point the vehicle speeds up as it is aided by gravity as it

descends.  Terminal conditions on velocity for the flyback were not imposed.  
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Figure 33:  Flyback Pitch Angle versus Time for the K-1
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CHAPTER VIII

STARGAZER:  THE SECOND APPLICATION

8.1  Stargazer

Figure 35:  Stargazer Concept

The second application, which uses branching trajectories, is the Stargazer launch

vehicle (Figure 35, [78]).  The mission for this vehicle is to deliver a 300 pound payload (of
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a university Explorer class) to a 200 nautical mile circular low-earth orbit at 28.5˚ inclination

(Figure 36).  This is to occur at a flight rate of 24 flights per year and at a price goal of less

than $1.5M per flight.  Stargazer is a concept that was developed by the Georgia Tech

Space Systems Design Lab for the mission outlined below.

Figure 36:  Stargazer Mission Profile

Stargazer is a TSTO vehicle with a reusable RBCC booster and an expendable,

‘pop-up’ upper stage with a low-cost rocket engine.  The four RBCC engines are ejector-

scramjet engines with four modes consisting of ejector, ramjet, scramjet, and rocket.  The

vehicle is fully autonomous and uses advanced technologies and TPS.  From its horizontal

take-off at KSC, the booster, with the upper stage, flies its ascent trajectory until it reaches

Mach 14.  After a brief coast, the upper stage is then jettisoned to continue on its flight to a

200 nmi. circular orbit.  The booster then returns to KSC under ramjet power at an altitude

of approximately 70,000 ft. to an eventual horizontal landing.  It is clear from Figure 36 that

Stargazer’s branching trajectory is like that of Figure 1.
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8.2  The Design Structure Matrix for Stargazer

Stargazer was initially designed using a collaborative, multidisciplinary integrated

design team approach.  Team members executed individual disciplinary analysis tools in an

iterative conceptual design process, exchanging information and data files, for each

candidate configuration, until the propellant mass fractions for each mission segment were

converged.  The overall DSM for the Stargazer design process can be seen in Figure 37.

The bolded box represents the main disciplinary iteration loop, the details of which are

shown in Figure 38.

Figure 37:  Stargazer DSM
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Figure 38:  Main Iteration Loop

As introduced in Chapter III, the DSM is a useful mechanism for showing the data

interdependencies in a multidisciplinary design process.  The main iteration loop exhibits

strong coupling among the propulsion, performance (trajectory optimization) and weights &

sizing disciplines.  The aeroheating (thermal protection system) discipline is rather weakly

coupled with the other three beyond the first iteration.

Traditionally, the first two disciplines in Figure 37 iterate to find a feasible

packaging and aerodynamic configuration. Once a feasible configuration is determined, the

analyses in Figure 38 iterate to find a converged, properly scaled design to deliver the 300

lb. payload.  (Note that photographic scaling is used such that the aerodynamic coefficients

are the same for a single configuration, only scaled by wing planform area.)  The operations

and economics disciplines in Figure 37 are analyzed after a converged design is created.

For this research, however, the emphasis was on the performance discipline alone.

Nonetheless, the other disciplines still play a role.  In order to focus on the trajectory, an

initial vehicle had to be baselined.  The baseline packaging and configuration is that which is

described in [78].  Figure 39 shows the vehicle layout from an isometric viewpoint.  The

hydrogen tanks are red with the oxygen tanks being blue.  The payload bay occupies the top
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center of the vehicle.  The aerodynamic coefficients used were those of the baseline

configuration; this could be done since photographic scaling was used.

Figure 39:  Baseline Packaging for Stargazer

The performance analysis occurs in the main iteration loop.  Thus, the vehicle

needed to be resized and given new engines at each change in performance.  Since the

propulsion and weights & sizing analyses have to be performed with different codes, on

different platforms, than that of the performance analysis, POST, there needed to be a way

to simplify the other codes.

This was achieved through use of linear multipliers and response surfaces.  In

particular, instead of running the RBCC propulsion code, SCCREAM [79], a web-based

code, at every iteration, linear multipliers on each engine mode’s thrust were employed.  In

addition, linear multipliers were also used to find the correct ramjet, scramjet, and rocket

mode capture and exit areas along with ejector and rocket mode LOX flow rates.  The

factors used to scale the engine data were based on engine inputs created by SCCREAM for

the engine detailed in [78].  The original engine inputs to SCCREAM can be found in

Appendix D.  New inputs for the trajectories were based on the iteration’s booster and

upper stage gross weights.  Specific equations for the multipliers can be found in Appendix

E.  

The weights and sizing analysis for Stargazer uses a photographic scaling set of

parametric mass estimating relationships that have a NASA Langley heritage.  This analysis
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is performed on a spreadsheet program.  In order to simplify the communications

requirements between the spreadsheet and POST, response surfaces were used to

parameterize Stargazer’s gross weight and wing planform area for both the booster and

upper stage.  The booster dry weight was also parameterized.  (The response surface

equations can be found in Appendix F.)

The acreage percentages of various thermal protection systems on Stargazer were

assumed to be constant, thus an aeroheating analysis did not have to be updated at every

iteration.  A representative Thermal Protection System (TPS) layout can be seen in Figure

40.  These simplifications allowed for equations to be used at each iteration in place of

complicated codes.

Reinforced Carbon-Carbon Tiles

TABI Blankets

TUFI Tiles

UHTC

UHTC

UHTC

UHTC

Figure 40:  Stargazer’s TPS Layout

As a result of the modifications made to the Stargazer design process, the DSM is

altered.  Figure 41 shows the new design structure matrix.  Booster mass ratio and mixture

ratio, flyback mass ratio, and upper stage mass ratio are required in order to calculate the
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new vehicle weights and sizing values for the next iteration.  Therefore, these are viewed and

formulated in the MDO set-ups as feedbacks from the POST decks.  For the MDO set-ups,

the weights and sizing and propulsion calculations are included in the main program that

also executed the system-level optimizer, as opposed to being a separate discipline, just as

the weight calculation was for the K-1 problem.  The area of concentration is still the

branching trajectory.

Figure 41:  Modified DSM for Stargazer

8.3  Stargazer’s Branching Trajectories

In the Kistler K-1 branching trajectories, the booster itself was jettisoned.  In the

current case the upper stage is jettisoned at Mach 14, the staging condition.  As a result of

this fact and the fact that the turnaround, descent, and ramjet cruise to the launch site is so

difficult to simulate, the Stargazer trajectory is modeled by three different POST decks.

These are the ascent trajectory, the upper stage branch, and the booster flyback branch.  The

number of controls and constraints for these POST decks are listed in Table 11.  In addition

to a three-degree-of-freedom simulation, each POST deck uses the following modeling

options:  1976 standard atmosphere, lift and drag aerodynamic coefficients, fourth order

Runge-Kutta integration with a varying integration step sizes (smaller step sizes, 0.1 second,
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for airbreathing ascent and larger step sizes, 5.0 seconds, for ramjet flyback), and a spherical

Earth approximation.

The ascent trajectory deck involves the portion of the flight from horizontal take-off

to staging at Mach 14.  The trajectory is constrained by a maximum dynamic pressure

boundary, a 3g acceleration limit in rocket mode to help minimize structural loading, and a

wing normal force limit of 1.75 times the gross takeoff weight.  The former is used as a

surrogate for limiting internal engine pressures and external heating rates.  The chosen wing

normal force limit represents a compromise between wing structural weight and a more fuel-

optimal, sharp pull-up after the at takeoff and at the beginning of rocket mode transition

(Mach 10).  During ejector and all-rocket modes, the vehicle is steered with pitch angles.

The dynamic pressure boundary that Stargazer flies is 2000 psf during the ramjet and

scramjet modes between Mach 3.5 and 10, during which time a linear feedback guidance

scheme is used to steer the vehicle.  The transitions between the four engine modes (ejector,

Mach 0 – Mach 2.5; ramjet, Mach 3.5 – Mach 6; scramjet, Mach 7 – Mach 10; and rocket,

Mach 11 – Mach 14) are modeled as a linear ramp down of the preceding mode and a linear

ramp up of the following mode.  The staging vector at Mach 14 (weight, altitude, longitude,

latitude, velocity, flight path angle, and azimuth velocity) must be supplied to the upper stage

and flyback branches.  The objective of the ascent trajectory is to maximize the weight at

staging.

Table 11:  Stargazer Controls and Constraints

POST Deck Number of Independent

Variables

Number of

Constraints

Ascent 11 7

Upper Stage 7 2

Flyback 17 6

Total 35 15

The upper stage POST deck simulates the expendable upper stage from the staging

point to orbital injection.  After a five second coast, the upper stage engine is ignited and it
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flies a trajectory guided by optimal pitch angles.  The engine runs for about 230 seconds

and then the upper stage coasts until the apogee of 200 nmi. is reached.  At this point, the

engine is restarted to provide the instantaneous velocity increment needed to circularize the

orbit.  During the initial and final coasts, aerodynamic angles are used to steer the vehicle.

Angle of attack, bank angle, and sideslip angle are all zero for the second coast phase in

order to keep a flight path angle of zero degrees.  The trajectory is constrained by a smooth

pull-up at rocket ignition and orbital termination criteria.  The objective of the upper stage

trajectory is to maximize the weight at the end of the trajectory.

The flyback trajectory, which begins immediately after the upper stage is jettisoned

and ends near KSC, is controlled by many variables.  The variables are:  angles-of-attack

and bank angles used for the turnaround to KSC, the altitude at which the turn begins, the

heading coming out of the turn, and the time at which the ramjet is turned on along with the

throttle setting at which it starts.  The trajectory is constrained by the termination conditions

at KSC and the conditions at which the ramjet can be started.  The ramjet flyback itself is

constrained to result in flight of a constant heading at a constant altitude of approximately

70,000 ft., while maintaining Mach 3.5.  To begin the turnaround to the launch site, the

vehicle maintains thirty degrees angle of attack and ninety degrees bank.  During the

turnaround these angles are changed in value, but they still steer the vehicle.  During the

ramjet cruise, generalized acceleration steering is used as the guidance scheme to hold the

vehicle in straight, level, unaccelerated flight.  The objective of the flyback trajectory is to

minimize the weight of the fuel consumed.

The rocket mode transition for Stargazer begins at Mach 10.  Mach 10 was chosen

as a conservative upper end for scramjet propulsion. While there is an advantage in reduced

gross weight to be had from higher Mach airbreathing mode operation, disadvantages in

terms of higher inlet (engine) weight and reduced propellant bulk density also appear.

The staging Mach number was fixed for this research.  Fourteen was chosen as a

compromise between booster size and upper stage size.  The system-level objective of

minimizing booster dry weight contributed to the fact that the staging Mach number was

fixed.  Had it not been fixed, the lowest Mach number in the range would have chosen to

achieve the system-level goal.  Fixing the staging Mach number also allows the

compromises in the rest of the staging vector components to be emphasized.
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8.4  The Objective Function for Stargazer’s Branching Trajectories

The system-level objective of the entire Stargazer branching trajectory was to

minimize booster dry weight.  While many metrics could be chosen, dry weight is typically

minimized in launch vehicle applications.  It was also a product of the trajectory, weights

and sizing, and propulsion disciplines and was easily available from these analyses.
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CHAPTER IX

RESULTS FOR STARGAZER

Results for solutions to the Stargazer branching trajectory problem are presented in

this chapter.  Solutions for the ‘One-and-Done’ method, manual iteration method, and the

distributed method using MDO techniques are analyzed.  All executions of the POST

decks, system-level optimization code, and any associated codes were performed on the

Silicon Graphics Octane platform with a 300 MegaHertz IP30 processor using an R12000

processor chip.

9.1  Methods with Conflicting Objective Functions

9.1.1  ‘One-and-Done’ Method

The solution for the ‘One-and-Done’ method for the Stargazer vehicle is outlined

in Figure 42. This method does not account for the iterative, coupled nature of the ascent,

upper stage, and flyback branches.  The analysis for this method was performed manually

and its results appear in Table 12.  The only reason to mention this method at all is to point

out that the mass ratios and mixture ratio that are guessed are typically far from being those

that are output.

For this method, the initial guess for the mass ratios and mixture ratio are crucial.  It

is quite difficult to guess these inputs and have the outputs match.  In this case, the initial
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guesses came from educated estimates and those values used for the vehicle described in

[78] and were as follows:  booster mass ratio—2.162, booster mixture ratio—1.858, upper

stage mass ratio, 3.168, and flyback mass ratio—1.333.  From these inputs, new weights

and engine performance values were computed using the methods explained in Section 8.2

and input to the POST decks.  After running the POST decks once, the outputs for mass

ratios and mixture ratio, in the same order as before were:  2.281, 1.677, 3.172, and 1.393.

Obviously, the inputs and outputs were not the same.  In fact, there was an increase of about

twenty thousand pounds of gross weight and three thousand pounds of dry weight, the

objective function.  Obviously, iterations are needed to insure that the vehicle flown

corresponds to an internally consistent design.

Figure 42:  ‘One-and-Done’ Flowchart, Stargazer
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Figure 43:  Manual Iteration Method Flowchart, Stargazer

Table 12:  ‘One-and-Done’ and Manual Iteration Method Results for Stargazer

Method Booster Dry
Weight (lbs)

POST Computational
Time

Number of
Iterations

‘One-and-Done’ 31,220.6 - 0

Manual Iteration 25,759.7 1185.6 sec (19.76 min) 19
5 from last restart
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9.1.2  Manual Iteration Method

The manual iteration method uses three subproblem optimizers and no system-level

optimizer.  A flowchart of the method can be seen in Figure 43.  Execution is sequential and

iterative between the three POST decks.  At each new iteration, the initial weights and

propulsion data are calculated, as functions of the last iterations’ mass ratios and mixture

ratio, and input into the new POST decks.  Again the data extraction/insertion is manual and

took a considerable amount of time considering all the propulsive and weights inputs

required.  Two restarts of the iteration process were invoked.  This means that twice the dry

and gross weights were found to be oscillatory.  The iteration process had to be restarted

with a relaxation factor of one half for the mass ratios and booster mixture ratio.  In other

words, the mass ratios and mixture ratio for the next restart were the average of those values

that created the oscillatory weights of the current iteration process.  The MDO methods that

follow were started with initial conditions from the last restart.

Iteration information and execution time results are shown in Table 12.  For this

case, iteration was performed between the three basic subproblems to ensure data

consistency (unlike the ‘One-and-Done’ method), however the conflicting objective

functions were not addressed.  The convergence criterion for the manual iteration method

was booster dry  and gross weights.  Stargazer was considered converged when both

booster dry and gross weights came within 1.0% of the results from the previous iteration.

In addition, the input mass ratios and booster mixture ratio had to be reasonably close to

that output.  The results for this method will be used as a comparison case in the MDO

method assessment currently being conducted.  The final design variables used for this

method are listed in Appendix G.

9.2  The System-Level Optimizer

The DOT™ program was used as the system-level optimizer for the Stargazer

vehicle as well.  Table 13 lists the size of the system-level optimizer for Stargazer.  A fixed-

point iteration solution was not achieved due to difficulties in converging the branching

trajectory at each system-level iteration.  A lack of robustness in the POST deck simulations

added to the difficulties of the convergence tolerance noise.  Considering the restarts,
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staging tolerance issues, and abundant function calls required for the full optimization-based

decomposition method solution for the K-1 vehicle, this solution technique was not

considered for this problem.

  The Stargazer POST decks used nine equality constraints, which when formed as

two inequalities, brings the total number of constraints to twenty-four.  Additional

constraints existed at the system-level and are discussed in the next section.

Table 13: Size of System Optimizer for Stargazer Cases

Variables Constraints

Manual Iteration - -

Partial OBD 39 34

Collaborative 11 5

The variables added to the POBD method are the three mass ratios and booster

mixture ratio.  Their compatibility constraints were formed as two inequalities per added

design variable, resulting in an addition of eight constraints.  The eleven design variables for

the CO method are the staging vector and weight, the three mass ratios, and the booster

mixture ratio.  Its constraints are the sum-squared errors, or J’s, for each POST deck.

9.2.1  System-Level Constraints for Stargazer

Two constraints are added at the system-level for both the POBD and CO methods.

These are the convergence criteria constraints on booster dry and gross weight.  Tight

tolerances on the three mass ratios and mixture ratio could also satisfy the convergence

criteria on booster dry and gross weights.  However, it is difficult to know a priori what

those tolerances should be relative to the values input.  Furthermore, dry weight convergence

or gross weight convergence alone is not sufficient.  These convergence weight constraints

can not be added to the individual POST deck optimization of the CO method or to the

compatibility constraints for the POBD method because they are functions of outputs from

each POST deck.
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Table 14 gives examples of slightly varying input ratios and the resulting differences

from a set of baseline values given on the first row.  In the table, ‘Mix’ stands for booster

mixture ratio, ‘MRus’ represents upper stage mass ratio, the booster mass ratio is given by

‘MRb,’ and the flyback mass ratio is given in the ‘MRfb’ column.  As can be seen in rows

three and four, a convergence in dry weight does not necessarily mean a convergence in

gross weight and vice-versa.  In addition, a relatively small change in flyback mass ratio

means a large change in dry and gross weights as shown in row two. Thus, the system-level

constraints are employed for booster dry and gross weights.  Relatively large changes in

mixture ratio and upper stage mass ratio may not have a large effect as illustrated in the last

two rows.  However, the requirement of the original problem, that these four variables be

reasonably close upon input and output, would not be satisfied for the upper stage mass

ratio input and output in the last row.  That difference is 0.016, which is quite significant for

a mass ratio difference; the difference in mass ratios and mixture ratio for rows two through

four are smaller, within a 0.003 absolute tolerance.

Table 14: Dry and Gross Weight Comparisons

Mix MRus MRb MRfb Gross
Weight

Gross Wt.
Variance

Dry
Weight

Dry Wt.
Variance

1.744 3.332 2.211 1.383 80,309.14 N/A 25,538.31 N/A

1.744 3.332 2.211 1.384 80,655.79 -0.0035 25,629.07 -0.0036

1.744 3.332 2.2115 1.383 80,416.60 -0.0011 25,563.23 -0.00099

1.7465 3.332 2.211 1.383 80,213.94 0.00095 25,509.05 0.0012

1.744 3.316 2.211 1.383 80,214.29 0.00095 25,517.10 0.00085

Equations 38 and 39 define the system-level constraints for the booster dry and

gross weight, respectively.  An absolute tolerance of 0.005 was used for the mass ratios and

mixture ratio feedbacks.

dryin − dryout

25,000

 
 
 

 
 
 

2

≤ .000001 (38)
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grossin − grossout

100, 000

 
 
 

 
 
 

2

≤ .000001 (39)

9.3 Multidisciplinary Design Optimization Results

Figure 44:  POBD Flowchart, Stargazer
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9.3.1  Optimization-Based Decomposition

Optimization-based decomposition was used to solve the Stargazer branching

trajectory.  For this case, Partial OBD was employed in that only the feedbacks of the mass

ratios and booster mixture ratio were eliminated and posed as compatibility constraints.  A

flowchart of the process can be seen in Figure 44.  As in the flowcharts for the Kistler K-1,

the ‘grayed’ boxes represent C++ programs while dashed lines indicate the use of PERL

for automated data insertion and extraction.

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
0 5 10 15 20 25

System-Level Iteration

23000

23500

24000

24500

25000

25500

26000

26500

log||gi|| Feasible Solution Dry Weight

Figure 45:  Active Constraint and Dry Weight History for Stargazer POBD

This method resulted in a difficult optimization process for the Stargazer branching

trajectories.  Figure 45 shows the active constraint and dry weight history for the branching

trajectory solution.  The upper stage and flyback design variables could not change

significantly without crashing the POST decks (meaning either the booster would crash into

the ground or the upper stage would fly off into the far reaches of space.) Thus returning a

false mass ratio that was not physically valid or in the range for the response surfaces.

Output dry weights for this type of error took values close to 450,000 lbs.  Therefore, the

upper stage and flyback design variables were not allowed to vary largely.
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The method had to be restarted twice due to oscillations in the dry weight.  (The

restarts can be seen at system-level iterations 8 and 18.)  Such oscillations can be viewed in

Figure 46 as the function calls are shown for system-level iterations 12 – 16.  The restarting

process was similar to the procedure described for the manual iteration method.  Optimized

results for this method include a dry weight of 25,522 pounds of dry weight in 2.8 hours

and a total of twenty-four system-level iterations.  Additional results are given in Section

9.4.
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Figure 46:  Dry Weight Oscillations for System-Level Iterations 12 – 16

9.3.2  Collaborative Optimization

Collaborative optimization was also used to solve the Stargazer branching

trajectory.  A flowchart of the process can be seen in Figure 47.  The ‘grayed’ boxes

represent C++ programs while dashed lines indicate the use of PERL for automated data

insertion and extraction.  The POST deck optimization is emphasized by the dashed lines

through the POST call boxes.
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Figure 47:  CO Flowchart, Stargazer
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The target vector for this method is composed of eleven variables:  the staging vector

(altitude, velocity, azimuth velocity, flight path angle, latitude, and longitude); the initial

flyback weight; ascent, upper stage, and flyback mass ratios; and the ascent mixture ratio.

These last four variables are included as system-level targets since they were posed as

feedbacks from the POST decks.  They are indirect inputs to the POST decks through the

weights and engine inputs.  Table 15 shows which targets are explicit outputs and inputs

with respect to each POST deck.  The error, J, for each POST deck is calculated

accordingly.

Table 15:  Targets’ Relationship to POST Decks for Stargazer

Ascent Deck Upper Stage Deck Flyback Deck

Staging Altitude Output Input Input

Staging Velocity Output Input Input

Staging Azimuth Velocity Output Input Input

Staging Flight Path Angle Output Input Input

Staging Latitude Output Input Input

Staging Longitude Output Input Input

Initial Flyback Weight Output -- Input

Upper Stage Mass Ratio -- Output --

Flyback Mass Ratio -- -- Output

Ascent Mass Ratio Output -- --

Ascent Mixture Ratio Output -- --

Similar to the K-1’s CO scenario, post-optimality sensitivity analysis was used to

calculate constraint gradients for the Stargazer branching trajectory.  Unlike the K-1

analysis, in which the objective function of payload weight was added to the target vector,

for the Stargazer analysis, the objective function of dry weight was not added to the target

vector.  

As explained in Section 9.2.1, the system-level constraint vector includes two

convergence criteria constraints, one for booster dry weight and one for booster gross
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weight.  Neither of these can be added to the target vector because neither is an explicit

output of any of the POST decks.  Thus, neither dry nor gross weight could be included in

any of the system-level constraints, J.  However, these variables are explicit functions of the

four targets of the three mass ratios and ascent mixture ratio, as evidenced by the response

surface equations given in Appendix F.  Their constraint gradients can be analytically

derived from those equations.  In addition, the objective function gradient can also be

analytically derived from the same equations.

Figure 48 shows the dry weight history for the branching trajectories of the

Stargazer CO method.  Figure 49 shows the active constraint history.  The initial conditions

for this case started from an infeasible region and the CO method was successful in finding

a feasible solution.  The optimized solution that was found resulted in 25,509 pounds of dry

weight.  This solution took six system-level iterations, with seventeen system-level function

calls, in 14.3 hours.
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Figures 50 and 51 illustrate the system-level coordination for altitude and initial

flyback weight, respectively, for the first three system-level iterations.  The number of

subsystem iterations is indicated by the number scale on the x-axis.  The flyback and upper

stage POST decks met the target altitudes at each iteration.  This is because the altitude is an

internal design variable, an input, in these POST decks.  The same can be said of the initial

flyback weight of Figure 51.  For the ascent, however, altitude and initial flyback weight are

outputs of the trajectory.  Initially, these target variables were not met by the ascent.  Figures

50 and 51 show how the system level optimizer reduced these values in order to obtain

target agreement from the ascent subsystem.
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9.4  Summary

Qualitative final result comparisons can be made.  Optimized dry weight and

computational times are listed in Table 16.  Although the optimization process for the

POBD method encountered difficulties, the final dry weight produced was within 0.1% of

that resulting from the CO method.  Both dry weights were approximately 200 pounds less
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than that obtained with the manual iteration method results.  Additionally, even though it had

to be restarted, the POBD method took about five times less POST computational time than

the CO method.  This is a result of the multilevel optimization of the CO method.  Similar to

the K-1 results, the actual method executions were performed on one processor.  Hoever, the

CPU time results are reported as if three processors had been available.  (For example, in

the CO results, times are given as if the ascent POST deck ran on one processor while the

upper stage POST deck ran on its own processor and the flyback POST deck ran on

another processor).

Table 16:  Stargazer Results Comparison (MDO)

Method Optimized

Dry Weight (lbs)

POST Computational

 Time

POBD 25,521.9 2.793 hrs

CO 25,509.4 14.294 hrs

Table 17 gives more detailed results for the POBD and CO methods.  The third

column, ‘POST Calls,’ refers to the number of sequential executions of the POST decks

for the POBD method and it includes the gradient evaluations.  That definition for the CO

method is the number POST function calls to each subsystem (ascent/upper stage/flyback.)

Each number includes line searches.  

Table 17:  Stargazer Detailed Results Comparison (MDO)

Method System-Level

Iterations

POST Calls Average CPU Time per

POST Call

Gradient

Calls

POBD 24 638 15.758 sec 14

CO 6 1929/114/1785 49.286 min 4
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For the CO method, the upper stage POST deck usually solved in about six

iterations for 17 system-level function calls.  Thus, this results in a small number of POST

calls, 114, for that subsystem.

The final mass ratios and booster mixture ratio for the manual iteration, partial

optimization-based decomposition, and collaborative optimization methods are listed in

Table 18.  As expected, these values for the manual iteration method (MIM) are quite

different than those for the MDO methods.  

The values for the MDO methods compare more favorably.  These values for the

POBD and CO methods result in about a four pound difference for the upper stage weights

(1,784 lbs and 1,788 lbs, resp.) and about an eight pound difference in the gross weights

(80,228 lbs and 80,220 lbs, resp.).  The upper stage weight difference is a little high

relatively and can be attributed to the large effect of the differing upper stage mass ratios for

these methods.

Table 18:  Stargazer Ratios Results Comparison

Booster Mass

Ratio

Booster

Mixture Ratio

Upper Stage

Mass Ratio

Flyback

Mass Ratio

MIM 2.2231 1.7612 3.2988 1.3816

POBD 2.2088 1.7467 3.3256 1.3845

CO 2.2104 1.7482 3.3311 1.3835

Table 19 shows the final staging vectors for the MIM, POBD, and CO methods.

The velocity azimuth, longitude, and latitude are all similar in value as expected since the

booster performs only longitudinal maneuvers on ascent.  The MDO methods gave more

similar staging vectors than for the manual iteration method.  However, differences in

altitude, velocity, and flight path angle were on a slightly larger order than the other

variables.  These differences are a result of the small tolerances on those variables for the

CO methods.  
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Tables 18 and 19 imply that an increased flight path angle helps to achieve the

minimization of the booster dry weight by decreasing the booster mass ratio and mixture

ratio, while increasing the upper stage and flyback mass ratios.  The last three effects are not

intuitive.  The effect of increasing the upper stage mass ratio is an increase in the upper

stage weight, which indirectly increases the booster dry weight.  The effects of decreasing

the booster mixture ratio and increasing the flyback mass ratio require more hydrogen tank

structure and thus more dry weight for the booster.  For these sets of MDO mass ratios and

mixture ratio, decreasing the booster mass ratio dominates the dry weight minimization.  So,

decreasing the booster mass ratio has the strongest effect on minimizing the booster dry

weight, while the other effects are weak.  The increased staging flight path angle was needed

to get the values of mass ratios and mixture ratio that led to the minimum dry weight.

Table 19:  Stargazer Final Staging Vector Comparison

MIM POBD CO

Initial Flyback Weight, lbs 34,907.9 34,498.8 34,513.3

Altitude, ft 296,360 296,622 297,008

Velocity, ft/s 12,543.5 12,474.8 12,443.2

Gamma, deg 11.879 12.351 12.525

Vel. Azimuth, deg 98.627 98.663 98.647

Latitude, deg 27.609 27.601 27.608

Longitude, deg 291.097 291.157 291.215

The relative pitch angle versus time plot for the ascent trajectories is illustrated in

Figure 52.  A notable difference in the pitch angles of the manual iteration method and the

MDO methods occurred between twenty and one hundred eighty seconds during ejector

mode.  This difference allowed for decreased drag losses, during the ascent, for the MDO

methods, which produced a smaller booster mass ratio.
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Figure 52:  Pitch Angle versus Time for Stargazer Ascent Trajectories

Figure 53 shows a typical ascent plot for the Stargazer vehicle.  The MIM, POBD,

and CO methods give similar plots for the ascent, with slightly larger dips in the beginning

of the dynamic pressure plots.  This initial dip is characteristic of RBCC vehicles. The

dynamic pressure boundary discussed in Chapter VIII is apparent in the figure.
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Figures 54 - 58 relate to the flyback trajectories.  Figures 54 and 55 are cut off at

about 600 seconds, after which point they continue at the same angle of attack and bank

angle of 600 seconds until the end of the flyback.  The flyback Isp’s for all the methods

were within 2 seconds of one another.  The mass ratio difference can be attributed to the

greater drag losses of the MDO methods.  The drag losses are greater because the ramjet is

on longer as it is throttled to a lower setting than that of the manual iteration method.  The

groundtracks of Figure 56 show that the flyback trajectories do indeed return close to KSC

launch site.  The groundtracks end at when the ramjets are turned off.  An unpowered

descent, at that point, concludes the flyback, but was not modeled in the POST decks.  The

flyback for the manual iteration method exhibits a smaller turn radius for the MIM, also

evidenced in Figures 54 and 55.
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Figure 56:  Groundtrack Comparison for Stargazer Flyback Trajectories
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Figures 57 and 58 respectively show the altitude and velocity plots of the Stargazer

flybacks.  The angle of attack and bank angle turnaround does not begin until the apex of

the ascent occurs at about two hundred seconds.  It is also at this point that the velocity is at

a minimum.  The ramjet cruise back to KSC begins at approximately 500 seconds from the

staging and ends about thirty-three minutes later.
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Figure 57:  Altitude versus Time for Stargazer Flyback Trajectories

The upper stage trajectories are shown in Figure 59.  As can be inferred from the

plot, the pitch angles are dissimilar between the MIM and MDO methods.  At the end of the

respective trajectories an instantaneous velocity increment is applied.  In the MIM case, this

increment is small and gives a smaller upper stage mass ratio.
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CHAPTER X

CONCLUSIONS AND RECOMMENDATIONS

10.1  Conclusions and Observations

The main contribution of this research has been the development and demonstration

of a method for solving branching trajectories that exhibit feedback data flow.  In addition,

the method was formed such that the branching trajectory problem was decomposed into

trajectory subproblems.  These subproblems were executed in a distributed manner that

produced an optimal solution with respect to an overall, system-level objective function

while retaining agreement of the coupled data that existed between the branches and the

ascent.  

Solutions to the two branching trajectory testcases of the Kistler K-1 launch vehicle

and the Stargazer launch vehicle were obtained.  The use of multidisciplinary design

optimization techniques was examined in the method solutions for the branching trajectory

problem.  Based on the conclusions made below, the MDO technique selected for use in the

overall method was the partial optimization-based decomposition method.  The details for

this overall method and reasons for the solution technique of POBD are given at the end of

the conclusions section.
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10.1.1  Conclusions

Specific objectives were established in support of the goals mentioned and the

method developed.  These qualitative and quantitative objectives are listed below with

respective conclusions for each.

• Demonstrate an efficient computation approach that can be distributed on several

computing processors to reduce overall solution time enough such that the solution

process would be applicable in a vehicle design framework.

A reasonable time for solution methods depends on the complexity of the branching

trajectory being studied.  The Kistler K-1 branching trajectory was not complex as, when

decomposed, it was a product of simple rocket trajectories.  A CPU time more than thirty

minutes would slow the entire design process for that vehicle.  CPU times on the order of

fifteen minutes were obtained with the FPI, POBD, and FOBD solution techniques.  The

Stargazer branching trajectory is much more complex the K-1’s.  However, the fastest CPU

time obtained was for that of the POBD solution and that was almost three hours.  Even

though the entire Stargazer design is very involved, three hours is much too long for one

discipline; one hour would be more acceptable.

For both vehicle branching trajectories, the CPU times for the CO solutions were

four to five times longer than those for the other solution techniques.  These solutions

would not be acceptable, time wise, from a vehicle design standpoint.  This illustrates one of

the disadvantages of implementing CO with small-scaled problems.

• Demonstrate an improvement of 1% or greater in the objective function relative to

the suboptimal solution of the manual iteration method.

The solution of the distributed method for the Kistler K-1 problem showed that an

increase in payload weight of 1%, on average, could be obtained.  Similarly, a reduction in

Stargazer’s dry weight of approximately 0.8% was achieved through the method.  These

percentages came close to the stated objective, but were not as large as hoped.
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These percentages are significant in terms of revenue and vehicle costs.  In the case

of the K-1, more payload can be put into orbit per launch and thus, potentially $5,000,000 of

profit to Kistler can be achieved.  Stargazer’s non-recurring costs total in the billions of

dollars.  The smaller dry weight achieved implies a crucial amount of savings in non-

recurring costs.  The recurring costs is also reduced through a decrease in labor and

hardware replacement costs.

• Decrease the computing time relative to a fixed-point iteration approach by 10% or

more for a single trajectory solution.

The full OBD and CO solutions had decomposed trajectories that could be executed

in a parallel manner.  No CPU time improvements were made because of the number of

additional function calls required for the full OBD solution and the amount of CPU time

required by the subsystem optimization for the CO solutions.

• Maintain a reasonable level of method complexity and a set-up time that is no more

than 50% greater than the set-up time of a suboptimal method like the manual iteration

method.

Set-up times for the branching trajectory solutions varied depending on which

vehicle’s branching trajectory was being studied.  Table 20 gives estimated set-up times for

the manual iteration method (MIM) and MDO solution techniques.  They are estimated

from a non-biased standpoint as if the set-ups for each vehicle started independent of

knowledge gained from another set-up for that vehicle.  The only standard for the times in

the table is the existence of the POST decks.  For the Stargazer case, creation of the

weights & sizing response surfaces and the multipliers for the engine data, taking about two

days’ time, are not included in each solution method set-up time.  The times do not include

the amount of time necessary for choosing the correct system-level optimizer or

optimization program, DOT, a process requiring months of code manipulations and results

examinations for each solution method.

Table 20:  Set-up Time Comparisons
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Vehicle/Solution Method  Set-up Time

Kistler K-1

MIM 15 min

FPI 35 min

POBD 40 min

FOBD 50 min

CO 30 min

Stargazer

MIM 30 min

POBD 2 hours

CO 1.73 hours

The times of Table 20 are based on the number of additional scripts needed to

automate the solution, the number of design variables and constraints for each solution, and

the number and type of modifications required in setting up the POST decks.  The manual

iteration method’s set-up time only involved the amount of time needed to create a results

database to monitor vehicle convergence.  The MDO solution techniques set-up times were

much more similar to each other than they were for the MIM.  Even though POST decks

and POST code needed modification in the CO solution, there were less design variables

and constraints required by the system-level optimizer.  Thus, the CO set-up time was less

than that for the other decomposition methods, but only by a small amount.

The MDO solutions for the Kistler vehicle averaged 160% more time for set-up

than for the manual iteration method.  Stargazer’s MDO solutions averaged 270% more

set-up time than the MIM.  This increase is a direct consequence of the automation of the

MDO methods; most of the increase is due to the new scripts required for data extraction

and insertion.  Had the data insertion and extraction for the manual iteration methods been

automated as well, the differences in the set-up times for the MDO would have been

significantly reduced.  Detailed observations about automating and implementing the

branching trajectory solutions are given in the last section of this chapter.

• Guarantee internal data consistency between the individual branches at the solution.
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Internal data consistency between the individual branches was ensured by iteration

(for the MIM and FPI solutions), compatibility constraints, (for the OBD solutions), or

system/subsystem level coordination (for the CO solution).  It was shown that the ‘One-

and-Done’ method was an invalid method because of the differences between the feedback

variables, or outputs, of the flyback and upper stage branches and the corresponding input

to the ascent path.

• Demonstrate the scalability and robustness of the new method for small and large

branching trajectory problems.

Solutions were found by the distributed method for solving decomposed branching

trajectories.  The relatively small branching trajectory problem of the Kistler K-1 launch

vehicle and the larger Stargazer branching trajectory problem were each solved

successfully.  The method was robust for the smaller K-1 problem in that all solution

techniques found a relatively similar solution.  The method was robust for the Stargazer

problem in that there were relatively similar solutions found for two solution techniques.

The fact that solutions for Stargazer were difficult to obtain, as was the case for the POBD

method, or unobtainable, in the case of the FPI method, is a product of the lack of

robustness, or deficiency, in the MDO solution technique and the Stargazer POST decks.

In Section 10.3, recommendations are made with the intent to improve this robustness.

• Formulate generalities of staging vector compromises for the branching trajectory

problem.

Staging vector trends could not be made for the general branching trajectory

problem.  The trends observed were specific to the vehicle studied and the system-level

objective function minimized.

Kistler K-1 Branching Trajectories



111

The results of solving the K-1 branching trajectory with MDO solutions indicated a

trend from the manual iteration method.  These results showed that a decrease in the flight

path angle at staging aided in reducing the booster’s flyback propellant.  This allowed more

payload weight to flown to orbit.  

Stargazer Branching Trajectories

The MDO solutions for Stargazer’s branching trajectory showed a trend in staging

flight path angle as well.  This time, the inclination from that of the manual iteration method

was towards an increased flight path angle.  This was a result of the compromises made in

the vehicle mass ratios and booster mixture ratio to obtain a minimal dry weight.

10.1.2  The New Method for Branching Trajectory Problem Solutions

In order to exploit the benefits of a distributed approach, branching trajectories were

distributed into two or three subproblems.  The point of separation for these trajectories

naturally occurs at staging so that there exists an ascent subproblem and one or two

branches, an upper stage branch and/or flyback branch.  Once the trajectories were

decomposed, the solution was obtained with traditional and multidisciplinary design

optimization techniques.

The main deficiencies of the traditional methods of the ‘One-and-Done’ and manual

iteration methods were discussed for the branching trajectory problem.  The main deficiency

was that conflicting objective functions existed in these methods.  Each POST deck had its

own objective to fulfil, but compromises in each individual trajectory could benefit the entire

trajectory.  Multidisciplinary design optimization decomposition techniques introduced a

system-level optimizer that resulted in an overall, system-level objective for the branching

trajectory problem at the solution.

With this knowledge in mind and that of the conclusions given above, the new

method for solving branching trajectories with feedback is outlined below and in Figure 60.

• Distribute the branching trajectory problem into logical subproblems.  The partition

for the subproblems occurs at staging.  For time-consuming upper stage and flyback



112

simulations, both branches should be separate from the ascent in order to exploit parallel

executions and thus save CPU time.

• Invoke a system-level optimizer to ensure satisfaction of an overall objective

function.

• Decompose the feedback coupling of the upper stage and flyback branches by

breaking the data flow.  Retain the feedforward of the staging vector.

• Solve the resulting problem with the system-level design variables being the

trajectory simulation’s design variables and the constraints being the constraints of the

trajectory and the feedback compatibility constraints.

Figure 60:  Method Structure for Branching Trajectory Solutions

The new method uses partial optimization-based decomposition in the solution of

the optimization problem.  This solution technique gave the best results when considering

all the previous analysis and conclusions.  CPU time was the greatest factor in determining

whether the branching trajectory solution would be feasible in a vehicle design environment.

Thus, the objective to keep this CPU time reasonable for each vehicle design was considered
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to dominate the resultant choice.  The POBD solution technique took approximately five

times less CPU time when compared with the CO technique.  POBD required slightly more

time to set up; however, the difference was negligible, especially when compared with the

difference in CPU execution time.  

The exact staging vector is fed forward to the trajectory branches in the POBD

method.  Thus, the solution is not subject to the staging vector tolerances of the FOBD

method.  Also, any convergence tolerances are not an issue in partial optimization-based

decomposition as in the FPI method.  Although not fully parallel, if there are both flyback

and upper stage branches, they can be executed in parallel with one another, saving some

CPU time.  The automation difficulty of POBD for the Stargazer solution is discussed in

Section 10.3.

10.1.3  Observations

Multidisciplinary design optimization techniques were employed in the method

solution for the branching trajectory problem.  Some conclusions regarding their

comparative performance at the solution, the system-level optimizer used, and

implementation  differences were observed.  

MDO Methods:  CO and OBD

The term ‘multidisciplinary design optimization’ suggests that the optimization

problem being solved had many distinct disciplines.  The branching trajectory problem,

typically viewed as its own distinct discipline, when viewed as a distributed problem is

composed of subproblems, thus MDO was a useful way to solve this problem.  The MDO

solutions presented add to the growing wealth of knowledge that exists currently about

these methods.

Expected results were obtained with respect to collaborative optimization and

optimization-based decomposition.  Similar optimized results were obtained, though with

difficulty for the partial optimization-based decomposition method for Stargazer.  Although

the system-level iterations were less for the collaborative optimization method than the

optimization-based decomposition methods, the number of analysis calls were much greater
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and required five to six times the amount of computational time.  Though originally

developed for large-scale distributed problems, collaborative optimization was used

successfully, if slowly, for the small-scale branching trajectory problem.  

System-Level Optimization

Many lessons were learned with respect to inclusion of the system-level

optimization scheme for the distributed solutions to the branching trajectory problem.  The

modified method of feasible directions was the system-level optimization strategy used for

each branching trajectory and all solution techniques.  As discussed in Section 4.3, past

research has typically used sequential quadratic programming as the system-level

optimization scheme.  For the branching trajectory problem, both the SQP and SLP

methods were not able to find valid solutions even after many experiments with scaling

factors and gradient perturbations.  In addition, a projected gradient system-level

optimization strategy was used as a solution technique.  This strategy was not capable of

solving the branching trajectory problem as well.

Gradient perturbation size was found to be dependent on the design variable size

and small perturbations (on the order of 0.00001) were used in the MMFD solutions.  All

the optimizations performed better (in that feasible solutions were found) with scaled design

variables.  The scaling used was internal to the DOT™ optimization program.

Implementation

From the standpoint of the person that was required to run all the POST decks, the

automation of this process was well received.  However, problems occurred with the

automation when the optimization did not proceed as desired.  Examples of these problems

and recommendations for improving the automation process are suggested in Section 10.3.

Some qualitative observations on the implementation for the different MDO

methods can be made.  The automation of the methods helped a great deal from the time

standpoint of executing each method.  This did require more coding from the outset.  That

small disadvantage was outweighed by the fact that each method did not have to be

monitored constantly in order to know when to pass the inputs and outputs.  
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Because it was the first method implemented, the FPI method for the Kistler K-1

took the greatest amount of time to implement and debug from errors.  Although this

method required internal iterations, this requirement was not an obstacle because the

iteration convergence was based on flyback fuel weight, which was directly linked to the

time the flyback engine was on.  Since this time was a design variable, internal iteration

convergence was met within at most one iteration for every function call.  

For the single-level decomposition methods, (POBD and FOBD), different variables

had to be put into the POST decks as the breaking of the feedback/feedforward loops

necessitated.  However, the coding for this was trivial as it was used in the FPI method.  The

only real addition for the POBD and FOBD methods was the calculation of the

compatibility constraints, which occurred at the system level.  The communication

requirements for the FPI, POBD, and FOBD methods increased with respect to the number

of variables in the broken loops.

The collaborative optimization method had different set-up requirements.  Not as

much calculation was required on the system-level as for the single-level decomposition

methods.  However, since CO is a multi-level scheme, a lot of modification was required at

the analysis level, or for the POST decks.  For each POST deck, all of the system-level

targets had to be included, a trivial task that required only one additional line of code.

Additional internal control variables (the local versions of the system-level variables), had to

be added to each POST deck, again, a relatively simple task.  

For the CO method, the hardest task was in modifying the actual POST code, but a

special calculations subroutine exists for such modification.  The errors, J’s, had to be

calculated in this subroutine since the objective for the POST decks was to minimize these

errors.  Much of the set-up time for the CO method was spent in insuring that the local

variables used to calculate the J’s, and the J’s themselves, were correct.

Knowledge of the basic set-up for the K-1 MDO cases helped in the coding for the

Stargazer cases in that the algorithms and PERL scripting were easier.  However, for the

Stargazer cases, more computations were performed at the system level, because of the
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addition of the propulsion and weights and sizing analyses, and more variables were passed

to and from an increased number of POST decks.

When compared to the K-1 cases, the communication requirements were

significantly increased for the Stargazer MDO processes.  The addition of the more

complex weights and sizing and propulsion analyses added to the increased number of

interactions between the POST decks and the system-level optimizer.  Table 21 summarizes

the differences in communication requirements for the two vehicles for the POBD and CO

methods, respectively.  The number of PERL scripts and POST include files are listed in the

table along with the number of variables they represent.  For example, the K-1 POBD

method’s 3 PERL scripts extracted six staging variables and five constraints from the ascent

deck, the flyback fuel weight and two constraints from the flyback deck, and inserted

nineteen design variables into the POST decks.  The include files for this method were two

files that contained the twentieth design variable, prescribed flyback fuel weight and the six

staging variables from the ascent deck that were needed by the flyback deck. Additional

PERL scripts were employed to get CPU times and system-level iterations for the CO

method, but these are not included in the totals.  The aerodynamic and propulsive tables are

not included in the ‘Include Files’ totals.

Table 21: Communication Requirements Summary

POBD CO

K-1 Stargazer K-1 Stargazer

PERL Scripts /Variables

Represented

3/33 11/78 4/45 10/88

Include Files /Variables

Represented

2/7 10/18 1/8 10/22

10.2  Recommendations for Future Research
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A number of recommendations can be made regarding directions for future work on

the branching trajectory problem.  Even though all the goals of the research were met, some

of the objectives were not.  The first few recommendations are directly related to those

objectives.

CPU Time Reduction

In order to realistically include the optimization of Stargazer’s branching trajectory

in a design paradigm, the total CPU time must be reduced.  Elimination of the restarts in the

POBD solution could help reduce this time.  Investigation into whether this is a vehicle level

characteristic, an RBCC vehicle characteristic, or a scaling problem would be beneficial.

CPU Time Reduction for CO Solutions

CO solutions can not be included in the design process with such large CPU times

as evidenced in the K-1 and Stargazer results.  CPU time reduction may be achieved for

this solution technique by approximating the subsystem optimization with a response

surface method as in [57].  This would especially benefit the flyback branch of the

Stargazer trajectory.  Analysis into whether this approximation would significantly reduce

the CPU times for this small-scaled branching trajectory problem should be studied.

Another idea that may warrant consideration is the use of collocation trajectory

simulations with a sparse optimizer at the subsystem level for the CO solutions.  This may

reduce overall CPU time, but would one of the industry standards for trajectory optimization

– POST.  Starting subsequent system-level iterations from the previous solutions’ design

variables should also decrease CPU time.  This was attempted in the Stargazer problem, but

because of the lack of robustness in the POST decks, invalid trajectories were obtained.

Staging Vector Compromises

Although the FOBD solution resulted in a larger payload weight than for that of the

other solution techniques, a part of that success may be attributed to the existence of

tolerances on the staging vector variables.  Although small, these tolerances introduce error
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between the calculated staging vector from the POST deck and the corresponding design

variables.  This error may slightly benefit the objective function.  More investigation into

what tolerances are acceptable for each variable should be researched and may make the

FOBD solution more desirable, since it can be decomposed into a totally parallel structure.

More branching trajectory applications need to be solved with MDO methods

before concrete solutions can be made.  In fact, for the branching trajectory problems of this

thesis, the results were problem dependent.  This may be the case for all branching

trajectory problems.  One such branching trajectory that could easily be researched with

respect to its optimization is that of the Liquid Fly-Back Booster.  It is described below.

Liquid Fly-Back Booster

Figure 61:  Lockheed Martin LFBB [82]

The Space Shuttle with liquid flyback boosters is a TSTO system that incorporates

branching trajectories.  An example of a Lockheed Martin concept is shown in Figure 61.

To extend the life of the Space Shuttle and reduce launch costs, NASA is considering

replacing the current solid rocket boosters with a reusable liquid booster(s) in a single or

dual configuration [80, 81].  After staging, the liquid flyback booster(s) (LFBB) would

return to KSC under powered flight.  Power for the return flight would be provided by

conventional turbofan or turbojet airbreathing engines.  LFBB concepts typically require

deployable or fixed wings.  
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The LFBB configuration and its characteristics are far from final definition.

However, when including the orbiter, its trajectory will certainly be a branching problem

(like Figure 1).  The orbital branch (the Orbiter and the ET) and the flyback branch of the

ascent trajectory must be treated simultaneously to produce an overall system-level

objective.  Compromises in the orbital branch might significantly improve the flyback

branch and vice versa.  

Stargazer Branching Trajectory Optimization

The optimization of the Stargazer branching trajectory was not possible without the

inputs from the weights and sizing and propulsion disciplines.  And in this case, the

analyses for these disciplines were simplified. Additionally, the vehicle TPS was assumed

constant throughout each iteration.  These approximations can lead to errors.  Thus, a

vehicle design optimization without these approximations would make the results more

realistic.  In addition, though dry weight is certainly a large factor in the recurring cost/price

per flight (as its effects appear in the propellant, LRU hardware, and labor costs), the upper

stage also contributes a lot to the recurring cost/price.  Subsequently, an entire vehicle

design optimization should be performed, for various staging Mach numbers, with an

objective function of reducing the recurring cost.

The Automation Process

The automation of the branching trajectory optimization encountered some

disadvantages when the optimization process did not proceed well.  At the subsystem level,

this was caused by a lack of robustness in the Stargazer POST decks.  At this level, an

expert system, like that of [83] would help keep the POST decks from resulting in

physically invalid trajectories.  At the system-level when the optimization progress was

stopped, as was the subsequent outcome from the oscillations of the Stargazer POBD

method, a different type of expert system could be employed.  These changes would

improve the automation and optimization process.

Comparisons with POST II
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Lastly, it is recommended that solution comparisons be made with the non-

distributed simulation of POST II when it is available to the public, if a way is found to

exactly model the feedback dependencies.  Simulation with POST II would allow the same

trajectory modeling assumptions to be retained for an accurate comparison of solution

values, function calls, and CPU times.
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APPENDIX A

Weight Breakdown for the Kistler K-1
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APPENDIX B

Engine and Aerodynamics Information for the K-1

Propulsion Information

First Stage (Booster) Engines:

AJ26-59 (NK-33)

Number of engines: 3

Vacuum Thrust: 378,900 lbs/engine

Sea-Level Thrust: 339,800 lbs/engine

Vacuum Isp: 331.3 seconds

Upper Stage Engine:

AJ26-60 (NK-43)

Number of engines: 1

Vacuum Thrust: 398,300 lbs/engine

Vacuum Isp: 348.3 seconds
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Reference Aerodynamics Information:

Diameter (ft) Length (ft)

First (Booster) Stage:         22     60.2

Upper Stage:         13.2     61
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APPENDIX C

Final Design Variables for K-1 Methods

Normalized*

Design

Variables

Manual

Iteration

FPI POBD 1 POBD 2 FOBD CO**

x[1] 1.00000 0.93887 0.92471 0.92518 0.95770 0.98153

x[2] 1.00000 1.03480 1.00458 1.00415 0.98194 1.00622

x[3] 1.00000 0.98765 0.99642 0.99606 1.01467 0.98931

x[4] 1.00000 0.98912 0.99324 0.99443 0.99879 0.96318

x[5] 1.00000 1.00587 1.00568 1.00484 1.01804 1.04452

x[6] 1.00000 0.95039 0.99606 0.99585 0.99162 0.93678

x[7] 1.00000 1.00017 1.00057 1.00070 0.99328 1.00460

x[8] 1.00000 0.99678 0.99877 0.99843 0.99264 0.99218

x[9] 1.00000 0.99761 0.99493 0.99404 0.99191 0.98777

x[10] 1.00000 1.00901 1.00836 1.00989 1.00376 1.00066

x[11] 1.00000 0.99541 0.99472 0.99401 0.99916 1.00348

x[12] 1.00000 0.99904 0.99721 0.99670 1.00185 0.99612

x[13]*** 1.00000 1.00429 1.01078 1.01078 1.01595 1.01122

x[14] 1.00000 1.00128 0.99917 0.99921 0.99721 0.99450

x[15] 1.00000 1.01851 0.98953 0.98940 0.99165 0.99284

x[16] 1.00000 1.04009 0.96236 0.96200 0.96753 0.96734

x[17] 1.00000 1.01842 0.99536 0.99527 0.99652 0.99644

x[18] 1.00000 1.00256 0.99174 0.99175 0.98816 0.98627

x[19] 1.00000 1.00715 0.99139 0.99136 0.99137 0.97831

x[20] N/A N/A 0.99139 0.99136 0.99137 N/A
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x[21] N/A N/A N/A N/A 0.99648 N/A

x[22] N/A N/A N/A N/A 0.99714 N/A

x[23] N/A N/A N/A N/A 0.98665 N/A

x[24] N/A N/A N/A N/A 1.00018 N/A

x[25] N/A N/A N/A N/A 1.00023 N/A

x[26] N/A N/A N/A N/A 0.99993 N/A

* - The design variables are normalized with respect to the Manual Iteration Method results.

** - x[1] – x[19] are the local POST design variables and are listed here for comparison.

The system-level target design variables are listed in Chapter 7.

*** - x[13] is the objective function, payload weight.
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APPENDIX D

RBCC Engine Inputs to SCCREAM for Stargazer

Engine Type:  Ejector ScramJet

External Compression:  Wedge with 1 Ramp

Rocket Primary Propellants:  LOX/LH2

Number of Engines:  4

Force Accounting Method:  Cowl-to-Tail

SLS Thrust  (Ejector Mode Only):  20207.0 lbs per engine

  Forebody and Inlet Characteristics

Inlet Area:  14.4 ft2 per engine

Aref for Ct Calculation: 14.4 ft2 per engine

Angle of Attack:  0.0 degrees

Cowl Height: 3.6 ft

Forebody Width:  16 ft

Centerline Distance from Nose to Cowl:  70.0 ft

Wedge Angle:  5.0 degrees

Rocket Primary Characteristics

Area Ratio:  18.0

Chamber Pressure:  1600.0 psi

Mixture Ratio:  8.0

Engine Station Efficiencies

Rocket Primary Combustor:  97.5 %

Rocket Primary Nozzle:  98.0 %

Combustor:  95.0 %
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Nozzle:  98.0 %

Fuel Temperature:  500.0 R

Combustor Length

From Station 3 to 3':  2.0 ft

From Station 3' to 4:  3.0 ft

Subsonic Combustion

Geometry:

A* / A1 = 0.4

A1 / A3 = 1.8

A3' / A3 = 1.3

A4 / A3' = 1.2

Ae / A1 = 2.0

Ae' / A1 = 3.5

Fuel Injector Location & Start of Heat Release:  2.0 ft

End heat release:  5.0 ft

Fuel Injection Velocity:  3000.0 ft/s

Fuel Injection Angle:   0.0 degrees

Friction Coefficient:  0.001

Supersonic Combustion

Geometry:

A* / A1 = 0.4

A1 / A3 = 1.8

A3' / A3 = 1.2

A4 / A3' = 1.1

Ae / A1 = 3.5

Ae' / A1 = 3.5

Fuel Injector Location & Start of Heat Release:  1.0 ft

End heat release:  3.0 ft
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Fuel Injection Velocity:  4000.0 ft/s

Fuel Injection Angle:  0.0 degrees

Friction Coefficient:  0.001

All-Rocket Mode

All-Rocket Mode Expansion Ratio:  180

All-Rocket Mode Mixture Ratio:  7.0
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APPENDIX E

Stargazer Engine Multipliers & Scaling Equations

The inputs for the Stargazer engine deck are listed below with the equations used to

calculate each.  Wg is the booster gross weight.  All engine data is scaled by the original

Stargazer engine which was analyzed in SCCREAM and appears in Appendix D.

Ejector LOX flow rate = (((Wg*.7/4)/20207.4*83628.4)/420.429)*8/9;

Ejector linear thrust multiplier = 4*(.7*Wg/4)/20207.4;

Ramjet capture area = (57.6*.7*Wg/(20207.2*4));

Scramjet capture area = (57.6*.7*Wg/(20207.2*4));

All-Rocket LOX flow rate = (((Wg*.7/4)/20207.4*83628.4)/420.429)*7/8;

All-Rocket vacuum thrust = (Wg*.7/4)/20207.4*83628.4;

All-Rocket exit area = (Wg*.7/4)/20207.4*39.37464;

The inputs for the upper stage engine and the corresponding equations are as

follows, where USWg is the upper stage gross weight:

Upper stage vacuum thrust = USWg; (T/W of 1.0)

Upper stage exit area = 1.72/3350*USWg; (scaled by original engine)

The Isp 's for all engines are the same for iteration.  For the booster’s ejector, ramjet,

and scramjet modes, the Isp’s are variable, depending on the Mach number, altitude, and
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throttle.  The Isp for all-rocket mode is 420.429 seconds.  The upper stage engine Isp is 328

seconds.
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APPENDIX F

Stargazer Weights Response Surfaces

The response surface equations for the Stargazer required weights inputs and

output are listed below.  These equations were generated by JMP software [84].  Twenty-

seven responses were evaluated.  The r-squared values are also listed for each equation.

In the equations below the following applies:

Mix = Booster Mixture Ratio,

MRus = Upper Stage Mass Ratio,

MRb = Booster Mass Ratio,

MRfb = Flyback Mass Ratio.

INPUTS:

Sref = 28669.806+3801.6667*Mix-33.83333*MRus-12037.25*MRb-30761.25*MRfb

+294.44445*Mix*Mix-10*MRus*Mix-3.5*MRus*MRus-1163.333*MRb*Mix

+33*MRb*MRus+1197.5*MRb*MRb1933.333*MRfb*Mix+30*MRfb*MRus

+7400*MRfb*MRb+7562.5*MRfb*MRfb;

RSquare = 0.996948

Wg = 5619835.2+580926.67*Mix-20480.33*MRus-2372700*MRb-5555900*MRfb

+34944.445*Mix*Mix-1066.667*MRus*Mix-747*MRus*MRus

-174960*MRb*Mix+8567*MRb*MRus+235119.5*MRb*MRb

-253500*MRfb*Mix+10335*MRfb*MRus+1319190*MRfb*MRb

+1226412.5*MRfb*MRfb;
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RSquare = 0.993144

USWg = 1244.6944+246.11111*Mix+812.16667*MRus-586.4167*

MRb-1620.417*MRfb-16.66667*Mix*Mix+30*MRus*Mix

+64.5*MRus*MRus-23.33333*MRb*Mix-106*MRb*MRus

+81*MRb*MRb-133.3333*MRfb*Mix-255*MRfb*MRus

+320*MRfb*MRb+575*MRfb*MRfb;

RSquare = 0.999916

USSref = 44.572361+6.7583333*Mix+4.9258333*MRus-16.45875*MRb

-43.26875*MRfb-.361111*Mix*Mix+.2666667*MRus*Mix

+.0525*MRus*MRus-.633333*MRb*Mix-.9*MRb*MRus+1.705*MRb*MRb

-2.833333*MRfb*Mix-2.05*MRfb*MRus+6.825*MRfb*MRb

+11.5*MRfb*MRfb;

RSquare = 0.999389

OUTPUT:

Dry = 1186063.2+139966.47*Mix-3566.02*MRus-495759.8*MRb-1.2121e6*MRfb

+9580.2595 *Mix*Mix-343.4093*MRus*Mix-191.8127*MRus*MRus

-42297.67*MRb*Mix+1714.0259*MRb*MRus+49110.143*MRb*MRb

-65399.28*MRfb*Mix+2152.255*MRfb*MRus+286660.08*MRfb*MRb

+280425.16*MRfb*MRfb;

RSquare = 0.994115
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APPENDIX G

Final Design Variables for Stargazer Methods

Normalized*

Design

Variables

Manual

Iteration

POBD CO**

x[1] 1.00000 1.01343 1.00950

x[2] 1.00000 0.72691 0.74060

x[3] 1.00000 1.34879 1.31626

x[4] 1.00000 0.65429 0.67414

x[5] 1.00000 0.95849 0.96799

x[6] 1.00000 1.00937 1.00937

x[7] 1.00000 0.97143 0.97211

x[8] 1.00000 0.92545 0.89952

x[9] 1.00000 1.00028 0.99722

x[10] 1.00000 1.03181 1.04580

x[11] 1.00000 1.00184 0.98929

x[12] 1.00000 1.04123 1.05636

x[13] 1.00000 1.42828 1.35862

x[14] 1.00000 1.41161 1.33825

x[15] 1.00000 1.59868 1.49127

x[16] 1.00000 1.75435 1.62455

x[17] 1.00000 1.31894 1.27074

x[18] 1.00000 1.00479 1.00612

x[19] 1.00000 1.06526 1.05827

x[20] 1.00000 0.76448 0.82243
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x[21] 1.00000 0.66889 0.62573

x[22] 1.00000 0.91506 0.90209

x[23] 1.00000 1.00000 1.00001

x[24] 1.00000 1.00000 1.00000

x[25] 1.00000 1.00000 1.00000

x[26] 1.00000 1.25885 1.37569

x[27] 1.00000 0.75222 0.66925

x[28] 1.00000 0.97972 0.95254

x[29] 1.00000 1.00000 1.00000

x[30] 1.00000 1.00000 1.00000

x[31] 1.00000 1.00000 1.00000

x[32] 1.00000 1.05757 1.06434

x[33] 1.00000 1.02809 0.99030

x[34] 1.00000 0.81443 0.78530

x[35] 1.00000 0.74221 0.82734

x[36] N/A 1.00812 N/A

x[37] N/A 1.00210 N/A

x[38] N/A 0.99357 N/A

x[39] N/A 0.99177 N/A

*- The design variables are normalized with respect to the manual iteration method results.

** - x[1] – x[35] are the local POST design variables and are listed here for comparison.

The system-level target design variables are listed in Chapter 9.
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