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SUMMARY 

Recent trends in aerospace conceptual design have lead to the use of distributed 

computational models covering multiple disciplines. Unfortunately at the level of 

conceptual design, many simplifying assumptions must be made because of the lack of 

design maturity. The problem with this lies in that current computational models are for 

the most part deterministic. They do not allow a designer to express uncertainties from 

such sources as user assumptions, computational model error and physical unknowns. 

Methods are therefore sought to use these distributed multidisciplinary deterministic 

models to generate probabilistic designs that can more accurately express the future 

performance of a concept.  

 

To this end, a new multidisciplinary probabilistic sizing algorithm for launch 

vehicles utilizing distributed iterative uncertainty simulations has been created. A 

distinguishing feature of this new algorithm is that it performs uncertainty calculations at 

the contributing analysis level. By reducing the communications requirements and 

lowering the dimensionality of the local uncertainty analyses, the distributed method has 

many advantages for reusable launch vehicle conceptual design. 

 

In addition to this, a new approximation method was tested against several 

existing variance reduction and metamodeling techniques for each of the contributing 



 xxiii 

analyses in the reusable launch vehicle design problem. Once a preferred approximation 

method was identified for each analysis on the basis of a balance of speed and accuracy, 

the iterative system was optimized using gradient search methods to find a probabilistic 

optimum across heterogeneous computer platforms.  

 

This probabilistic optimization problem consisted of 84 noise variables and 4 

design variables. This problem setup consistently found system optimums in 6-8 hours. It 

utilized several probability approximation methods run in an iterative manner to generate 

probabilistic vehicle sizing information. Once the probabilistic optimum was identified 

and confirmed using this process, a system-level Monte Carlo random simulation of the 

vehicle design was conducted around the optimum point to confirm the accuracy of the 

distributed approximation method. Because this simulation was prohibitively expensive, 

it was only conducted at the single optimum point. Following this accuracy confirmation, 

a comparison to a deterministic optimization of the same problem illustrated the 

difference between the probabilistic and deterministic optimums. 
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CHAPTER I 

INTRODUCTION 

Space access can be defined as mankind’s ability to break free of the Earth’s 

gravity and travel outside its atmosphere. Making space access routine requires 

breakthroughs in aerospace technology and physics that either have not been made or are 

not yet mature. To help bring this about, the National Aeronautics and Space 

Administration (NASA) and other government and industry organizations invest in key 

technologies that promise to make routine space access a reality. Through technologies, 

these organizations hope to improve the quality of life for the people footing the bill, the 

American taxpayer in the case of U.S. government efforts and the shareholder in the case 

of industry efforts. 

 

Taxpayers and shareholders hope that routine space access will bring about 

changes in space activities with measurable benefits. The most direct benefits for both 

groups are related to potential commercial space activities. Currently, this consists mostly 

of communications applications, with some earth observation activities [1]. Despite the 

early promise of large low earth orbit satellites, the communications satellite industry still 

mostly consists of large, geostationary spacecraft that serve the telecommunications 

industry infrastructure [2]. However, direct to consumer marketing has recently made 

strong headway in the form of digital television and radio services using these satellites 

[2]. The time delay in communication has also turned out to have only a minor impact on 

wireless internet services [2] using geostationary satellites. It was previously thought that 
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large Low Earth Orbit (LEO) constellations would be required to service this market. 

These are potential growth areas for near term future launch market demand. 

 

Future commercial activities may take advantage of beneficial characteristics of 

the space environment. Drug and exotic materials manufacturing research benefits from 

the low apparent gravity of orbit through a variety of mechanisms [3]. Also, the medical 

effects of weightlessness using test animals is of common interest to many researchers 

[4]. Many commercial experiments in these areas are currently under consideration for 

Space Station Alpha missions [5]. Research here could result in drugs and materials that 

are impossible to manufacture on Earth, yet that have a great benefit to humankind.  

 

Far future commercial applications such as Space Solar Power [6, 7, 8] and Space 

Tourism [9, 10, 11] promise far more in terms of the scope of human activity in space. 

Space Solar Power takes advantage of higher solar energy conversion efficiency in space, 

as well as uninterrupted power generation to provide an environmentally-friendly method 

for generating large quantities of power. To do this would require a huge amount of 

cheap space lift capacity, something unavailable now. Space Tourism is a potential $50 

billion [10] industry, directly relating to reusable human space flight. However, this 

revenue stream relies on a market for space lift capacity that is far cheaper and more 

reliable than anything that exists today [11]. 

 

The non-commercial benefits of routine access to space are just as appealing. 

Militarily, the taxpayer sees benefit in controlling the high ground of space for 

observation and potential defense from missile attacks [12, 13]. Taxpayers also benefit 

from human space exploration. While this may seem to be a tenuous connection, the 

human desire to explore can have a powerful effect. It may also be one of humanity’s 
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most beneficial biological urges, given the growing evidence for regular mass-extinctions 

due to celestial body impacts [14]. Space colonization may provide the population 

redundancy needed for human life to survive such an impact. Another related benefit of 

routine access to space may be the ability to prevent such an impact altogether. Planetary 

defense is a benefit of space exploration that easily transcends economic concerns. 

 

 

 

Figure 1 – Earth-Comet Impact Artist’s Concept 

 

 

A final, and in the past overriding, motivation for human space access was 

national pride. It may soon again be a motivating factor, as China has recently made 

significant progress in its manned space program with the flight of its prototype 

Shenzhou spacecraft [15]. These flights, combined with its plans for a new rocket, the 

Long March LM-2EA, designed specifically for lifting large payloads to low earth orbit 

[15] for the purpose of building a space station show that China is serious about manned 

spaceflight. 
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To reach the goal of routine space access, NASA must decide where to invest its 

limited resources. To do this, they need to compare optimized applications of the 

technologies to get an idea of where to put their money. The comparisons must be made 

using accurate forecasts of how these technologies affect vehicle concepts. All this 

requires advanced concept optimization incorporating new ideas and new combinations 

of technologies. At the same time, these optimizations should include all available 

information. Finally, all this must be ready at a moment’s notice. This area of advanced 

concept optimization is where this thesis work is directed. Conceptual launch vehicle 

design exists to serve this technology investment community and provide direction for 

making cost-effective decisions. 

 

Conceptual launch vehicle design as it exists today is a team-oriented effort. 

Often, multiple contractors with different corporate cultures must work together to create 

an integrated and optimized design. The distributed process tends to consist of separate 

analyses run by different disciplinary experts with a large deal of experience in analyzing 

their particular problem. These team-oriented environments are important to engaging 

engineers in a positive way to solve conceptual launch design problems. This method has 

been proven to work in the past and should be considered as a starting point for 

improvements in the design optimization process. 

 

Also, conceptual launch vehicle design has been largely deterministic, causing 

errors due to simplifying assumptions, numerical imprecision, unknown external factors 

and the others. The only attempts at accounting for these uncertainties have been through 

the use of safety factors or margins. This is a weakness that should be addressed. 
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The demanding physics of launch vehicles [16] creates aggressive performance 

requirements and often creates a strong temptation to design to the edge of feasibility. 

Because this can often lead to an unacceptable probability of failure, launch vehicle 

design should have probabilistic information in its conceptual optimizations.  

 

What is needed is a way to efficiently and accurately calculate the uncertainty 

contained in a distributed design analysis so that decisions can be made to minimize the 

impact of this uncertainty early in the launch vehicle design cycle, when such decisions 

are relatively cheap. This avoids the situation of a design surviving the simplifying 

assumptions of conceptual design, but then being revealed as infeasible in later, more 

committed stages of design. At the same time, the analysis techniques should retain their 

team-oriented approach. The current situation for many existing launch vehicle design 

organizations is that analyses exist on multiple platforms and have methods tailored to 

their individual disciplines. Given the inherent difficulties of probabilistic optimization in 

this situation, the temptation therefore exists to create monolithic models for the entire 

design problem, thus eliminating the difficulties of interfacing disciplinary codes. 

However, the retention of the team-oriented approach results in less institutional stress, 

and makes local maintenance of engineering analyses more practical. 

 

There are advantages to distributed disciplinary codes. First, the owner of each 

code can be a disciplinary expert and therefore modify and run the code correctly.  

Second, there are very specialized methods for optimization as well as uncertainty 

analysis that have been or could be developed for these analyses that can be tested 

individually and be shown to work well on an individual analysis, without involving the 

entire multidisciplinary analysis organization in the verification process. The creation of 
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monolithic codes can be quite beneficial to design evaluation cycle times, but the loss in 

flexibility must be considered before that route is taken. 

1.1 Design Evolution 

In the life of an aerospace program, there are three traditionally acknowledged 

stages in the design process: conceptual, preliminary and detailed design [17].  

Conceptual design deals with questions of feasibility, requirements, tradeoffs and the 

most basic factors of the product. Preliminary design takes these product parameters from 

conceptual design and begins design work on the various subsystems. Traditionally, 

sometime during preliminary design the details are frozen and a construction proposal 

can be made with confidence in the ability and cost of the project [17]. Detailed design is 

the step where individual machined parts are then designed so that they can be 

manufactured for the actual production of the aircraft. 

 

The conceptual design phase is the focus of this research. The traditional purpose 

of this phase is to determine whether or not an idea has any chance of meeting the 

requirements for success. This is usually done using a very top-level analysis, not only 

for reasons of computational and setup time, but also because many of the design details 

required for more in depth analysis have yet to be determined by human designers. The 

nature of conceptual design is therefore very uncertain, as unknown quantities must be 

analyzed to determine the objective functions in a probabilistic sense.  Several techniques 

for extracting a single deterministic objective value from probability distribution 

information have been advanced [18, 19, 20, 21, 22, 23, 24].  The focus of this research is 

to find new ways of generating probabilistic information in an inherently 
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multidisciplinary design optimization environment while maintaining the advantages of 

this environment. 

 

Because this research concentrates on the multidisciplinary aspects of 

probabilistic design optimization, it has applications that go beyond launch vehicle 

conceptual design.  Any engineering system that requires multiple analyses to work 

together in a coordinated fashion, while incorporating uncertainty in the analysis could 

find this research useful. The ability to scale into larger and more complex problems is 

also a primary advantage of distributed multidisciplinary analysis techniques. 
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CHAPTER II 

MOTIVATION 

2.1 Conceptual Launch Vehicle Design Motivation 

NASA’s top priority is now the Space Launch Initiative (SLI) [25]. Its stated goal 

is to reduce the cost per pound to low earth orbit to $1,000. The primary reason this is the 

agency’s priority is the fact that half of the energy to get to the outer planets is tied up in 

escaping the gravity well of Earth. This gravity well is the fundamental boundary to 

human activity in space as identified by the U.S. Congress. It therefore affects all space 

programs under consideration and is therefore a high return investment for the 

government. 

 

The current situation is that U.S. space access is primitive, expensive and risky. 

The nation’s current commercial space launchers rely on 1950’s technology (Figure 2), 

while at the same time newer foreign competitors control the majority of the launch 

market. This situation is unlikely to improve without systems designed for higher 

operability, higher reliability and lower cost. Reliability is a key cost driver as insurance 

can be a large percentage of the costs of a commercial launch as well as a mission barrier 

if it cannot be found. Also, more often than not, the cost of the payload far exceeds its 

launch cost, making its loss even more difficult to insure. This all combines to create the 

situation that the current commercial (and presumably lowest-cost) path to space does not 

go through this country.  
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Figure 2 – Atlas Then and Now 

 

 

At the same time the commercial launch industry is stagnant, the government 

launch sector is relying on nearly as old technology to perform increasingly numerous 

and difficult tasks. The Shuttle Transportation System (STS) was built on 1970’s 

technology and is nearly as primitive as current U.S. commercial launchers. It requires an 

army of thousands to operate, some say rebuild, after every flight and by its very design 

is limited in its commercial applicability. This is due to the fact that it is required to be 

flown as a manned system, and after the Challenger disaster it was not deemed worth the 

risk to the lives of astronauts to launch commercial payloads. In spite of these drawbacks, 
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neglect of space access development means that the STS is expected to continue service 

into 2012 and possibly beyond. 

 

The goal of SLI is to reverse the current situation in commercial and government 

space access by systematically searching for new transportation architecture that can be 

implemented before the STS becomes unusable. It is hoped that the low cost of this new 

system will also allow the U.S. to retake its position as the leader in commercial space 

access. Through capital development, NASA hopes to eventually get more for less. 

 

Unfortunately, NASA has a less than perfect track record when it comes to getting 

more for less. Its faster, better, cheaper philosophy has lowered the probability of success 

of its exploration projects to an unacceptable level [26]. While all of these sound good, 

they require a fundamental change in the way engineering is done. Even with this change, 

the rewards will most certainly be limited when all three of these metrics are considered 

simultaneously. The problem is that this change has not yet taken place. The methods 

chosen to date for the realization of this philosophy have consisted mostly of skipping 

costly, but necessary error prevention and testing measures.  The elimination of systems 

engineering positions and verification processes has been blamed for the loss of Mars 

Climate Orbiter [27]. As if to emphasize the point, the very next Mars mission, Mars 

Polar Lander failed due to what was later determined to be a critical underfunding of all 

the Mars programs [28]. This underfunding caused the elimination of testing programs 

and experienced personnel, creating an unworkable situation of limited engineering 

resources and experience. To illustrate the this aggressive budget trend, the both of the 

failed Mars missions combined cost less than the single successful Mars Pathfinder 

mission [28]. While Pathfinder was also a faster, better, cheaper mission, it was 

obviously not taken to the extreme of the two failures. 
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This philosophy of taking on additional risk to save money [29] has also lead to 

extremely aggressive performance and budget predictions that have recently caused 

cutbacks or the death of several manned space flight programs. An example of a recently 

cancelled program is the X-33. Because of its philosophy of increased risk tolerance [28], 

NASA adopted a baseline Reusable Launch Vehicle (RLV) design with too many new 

technologies and construction techniques. Dramatic testing failures and overruns due to 

this risk have now killed this program [30].  Underestimated budgets have also claimed 

other victims, namely the X-34 and a good portion of the International Space Station 

[30]. Both relied on the introduction of entirely new primary systems without the money 

to pay for them. In the end, this has cost these programs dearly. 

 

All of these trends in the space exploration arm of NASA show that the idea of 

doing more with less requires a real shift in engineering methods and practices, not just 

the elimination of activities and personnel. Because NASA has seemingly not backed off 

its aggressive cost goal promises [25], new methods must be adopted quickly to prevent 

the types of disasters cost cutting activities have caused to date. 

 

Part of doing more with less involves accurate forecasting and design 

optimization with more information about future systems during early stages of 

development. This enables more programmatically robust systems to be generated that 

will not fall victim to changes late in the design cycle, when such changes are the most 

expensive to make. This is a potential systems engineering improvement that could help 

NASA meet the cost goals it has already promised, without incurring more program risk. 

This all needs to be done while retaining disciplinary experience. 
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For this thesis, these factors translate to a desire to have a formal method for 

optimization that ensures a true optimum in the face of uncertainty while at the same time 

retaining traditionally distributed analyses. This will allow disciplinary experts to retain 

an integral role in all aspects of model creation. Therefore, the experience of the expert in 

probabilistic simulation of a particular discipline can be fully utilized to generate accurate 

and efficient estimates, addressing a key concern in many editorials [26, 27, 28, 29, 30] 

about recent failures. 

 

By introducing flexible probabilistic optimization into the design cycle, decisions 

on certain design variables can be made with a maximized amount of information, while 

leaving others to float. This process can be repeated throughout the design process, 

ensuring a vehicle with a consistent optimum while still allowing work to go forward, 

with a reduced possbility of changes later in the design cycle. 

2.2 Paradigm Shift in Conceptual Design 

According to the National Science Foundation [31] there should be three 

simultaneous goals for any engineering project [31, 32]: 

 

• The committed and incurred costs should be pushed as far forward in time as is 

possible. This minimizes the possibility of expensive changes later in the program. 

• Knowledge about the design should be obtained earlier, so that when decisions are 

made about the design, these can benefit from as much information as is possible. 

• Lastly, design freedom must be retained later into the design process so that more 

information about the design can be obtained before decisions are locked down. 
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This research is intended to push committed cost into the future by allowing 

certain decisions to be made on the basis of probabilistic outputs, as opposed to making 

decisions by using information from more expensive design work and hardware 

construction. Probability information will be obtained at the earliest stages of design, thus 

satisfying the second condition of the desired paradigm shift. Thirdly, the techniques for 

conceptual design presented in this research allow the conceptual designer to set certain 

variables while letting others be set at some later date. This leaves exactly the desired 

amount of design freedom to be left in the design, while reducing the cost committed as 

described in the first shift. Ideally, this characteristic can be used to set variables that 

directly affect a large number of disciplines early on, while leaving variables with limited 

system-wide impact to later definition. This should reduce the number of system-wide 

changes that need to be made late in the design cycle, while allowing system design to 

proceed. 

2.2.1 Application to Reusable Launch Vehicle Design 

Much of current RLV conceptual multi-disciplinary design is typified by 

deterministic design methods. Methods such as these ignore uncertainty information that 

can be important to a design. Because of this designers are required to make “best guess” 

estimates of key design parameters, losing critical knowledge of the range of uncertainty 

that might be associated with that guess.  

 

In addition to the above stated uncertainty due to design maturity, there is 

uncertainty related to the computational methods used to analyze concepts [23, 32-43]. 

This means that quantification of this fidelity error used in combination with simulation-

based design uncertainty techniques is required for truly accurate conceptual design. 
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This unexpressed information in traditional optimization can result in a 

deterministically constrained optimum that will often lead to a high probability of an 

infeasible design [44, 45, 46]. This is due to the tendency of constrained optimums to lie 

directly on constraint boundaries. When uncertainty is added to these results, the 

probability will spread around the deterministic point. As a result, much of the 

probability will extend beyond the feasible frontier. This is shown in Figure 3. Aerospace 

conceptual design therefore requires fast and accurate methods for determining system 

uncertainty. 

 

 

 

 

 

 

 

Figure 3 – Comparison of Constrained Optimums 

 

Another advantage of probabilistic optimization is that it may be possible to 

create designs that are insensitive to sources of uncertainty. This is the idea of robust 

design, first introduced by Taguchi [47, 48, 49, 50, 51]. The intent of robust design is to 

use those factors over which the designer has control to achieve a result with low 

uncertainty in a response of interest.  A great deal of work has been done recently to 

bring this idea into conceptual design using a variety of techniques. [22, 24, 38-42, 52-

59] Through this work, the usefulness of this type of conceptual information has been 

shown using practical engineering approaches. It has laid the groundwork for 
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probabilistic conceptual design and generated a great deal of interest in the subject among 

those in the aerospace industry. 

 

 By including uncertainty in the design process, decisions can be made earlier in 

the life cycle of a product, when changes are inexpensive. This shift should enable faster 

development cycles resulting in higher quality products. 

 

Also, because current uncertainty analysis is typified by single analysis 

techniques, there is a motivation to extend this to the area of distributed multidisciplinary 

design optimization, with several contributing analyses acting in a loosely integrated 

framework. Currently, design optimization in many organizations reflects this type of 

framework, so integrating probabilistic analysis into this could take the idea of 

probabilistic optimization to new engineering organizations.  

 

Beyond just containing multiple disciplines, distributed implies that there are 

separate codes at varying locations that are “owned” by different people. This is 

illustrated by Figure 4. This distributed situation allows the individual engineer to 

monitor his/her own analysis and make sure that the results are both valid and correctly 

interpreted. Probabilistic methods to date have focused on creating a highly integrated 

top-level analysis that can be used to generate point designs. Then, a distribution 

estimation technique like Monte Carlo or response surface methodology is used around 

the outside of the entire analysis. The disadvantage of this is that it requires tight coupling 

of the analyses if Monte Carlo analysis is to be used. If an alternative fast approximation 

method is used, then these methods may be overwhelmed by the dimensionality of the 

entire system problem [60]. This is because as the entire system is considered, all the 

noise variables present in all of the contributing analyses must be handled by the system-
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level probability analysis. If the problem could be decomposed into several, parallel 

lower level analyses, this dimensionality problem should be reduced. 

 

 

 

Figure 4 – Distributed Computational Framework 

 

 

By breaking the probabilistic analysis into separate simulations, the type of 

probabilistic simulation used can be tailored to the specific sub-problem. In addition, the 

dimensionality of the sub-problem will likely be lower than that of the full problem, 

increasing the effectiveness and efficiency of alternatives to Monte Carlo simulation. A 

method is therefore sought to allow disciplinary experts to choose the most efficient 

means of probabilistic analysis while at the same time ensuring an optimum vehicle as 

result of their efforts. 

 

The overall motivation of this research is to combine multidisciplinary design 

optimization with uncertainty analysis in a way that retains the positive attributes of each 

while hopefully reducing some of the negative aspects of design techniques that utilize 

each separately. 
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The next section sets the goals for this research and provides objectives for 

measuring their attainment. There are several goals here, as the research covers a fairly 

large spectrum of multidisciplinary design. Primarily, this research is designed to test the 

effectiveness of multidisciplinary design optimization methods to reduce the 

computational expense of accounting for uncertainty in launch vehicle conceptual design. 

Beginning with Monte Carlo methods as a baseline, this research will identify the most 

useful uncertainty analysis methods for inclusion in this multidisciplinary analysis. It will 

then attempt to use uncertainty calculations undertaken at the contributing analysis level 

to reduce the expense of probabilistic multidisciplinary analysis for launch vehicles.  
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CHAPTER III 

RESEARCH APPROACH 

3.1 Goals and Objectives 

The overriding goal for this activity is to introduce a new formal method for 

distributed, probabilistic conceptual launch vehicle design. An important aspect of this 

framework demonstration is that the probabilistic analysis take place at the contributing 

analysis level, therefore reducing the dimensionality of each of the analyses. This will 

also show how the methods can be tailored to the particular problems, according to the 

experience and knowledge of disciplinary experts. The following list of goals and 

corresponding objectives was the guide for this research: 

 

• Demonstrate a distributed probabilistic multidisciplinary framework. 

 

This distributed philosophy of multidisciplinary design optimization has many 

advantages [61, 62, 63, 64]. Among these are local ownership of analyses, compatibility 

with existing analysis infrastructure and distributed computational effort. If the goal of 

demonstration of a distributed probabilistic framework for conceptual launch vehicle 

design optimization is met, then all of these advantages will be enjoyed. At the same 

time, probabilistic information, which is crucial at the conceptual design phase will be 

brought into conceptual launch vehicle optimization. 
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The demonstration of the conceptual launch vehicle design framework will 

include a detailed account of the procedure to construct it. It will include any problems or 

hazards encountered and assist those who wish to create similar problem setups for other 

conceptual design problems. In this light, ease of setup is a high priority. Problem setup 

should be on the order of or less than two man-weeks. Anything longer than this amount 

of time represents a significant investment and is unlikely to be implemented by industry. 

 

Another objective used to measure the success of this demonstration will be the 

amount of probabilistic analysis able to be undertaken at the contributing analysis level. 

The degree to which probabilistic analysis can be done at this lower level will indicate 

how distributed the computational effort and responsibility has become. The objective for 

success was the creation of design framework that performed all significant calculations 

at the contributing analysis level. 

 

• In this framework, multiple heterogeneous computer platforms will be utilized on a 

conceptual launch vehicle design problem. 

 

By utilizing analysis integration software packages, a repeatable framework for 

analysis across heterogeneous platforms will show that application of this method is 

possible in established engineering environments with several, discrete analyses running 

on separate platforms. 

 

This demonstration will show that a heterogeneous platform approach is feasible 

in combination with this probabilistic framework. Success will be measured here by 
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utilizing more than one computing platform in the conceptual launch vehicle example 

problem. 

 

• This distributed probabilistic framework should have a significant computational 

expense savings when compared to Monte Carlo simulation. 

 

To make this method competitive with other options for system-level probabilistic 

analysis, a two or greater order of magnitude improvement in speed when compared to a 

Monte Carlo simulation is required. This will ensure that the analysis method is 

competitive in terms of other options. 

 

• Optimization should be able to be completed in a reasonable amount of time. 

 

To ensure that this method is applicable in real engineering situations, an entire 

optimization should be able to be completed overnight. This should simplify manpower 

tasking while waiting for results, as another task does not need to be found for the 

engineer if the optimization can be run during off hours. 

 

• Optimization using this method should be repeatable. 

 

To measure the success of this goal, several confirmation optimizations of the 

primary optimization beginning with different initial guesses must find the same 

optimum point. Success here is all of the confirmation optimizations finding the same 

answer. 

 

• The distributed probability approximations should arrive at accurate values. 
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This objective will be measured against a confirmation Monte Carlo simulation. 

The approximate framework should be no more than 5% off on the important problem 

constraints and objective function evaluation. The other secondary output parameters 

should also have errors within the calculated error bound for the Monte Carlo simulation. 

 

• Uncertainty sources for conceptual launch vehicle design will be identified and 

reasonable distribution assumptions will be made. 

 

The goal of uncertainty identification is crucial to an accurate representation of 

the conceptual launch vehicle design problem. This will involve identification of the 

sources of uncertainty, both environment and human based. Therefore, this research 

should identify and quantify as many open-source launch vehicle uncertainty parameters 

as is possible. These sources can then be represented by appropriate input distributions 

and included in the conceptual launch vehicle example problem. This work should be 

helpful to future launch vehicle designers who wish to include a formal mechanism to 

account for modeling uncertainties. However, most practicing organizations should be 

able to better quantify these uncertainties than this research given the competitive nature 

of many of the quantities of interest and the experience of most manufacturers.   

 

• A new family of promising techniques, Discrete Probability Optimal Matching 

Distributions (DPOMD) for the probability prediction of a single analysis should be 

demonstrated. 

 

The goal is to demonstrate the application of these new techniques to launch 

vehicle conceptual design contributing analyses. This way, if the accuracies of the 

methods are good, they can easily be used in later launch vehicle conceptual studies. This 

application will also show the relative ease of setup for these methods. The demonstrated 

ease of setup should reduce the opportunities for user error in application of the methods 
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when compared to some other fast approximation techniques. It will increase the real-

world accuracy and decrease the overall expense of the methods as they are applied after 

this research. This is due to the fact that human interface time is often the most expensive 

aspect of any engineering enterprise. 

 

To measure the success of the research with respect to the goal of demonstrating 

the new method, a detailed discussion of the setup of these methods will be included. 

This should indicate how much effort and how many user assumptions were required for 

the methods. The objective here is that these new methods be run in a very “black-box” 

manner, using information easily obtained by the user to generate quality uncertainty 

information for many types of problems. 

 

• Several competing methods should be tested on the contributing analyses of the 

optimization problem to find methods best suited for those analyses. 

 

The objective for measuring the success or failure here will be the identification 

of a method for each of the analyses that is both fast and accurate. The knowledge gained 

by these tests should show the strengths and weaknesses of the probability analysis 

methods in terms of the contributing analysis being tested. More specifically, the goal for 

computational speed relates to its effect on the users ability to optimize the problem. 

Therefore, the goal here is for reduced computational expense expressed in actual 

function calls, not in metamodel building cost for techniques that utilize these. A 

secondary goal related to these tests will be to gauge the accuracy and expense of the new 

DPOMD methods for uncertainty analysis. This goal will be accomplished during the 

course of the primary goal. 

 

The uncertainty methods will be compared on the basis of their accuracy and their 

computational expense. Accuracy will be measured by the relative error of the relevant 
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inputs and outputs when compared to a Monte Carlo simulation. Whether or not an input 

or output is considered relevant will be determined by the requirements made on the 

contributing analysis by other contributing analyses in the proposed launch vehicle 

conceptual design framework. The accuracies of these variables are the key to successful 

integration into a potential design framework of the contributing analyses being tested. 

The goal of selecting preferred methods for each of these contributing analyses will be 

measured by the decision of which distribution analysis technique is used in the design 

framework test, the goals of which will follow in this chapter. This decision will go to the 

analysis method that shows the best overall performance on all the required coupling 

variables. 

 

The second objective for this comparison will be to measure the computational 

expense of the differing methods. This will be measured by the time it takes to execute a 

single probabilistic analysis call. At least a two order of magnitude improvement in 

computational expense is expected when the approximation methods are compared to a 

typical Monte Carlo analysis. This goal is essential to enabling optimization, since this 

process can entail hundreds of function calls to the overall system. Some methods 

included a great deal of up front computation to generate a metamodel, but then the 

metamodel was inexpensive to execute. For the sake of a simple comparison, the 

computational expense of the metamodel generation was excluded from the expense 

totals. 

 

The final objective for this comparison is related to the hypothesis that each 

contributing analysis benefits differently from each approximation method. This will be 

measured by the diversity of the methods chosen for uncertainty analysis in each of the 

contributing analyses.  
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3.2 Thesis Organization 

To meet the goals and objectives set in this chapter, a series of tests were planned 

on various aspects of the proposed RLV probabilistic optimization method. These tests 

were designed to find the best methods for disciplines having characteristics common to a 

certain class of analysis. Then these methods were utilized in a distributed, heterogeneous 

computing environment to optimize a reusable launch vehicle concept. A Monte Carlo 

simulation then verified the results of the optimization. Finally, the difference between 

the probabilistic and deterministic optimums was found by a more traditional 

deterministic optimization. 

 

The first step in finding appropriate contributing analysis probabilistic methods 

was to conduct a background search. This helped determine which methods were 

available and appropriate for the task they would eventually be required to perform. The 

search concentrated on promising variance reduction techniques, most probable point 

reliability methods and new design of experiments methods from the author. Because 

variance reduction techniques and the new methods had the best chance of being useful in 

the desired situation, these were the primary focus of the background section. The Most 

Probable Point (MPP) methods background consisted of an overview of the terminology 

and assumptions made by different methods based on MPP. A smaller search was 

conducted on MDO methods. The background on MDO methods was designed to show 

the current state of research in this area and indicate where there is room for work on 

these methods. 

 

Once a group of preferred group methods was found, these were tested on the 

contributing analyses proposed for the overall system design. At that point, they were 

compared to Monte Carlo simulation and eventually each other on the basis of relative 
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error and speed. Based on these criteria, a method was selected for each of the 

contributing analyses to be used in the overall system design problem. 

 

Once the preferred contributing analysis methods were defined, the overall system 

problem was constructed using the ModelCenter© analysis integration software package 

and the fixed-point iteration method. The probabilistic analyses were then executed 

iteratively to optimize an all-rocket single stage to orbit reusable launch vehicle (SSTO 

RLV) based on the NASA-Langley Vehicle Analysis Branch (VAB) wing-body shape. 

The process optimized the 95% confidence level dry weight. This confidence level was 

selected to reflect the desired risk level of the dry weight result. 

 

To determine the accuracy of the probabilistic design process after the 

optimization, a Monte Carlo simulation on the entire vehicle was conducted. The major 

probabilistic constraints and objective function values were compared to the estimates, 

keeping in mind the error bands on the Monte Carlo simulation results. These 

comparisons give a good idea of the accuracy that can be expected from this distributed 

design method. 

 

To illustrate some advantages of probabilistic optimization, a deterministic 

optimization of the same design problem was undertaken using more traditional 

deterministic methods. For this simulation, all of the uncertainty assumptions were set to 

their most likely values and a traditional 15% dry weight margin was added to defend 

against vehicle growth. The 15% margin was selected because it is a widely used value in 

conceptual launch vehicle design. The results of this analysis were compared using two 

criteria. The first criterion was the difference between the optimal variable settings for the 

probabilistically optimized RLV and traditionally optimized RLV. The second was to 
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examine the difference between the reported vehicle result for the two problems. This 

would show to what confidence level the traditional 15% dry weight margin vehicle 

corresponds. Once all the tests were completed, conclusions were drawn relating to the 

goals and objectives set in this chapter. 
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CHAPTER IV 

RLV DESIGN PROCESS 

Reusable Launch Vehicle (RLV) design is a constantly changing process. Given 

the lack of consensus on a single design or core technology base, the methods by which 

conceptual designs are brought about must be continuously modified to account for new 

ideas. This constant flux has hindered the creation of a standardized monolithic tool that 

can be used for RLV design and has meant often times that very ad hoc methods were 

applied for each design situation. 

 

A good example of current state of practice in RLV design is the ISAT project 

underway at NASA Marshall Space Flight Center [65]. The center of this project is an 

integrated team room where the members analyses can be run and interfaced while 

everyone is in the ISAT room on the local network of computers, utilizing the interface 

software RECIPE© [66]. This allows for design ideas to be tested in real time in a team 

environment. This is a step improvement over traditional design meetings for the reason 

that the concept space can be explored by the team while they meet. The disadvantages of 

this current state of practice is that it hinders collaboration with remote partners, it does 

not allow for automated exploration of the design space and there is no systematic 

method for finding the optimum vehicle for the considered requirements. However, as 

current state of practice, this method of design could be easily implemented anywhere, 

with little institutional change. 
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Going to the state-of-the-art in conceptual RLV design involves a more automated 

framework for analysis. Recent efforts in the ISE project at NASA Ames and Langely 

Research Centers (ARC and LaRC) have successfully demonstrated this automated 

remote network capability in the Reusable Space Transportation System Large Scale 

Architecture (RSTS LSA) facet of the program. Here advanced networking methods have 

been applied to create a virtual network of engineering analyses that are able to 

coordinate multiple partners in remote locations. Also, many commercial frameworks 

packages have been applied to the RLV problem, most notably ModelCenter© [61]. These 

prototypes have demonstrated the creation of autonomously executable design processes 

for RLV’s to which any number of top-level optimization and/or probabilistic methods 

could be applied. The one thing that the current state of the art has in common with state 

of practice methods is that the analyses for both have remained on widely distributed 

computing platforms. This distributed approach has several advantages related to 

flexibility [67] and should be a requirement for RLV design.  

 

Research into more advanced RLV design processes has included several tests of 

decomposition methods [68-76]. These are methods designed to reduce the iteration 

between the analyses by either optimal ordering or central control of the analyses through 

a system-level optimizer. Most notable in the field in terms of its application to RLV 

design has been Collaborative Optimization (CO) [62, 63, 64, 77, 78, 79]. This is a 

technique for distributing the optimization burden across the local contributing analyses 

in such a way that a single system optimum can be found. This technique has been 

applied to the RLV design problem in a deterministic manner on multiple occasions, with 

varying success [61, 79]. Chief among the disadvantages of this method are that the 

problem setup for the contributing analyses must be changed to use a very unintuitive 

objective function. Also, the claimed advantage of using well-known optimization 
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methods for the contributing analyses is also questionable, since the topology of the 

objective function formulation for the contributing analyses seldom resembles the 

original problem setup for that discipline. This fundamentally changes the optimization 

problem and can make it difficult for optimization methods currently existing in that 

analysis to work. 

 

Research into the RLV design problem to date has for the most part concentrated 

on finding deterministic optimums. Applications of advanced decomposition methods 

have ignored, except through the use of safety margins, the possibility of uncertainty in 

the problem assumptions. Probabilistic analysis in the RLV field has been limited to 

offline analysis for generating weight growth data [37] and economic forecasts [80, 7, 

11]. These offline analyses have all been single-discipline problems, with no forecasting 

done on how these result impact other disciplines. Those methods that have been applied 

to RLV design online have utilized system sensitivities [81] as surrogates for probability 

estimates. In addition, these sensitivities were applied from the top level, not generated 

by the local analyses in distributed manner. 

 

To date, probabilistic analysis has been focused on single-level problems. This 

means that in a multidisciplinary design environment, these techniques must be applied at 

the top level, around the combined system of contributing analyses. An exception to this 

would be the work on the System Uncertainty Analysis Method by Du and Chen [51], 

which used contributing analysis sensitivities to generate system level probability 

distribution estimates. However, it did not allow for local control of the probability 

analysis and did not accommodate more sophisticated methods for uncertainty analysis 

other than a simple gradient-based, normal assumption approximation. It also does not 
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allow for heterogeneous methods to interact in a constructive manner. In addition to these 

issues, it has not been applied to RLV design. 

 

 

 

 

 

 

 

 

 

 

Figure 5 – Design Structure Matrix for RLV 

 

To review, the actual RLV design process traditionally consists of several 

analyses executed in a highly iterative fashion. A diagram illustrating the data flow is 

shown in Figure 5. This is known as a Design Structure Matrix (DSM). The boxes are 

contributing analyses and the square links represent data flows. The links above the 

diagonal represent feed-forward loops while the links below represent feedback. In order 

of their typical execution, these analyses and their contributions to the system are: 

 

• Configuration –The geometries and packaging of the vehicle for a reference 

size are defined. 

• Aerodynamics – Aerodynamic force and moment coefficients are calculated 

and aerodynamic surfaces are defined for a reference size. 

Aero. 

Config. & 
Layout 

Propulsion 

Trajectory 

Aeroheating 

Mass Prop. 
 & Sizing 

Strong Link 

Weak Link 



 31 

• Propulsion – Main ascent propulsion systems are sized and the performance of 

the engines is calculated. 

• Trajectory – The vehicle mission is simulated to generate propellant 

requirements and acceleration loads. 

• Aeroheating – Surface heat rates and temperatures are calculated for a 

reference entry trajectory and thermal protection system (TPS) panels are 

sized. 

• Mass Properties and Sizing – The vehicle mass is estimated and the vehicle is 

scaled to provide the needed propellant requirements. 

 

These analyses can consist of different codes depending on the setup and the 

problem, but there is a standard level of fidelity of each of these that works well for 

conceptual design. The following is a quantification of this fidelity and a description of 

the analysis that is behind state of the art launch vehicle conceptual design. 

4.1 Configuration 

This step usually employs a solid modeling package to determine the geometry of 

the vehicle, including the areas for subsystems, propellant, payload and load points for 

aerodynamic surfaces and gear. Here the designer usually defines the outer mold line to 

balance the aerodynamic and structural needs of the vehicle. An example of the end result 

of this modeling process is in Figure 6. 
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Figure 6 – Example Launch Vehicle Configuration Model 

 

 

For launch vehicles, one of the primary goals of this analysis is to provide as 

much volume as is possible for propellants. This goal is measured by packaging 

efficiency, which is the ratio of propellant volume to total volume. It is also important 

that these propellants are in containers that reflect their pressurization and support 

requirements. These two goals are often at odds with each other, and if too much favor is 

given to fitting more propellant, the process can lead to difficult-to-manufacture 

propellant tanks [30]. 

 

The most general technique for providing scalable packaging information is to fit 

a parametric curve of packaging efficiency for a range of sizes. The packaging efficiency 

can vary with length because the constant size of the payload bay changes the percentage 

of volume available to the propellant as the vehicle size changes. What is typically done 

is the vehicle is packaged for three reference lengths, then the packaging efficiency is fit 

using a quadratic polynomial. It is important that these lengths span the range of possible 

lengths because extrapolating can lead to drastic errors on this type of fit. 
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The outputs besides packaging efficiency provided by this analysis are the 

reference lengths, areas and volumes of the components of the vehicle for a specified 

reference length. These typically include parameters important to the calculation of 

weights and performance, such as wetted TPS area, engine location and total fuselage 

volume. All of these terms are then provided for a reference size to the other analyses so 

that they can be photographically scaled from the given reference scale. Photographic 

scaling is a method for calculating the dimensions for a parametrically sized vehicle and 

will be explained in the later in more detail in the section on mass properties and sizing. 

4.2 Aerodynamics 

For this analysis, the aerodynamic force coefficients are calculated using a 

combination of preliminary simulation techniques. For the subsonic and supersonic 

aerodynamics, this usually involves a panel method [82] with fuselage interference. For 

hypersonic aerodynamics, any combination of modified Newtonian impact, tangent cone 

or tangent wedge methods are used. 

 

In panel methods, first panels are specified that divide up the wing and fuselage. 

An example of this can be seen in Figure 7 [82]. Next, some type of singularity 

distribution is applied to each panel. These can be sources, doublets, vortices, etc. These 

singularities are constructed in such a way that they may influence the flow through the 

surface of the wing at some control point, usually in the center of the panel. This flow 

through the panel control points is then expressed in terms of the singularity strength that 

when combined with the exterior flow conditions, leads to a set of linear equations. These 

equations are solved for the singularity strengths that lead to no flow through the control 

point, thus revealing the pressure differentials on the surface of the vehicle. For example, 
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vortex-lattice methods use a grid of horseshoe vortices over the wing extending 

backwards to infinity through the wake. 

 

 

 

Figure 7 – Diagram of Panel Method Model [82] 

 

 

The hypersonic methods typically employed either include modified Newton’s 

method, which is effective for blunt body predictions, or tangent cone / wedge methods 

which are better for slender bodies [83]. None of these methods has a formal derivation, 

but they seem to provide good engineering results for a number of problems. Newtonian 

impact theory assumes that the component of the flow momentum perpendicular to the 

surface is completely transferred to the vehicle. To help this theory agree with 

experiment, the constant Cpmax in front of Eqn. 4.1 is added in place of the constant 2 to 

turn Newton’s theory into modified Newtonian impact theory. Theta is the local 

incidence angle of the object surface to the flow and Cp is the local pressure coefficient 

[83]. 

 

 θ2
max sinpp CC =  (4.1) 
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Figure 8 – Application of Tangent Wedge Approximation [83] 

 

 

Tangent cone/wedge methods [83] are also local incidence methods. Instead of 

using Newton’s equation, these methods assume either a cone or wedge tangent to the 

body surface, whichever is more appropriate, to estimate the local pressure coefficient. 

These local pressure coefficients can either come from tables or from closed-form 

solutions of the hypersonic small disturbance equations. A diagram showing the 

application of tangent wedge is shown in Figure 8 [83]. All these methods generate non-

dimensionalized aerodynamic force coefficient information for the vehicle at a variety of 

conditions. These values are then fed to the trajectory and aeroheating analyses where 

they are essential inputs. 
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4.3 Aeroheating 

During this part of the process, the temperatures and heating rates are determined 

for key parts of the outer surface of the vehicle. These are used to determine the TPS 

panel thickness and makeup so that the weight per unit area of the TPS can be given to 

the mass properties analysis. 

 

The first step is the generation of an example trajectory using a 3 degree of 

freedom (3DOF) simulation. Here the vehicle roll and angle of attack is directly 

controlled to minimize the maximum heat rate and provide a smooth entry to the desired 

location on the planet. A lifting entry trajectory traditionally (STS) consists of a pair of 

unique maneuvers designed to increase the safety of the entry. The first is a bank 

maneuver at a relatively constant angle of attack early in the trajectory so that a higher 

angle of attack, which is beneficial for heating, can be held without inducing too much 

lift and causing a porpoising motion. If the entry must be relatively straight, this bank 

maneuver must be reversed several times to keep the overall course constant. For 

maximum cross range on entry, no reversals are performed. These maneuvers are 

typically done high in the atmosphere. After the vehicle slows down and approaches the 

runway, a series of S-turns are executed for the purpose of removing the excess energy of 

the vehicle so it does not overshoot the runway. Designing this extra energy into the 

trajectory is important, as atmospheric variations may cause the vehicle to have less 

energy than predicted, causing it to fall short of the runway. 

 

Based on the conditions described by the entry trajectory, heating rates are 

calculated for various parts of the body by approximating them as cones, spheres, flat 

plates and cylinders, as well as applying engineering heating equations such as 
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Chapman’s shown in Eqn. 4.3 [84] for stagnation point heating in Earth’s atmosphere 

only. 
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In Eqn. 4.3 RN is the radius of the body in feet, ρ is the air density and VA is the 

velocity in feet per second. Once the heat rates are established, there are three common 

mechanisms for handling the heat. The first is heat sink. This method relies on the total 

heat load being absorbed by some material as internal energy without the material 

releasing the energy back into the atmosphere. Materials with high thermal diffusivity 

and high thermal capacity, such as copper and Beryllium, are good for heat sink 

protection [16]. Eqn. 4.4 [16] shows the total heat load of a heat sink system, where Cv is 

the heat capacity of the sink material, m is the mass and ∆T is the temperature change. 

 

 TmCQ v ∆=  (4.4) 

 

Ablation is the second mechanism for heat absorption. This method relies on the 

vaporization of a surface material to release the heat transfer from the atmosphere. This 

method requires materials with a high heat of vaporization. Phenolic compounds and 

graphite are good choices [16]. The total heat load for an ablative system is given in Eqn. 

4.5 [16], where hv is the heat of vaporization of the heat shield. 

 

 mhQ v ∆=  (4.5) 
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The final method of heat handling is radiative. In this technique, the temperature 

of the heat shield material is allowed rise so that the heat rate from black body radiation 

balances the heat rate from the atmosphere [16], but not so high that the material melts. 

High melting temperature materials combined with high emissivity coatings are the ideal 

choice for this type of TPS. This tends to be the heat-rejection mechanism of choice for 

lifting-entry vehicles, due to their relatively low heat rates, but high total heat loads when 

compared to ballistic entries. The equation for blackbody radiation is given in Eqn. 4.6 

[85] where ε is the emmissivity of the surface, σsb the Stephan-Boltzmann constant and 

Tw is the surface temperature. 

 

 4
wsbTq εσ=  (4.6) 

 

Using one or more of these mechanisms, the TPS is sized and its mass per unit 

area is estimated for different parts of the vehicle. In the case of radiative TPS, a 

minimum backface temperature must be set and the heat conduction through the material 

must be calculated to find the equilibrium value of this backface temperature. In this way, 

the thickness of radiative TPS is calculated [86]. 

4.4 Propulsion 

For conceptual launch vehicle design, the main propulsion analysis generates 

parameter estimates, usually rubberized, for use by the trajectory and mass properties 

analyses. Rubberized means that the propulsion variables are parameterized in such a 

way that the size of the engines can be changed without rerunning the propulsion 

analysis. Here the performance, weight and thrust of the propulsion unit are defined by 
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conceptual methods. While many types of engines can be used in reusable launch 

vehicles, the following explanation pertains primarily to chemical rocket engines. 

 

While the type of engine used can vary widely, the level of fidelity for conceptual 

design typically includes frozen, one dimension, isentropic flow with historically 

regressed efficiencies at key stations outside of the combustor, with a chemical 

equilibrium algorithm inside the combustor to determine the combustion products and 

heat release. The expansion ratio of the engine nozzle is also sized to preclude the 

possibility of flow separation along the nozzle, if this is a concern. 

 

Using the calculated results of the combustion process, the thrust and propellant 

efficiencies are calculated. For a rocket engine assuming isentropic flow, the throat and 

exit plane conditions determine the thrust according to Eqn. 4.7 [87]. In this equation, ℑ 

is thrust, A* is the throat area, p0 is the stagnation pressure in the combustion chamber, γ 

is the ratio of specific heats for the combustion products, the subscript e denotes exit 

conditions, a denotes ambient, * denotes throat and 0 denotes stagnation. 
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4.5 Trajectory 

The trajectory analysis in conceptual launch vehicle design is usually comprised 

of some type of three degree of freedom ascent (3DOF) simulation. In this simulation, the 
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equations of motion for three-dimensional translation, along with an equation for mass 

consumption are integrated for an optimized set of vehicle attitudes to generate the 

propellant loading and acceleration information for an ascent mission.  

 

The simulation essentially flies the vehicle through its mission by integrating the 

accelerations on a time-changing vehicle mass due to aerodynamics forces, gravity and 

thrust. These equations are typically integrated in the Geocentric Equatorial (GCE) 

coordinate system. The geocentric-equatorial reference plane for the earth is a simple 

three-dimensional right-handed orthogonal reference frame.  The X-axis points in the 

direction of the vernal equinox.  The Z-axis points through the north pole, along the axis 

of rotation of the Earth.  The Y-axis is then defined by the fact that this is a right-handed 

coordinate system. This frame can be treated as an inertial frame for RLV analysis. 

 

The equations of motion, here described as three second order coupled differential 

equations, are as described in Eqn. 4.8. [88]. The term φ is the gravitational potential of 

the oblate earth, given by Eqn. 4.9 and ap is the perturbation acceleration, essentially the 

thrust and aerodynamic forces divided by the mass. 
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In Eqn. 4.9, µ is the gravitational parameter of the Earth, Jn is the coefficient 

corresponding to the nth gravity harmonic of the Earth, re is the radius of the Earth, Pn is 
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the nth Legendre polynomial and z is the corresponding coordinate in the GCE reference 

frame. The governing equations are then expressed as seven coupled first order 

differential equations by splitting up the three second order equations and adding the rate 

of mass consumption. These are given in Eqn. 4.10. 
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These equations are then typically integrated by some manner of predictor-

corrector variable time step numerical quadrature. Some examples of these methods are 

Runge-Kutta-Fehlberg [89, 90] and the Krogh Variable Step-Size, Variable Order 

Integrator [84]. Parametric user descriptions for the vehicle attitude and throttle settings 

as a function of time are described and these parameters are used as design variables to 

optimize the trajectory for repeated simulations. Typically, the propellant consumed is 

optimized, but the objective function definition can vary depending on the mission, often 

times with constraints on quantities such as dynamic pressure and axial and longitudinal 

acceleration. Once the trajectory has been optimized, the solution is analyzed to 

determine the loads on the vehicle and the propellant required by each of the stages to 

make orbit. 
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4.6 Mass Properties and Sizing 

Determining the weight and size of the overall system is the job of the mass 

properties and sizing algorithm. This analysis typically uses historically regressed weight 

equations for vehicle components to generate a weight breakdown structure (WBS) that 

tracks the use and disposal of fluids and hardware over the course of the mission. Then, 

based on this iterative weight estimation algorithm, the vehicle outer mold line (OML) is 

scaled until the vehicle on-board propellant corresponds to the required mass ratio (MR). 

All of this is done for a constant payload, so increasing the size leads to more propellant 

relative to the payload and increases the available mass ratio [16]. 

 

The mass properties part of the algorithm typically consists of several interrelated 

algebraic equations derived from historical values for similar components. Because this 

set of equations is typically recursive, some sort of root finding algorithm is required. 

Usually, the root of the system of nonlinear equations is found using simple fixed-point 

iteration [90], but if there are convergence problems, a relaxation factor can be added. 

However, fixed-point iteration with no relaxation is the standard technique. 

 

The next part of the algorithm involves sizing. This part is wrapped around the 

outside of the mass properties algorithm and makes sure that the required mass ratio [16] 

matches the available mass ratio provided by the vehicle. This is also a root-finding 

problem, but usually only in one dimension, the vehicle scale.  

 

Photographic scaling is the most common technique for changing the available 

mass ratio of the vehicle. Here, the vehicle’s relative dimensions are left unaltered, but 

every length scales directly with the scale factor, every area with its square and every 
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volume with its cube. This scaling technique provides key dimensional information for 

the mass equations that can then use FPI to find a valid set of component masses. 
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Figure 9 – Sizing Problem Diagram 

 

 

A more sophisticated numerical root-finding technique than FPI is normally 

required for the sizing problem. Newton-Rhaphson is a common method. It uses the 

vehicle scale as the independent variable and the difference in mass ratio requirements as 

the dependent variable. This is shown in Figure 9. It is possible to encounter a situation 

where no matter how large the vehicle is grown, the required mass ratio cannot be met. In 

these cases, changes must be made to the design of the vehicle to either lower the relative 

structural weight or lower the required mass ratio. 
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Many disciplines were left out of this review. These include such analyses as 

Cost, Business and Economics, Operations and Safety/Reliability. While these are quite 

possibly the most important analyses from a total system standpoint, they are not required 

to explain the work performed in this thesis. The work here consisted of performance 

analysis only and did not require these disciplines. 
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CHAPTER V 

BACKGROUND ON UNCERTAINTY AND MDO 

METHODS 

This thesis is an extension of work in both the areas of uncertainty analysis and 

multidisciplinary design optimization (MDO). To get an idea of the current state of the 

art in both of these areas, as well as previously observed issues in implementation, the 

following section provides a synopsis of several previous research efforts. 

 

The first discussion relates to observed implications of implementing probabilistic 

design optimization. This gives an idea of what kind of information can be generated by 

these techniques as well as illustrates some of the intuitive benefit. Next is a brief 

summary of current approximation techniques for probability integrals. These, along with 

new methods presented in this thesis, will be the options explored for uncertainty analysis 

in the system contributing analyses. They include both reliability and variance reduction 

tecnniques and they all have the potential to be useful in a loosely coupled 

multidisciplinary design optimization framework. It is hoped that this investigation will 

reveal a suite of methods suitable for conceptual launch vehicle design lower level 

analyses. Last is a brief overview of some current multidisciplinary design optimization 

methods. 
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5.1 Design Uncertainty Implications 

Design with uncertainty creates several issues that must be described before 

effective use of the information generated by these analyses can be utilized. These issues 

include description of the uncertainties in the design, new categories of design variables 

depending on when in the design evolution the variables are to be set, new methods of 

objective function formulation and techniques for evaluating probabilistic constraints. 

5.1.1 Sources of Design Uncertainty 

There are several types of uncertainty that must be quantified by a conceptual 

designer. The most commonly encountered source of design uncertainty is that due to 

error in the simulation of natural phenomena [23, 32-43, 91]. This is the major source of 

uncertainty in the very early stages of design where faster and more general analyses 

based on the available design information take place. This type of uncertainty can include 

model accuracy as well as the required designer estimates of important parameters that 

rely on later design information. 

 

Most computational models are periodically verified against higher fidelity 

models or test results. This should give some idea of the typical error present from this 

source. If this information is not available, then it should either be acquired or the model 

should not be used, as estimates for model error will more reflect user opinion than 

reality. 

 

Unknown future conditions also are directly related to the robustness of an 

engineering product. The ability of a product to successfully operate over a wide range of 

possible conditions is a common definition of quality. This attribute is something that has 

been missing from many aerospace products in the past. The identification of this type 
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uncertainty has been previously presented in [56, 52, 55, 58, 22, 2]. Roth et al. [56] 

considers four physical unknowns for an unmanned combat air vehicle (UCAV). These 

are the subsonic and supersonic ranges, load factor during the mission and payload. 

Mavris et al. [52, 55, 58, 22] identifies economic uncertainties such as load factor, 

economic range, fuel cost and economic range. Finally, a real-life example of uncertain 

operating conditions is the failure of Low Earth Orbit (LEO) communications satellite 

constellations [2]. The business plans for these constellations did not anticipate the 

exponential growth of terrestrial networks, making them a definite victim of unknown 

future operating conditions. 

5.1.2 Near Term and Far Term Variables 

By incorporating uncertainty into the design process, multiple scenarios are 

analyzed for a single design. It is therefore possible for this design to set certain variables 

to values that optimize the overall performance of the design, whether that be cost, 

profitability or effectiveness, etc., while leaving others to be optimized at some future 

date, when more detailed information is available. An example of this type of design 

variable is the programming of trajectory control settings for launch vehicles. Because 

these variables are relatively easy to change, they are altered as late as during flight to 

ensure an optimal ascent to orbit, taking into account the latest information.  

 

 By the same token, no one would suggest changing the size or number of engines 

on a launch vehicle on the day of the launch, because this change would be difficult to 

implement and require large scale changes all across the system. It is important to set this 

type of variable earlier in the design process. This is therefore an inherently different kind 

of design variable. 
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Figure 10 – Idea of Near Term and Far Term Variables 

 

 

 For probabilistic optimization using both of these types of variables, this issue 

creates a two-level optimization problem. The outside level has traditional control 

variables as design variables. These variables are those that are to be set for the current 

optimization. The next level inside is some type of uncertainty analysis like Monte Carlo, 

where noise variables are added to the design variables set by the outer optimizer. The 

next level is an optimization of the variables that the designer does not wish to set right 

now, but would prefer to set at a later date. Even though these variables are not being set 

right now, it should still be verified that there exists a set of variables for each possible 

scenario that will optimize a desired objective. This creates categories of design variables 

that do not exist in deterministic optimization, near and far term variables. Near term 

variables can be described as those that are set by the current optimization. Far term 

denotes the variables that are left to float, but must still be optimized within each 

scenario. 
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5.1.3 New Options for Objective Formulation 

Because the results of a probabilistic analysis are inherently different from those 

of deterministic analysis, the deterministic idea of an objective function based on a single 

valued design variable is no longer valid if the objective of interest is a probability 

distribution. Optimization of a probability distribution for an output design variable or 

variables can now be accomplished in any number of ways. Some methods that have 

been proposed are presented in the following sections. 

Taylor Series Expansion-Based Criteria   

This method by Chen, et al. [20] proposes a response surface approximation to a 

more complex analysis to estimate the derivative of the response with respect to noise 

variables for different settings of control variables [20]. In this particular work a design 

can either be considered robust with respect to both the control variables and noise 

variables, or just noise variables.  

 

To estimate the mean and variance of an analysis output using this method, a 

single point and all the corresponding first-order derivatives with respect to noise 

variables or control variables around that point are generated. Then according to Eqn. 5.1, 

the variance is estimated. The mean is assumed to be the value of the objective function 

at the point. 
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The accuracy of this estimate depends on two things. First, the analysis in 

question must have a linear or nearly linear response. This is because Eqn. 5.1 is for a 

linear model that is tangent to the real model at the given point. Second, these equations 
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assume an independent normal distribution as the input. Other distributions will react to 

this linearization with differing levels of accuracy. 

 

This approach is similar to sensitivity minimization in that the minimum 

derivative value will usually correspond to the most robust solution, depending on the 

input noise variances. However, this linear assumption should be verified before results 

from this optimization should be taken as valid, if true variance minimization of the 

response is desired. 

Descriptive Statistics-Based Overall Evaluation Criteria 

In previous research, Mavris [22] uses a set of overall evaluation criteria based on 

the mean and variance of a deterministic objective function. These particular criteria 

assumed that minimization of the variance of the objective is desirable, then provide 

multiple options depending whether the objective mean is to be minimized, maximized or 

set to a specific goal. An example of this OEC set for mean targeting is given in Eqn. 5.2 

[22]. 

 

  OEC = α*( Mean – Target ) + ( 1 - α )*Variance (5.2) 

 

Linear OEC sums for minimization and maximization are also possible using 

weighting schemes commonly found in multi-objective deterministic optimization 

problems, according to this research. This OEC sum method allows the designer to treat 

variance and mean with separate weightings, depending on the demands of the problem 

and the desires of the customer. 

 

This flexibility is both the major advantage and major drawback of this type of 

method. It is an advantage in that it gives the designer flexibility in selecting their 

objective. The drawback is the lack of a definite objective for comparison between 
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studies due to this same freedom. Another consideration is that the objective is not easily 

explained without a detailed reporting of the equations and rationale and/or process for 

the chosen evaluation criteria weightings. 

Cumulative Distribution Function Based Decisions 

This type of probabilistic objective function can be stated in two different ways, 

leading to quite similar results. The first way [23] is to set a goal value for the objective 

function distribution, then maximize the probability of exceeding that goal value in a 

favorable way. In this way, the method is said to maximize customer satisfaction, with 

customer satisfaction being defined as any design result that exceeds expectations.  

 

This method is intuitive, but can run into problems if the goals are set too far 

away from the starting point of a gradient-based optimization, or if said optimizer strays 

too far from these goals during the course of optimization and the objective distribution 

has a finite limit. This possibility of either near 100% probability of customer satisfaction 

or dissatisfaction can lead to a failure in gradient generation for the objective function. 

 

A similar way to state this optimization problem would be to attempt to minimize 

a certain percentile value of the objective distribution. This method does not have the 

gradient generation difficulty that could appear in some design cases that have initial 

objectives far from the customer satisfaction frontier. Unfortunately, it does not have the 

intuitive advantage of maximizing the probability of exceeding customer expectations, 

but it does allow for a confidence level to be set for the estimate of the objective function.  

Joint Probabilistic Criteria  

This method [18, 19, 52] is similar to the cumulative distribution function (CDF) 

based decision method, but Mavris and Bandte used a joint probability distribution to 

meet several goals at once. It uses either a regression fit joint normal distribution or an 
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empirical distribution directly based on Monte Carlo simulation results. Using one of 

these methods, a priority-weighted “probability of success” can be obtained and used as 

an objective function. The positive aspects of this method are similar to the CDF method, 

with the added advantage of being able to satisfy multiple goals for customer satisfaction. 

Figure 11 [19] gives an example of this type of goal satisfaction. 

 

 

 

Figure 11 – Optimizing Probability of Success [19] 

 

 

This is the most advanced method for probabilistic objective function 

formulation. However, as with the CDF, the empirical distribution option of this method 

could run into problems when an analysis point is far from the goal settings. An 

additional requirement of this method above and beyond most of the others listed in this 

section is knowledge of the correlation coefficients of the output responses that comprise 

the Joint Probability decision criteria. This requirement made of the distribution 
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estimating technique eliminates several methods as possibilities, including many most 

probable point methods [46, 92-106] as they do not provide this correlation information. 

 

All of these objective function formulations require methods to estimate the 

probabilistic response of an analysis. This shows that there is ample demand for 

probabilistic design information in the optimization community, and that this information 

can be utilized in a useful manner. 

5.2 Uncertainty Analysis Techniques 

To address the performance issues associated with Monte Carlo simulation, many 

techniques for accelerated uncertainty analysis have been developed over the years. The 

majority of the work in this area has come from the structural reliability and nuclear 

engineering communities, but a few methods have come from the operations research and 

design research communities. The following is a brief description of each, along with the 

advantages and disadvantages of each. They begin with a review of some historically 

significant techniques that have, in general, been superceded by newer methods. Next is 

with a brief overview of Monte Carlo simulation, the most general method. After that, 

several variance reduction techniques are presented. These are methods closely related to 

Monte Carlo simulation, but changes made to sampling schemes and estimation 

techniques to reduce the variance in the simulation estimates. Discrete probability 

distribution approximations to input distributions are described after that. These methods 

rely on approximating continuous input distributions as discrete ones to create easily 

evaluated output distributions. Reliability methods are next. Here, an overview of the 

general steps and terminology of Most Probable Point methods are presented, along with 

the areas where different order assumptions can differentiate different reliability methods. 
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The final technique presented is Response Surface Methodology. This method here 

represents metamodeling techniques in general. 

5.2.1 Historical Methods 

One the earliest methods and still quite common methods to guard against system 

failure was the Worst Case analysis. This method is by far the simplest way to generate a 

robust design [107]. In general, this method is regarded as a way of “derating” a design 

since it is usually an extremely conservative way to predict failure. The method, as it 

sounds, consists of setting all the “demand” input variables to their “worst” value, in this 

case, their highest possible values. Next, all of the “capacity” input variables should be 

set to their lowest possible values. Which variables are “demand” and which variables are 

“capacity” should be determined by user experience. Evaluating the design at these 

extreme points will ensure that it is not on a failure constraint. 

 

A problem with this method in applying it to complex systems is that it is often 

impossible to know “demand” from “capacity” variables ahead of time. This makes it 

impractical for the applications in this research, but important as a historical reference for 

robust design. 

 

Taguchi robust design [21, 47, 50] is a parametric method for finding designs 

from a set of designs based on user experience that will have the highest resistance to 

uncertainty parameters. This methods intends to reduce the “loss to society” of an 

engineering product. While very practical in its application, it lacks confirmation that the 

answer determined is in fact an optimum. Some [108, 50] have shown other parametric 

methods to have superceded Taguchi’s Robust Design method. These works point out 

problems with the method, some of which include biased variability estimates and false 
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optimum control variable settings due to excess levels of interaction in the system 

between the noise variables and control variables. 

 

5.2.2 Monte Carlo Simulation 

The most general estimation technique is Monte Carlo simulation. As described 

later, it makes no assumptions approximating the analysis it is simulating nor does it 

require approximation of input distributions beyond that of random number generation. 

The major drawback of this technique is computational expense. To reduce this expense, 

several reduced expense methods have been proposed, some by this research. To verify 

this cost savings as well as the accuracy of higher order methods, any reduced-expense 

sampling scheme should be compared to a Monte Carlo analysis in a test case. This 

means that these higher order methods are primarily useful for either probabilistic 

optimization, where repeated analyses of a similar solution space are required or on 

problems that have been proven to be compatible in previous research efforts. The 

techniques required for Monte Carlo simulation are presented here. 

 

Monte Carlo simulation [109] is a technique where values representing random 

variables are selected from input distributions and simulated in a deterministic analysis. 

These analyses are repeated until output distributions of appropriate accuracy are 

generated. This accuracy is based on the desired probability of constraint satisfaction. If 

the desired probability is low and closer to the mean, fewer runs are required. Eqn. 5.3 

[110] gives a percentage error bound for a generalized Monte Carlo simulation. 
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Where z1-α/2 is the (1-α/2) percentile of the cumulative standard normal 

distribution. The value 100(1-α)% is the confidence level for the error estimate. The 

values Pconstr and N represent the probability of constraint satisfaction for the simulation 

and N is the number of trials in the simulation. Eqn. 5.3 shows the trend of higher number 

of trials for problems with a higher required probability of constraint satisfaction. This 

indicates the number of trials can grow quite quickly with a higher probability of 

constraint satisfaction. 

 

The error for mean, standard deviation and correlation coefficient estimates from 

Monte Carlo simulations are also easily calculable. Assuming a normal response and an 

unknown variance, the error bound on θ, the mean estimator is given by Eqn. 5.4 [111]. 

The confidence interval for a normal distribution standard deviation estimate is similarly 

given in Eqn. 5.5 [111]. The equation for the approximate confidence interval on a 

correlation coefficient is given in Eqn. 5.6 [111]. In this equation, R is the estimate for 

correlation coefficient. All equations are for a 100(1-α)% confidence level. 
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 Monte Carlo simulation can be a computational advantage, however. Eqn. 5.3 

shows that the error in constraint satisfaction in no way depends on the dimensionality of 

the problem. This means that for highly dimensional problems, this random technique can 

be a most efficient way to integrate. This of course is no guarantee of the analysis being 

cheap, just cheaper. 

5.2.3 Control Variables 

Control variables [112] are a variance reduction technique that does not change 

the sampling method, just the calculation of estimates. It uses estimates of variables with 

either known expectation values or expectation values known to be equal to another 

variable’s expectation value as what are called control variables. As a technique, it is 

nearly as old as Monte Carlo simulation. It was one of the first attempts to by nuclear 

scientists to speed up the convergence of random sampling techniques [113]. 

 

These control variables are used to modify the unbiased estimator of the 

parameter of interest into another unbiased parameter with lower variance. For example, 

assume Y is an estimate of the parameter of interest. The control variable estimator Y(b) 

using a known expectation value for the control variable estimate C with expectation 

value µc would be given by Eqn. 5.7. 

 

 Y(b) = Y – b (C - µc) (5.7) 
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The variance of the estimate Y(b) is therefore given by Eqn. 5.8. Note that for 

values corresponding to Eqn. 5.9, the variance of estimate Y(b) is reduced when 

compared to Y. The minimum variance value corresponds to Eqn. 5.10. 

 

 Var[Y(b)] = Var[Y] – 2 b Cov[Y,C]  + b2 Var[C] (5.8) 

 

 2bCov[Y,C] > b2 Var[C] (5.9) 

 

 bmin_var = Cov[Y,C] / Var[C] (5.10) 

 

Eqn 5.9 reveals an issue with the control variable approach. In order to see any 

benefit, an accurate b term must be guessed before enough information can be had to 

determine if it is the minimum variance b. Also, the equations reveal that there is a speed 

up only for variables that are reasonably correlated to the response of interest. All this 

points to a need for the user of the method to make a guess of the correlation between the 

control variable and the output variable. If this guess is accurate, the simulation will 

converge quickly. If the guess is bad, it can actually hinder convergence. 

5.2.4 Importance-Based Sampling  

This is a Monte Carlo based approach for determining the failure probabilities of 

rare events. Estimating the failure probability of systems with a low probability of failure 

can be expensive using Monte Carlo methods. Therefore, importance-based sampling is a 

family of methods that uses a surrogate probability density function f′ to bias the random 

samples from the input direction to a tail of the distribution that is of interest. Some 

techniques [114, 115, 116] use an initial Monte Carlo simulation to determine the proper 

weighting to find the failure probability. Others [117, 118, 119] use an assumed value 
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based on an expectation of where the failure boundary will occur, and can therefore use 

the importance-based sampling methods from the start. 

 

Once the output distribution for θ′ has been obtained using the weighted input 

distributions, the output distribution is then transformed back based on the type of 

weighting used for the input distributions, as shown in Eqn. 5.14. This results in the 

generation of an estimated failure probability that has statistical significance with fewer 

runs than an unmodified Monte Carlo simulation. 
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It should be noted that this technique is primarily useful for comparing an analysis 

to a low-probability constraint, and without that kind of target, is no different from Monte 

Carlo simulation in terms of convergence. 

5.2.5 Latin Hypercube Sampling 

Latin hypercube sampling [120, 121, 122, 123, 124, 125] is a way of improving 

the speed of a Monte Carlo simulation, while still using a random sampling technique. 
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Generally, this is classified as a variance reduction technique [113, 126]. It has been 

shown to have asymptotically lower result variance for parameter estimates than Monte 

Carlo simulation [121] and is also an unbiased method [120]. It uses a systematic method 

of spanning the input distribution space while at the same time maintaining the random 

element of a Monte Carlo simulation. 

 

A procedure first proposed by McKay, et al. [120] for executing the method to 

generate an independent, multivariate uniform [0,1) distribution is as follows: 

 

• Select a sample size N for simulation. This should correspond to the estimated 

computational expense that can be afforded. Let the number of variables be 

denoted as K. 

• Generate K independent random permutations of the vector [1,2, …, N]. The 

elements of these vectors are denoted as pjk where j goes from 1,…,N and k goes 

from 1,…,K. 

• Next select εjk (j=1,…, N and k = 1,… K) as NK samples from NK independent 

uniform(0,1) random variables. 

• The sample location, Xjk for the independent multivariate uniform distribution, 

where each j is a sample and each k a dimension, is given by Eqn. 5.15. 

 

 )1(1
jkjkjk pNX ε+−= −  (5.15) 

 

To adapt this to a simulation without an independent uniform distribution, simply 

use the results of this algorithm as a probability map. A diagram of a result for five 

variables and two dimensions is shown in Figure 12. This is done through a cumulative 

distribution transform of the sample point results Xjk. 
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While this method is better than Monte Carlo simulation as the number of sample 

points goes to infinity [121], the improvement for smaller sample sizes depends on the 

problem. McKay et al. [120] have showed that when the output function is monotonic for 

each of its components, there is a speed-up for smaller than infinite sample sizes. While 

this cannot generally be assumed, it should be the case for most of the models being 

tested for this research.   

 

 

 

 

 

 

 

 

Figure 12 – Latin Hypercube Diagram 

 

5.2.6 Descriptive Sampling 

Descriptive Sampling from Saliby [127, 128, 129, 130, 131, 132] is a member of 

the variance reduction technique family [113, 126]. It is a way to improve the 

convergence rate of Monte Carlo simulations by imposing more order on the sampling 

process.  

 

It is very similar to Latin Hypercube sampling [132], as described earlier. As far 

as the algorithm goes, there is only one small difference. At the final step for generating 

Strata 
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the sample location, the uniform random number generation within the strata selected is 

eliminated. Instead, the point is simply placed at the center of each selected strata on the 

probability map. This changes Eqn. 5.15 in the section on Latin Hypercube Sampling to 

Eqn. 5.16 shown here. Notice that the only change is the elimination of the random 

perturbation and the subsequent placement of the point in the center of the strata.  

 

 )5.0(1 −= −
jkjk pNX  (5.16) 

 

This technique has been shown to converge more quickly than Latin Hypercube 

sampling for most problems [132] and in the limit as the number of samples goes to 

infinity, is equivalent to Latin Hypercube. This is because the difference in sample 

location is only within each strata, whose dimensions shrink linearly with sample size. So 

as the strata size goes to zero, so does the difference between the center of the strata and 

anywhere else in the strata. An example sample set for five samples in two dimensions 

for a uniform [0,1] distribution is shown in Figure 13. 

 

 

 

 

 

 

 

 

 

Figure 13 – Descriptive Sampling Diagram 

 

 

Saliby [130] shows how descriptive sampling can be used with discrete 

distributions. This does give descriptive sampling an advantage over many of the 

Strata 
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techniques here in that can be used with discrete probability input distributions. This 

makes Descriptive Sampling applicable to a wide range of problems. 

5.2.7 Other Variance Reduction Techniques 

Other interesting variance reduction techniques include antithetical variables, 

stratified sampling and common random numbers. Antithetical variables [133, 113] are a 

method where for every probability that is selected, the complimentary probability is also 

selected. This creates a negative correlation between the two variable subsets and lowers 

the variance of parameter estimates. Stratified sampling [134, 113] is similar to Latin 

Hypercube and Descriptive sampling in that it divides the problem space into strata, but 

differs in that it does this in the actual problem space, not the probability map. Then, each 

point in the strata is given a weight corresponding to the probability contained in the area. 

The method is also sometimes called weighted sampling. 

 

Common random numbers [126] or correlated random numbers is a method for 

comparing similar distributions that differ in the application of some input parameter. 

This method essentially states that when comparing the results of two simulations, using 

the same random number for both simulations creates a strong correlation between the 

simulation results. This correlation reduces the variance of the comparison estimate 

drastically. This technique was used for all repeated Monte Carlo simulations performed 

in this research. 

5.2.8 Most Probable Point Methods 

MPP methods [46, 92-106, 135, 136] are specifically directed towards comparing 

a known input probability distribution against some unknown constraint function. Some 

methods, such as the Advanced Mean Value (AMV) method [92, 55, 94, 51] utilize this 
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concept to generate cumulative distribution functions for output variables quite efficiently 

and are therefore a favorite method for structural reliability analysis. Recently, some of 

these methods have been successfully applied to aircraft systems design problems [55, 

57] showing that they have application beyond that of structural analysis. 

 

A suite of techniques for various MPP methods can be found in the software 

package Nessus and its probability integration routine FPI [96, 98] from the Southwest 

Research Institute (SwRI) [137].  The computer program has heritage to research 

sponsored by the former NASA Lewis Research Center (LeRC), the Probabilistic 

Structural Analysis Program, PSAM [99]. 

 

There are many versions of MPP methods proposed by many researchers, far too 

many to present them all here. Fortunately, there are common elements to all MPP failure 

estimation techniques. They vary in level of approximation of the constraint function and 

where these approximations take place. This section will review the common elements of 

MPP methods. 

 

The first step in most methods is a transform into standard normal space. First 

used by Hasofer and Lind [138], this transform takes general multivariate normal random 

variables and transforms them into a space where all the variables are distributed as 

independent standard normals. This transform is generally only useful when all of the 

input variables are normally distributed. Other transforms that include Rackwitz-Fiessler 

[135] have the ability to approximate non-normal distributions with higher accuracy. It 

does this by fitting a normal distribution to the non-normal CDF around the point of 

interest. Another fitting technique is the Chen-Lind method [139], which uses a similar 

three parameter distribution-fitting technique. 
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Once the space has been transformed, an approximation is made to the constraint 

function at some point. For most methods, this initial point is the mean of the input 

distributions. The approximation can be linear or quadratic, but is typically found through 

some manner of Taylor series approximation [140]. Using this approximation of the 

constraint function, the value of the constraint that is both equal to zero and is a minimum 

distance to the mean in standard normal space is found. This is the first design point. For 

generating a cumulative distribution function, sequential levels of the constraint function 

are selected instead of zero, then evaluated to generate the most probable point locus 

(MPPL). As shown in Figure 14 [101], this is a line of design points for different chosen 

levels of the constraint function. When the design point has been identified, some 

methods then repeat this process using a new approximation at the design point. Others, 

such as the advanced mean value first order (AMVFO) method confirm the points found 

along the MPPL with direct calls to the constraint function, then assume that this locus in 

close enough to the real MPPL to provide a good approximation. 

 

 

 

Figure 14 – Diagram of Most Probable Point Locus [101] 
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Once the design point(s) have been identified, there are several options for 

evaluating the probability of exceeding the constraint boundary. The first step is to 

identify the reliability index β. In the case of the Hasofer-Lind reliability index, this is the 

distance from the design point to the mean of the input random variables in the standard 

normal space, as is shown in Eqn. 5.17. Using this index, a linear approximation can be 

made to the constraint function, in which case the probability of failure can be estimated 

as Eqn. 5.18 [46]. 
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If the constraint function approximated is highly nonlinear, this can lead to errors 

in the probability of failure for first order methods. If the constraint boundary curves 

towards the mean, this can lead to an underestimate of the probability of failure. Likewise 

curvature away from the mean will cause an overestimate. Figure 15 [46] illustrates this 

concept. Calculation of this probability is another area where the techniques differentiate. 

Some rely on the linear estimates, while others attempt more advanced approximations to 

the constraint function once the design point has been found. 
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Figure 15 – Example of Potential Inaccuracy in Hasofer-Lind Reliability Index [46] 

 

5.2.9 Discrete Probability Distributions 

Discrete probability distribution methods [141, 142, 143, 144, 145] come from the 

desire of nuclear engineers to perform several sequential, relatively simple probabilistic 

calculations to solve complex problems. In these papers, the rules for basic mathematical 

operations are laid out [141, 142, 143] so that a user may perform an analysis with 

discrete probability distributions at a very basic level. In order to utilize this technique, an 

algorithm must incorporate this technique from the onset. 

 

This method consists of approximating a continuous distribution as a set of 

discrete probabilities in a user specified manner. From this assumption, combinatorial 

rules for addition, multiplication and general function evaluations are laid out. This 

essentially describes how discrete probability distribution mathematics behave.  
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After each sequential operation, the problem arises that the output distribution to 

be used as an input for the next analysis contains an exponentially higher number of 

points than that of the previous. This problem is overcome by a condensation step. The 

most common type is vertical condensation [142]. The term vertical refers to dividing the 

vertical axis of the cumulative probability diagram into a set of equally spaced bins as 

seen in Figure 16 [142]. This ensures that each bin has the same number of results and the 

bins are therefore spread out in such a way as to describe the distribution with each point 

having equal importance. 

 

 

 

Figure 16 – DPD Vertical Condensation Diagram 

5.2.10 Response Surface Methodology 

 

This method [146, 147, 148, 108, 59] consists of creating a polynomial curve fit 

of the response, then using this meta-model in a Monte Carlo simulation to generate a 

probabilistic output. These curve fits can be made to any number of Design of 

Experiments-based or unplanned sampling techniques to allow for varying levels of 

statistical significance. 
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A generalized version of the meta-modeling technique is a two step process. The 

first step is variable screening. This step is done because often the dimensionality of the 

problem is higher than is practical to sample using higher order models. In this step, the 

sensitivity of the response to the variables under consideration for modeling are 

measured. This is typically done through the use of a linear two level model designed to 

measure the main effects of the variables. The sensitivities of the response to the 

variables of interest are ranked for cumulative effect. The variables with the most 

influence are then selected until a certain percentage of the variability of the response is 

counted. A graphical representation of this process can be seen in Figure 26 on page 103. 

The bars represent the magnitude of the contribution to the response of each of the 

variables. The cumulative line shows what percentage of the response variability has 

been captured. By selecting variables from the top, the maximum amount of variability 

can be represented with a minimum of variables. 

 

Infinite sampling options for the final model are available, from saturated for 

minimal computational expense to full-factorial for good fit confirmation and statistical 

coverage [59]. Once a sampling model is chosen, typically a quadratic polynomial is fit to 

the data using a least squares technique. For a slightly improved fit, a stepwise regression 

can be done for each response [149]. This technique performs an F significance test on 

the terms of the polynomial to determine which ones are essential to the fit and which 

ones create numerical error. The essential terms of the polynomial are retained and the 

others are discarded, ignoring the overall fit. 

 

Once the polynomial fit is obtained, a Monte Carlo simulation can be performed 

on the meta-model for a fraction of the cost of direct simulation. The results are 
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interpreted just as in Monte Carlo simulation and the required number of trials is also 

determined the same way. Meta-models are also useful in a more practical sense in that 

they provide a consistent result, whereas some engineering analyses can have internal 

convergence problems if appropriate initial guesses are not provided. Providing 

appropriate initial guesses can prove difficult when such an analysis is running in an 

automated fashion. This reliability is a major advantage. 

5.2.11 DPOMD Methods 

What defines a Discrete Probability Optimal Matching Distribution is the idea of 

approximating the input distributions of a probability problem with discrete distributions 

that match some number of the expectation value (Eqn. 5.19, [150]) characteristics, 

beginning with lower order parameters and progressing to higher order. This broad idea 

allows for several forms of the methods, each using a different numerical technique to 

match input distribution characteristics. These different methods can handle different 

types of problems, from low dimensionality analyses with highly skewed input 

distributions to highly dimensional problems with correlations between the random input 

variables. 
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To create a matching distribution, any numerical technique has two types of 

independent variables available, the locations of the point probabilities and the 

probabilities themselves (Figure 17).  Some methods use one or both of these controls, 
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and they make these techniques very flexible, both in type of implementation and in the 

degree to which they match the actual input distributions. 

 

 

 

 

 

 

Figure 17 – Discrete Point Representation of Input Distribution 

 

 

There are several standard numerical techniques that can be used to find good 

sampling distributions. The methods presented here show three different techniques that 

were used in the course of this research. They also give a good basis to create new 

methods that use combinations of these techniques. The independent binomial used a 

nonlinear Newton-Rhaphson root-finding method to vary both point locations and 

probabilities for a single variable at a time. This method matches each input distribution 

to the fourth moment (E(X4)) but it does not account for correlations between the input 

variables. 

 

The central composite-based used a linear minimization on the point probabilities 

of a fixed location central composite design. Depending on the number of variables in the 

problem, this method was used to match both single variable moments and cross-term 

moments. This means that it could handle input distributions with correlation. An 

advantage of this technique is that it can reuse sample points to represent different 
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distributions, as long as the input distributions do not change too much. A disadvantage is 

that an independent set of moments must be defined for each change in the number of 

variables. 

 

The fractional factorial method uses a method that is significantly different from 

the previous two. It starts with a fractional factorial design that matches a standard 

normal multivariate distribution, then uses a reverse standard normal space variable 

transform to get sample points for the analysis. This is therefore a variable location 

technique that matches all moments up to second order including main and cross terms. 

The major advantage of this technique is that the number of sample points need only rise 

linearly with number of input variables. 

5.2.12 Independent Binomial DPOMD 

This technique uses both variable sample point locations and probabilities in its 

input distribution model. This has an advantage in that the user does not need to 

arbitrarily set the locations of the sample points. It has another advantage in that 

additional degrees of freedom are available when minimizing the error to the target input 

distribution expectation values. This means that more distribution matching accuracy can 

be carried through the analysis with fewer points when compared to the fixed location 

method. One drawback is that for repeated analysis with differing input distributions, the 

deterministic problem must be re-sampled every time. 

 

To make this method computationally tractable, the input distributions are 

assumed to be independent. This means that each of the sample point settings can be 

found independently for each variable’s input distribution, then combined to form a full-

factorial design. This idea is illustrated in Figure 18. 
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Figure 18 – Variable Location Point Generation 

 

 

For each of the variable input distributions, the locations and probabilities of the 

sample points must be determined. In order to maximize the amount of input distribution 

property information carried through the analysis, this particular method has enough 

degrees of freedom to drive the error in the selected expectation values to zero for up to 

third order moments. 

 

For each of the variables, there are four degrees of freedom. That means that all 

expectation value moments up to cubic can be matched by the method. Consequently, 

mean, variance and skewness can all be represented. The problem to be solved to find the 

location and probabilities of the sample points is defined by Equations 5.20 and 5.21. 
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(5.21) 

 

 

 

From this point, a Newton-Rhaphson multivariate root finding method can be 

employed to solve the nonlinear set of equations. As a practical note, initial guess is very 

important. For most cases encountered by this study, an initial guess of the mean plus and 

minus one standard deviation is sufficient for x1 and x2, the high and low sample points. 

An initial guess of 50% for p1 is also generally effective when using this approach. 

 

Once the inputs are combined to form a two-level full factorial design (Figure 18), 

the deterministic analysis finds the response corresponding to each of the sample points. 

Again the input probabilities are used along with this response to find the output 

parameters of interest. 

 

The major assumption for this technique is that of input variable independence. 

This assumption is made so as to simplify the nonlinear root finding step so that the 

variables can be found individually. This greatly improves the problem convergence so 

that programs based on this algorithm can run essentially automatically. Relating to 

convergence, the technique as used in this research assumes an initial guess of mean plus 

and minus one standard deviation for the location of the two binomial points for root 

finding purposes. The technique also assumes that the analysis can be characterized by a 

full factorial sample space. To verify this assumption, any reduced order sampling 

scheme method should be compared to a Monte Carlo simulation, as discussed in the 

earlier section on distribution approximation methods. 

 

0

)()1(

)()1(

)()1(

33
21

3
11

22
21

2
11

2111 ��
=

















−−+
−−+
−−+

=

inputdist

inputdist

inputdist

xExpxp

xExpxp

xExpxp

f



 75 

While the accuracy of this method can be quite high, scalability is a problem. The 

number of runs required for an analysis goes up factorially with the number of input 

random variables. This means that a problem with as little as 8-10 random variables (256 

– 1024 runs) approaches the range where a Monte Carlo simulation might yield more 

accurate results. 

5.2.13 Central Composite DPOMD 

This technique is a fixed-location method. It utilizes a central composite design 

(CCD) experiment array to determine the sampling point locations for the input 

distribution model. A three dimensional example of the sampling points is shown in 

Figure 19. The cube corners form a two level full factorial, while the points radiating 

from the center are referred to as “star points.” These typically extend past the upper and 

lower bounds of the two-level full factorial. This central composite should span an 

appropriate amount of the input distribution variables so that a reasonably accurate 

representation of the distribution is possible. 

 

 

 

 

 

 

Figure 19 – Three Variable Central Composite Design 

 

 

The input distribution properties are then matched by varying the probabilities of 

the individual sampling points in the discrete model. The technique used for this is 

analogous to least squares curve fit matching. The problem statement for this is given in 

Eqn. 5.22. 

Star Points 

Factorial Points 
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(5.22) 

 

The E
�

vector contains expectation values for polynomial terms corresponding to 

different moments of the input distribution. In this way it contains the properties of the 

input distribution to be matched by the method. It is important that one of the g 

polynomial terms be unity so that the probabilities of the points in the model add up to 

one. This is in effect matching the zeroth order moment. The matrix A contains the 

locations of the points in the model expressed in rows evaluated using the same 

polynomial terms expressed in E
�

. Descriptions of these arrays are found in Eqns. 5.23 

and 5.24. The columns of A correspond to each of the m sample points. The p
�

 vector 

contains the probabilities of each of the m points in the model to be determined by the 

minimization.  

 

 

          (5.23) 

 

 

 

 

          (5.24) 

 

 

 

The vector p
�

 can be efficiently found using a QR factorization minimization of 

the form shown in Eqns. 5.25-5.28. 

 

2
EpAMin

p

&

&

&

−



















=

))((

))((

))((

2

1

xgE

xgE

xgE

E

n

�
�

�

�

�



















=

)()()(

)()()(

)()()(

21

22112

12111

mnnn

m

m

xgxgxg

xgxgxg

xgxgxg

A

�
�

��
���

���

�
�

��



 77 

 

 
2 2 

E p QR Min E p A Min 
p mxn p 

& 
& & 

& 
& & − = − 

 (5.25) 

 

 

 � � � � 
2 2 ) ( E Q p R Q Min E p QR Min T 

p p & & − = − 
 (5.26) 

 

Because Q is orthogonal, Equation 5.27 is equivalent to Equation 5.28. 
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so 

 

 ( ) n
T EQpR ...1

�� =  (5.28) 

 

solves the minimization problem due to the fact that the only variable is the p
�

 vector and 

it cannot affect the (n+1)th through mth equations in Eqn. 5.27. Also, to avoid singularity 

problems, it is important that the polynomial terms chosen for use as expectation values 

be linearly independent and that sample points are not repeated in the discrete model.  

 

 

 

 

 

 

 

Figure 20 - Final Output Response of a Fixed Location Discrete Probability Method  
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Once the probabilities are determined, the sample points can be evaluated. This 

gives the response and each of the corresponding probabilities. For the three dimensional 

CCD shown in Figure 19, a sample response distribution might resemble Figure 20. Note 

that each of the input point probability values corresponds to a value for the response. 

 

The central composite-based technique has a flexible assumption base. Whatever 

polynomial moments are inserted into the matching vector are the ones that are valid for 

the discrete distribution. Therefore, this technique does not require independence. The 

technique also assumes that the analysis can be characterized by a central composite 

experiment design and thus carries the same caveats as the binomial DPOMD. 

 

When using the full central composite design, the number of runs grows about as 

quickly as the binomial distribution method, so about the same limits apply to the 

available number of variables. This means that analyses of 8-10 variables are the limits of 

problems that would benefit from this technique. 

5.2.14 Fractional Factorial Based DPOMD 

So far, both DPOMD methods have had limited scalability. To remedy this, a 

method based on a two level fractional factorial experiment design was created. This 

technique is shown later to have good accuracy for the type of problem considered while 

only growing linearly with the number of input variables. This means that problems with 

high dimensionality, such as mass properties and sizing (~40 random input variables), 

can be modeled using a relatively small number of runs.  

 

This method is based on a linear transform first proposed by Hasofer and Lind 

[138]. This transform takes joint multinormal variables and transforms them into a 
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standardized normal space. Here the joint multinormal can be expressed by independent 

standard normal distributions. The effect of this transform on discrete distributions is that 

it takes a discrete distribution with a certain mean vector and covariance matrix and 

expresses the points in a space where they have mean vector zero and an identity 

covariance matrix. This method takes advantage of this transform by creating a discrete 

distribution in standardized normal space with zero mean and identity covariance matrix 

and performing an inverse Hasofer-Lind transform based on a desired mean and 

covariance matrix to create a discrete distribution in the real problem space with the 

desired second moment characteristics. 

 

 To create a DPOMD using this technique, a discrete distribution with zero mean 

vector and identity covariance matrix is required. This requirement was satisfied in the 

form of a fractional factorial two level design of experiments array with high and low 

levels set to –1 and +1 respectively. Because there are many options for creating 

fractional factorial arrays, it was assumed that the array with the highest possible 

resolution number would capture the most useful analysis response. An experiment’s 

design resolution R is one where no n factor effect is confounded with another effect 

containing fewer than R – n factors [151]. For example, in a resolution IV design, the 

lowest order effect that can be confounded with a first order (one factor) is a third order 

(three factor) effect. As further example, second order effects can be confounded with 

other second order effects. 

 

A Matlab© code was created using the direct generation method [151] that creates 

maximum resolution fractional factorial designs. The direct generation method uses 

multiplications of different combinations of the basic factor columns in the design to 

create runs for factors that are non-basic factors. A basic factor is defined as a factor in a 
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full factorial design that has size equal to the number of total factors minus the reduction. 

This smaller, full factorial design of main factors is then used generate additional 

columns to create a design with more factors. To create a design with the highest possible 

resolution, the largest combination of basic factors possible should be used to create 

settings for the new variables as is shown in Table 1. 

 

 

Table 1 – 2IV
(4-1) Fractional Factorial Design Using Direct Generation Method  

Run # Basic 
Factor A 

Basic 
Factor B 

Basic 
Factor C 

Factor D = 
A * B * C 

1 - - - - 

2 - - + + 

3 - + - + 

4 - + + - 

5 + - - + 

6 + - + - 

7 + + - - 

8 + + + + 

 

 

 

This code cycles through all the combinations of basic factors, beginning with the 

longest (all factors) and progresses until all the columns for the desired non-basic factors 

have been created. The resultant array therefore has the desired properties of maximum 

resolution and can be controlled so as to have an appropriate number of runs. 

 



 81 

Once the fractional factorial has been generated, an inverse Hasofer-Lind 

transform must be calculated. The Hasofer-Lind transform and its inverse are shown in 

Eqns. 5.29 and 5.30 [138, 46]. 

 

 snstrans xxT =− )( µ  (5.29) 

 

 µ+= −
snstrans xTx 1  (5.30) 

 

Where x is a vector of positions in the analysis space, xsns is a position vector in 

the standardized normal space, µ is a vector of means in the analysis space and Ttrans is a 

transformation matrix defined by the relation in Eqn 5.31 [138, 46]. 

 

 ITCT T
transtrans =σ  (5.31) 

 

The matrix Ttrans is found by way of a Cholesky decomposition [90, 152] of the 

covariance matrix Cσ. Because Cσ is positive definite by definition, a Cholesky 

decomposition will yield the following: 

 

  
IRR

CRR
T

T

=

= σ  (5.32) 

so 
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 T
trans RT =−1  (5.35) 

 

 Where R is an upper triangular matrix. In the case of fractional factorial DPOMD, 

the required matrix is Ttrans
-1, so no matrix inversion is required after the Cholesky 

decomposition. 

 

The fractional factorial method matches the mean vector and covariance matrix of 

the inputs. It is limited in that it cannot account for higher than second order expectation 

values. This means that input distributions with high skewness will be missing this 

characteristic in the fractional factorial discrete probability distribution model. It also has 

the inherent assumption that the output response can be characterized using a fractional 

factorial output response. 

 

The primary advantage of this method is its scalability. While the number of 

sample points can be specified by the user to a degree, the sample point count must be 

larger than the number of variables if the set is to span all the dimensions of the problem. 

If the number of sample points is less, not all the variables will be considered. To 

compound this, the ignored variable has not been determined to be negligible to the 

response by any kind of screening process. 

 

5.3 MDO Methods 

For most advanced aerospace design problems, the amount of design freedom is 

large. This is especially the case for RLV design, where a standard configuration is not 

universally accepted. This means that these problems will have a large number of control 
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variables available for a system level optimization [63, 77, 78, 79]. These systems can 

also consist of different contributing analyses for different design problems. Tight 

integration of these problems is often not worth the up front costs involved [62].  

 

A common situation in many design organizations is to have multiple teams in 

multiple locations provide analysis support for a particular design problem. This creates 

coordination problems as well as design convergence issues, but allows for disciplinary 

experts to retain control of their respective analyses. This control also typically means 

there are specialized optimization methods that work well for each individual analysis, 

but obviously do not solve the total system problem. A multidisciplinary system setup 

also provides the opportunity for parallel computation if the problem is properly 

coordinated between the disciplines.  

 

Because this research deals primarily with multidisciplinary aspects of 

probabilistic optimization, a background of some multidisciplinary design optimization 

methods will be presented. The background on this research begins with methods for 

describing how different disciplines interact [153, 154] and how these interactions can be 

sequenced to yield maximum efficiency. Then it progresses to more advanced 

decomposition methods designed to describe new ways for the disciplines to interact. 

This is typically done to make the system more parallel and object-oriented [63, 77, 78, 

79]. The following shows the advantages of advanced multidisciplinary design 

techniques, as well as gives an idea of the progression of this field over time. 

5.3.1 System Sensitivity Analysis 

System sensitivity analysis [155, 156, 157, 158, 159, 160] is a calculus-based 

method for generating system-level total derivatives based on contributing analysis-level 

partial derivatives. It assumes that the system can be described by a set of analyses 
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connected by vectors of information flows. How the analysis iterates using fixed-point 

iteration is not relevant to the calculation of derivatives, as long as the final value for all 

the states is used to calculate the subsystem derivatives. 

 

These system-level derivatives can then be used in conjunction with a gradient-

based optimizer to find optimal settings for certain system level variables that have been 

taken away from the local optimizations. While this method does not solve the problem 

of local optimizers conflicting with the system optimizer, it does allow for cheaper 

calculation of system derivatives. 

 

Applications of this technique to launch vehicle problems similar to that in the 

current research have shown good results [160] and provided guidance on issues such as 

noise in contributing analysis gradient generation. Many of the contributing analyses in 

conceptual launch vehicle design do not often converge to the machine tolerance of the 

computer system. This means that finite difference steps must be larger in order to 

account for this heightened level of numerical roundoff error. However, using larger 

forward difference approximation steps can increase the approximation error in the 

derivative calculation. According to Olds [160], higher order central difference methods 

should be used. 

 

A brief summary of the method is demonstrated using the simple Design Structure 

Matrix (DSM) in Figure 21. The data flows are labeled A1, A2, B, C and O. Following 

the derivation that can be found in [155-160], this situation leads to the Global Sensitivity 

Equations. By solving this linear system of equations, the total derivatives for the 

objective function found in vector O with respect to the system design variables in vector 

X can be calculated. 
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Figure 21 – Sample DSM for Global Sensitivity Equations 
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 (5.36) 

 

 

 

5.3.2 Optimal Decomposition 

This technique is another that does not seek to change existing methods of 

contributing analysis interaction, but simply make an existing process more efficient. The 

idea of optimal decomposition is to change the order in which analyses are run so as to 

A 

B 

C 

A1 A2 

B 

C 

O 
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minimize the amount of “feedback” and make sure that tightly coupled analyses are run 

close together. The intuitive result of this is that tightly coupled analyses that influence 

each other a great deal are iterated together before their results are shared with the rest of 

the contributing analyses. This limits the amount of iteration if fixed-point iteration is 

used to solve the system. 

 

The primary method of implementing this technique is the computer program 

DeMaid [153] from the NASA Langley multidisciplinary design optimization branch. It 

is an Apple Macintosh-based program that given a design structure matrix, relative 

coupling strengths among the contributing analyses and relative computational expenses 

for each analysis, will find the optimum order of execution. This code can be quite useful 

for new and large multidisciplinary engineering analyses. 

 

This does imply a primary drawback of using optimal decomposition. It limits its 

advantages to those who choose to use fixed-point iteration to solve their system. This 

technique is also most useful on large problems where the optimum order of analyses is 

not intuitive. For many established aerospace problems, this order of execution has been 

determined through experience, thus limiting the improvement yielded by this optimal 

decomposition. 

5.3.3 Optimizer-Based Decomposition 

This is a single-level optimization method [71, 62] that eliminates system 

feedback and/or feedforward loops through use of a system level optimizer and 

compatibility constraints. These loops are eliminated by the addition of all the input 

variables for all the analyses as design variables to the system-level optimizer. In addition 

to the elimination of these loops, conflicts between system level and contributing analysis 
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optimizers are eliminated by allowing design variables at all levels to be controlled by the 

system-level optimizer, allowing for a true system optimum to be found. 

 

The compatibility constraints compare the optimizer’s version of the coupling 

variables to the output versions of the variables from the contributing analyses. When 

these constraints are satisfied, it means that the contributing analyses are consistent with 

respect to the coupling variables. 

 

The system-level optimizer must then minimize the system objective function 

while ensuring that the compatibility constraints are satisfied. This is done by 

simultaneously varying the system-level design variables, the local-level design variables 

and all the coupling variables. Simultaneously optimizing all these variables can mean 

that the optimization problem size is proportional to a number of factors, not just the 

system level optimization design variables. 

5.3.4 Collaborative Optimization 

Collaborative Optimization (CO) [61-64, 77-79] is an example of a two-level 

decomposition scheme. Here, the system optimizer is used to coordinate optimizations at 

the lower levels to seek an overall system objective. As with OBD, the coupling between 

the contributing analyses is handled by compatibility constraints, but these constraints 

handle different values. 

 

In CO, the compatibility constraints measure the difference between the targets 

set by the system-level optimizer and the actual inputs and outputs of the analysis. The 

system-level optimizer uses the compatibility constraints as constraints to ensure that the 

coupling variables of the problem are consistent between the analyses. The contributing 
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analysis optimizer uses its own compatibility constraint as an objective function. This 

means that the local variables as well as the inputs present in the compatibility constraint 

can be set to values that best ensure compatibility with the other analyses by the lower 

level optimizer. This compatibility as defined by the system-level targets. 

 

CO is another way to obtain a true system-level optimum while allowing for 

parallel operation. The primary advantage of this method when compared to optimizer-

based decomposition is its scalability. Because of the distributed optimization of the local 

design variables, the system-level problem is not typically as large as with OBD. 

 

As the RLV design community stands, there is a conspicuous lack of a 

counterpart to Collaborative Optimization for probabilistic analysis. The advantages of 

distributed effort have not been applied in the field of probabilistic simulation-based  

analysis. Partly due to this, the applications of robust optimization for RLV design are 

few. Those that have undertaken this problem have done so through either sensitivity or 

Taguchi methods that have accuracy and optimality problems respectively. The RLV 

design activity of this thesis intends to demonstrate a method for communicating 

probabilistic information between flexible contributing analyses utilizing heterogeneous 

probability analyses in an online launch vehicle design framework on multiple platforms, 

thus filling a current gap in RLV design methods. 
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CHAPTER VI 

MASS PROPERTIES ANALYSIS TEST 

6.1 Distribution Analysis Comparisons 

Because the multidisciplinary approach of this paper allows different distribution 

estimation techniques to be used for different contributing analyses, each of these 

analyses must be tested using several appropriate techniques to determine which is most 

suited to characteristics of the particular sub-problem. The three analyses in this example 

problem, mass properties/sizing, trajectory and propulsion were all analyzed 

probabilistically using several different methods. The following sections provide the 

rationale for which method were tested, describes the tests performed on each analysis 

and presents the results generated by each. 

 

It is hoped that these tests will indicate which of the methods for probability 

distribution approximation is the best suited for these types of launch vehicle contributing 

analyses. By using this single point testing approach, a costly Monte Carlo analysis must 

only be run once as a reference for the other approximation methods. For the sake of 

practicality, the general techniques tested on each of the contributing analysis will be the 

same, with variations existing within each of the broad categories that are the methods 

under consideration. The demands of optimization require methods that can be executed 

with a reasonable number of samples, depending on the analysis computational 

requirements. Reasonable for a contributing analysis was considered to be around a 
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minute. This would allow for optimizations of the system on the order of one day. Next, 

the method must provide correlations for output variables that are either coupled to other 

analyses or have a good chance of being used in a probabilistic multiobjective 

formulation similar to those presented by Bandte, et al. [18, 19, 52] and described in the 

background chapter.  

 

Advanced methods that can provide this type of information are primarily 

variance reduction and metamodeling methods. These include among others Monte Carlo 

simulation, importance-based sampling, Latin hypercube sampling, control variates, 

discrete probability optimal matching distributions (DPOMD), descriptive sampling and 

response surface methods from the chapter on uncertainty methods. Importance-based 

sampling was eliminated from consideration because it is mostly useful for accelerating 

the calculation of the probability of a low probability event. Because the only constraint 

comparison for this analysis was one sided and was compared at the 80% confidence 

level, this method was not expected to provide much benefit. Latin hypercube and 

stratified sampling were eliminated due to their similarity to descriptive sampling. In 

addition to this, Saliby [132] has shown descriptive sampling to converge more quickly 

than Latin hypercube, while stratified sampling is currently not as popular as other 

methods, as evidenced by the available literature. Control Variates were left out because 

of the need for user assumptions about the output variables. Antithetical Variates were 

not studied because of their only slight promised performance benefit when compared to 

Monte Carlo simulation [113]. 

 

This left Monte Carlo simulation, DPOMD, descriptive sampling and response 

surface methods as the candidate methods. The tests of these methods and the particular 
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types of each chosen method used is described in the following sections. They are 

presented in groups defined by the contributing analysis being tested. 

6.2 Analysis Test 

The Mass Properties and Sizing analysis consists of a set of interrelated nonlinear 

weight equations. These equations must be iterated to find a consistent set of component 

weights that can then be displayed in a Weight Breakdown Structure (WBS). An example 

of this is Table 2. For brevity, only highest-level weight breakdown is shown. There are 

two more levels of weight statements in this tool. The equations for this analysis are 

derived from relationships defined by NASA-Langley VAB and recorded by Olds [161]. 

The sizing portion of the analysis involves scaling up or down the geometry of the 

vehicle until a desired propellant loading is achieved as shown in Figure 9 on page 43. 

This is done here using root finding method, such as Newton’s method embedded in 

Excel© Solver. 

 

The sizing analysis for this research assumes advanced material technologies to 

lower weight. This kind of assumption is well suited to a probabilistic analysis, given the 

uncertain nature of the final structural form of the components. Among the materials 

assumed for the vehicle include graphite epoxy propellant tanks as well as Ti-Al SiC 

metal matrix composite structural elements. The research also assumes advanced thermal 

protection materials such as Advanced Carbon Carbon (ACC) composite for nose and 

leading edge surfaces and Toughened Unit-piece Fibrous Insulation (TUFI) for windward 

surfaces. 

 

For this research, the platform for the mass estimating relationships is a Microsoft 

Excel spreadsheet. If this were a deterministic analysis, the difference between the mass 
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ratio calculated as required by the trajectory and the available mass ratio calculated by the 

sizing analysis would be driven to zero by the Excel Solver add-in altering the vehicle 

size. The corresponding weight breakdown structure would be the output of this analysis.  

 

Table 2 - Example Weight Breakdown Structure 

1.0 Wing Group 6,423 lb
2.0 Tail Group 2,150 lb
3.0 Body Group 57,469 lb
4.0 Thermal Protection 20,611 lb
5.0 Landing Gear 5,158 lb
6.0 Propulsion 30,095 lb
7.0 RCS Propulsion 2,283 lb
8.0 OMS Propulsion 4,424 lb
9.0 Primary Power 1,124 lb

10.0 Electrical Conversion & Dist. 6,952 lb
11.0 Hydraulic Systems 0 lb
12.0 Surface Control Actuation 803 lb
13.0 Avionics 1,718 lb
14.0 Environmental Control 2,410 lb
15.0 Personnel Equipment 0 lb
16.0 Dry Weight Margin 0 lb

Dry Weight 141,620 lb

17.0 Crew and Gear 0 lb
18.0 Payload Provisions 0 lb
19.0 Cargo (up and down) 20,000 lb
20.0 Residual Propellants 7,654 lb
21.0 OMS/RCS Reserve Propellants 595 lb

Landed Weight 169,868 lb

22.0 RCS Entry/Landing Propellants 1,168 lb
Entry Weight 171,037 lb

23.0 RCS/OMS Propellants (on-orbit) 5,405 lb
24.0 Cargo Discharged 0 lb
25.0 Ascent Reserve and Unusable Propella 7,690 lb
26.0 Inflight Losses and Vents 1,635 lb

Insertion Weight 185,766 lb

27.0 Ascent Propellants 1,459,786 lb
Gross Liftoff Weight 1,645,552 lb

28.0 Startup Losses 13,946 lb
Maximum Pre-launch Weight 1,659,498 lb  

 

 

 



 93 

For probabilistic sizing, there are several options for sizing in a probabilistic 

sense. One method would be to allow the length of the vehicle to float with every trial, 

ensuring that every predicted scenario is a closed vehicle. This methods presents 

difficulties for proceeding to detailed design, as there is no single size to which 

components can be designed. This makes the vehicle size a far term variable as described 

in the background chapter. To do this would ensure that there were no trials that could 

not be sized, but it would also prevent a decision on the OML size from being made by 

the current analysis. This is essentially a probabilistic analysis wrapped around the 

existing sizing algorithm. 

 

For the current research, a decision on OML size is desired at the conceptual 

stage. Therefore, this quantity is a near term variable and will be set so that it meets the 

propellant requirements of all the scenarios, to a certain confidence level. This means that 

the mass ratio error for a particular size vehicle is not a single value, but an entire 

distribution of errors. This is the performance constraint that must then be met. This is 

done by altering the vehicle size until a desired percentage of the mass ratio errors is 

driven to a positive value. This problem is equivalent to ensuring that the required mass 

ratio is lower than the available mass ratio to a certain confidence level. Figure 22 

illustrates this. 

 

 

 

 

 

 

 

 

Figure 22 – Probabilistic Sizing Algorithm Used 
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The inputs and outputs of the mass properties and sizing analysis along with the 

number of random variables determined the required size of approximation methods that 

were appropriate. Table 3 shows the number and type of each kind of input and output. 

 

 

Table 3 – Number and Types of Random Variables in Mass Properties Analysis 

Variable Type Number 

Correlated Normal Inputs 3 

Independent Triangular Inputs 35 

Correlated Outputs 30 

 

 

A description of the distributions for each random input variable is in Appendix 

B.  

6.3 Test Procedure 

To compare different methods for predicting the output distributions of the mass 

properties analysis, a comparison of several methods on a single analysis was conducted. 

The goal of this test is to determine the most efficient means of predicting the mass ratio 

error distribution, along with others, so that this performance constraint can be accurately 

met in future sizings. To do this, actually meeting the performance constraint is not 

necessary. It only needs to be shown that an accurate probabilistic function evaluation 

can be generated. 
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The first approximation method, response surface methodology, has at its core a 

response surface of a limited set of variables. This method has as its primary advantage 

computational speed. Once the experiment design has been evaluated, only simple 

polynomial evaluations are required. For the mass properties analysis, this saves the time 

of iterating between the mass equations. 

 

The second method was discrete probability optimal matching distributions 

(DPOMD). More specifically, the fractional factorial based DPOMD was used. This 

method created a discrete representation of the entire multivariate input distribution that 

matched its first and second moment properties. Then the discrete points of the 

distribution were evaluated and the mean and variances of the outputs were measured. 

This technique was tested at varying levels of computational expense by varying the 

reduction level of the fractional factorial experiment design. 

 

The final method tested used a descriptive sampling approach. This method 

divided the uncorrelated standard normal space input distribution into equal probability 

areas. Samples were taken at the centers of some of these areas according to the 

algorithm presented in the background chapter. Because of the high flexibility in sample 

size for the Descriptive Sampling algorithm, more intuitive sample sizes than the 

DPOMD method could be selected for the test. These were set to sample sizes of 50, 100 

and 200 trials. 

 

The test problem for all of these was a single probabilistic analysis run of the 

mass properties analysis and was conducted at a vehicle length of 150 ft. For this size, 

each of the candidate methods were compared on the basis of their accuracy in generating 
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distributions that would be required for the inclusion of this contributing analysis in the 

larger launch vehicle optimization problem. 

6.4 Outputs of Interest 

These included the mean and variances of gross liftoff weight (GLOW) and 

vehicle dry weight. GLOW is an important output because it is a required coupling 

variable for the trajectory analysis. Dry weight was selected because it is a rough 

indicator of vehicle development cost and was to be used as the objective function once 

the analyses were integrated into the probabilistic framework. Also, because the analysis 

was run at a single length and only used to generate weight numbers and not actually size 

the vehicle, another important output was the mass ratio error distribution. Measuring the 

accuracy of this parameter showed how accurately the analysis would be able to meet its 

internal performance constraint. 

 

Accuracy in these parameters for a minimal computational expense was the goal 

of this analysis test. Finding a faster substitute for Monte Carlo simulation for this 

analysis should definitely make system level optimization easier. 

6.5 Monte Carlo Procedure 

This analysis is considered to be the most accurate representation of the response 

distributions. However, its computational expense means that it is being used primarily as 

a reference for this research. Although a direct analysis would be accurate, the complex 

nature of weights and sizing analysis makes this impractical.  
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Monte Carlo analysis consists of randomly selecting sets of inputs from specified 

input distributions and running a deterministic analysis for several thousand trials, using a 

pseudo-random number generator to select the sets of inputs.  

 

The random number generation scheme varied depending on the type of input 

distribution. When multivariate normal samples were required, a previously stored list of 

independent standard normal samples was transformed using an inverse standard normal 

space transform [138, 46]. This process is described in the background chapter in the 

section on fractional factorial DPOMD. The previously stored list was generated using 

the Matlab function randn(). This saved the computational expense of random number 

generation and cumulative normal distribution calculations. The only calculation required 

to generate these samples was a Cholesky factorization [90, 152] to find the transform 

matrix and then a matrix multiplication and vector addition to actually perform the 

transform. 

 

A similar technique was used for the independent triangular distributions found in 

the weight assumption random variables. In this case, a stored list of uniform random 

samples generated by the Matlab© function rand() was transformed into samples from 

triangular distributions using an inverse triangular distribution function written for this 

research. Generation of these numbers took significantly longer than the multivariate 

normal variables.  However, it should be noted that these values will not need to be 

recalculated during eventual optimization, as they are assumptions internal to the mass 

properties and sizing analysis, and their parameters do not vary. 

 

The results of each of these trials were then considered as results of a random test 

and the properties of the output distributions measured. Sample estimates for mean and 
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standard deviation were used. These are shown in Eqns. 6.1 and 6.2 [150]. Because of the 

limited number of assumptions and lack of an exact answer available for this type of 

analysis, the results the Monte Carlo simulation will be considered the baseline for 

comparison to the other methods.  
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The number of trials was chosen to ensure a high confidence of a low error level 

when measuring an 80% constraint satisfaction probability. The value of 50,000 trials 

chosen ensures a 95% confidence of a 1.75% maximum error when measuring against a 

constraint at the 80% level, according to Eqn. 5.3 [110]. This is close enough to the actual 

answer that it should be able to give an idea of which of the tested approximation 

methods are also close to the actual answer. This error band should also be considered 

when comparing answers between the candidate analyses, as a small accuracy advantage 

may not be significant to prove one analysis superior in accuracy to another. 

6.6 Monte Carlo Results 

The Monte Carlo simulation generated the means, variances and correlation 

coefficients required for integration into the probabilistic framework as well as internal 

constraint satisfaction. The numerical results for these values can be found in Table 4. 

Confidence intervals for the values below were calculated according to  
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Table 4 – Table of Mass Properties Monte Carlo Results 

 GLOW µ GLOW σ G/D corr. Drywt. µ Drywt. σ MR 80% c.l. 
Monte 
Carlo 

1,681,950 lb. 34,280 lb. 44.2% 143,630 lb. 3,760 lb. 0.98097 

95% c. I. ± 300 lb. ± 210 lb. ± 0.7% ± 33 lb. ± 20 lb. ± 0.03% 

 

 

 The positive MR term in the last cell in Table 4 shows that for this OML size, this 

vehicle will exceed the required propellant loading to an 80% confidence level. Figure 23 

and Figure 24 illustrate the 44.2% correlation coefficient between GLOW and dry weight 

in both histogram and scatter plots. This property of the output is most easily seen in the 

skew in the scatter plot. Figure 24 gives a better idea of the normality of the data, as the 

frequency bars have the familiar bell shaped curve of a Gaussian distribution. 

 

 The histogram in Figure 24 along with the normal distribution plot in Figure 25 

show clearly that the output distribution for GLOW is in fact normal, except for some 

small probabilities in the tails of the distribution. This normality is important to the 

assumptions made by the probabilistic framework and is an important fact to verify. 
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Figure 23 – Monte Carlo Scatter Plot of GLOW and Dry Weight 

 

Figure 24 – Monte Carlo Histogram of GLOW and Dry Weight 
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Figure 25 – Normal Probability Plot of GLOW 

 

 The results here show that the outputs are in fact correlated and do not violate any 

of the assumptions made by the probabilistic framework presented earlier. This also 

means that any of the approximation methods that were able to match the performance of 

the Monte Carlo simulation should be appropriate for the planned probabilistic 

framework, as there is no apparent problem with the variables themselves. 

6.7 Response Surface Procedure  

This method [75, 76, 77, 79, 100] uses a two-level design of experiments arrays to 

first screen for important factors, then fits a higher order model to the factors contributing 

most to the response using a second design of experiments array. The design array used 

for screening was a 64 run, resolution IV fractional factorial design for 38 variables. This 
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means that the main effects were at most confounded with third order interactions. To 

design the array, a Matlab code was created using the direct generation method [151] to 

create fractional factorial designs with maximum possible resolution. This screening 

array was then run on the weights and sizing to get the importance of each of the 

variables. 

 

From this point, the statistical software package JMP [149] was used to conduct 

a screening test on the results and generate importance rankings for the main effects for 

the output variables gross liftoff weight, dry weight and mass ratio error. Ten variables 

were determined to be the drivers for the three outputs of interest, as is show in the Pareto 

plots in Figure 26, Figure 27 and Figure 28. Analysis of these plots lead to the selection 

of the most important variables for the response surface. Variables were considered 

important to the response if they were one of the top factors in any of the three responses 

of interest. To be considered a top factor, the variable must be above the 80% cumulative 

response line on the Pareto plot and therefore be a member of the minimal set of variables 

that contribute to 80% of the response. 
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Figure 26 – Pareto Plot for MR Difference Response 
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Figure 27 – Pareto Plot for Dry Weight Response 
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Figure 28 – Pareto Plot for GLOW Response 

 

 

 The Pareto plots presented here revealed ten variables that were important to all 

of the responses of interest. These ten variables and their corresponding levels are shown 

in Table 5. It is important to note that some of the variables outside the boxes of the 
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Pareto plots were actually included in the model. This means that more of the variability 

in the response than was shown at the cutoff was included in the response surface model. 

 

Table 5 – Important Variable and Their Levels 

Variable Low Setting High Setting 

Mrreq (Mass Ratio Required) 7.3 8.8 

engtwsl (Engine Thrust to Weight at S/L) 55 92 

pristrsuw (Primary Structure Unit Weight) 2.257 psf. 3.637 psf. 

lh2density (Density of LH2 Fuel) 4.2 lb./ cu. ft. 4.6 lb./ cu. ft. 

Peff (packaging efficiency) 70% 76% 

loxtanksuw (LOx tank str. unit weight) 0.51 lb./ cu. ft. 0.68 lb./ cu. ft. 

Lh2tanksuw (LH2 fuel tank unit weight) 0.35 lb./ cu. ft. 0.43 lb./ cu. ft. 

omssuw (OMS % of entry weight) 1.46% 2.65% 

tufisuw (TUFI TPS Structure Unit Weight) 1.17 psf. 1.69 psf. 

tabisuw (TABI TPS Structure Unit Weight) 0.72 psf. 1.04 psf. 

 

 

After this process, commensurate with the expense of the trials, a full factorial 

experiment design was used to fit a quadratic response surface of the form in Eqn. 6.3. 

The important variables were set to high, middle and low values corresponding to the 

ranges over which they were screened. The remaining variables were all set to their most 

likely value. The regression was done by means of a stepwise process designed to 

maximize the accuracy of the fit by eliminating parameter estimates that do not 

contribute to the response. This contribution is determined by a series of F ratio tests as 

described in the background chapter. The software package JMP was used to perform 

this process. Stepwise regression has the effect of eliminating the noise created by the 
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small coefficient estimates and raising the adjusted R-square of the overall fit. All the 

response variables were fit using the same process. 
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Where x represents the input variables and a, b and c are the coefficients of the 

quadratic polynomial. The adjusted R-Square of all three fits was 1.000. This translates to 

an extremely good fit, especially considering the number of sample points in the 

experiment design.  

 

Once the response surface was generated, a Monte Carlo simulation over ten 

variables was conducted. This analysis was identical to the direct Monte Carlo simulation 

conducted on the mass properties and sizing model, but this time only the ten variables in 

the response surface could be varied. The output variables of interest were then analyzed 

using sample mean and variance calculations. 

6.8 Response Surface Results 

This simulation generated the same means, variances and correlation coefficients 

required for integration into the probabilistic framework as well as for internal constraint 

satisfaction as generated by the Monte Carlo simulation. A comparison of these results to 

Monte Carlo simulation is in Table 6. 
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Table 6 – Results of RSE / Monte Carlo Simulation 

 GLOW µ GLOW σ G/D corr. Drywt. µ Drywt. σ MR 80% c.l. 
Monte 
Carlo 

1,681,950 lb. 34,280 lb. 44.2% 143,630 lb. 3,760 lb. 0.98097 

95% c. I. ± 300 lb. ± 210 lb. ± 0.7% ± 33 lb. ± 20 lb. ± 0.03% 

RSE / 
Monte 
Carlo 

1,686,275 lb. 34,220 lb. 50.4% 147,000 lb. 3,300 lb. 1.1400 

Abs. 
Rel. 
error 

0.257 % 0.175 % 14.0% 2.35% 12.2% 16.2% 

 

 

While the GLOW results do not appear to be that inaccurate, the dry weight and 

mass ratio difference results are quite far away from the direct Monte Carlo results. This 

was probably due to the lower variability captured by these models when compared to the 

GLOW model. This can be seen in Figure 26, Figure 27 and Figure 28 in the cumulative 

variability line to the right of the bars on the plot. The cumulative plots for dry weight 

and mass ratio difference were near the minimum allowable 80%, while the GLOW 

effects included in the model were well over 90%. 

 

Figure 29 and Figure 30 illustrate the relationship between the GLOW and dry 

weight distributions in both histogram and scatter plots. The results show a visual 

similarity to the Monte Carlo simulation. However, there is a significantly higher 

correlation coefficient in this distribution than in the direct Monte Carlo result. It is 

important to note how full the distribution is. While this does not necessarily connote 

accuracy, it is an important aspect of the method, as cumulative distributions can be 

calculated without the use of an assumed distribution function. If the nature of the output 

distribution were not known, this would be a tremendous advantage. In this particular 

test, the outputs of interest do seem to be quite normal. 
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Figure 29 – Scatter Plot of RSE/MC GLOW and Dry Weight 

 

 

Figure 30 – Histogram of RSE/MC GLOW and Dry Weight 
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 The histogram in Figure 30 along with the normal distribution plot in Figure 31 

show clearly that the output distribution for GLOW calculated by the response surface is 

normal, just as with the Monte Carlo simulation results.  

 

 

Figure 31 – RSE / MC Normal Probability Plot for GLOW 

 

 

 The results here show that the outputs of the response surface analysis are in fact 

correlated normals just like the Monte Carlo simulation and therefore do not violate any 

of the assumptions made by the proposed probabilistic framework. There are issues with 

accuracy on select variables, however. While neither of the variables of interest with 

large errors are coupling variables, they are involved with internal constraint satisfaction 

and objective function formulation. These errors are therefore a serious concern. 
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6.9 Discrete Probability Optimal Matching Distributions 

This group of methods [91] uses a discrete probability distribution as a surrogate 

for the actual distribution, as described earlier in this paper. Because of the highly 

dimensional nature of the mass properties problem, none of the methods presented 

previously by the author [91] were used for this problem. Instead, the fractional factorial 

method described in the earlier chapter on new uncertainty analysis methods was used. It 

began with a two level fractional factorial design of experiments array with levels set to –

1 and +1 was constructed with each point having equal probability. The settings of the 

factors in this array are uncorrelated and have means zero and variances of 1. Taking this 

array and using an inverse standard normal space transform, the desired mean and 

covariance matrix can be imparted to the set of points. This means that the discrete input 

distribution matches the means, variances and covariances of the inputs. This process is 

described in detail in the section in the background chapter on this particular DPOMD 

method. 

 

In this particular test, several fractional factorial designs were used of varying 

size. To create these designs, the Matlab© code created for this research used the direct 

generation method [151] to create a fractional factorial design with the maximum 

resolution for a given number of random variables and reduction factor. For the test, the 

reduction factor was varied to gauge the accuracy with respect to discrete input 

distribution size. Experiment sizes from 64 to 256 runs for 38 variables were considered, 

with results measured from each and compared here. The resolutions of the experiments 

are summarized in Table 7. 
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Table 7 –Fractional Factorial Designs Used 

Experiment Type # Runs Reduction Resolution 

2(38-32) fractional factorial 64 32 IV 

2(38-31) fractional factorial 128 31 V 

2(38-30) fractional factorial 256 30 VII 

 

 

 

 First, the means, variances and covariances of both the triangular and normal 

input distributions were calculated. This step is necessary to create the inverse standard 

normal space transform described earlier in the section describing this DPOMD method. 

Next, the two level fractional factorial experiment design discussed earlier was created 

with levels at –1 and 1. When expressed in standard normal space, this experiment design 

has the same mean and covariance matrix as the standard normal distribution.  

 

As a side note, because the DPOMD method chosen only matches the mean and 

covariance arrays for the input distributions, the skewed triangular distributions in the 

weight assumptions were not as fully represented as the multivariate normal coupling 

variables in this particular problem. This was because of their third order moment 

characteristics. In spite of this, the results for this analysis proved to be quite accurate. 

 

Using the inverse transform found using the mean vector and covariance matrix of 

the inputs, the experiment design was then transformed from standard normal space into 

the actual random variable space. This yielded a discrete probability distribution that had 

the same mean vector and covariance matrix as the set of 38 input variables. This yields a 

sampling scheme that follows the shape and size of the input distributions. 
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After evaluating the differently sized sets of points, the results of the analysis 

were obtained using a distribution mean and covariance calculation. For this analysis, a 

normal distribution was fit to the results to obtain the desired confidence intervals for the 

output. This was considered to be a valid assumption due to the fact that the mass 

properties analysis was mostly additive containing a large number of variables, and was 

therefore valid under the central limit theorem for normal variables [150]. Also, 

inspection of the Monte Carlo results for mass properties and sizing showed normal 

behavior, further bolstering the decision to use an assumed normal distribution to 

calculate confidence intervals. 

6.10 DPOMD Results 

The means and standard deviations of GLOW and dry weight were calculated 

using a moment-based mean and standard deviation calculation. The standard deviation 

estimator used here differs from the random sampling methods in that the denominator 

contains the number of points as opposed to number of points minus one. The standard 

deviation estimator is given in Eqn. 6.4 [150]. 
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 This method was executed for various levels of computational expense using 

different reduction factor fractional factorial designs. A comparison of these results to the 

reference Monte Carlo simulation can be found in Table 8. 
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Table 8 – DPOMD Mass Properties Test Results 

 GLOW µ GLOW σ 
G/D 
corr. Drywt. µ Drywt. σ MR 80% c.l. 

Monte 
Carlo 

1,681,950 lb. 34,280 lb. 44.2 % 143,630 lb. 3,760 lb. 0.98097 

95% c. I. ± 300 lb. ± 210 lb. ± 0.7% ± 33 lb. ± 20 lb. ± 0.03% 

64 run 
DPOMD 

1,681,960 lb. 32,625 lb. -7.27 % 143,640 lb. 3,290 lb. 0.93730 

Abs. 
Rel. 
error 

0.000860 % 4.84 % 116 % 0.00514 % 12.5 % 4.45 % 

128 run 
DPOMD 

1,681,970 lb. 34,275 lb. 44.2 % 143,645 lb. 3,770 lb. 0.98020 

Abs. 
Rel. 
error 

0.00121 % 0.0262 % 0.110 % 0.00875 % 0.392 % 0.0787 % 

256 run 
DPOMD 

1,681,970 lb. 34,201 lb. 44.2 % 143,644 lb. 3,750 lb. 0.98171 

Abs. 
Rel. 
Error 

0.00120 % 0.240 % 0.124 % 0.00868 % 0.242 % 0.0753 % 

 

 

 

 Two scatter plots of dry weight and GLOW can be found in Figure 32 and Figure 

33. The first is for 64 runs, while the second is for 256. It is evident from these plots that 

this method requires the assumption of a type of distribution to go along with the moment 

information. For these variables, we know from the previous Monte Carlo simulation that 

they are normal, so an assumed Gaussian distribution was used to calculate confidence 

intervals for GLOW, dry weight and mass ratio (MR). Despite the lack of a normal 

appearance, the 256 run scatter plot in Figure 33 does show the correlation between the 

two variables. 
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Figure 32 – Scatter Plot for 64 Run DPOMD 
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Figure 33 – Scatter Plot for 256 Run DPOMD 
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The results of the DPOMD testing indicated that while the accuracy of some of 

the parameters were dependent on sample size, precise results were obtained for the 128 

and 256 run models. This would indicate that if tested properly before it is implemented, 

this DPOMD method is quite useful for probabilistic analysis of this type of problem. 

The testing caveat pertains to the type of distribution function assumed for the output in 

order to calculate confidence intervals and verify the accuracy in this particular situation. 

6.11 Descriptive Sampling 

The descriptive sampling algorithm was used for three selected sample sizes, each 

of which was chosen on the basis of acceptable execution time. These were selected to be 

similar in size to the DPOMD runs, but due to the higher sample size flexibility of 

descriptive sampling, could be at more intuitive values. 

 

The first step was the creation of the probability map. This was done using a 

custom Matlab© routine designed to generate a descriptive sampling run set for a 

independent, multivariate uniform distribution. It uses a similar algorithm to the one 

described by McKay, et al. [120] for Latin hypercube sampling and reviewed in the 

background chapter, but with the variability within the stratum removed and the point 

placed at the center of the selected cell. This is an efficient algorithm described by Saliby 

[132] for generation of efficient descriptive sampling locations. It also means that the 

Latin hypercube and descriptive sampling techniques are asymptotically similar [132], 

due to the shrinking of the strata as the sample size grows. 
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Once the uniform probability map was generated, this was treated just like a table 

of random numbers for a Monte Carlo simulation. First, for the multivariate normal 

random variables, sample values in standard normal space [138, 46] from standard 

normal distributions were calculated based on the probabilities generated by the 

descriptive sampling algorithm. This was done by way of an inverse cumulative 

distribution function. Next, the inverse cumulative triangular distribution functions were 

used to generate the sample locations for the triangular random variables. The triangular 

variables were calculated directly in the problem space. 

 

Once the locations of the standard normal sample points in standard normal space 

were identified, this experiment design was transformed into the actual normal random 

variable space to create a table of trials for the simulation to calculate.  

 

The results of this analysis were analyzed in much the same way as the other 

weights and sizing tests. For the calculation of confidence intervals, a simple sorted 

counting technique identical to the method for the Monte Carlo simulation was used. The 

other parameters were also calculated in the same manner as the Monte Carlo simulation. 

6.12 Descriptive Sampling Results 

The same output distribution parameters as were presented in the previous section 

were compared to the Monte Carlo simulation results. The errors for all the parameters 

except the correlation coefficient are reasonably small for the 200 run version. They are 

listed in Table 9 along with the results for the variables of interest to the multidisciplinary 

problem. 
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Table 9 – Results of Mass Properties Descriptive Sampling Test 

 GLOW µ GLOW σ 
G/D 
corr. Drywt. µ Drywt. σ MR 80% c.l. 

Monte 
Carlo 

1,681,950 lb. 34,280 lb. 44.2 % 143,630 lb. 3,760 lb. 0.98097 

95% c. I. ± 300 lb. ± 210 lb. ± 0.7% ± 33 lb. ± 20 lb. ± 0.03% 

50 run 
DS 

1,681,967 lb. 34,118 lb. 46.8 % 143,648 lb. 3,695 lb. 0.90997 

Abs. 
Rel. 
error 

0.001 % 0.483 % 5.79 % 0.0117 % 1.67 % 7.23 % 

100 run 
DS 

1,681,952 lb. 33,698 lb. 51.4 % 143,641 lb. 3,710 lb. 0.93969 

Abs. 
Rel. 
error 

0.0001 % 1.71 % 16.2 % 0.00685 % 1.26 % 4.21 % 

200 run 
DS 

1,681,982 lb. 35,086 lb. 53.2 % 143,650 lb. 3,701 lb. 0.96073 

Abs. 
Rel. 
Error 

0.00192 % 2.34 % 20.2 % 0.0111 % 1.50 % 2.06 % 

 

 

 

 The scatter plot results in Figure 34 for descriptive sampling are similar to those 

for the DPOMD method. The behavior shown in Figure 35 indicated that an assumed 

distribution was not necessary for the calculation of confidence intervals. However, this 

is of minor importance, as the output has already been shown to be normal by the 

reference Monte Carlo simulation.  
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Figure 34 – Scatter Plot of 200 run Descriptive Sampling  
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Figure 35 – Normal Probability Plot for DS GLOW Result 
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6.13 Overall Comparisons 

The aim of this test was to determine the characteristics of several methods of 

uncertainty approximation when applied to a conceptual launch vehicle mass properties 

analysis and then select a preferred method with which to proceed on to multidisciplinary 

optimization. 

 

The first goal has been met. The characteristics of this problem has been shown 

extensively in the previously section with respect to response surface, discrete probability 

optimal matching distribution and descriptive sampling methods. 

 

Of the techniques tested, the DPOMD method for the two higher sample sizes was 

able to match the Monte Carlo simulation the best for the output parameters of interest. 

While the descriptive sampling method was close for some parameters, the DPOMD was 

clearly the method of choice for this contributing analysis. This can be seen in Figure 36, 

which shows a trial history of the accuracy of all of the approximation methods. The 

Monte Carlo simulation accuracy was calculated like the others by comparing it to the 

final answer generated by the Monte Carlo.  

 

Figure 36 and Figure 37 indicate that the RSE/RSM method was somewhat 

inaccurate. While some the parameters not shown in Figure 36 and Figure 37 were 

accurately predicted by the response surface, the errors on the displayed variables were 

too high to allow the use of this type of simulation. On the Excel© platform, the time to 

evaluate the RSE for 50,000 trials was 12.8 minutes on a Pentium III 850 MhZ computer. 

The time to evaluate the same number of Monte Carlo trials was 14.1 minutes. If 

executed using a custom C++ Monte Carlo RSE evaluation program, this cost is much 

smaller, taking only 5.5 seconds on an SGI Octane workstation. 
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The approximation methods that took on the order of one hundred trials were 

even quicker still. While not as accurate, the 64 trial methods completed in 1.1 seconds, 

the 128 trial methods in 2.2 and the 256 methods in 4.4 seconds, on the order of the 

expense of using the RSE on the workstation. A complete listing of the computational 

expenses can be found in Table 10. 
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Figure 36 – Trial History of MR C.L. Mass Properties Approximation Tests 
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Table 10 – Execution Time for Mass Properties Methods 

Number of Trials Platform Time 

50,000 Excel© Analysis Calls Pentium III PC 14.1 min. 

50,000 Excel© RSE Pentium III PC 12.8 min. 

50,000 C++ RSE SGI Octane 5.5 sec. 

256 Excel© Analysis Calls Pentium III PC 4.3 sec. 

200 Excel© Analysis Calls Pentium III PC 3.4 sec. 

128 Excel© Analysis Calls Pentium III PC 2.2 sec. 

100 Excel© Analysis Calls Pentium III PC 1.7 sec. 

64 Excel© Analysis Calls Pentium III PC 1.1 sec. 

50 Excel© Analysis Calls Pentium III PC 0.85 sec. 
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Figure 37 – Trial History of Dry Weight Standard Deviation 
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Interpretation of the results presented here show that the choice method for this 

analysis, with this set of inputs and outputs, was the fractional factorial DPOMD. More 

specifically, the 256 trial version was selected due to the fact that it was accurate for all 

the selected parameters of interest, and still had one of the lowest computation times. 

While the descriptive sampling method does not seem to depend as much on sample size, 

the accuracy of the higher order DPOMD methods is much better. 

 

This meant that the probabilistic multidisciplinary design framework for 

conceptual launch vehicle design would utilize a 128-run, 38 variable fractional factorial 

DPOMD method for the calculation of uncertainty information in the mass properties and 

sizing contributing analysis. 
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CHAPTER VII 

PROPULSION ANALYSIS TEST 

The propulsion analysis considered here consisted of a deterministic rocket engine 

design analysis tool, SCORES [162], with an uncertainty approximation method wrapped 

around the outside.  SCORES was developed in the SSDL by Way to provide quick, 

conceptual-level estimates of rocket engine performance, taking into account such factors 

as chemical equilibrium and nozzle type, but not requiring design information about 

powerhead pump systems. 

 

SCORES consists of two analyses, the first of which calculates the equilibrium 

chemical state of the propellants in the combustion chamber and the second of which 

does a frozen flow, converging-diverging nozzle calculation to generate the ideal thrust 

of the proposed engine. Regressed efficiencies are then placed on the nozzle and 

combustion chamber depending on the type of engine cycle selected by the user. 

 

To size the rocket, SCORES used a simple scaling [162] algorithm. To create an 

engine of a specified thrust, first output parameters for a baseline engine with a throat 

area of one square inch were calculated, then the throat area of the baseline engine was 

changed linearly with the reference thrust to create a new engine. This allowed for rocket 

engine performance estimates commensurate with the amount of information available 

about the engine at this stage in development. It also allows SCORES to generate a sized 

engine with virtually no computational expense beyond that of a single rocket analysis. 
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For this particular simulation, four inputs were selected as noise variables. They 

were the gross liftoff weight, the combustion chamber pressure, the engine power-to-

weight ratio and the mass ratio required. The mass ratio required was included in the test 

because the correlations between it and the propulsion output variables are required by 

the mass properties and sizing analysis. In addition, there were three deterministic 

variables used as inputs to the analysis. These were vehicle thrust-to-weight ratio at 

liftoff, engine nozzle expansion ratio and propellant mixture ratio. 

 

Table 11 – Required Correlations From Propulsion Contributing Analysis 

 MR Required GLOW 
Engine 

Exit Area 
Vacuum 
Thrust 

Engine 
Thrust to 

Weight @SL 

Vacuum 
Specific 
Impulse 

MR 
Required 

1.0 Input Req. Req. Req. Not Req. 

GLOW  1.0 Req. Req. Not Req. Req. 

Engine Exit 
Area 

  1.0 Req. Req. Req. 

Vacuum 
Thrust 

   1.0 Req. Req. 

Engine 
Thrust to 

Weight @SL 

    1.0 Not Req. 

Vacuum 
Specific 
Impulse 

     1.0 

 

 

There are 19 output parameters of interest generated by this uncertainty analysis. 

They include all quantities that are outputs from this contributing analysis and were 

required as inputs by other analyses. Encompassing the all the normal outputs of the 

propulsion contributing analysis, there are several other outputs created by the fact that 

this is part of a probabilistic framework. Information showing the required correlation 
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coefficients can be seen in Table 11. The correlations that are not required are that way 

because the two correlated variables are never input to the same analysis. This means that 

the correlation may exist but it is not important to coupling. 

 

These eleven correlation coefficients, plus the means and variances of the four 

primary analysis outputs were the criteria for judging the effectiveness of the different 

uncertainty analysis methods. As described in the goals and objectives section, these 

quantities were compared to a reference Monte Carlo simulation on the basis of relative 

error. This gave the propulsion test nineteen comparison parameters, by far the most of 

any of the three comparisons in this thesis work. 

 

The candidates for the uncertainty analysis are essentially the same methods as 

the mass properties test. These were selected on the basis of each method’s ability to 

generate multivariate output information, with or without a constraint for comparison. 

The methods that satisfy these criteria are response surface equation with Monte Carlo 

simulation, descriptive sampling and discrete probability optimal matching distributions. 

These methods were all tested at acceptable levels of computational expense for inclusion 

in an iterative optimization environment. 

7.1 Monte Carlo Simulation 

The Monte Carlo simulation was conducted by using the same Matlab© random 

number generation scheme as was described in the mass properties Monte Carlo 

simulations section to sample from the input distributions listed in Table 12. The trials 

selected using these input distributions were then run using the rocket sizer [162] mode of 

SCORES. 
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Table 12 – Propulsion Monte Carlo Input Distributions 

Variable Distribution 
Type 

Mean Std. 
Dev. 

Min. Most 
Likely 

Max. 

MR required Normal 7.8 0.03 N/A N/A N/A 

GLOW Normal 2.1 Mlb. 50 klb. N/A N/A N/A 

Chamber 
Pressure 

Normal 206 atm. 4 atm. N/A N/A N/A 

Engine Power-
to-Weight Ratio 

Triangular N/A N/A 
0.015 

MW/lb. 

0.017 

MW/lb. 

0.023 

MW/lb. 

 

 

Because this analysis did not have any constraints compare against, the number of 

Monte Carlo trials conducted was somewhat arbitrary. It was judged that 10,000 trials 

was a standard amount and would yield good reference information for the approximation 

methods without requiring too much computer effort to run after the previous test. 

7.2 Monte Carlo Results 

These results will be used as reference values for the other distribution 

approximation methods. The results for the parameters of interest, described earlier in the 

section can be found in Table 13. 

 

 

 

corr. = 15% 
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Table 13 – Results of Propulsion Monte Carlo Simulation 

Variable Monte Carlo Result 95% c. l. 

Exit Area (Ae) Mean 295 sq. ft. ± 0.2 sq. ft. 

Exit Area Std. Dev. 10.1 sq. ft. ± 0.14 sq. ft. 

Vacuum Thrust (Tvac) Mean 3.145 Mlbs. ± 1.5 klb. 

Vacuum Thrust Std. Dev. 76.86 klbs. ± 1.07 klb. 

Engine Thrust-to-Weight (T/We) 
Mean 

54.3 ± 0.1 

Engine Thrust-to-Weight Std. 
Dev. 

5.05 ± 0.07 

Vacuum Specific Impulse 
(Ispvac) Mean 

449.4 sec. ± 0.002 sec. 

Vacuum Specific Impulse Std. 
Dev. 

0.122 sec. ± 0.0017 sec. 

Ae / Tvac Correlation Coefficient 83.0 % ± 0.6% 

Ae / T/We Correlation Coefficient -3.43 % ± 2% 

Ae / Ispvac Correlation 
Coefficient 

-71.2 % ± 0.1% 

Tvac / T/We Correlation 
Coefficient 

-1.14 % ± 2% 

Tvac / Ispvac Correlation 
Coefficient 

-20.1 % ± 1.9% 

MRreq / Ae Correlation 
Coefficient 

10.7 % ± 1.9% 

Mrreq / Tvac Correlation 
Coefficient 

14.6 % ± 1.9% 

Mrreq / T/We Correlation 
Coefficient 

-0.340 % ± 2% 

GLOW / Ae Correlation 
Coefficient 

70.5 % ± 1% 

GLOW / Tvac Correlation 
Coefficient 

98.0 % ± 0.08% 

GLOW / Ispvac Correlation 
Coefficient 

-0.421 % ± 2% 
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Some of the results in Table 13 are quite interesting. At first glance, the highly 

negative correlation between vacuum specific impulse and exit area seems incorrect. 

However, because the area ratio for this test is a constant, an increase in exit area 

corresponds to an increase in throat area, increasing the mass flow through the engine, 

lowering the specific impulse for a similar thrust. This exit area correlation also partially 

causes the negative correlation between vacuum thrust and vacuum specific impulse. For 

a constant sea-level thrust, a higher vacuum thrust can only be caused by a higher exit 

area, again leading to the reduction in specific impulse due to the constant area ratio. 

These changes all seemed to be prompted by changes in engine chamber pressure. 

 

 

 

Figure 38 – Histogram of Vacuum Thrust and Isp 
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Figure 38 shows the slight correlation between the vacuum thrust and specific 

impulse. Both are apparently normally distributed and fall within a reasonable range of 

values. The normality of the engine exit area is shown in Figure 39. It does not begin to 

fall off the line until deep into the tail regions of the distribution. 

 

 

 

Figure 39 – Normal Probability Plot of Engine Exit Area 

 

7.3 Response Surface Method 

The first approximation method tested on the propulsion contributing analysis 

problem was the response surface / Monte Carlo simulation combination. Usually, the 

first step in this process is to screen the input variables down to an acceptable number for 

a quadratic curve fit. However, due to the limited number of input variables, this was not 



 131 

necessary. The five variables that affected the response could be directly modeled using a 

using a uniform central composite experiment design. 

 

The central composite design was created by the software package JMP© [149]. 

The levels for the design are listed in Table 14. These levels were either the bounds of 

reason for the variables in question or they were the bounds of accuracy for the SCORES 

tool. Also, an on-face experiment design was used. This was done because when rotatable 

or orthogonal spacing was used for the star points, some of the variable settings did not 

make sense (e.g., negative thrust at sea level). 

 

Table 14 – Variable Settings for Propulsion Test RSE 

Variable Low Setting High Setting 

Thrust at Sea Level 1.2 Mlb. 4.8 Mlb. 

Chamber Pressure 160 atm. 245 atm. 

Power-to-Weight Ratio 0.015 MW/lb. 0.023 MW/lb. 

Area Ratio 40 100 

Mixture Ratio 4.5 8.0 

 

 

The experiment corresponding to the levels in Table 14 was then evaluated using 

the rocket sizing algorithm in SCORES [162]. The responses were then curve fit to a 

quadratic polynomial of the form in Eqn. 6.3. The fitting process was a stepwise 

regression analysis, using sequential F-tests to determine whether the contribution of the 

polynomial term merited its inclusion in the response surface equation. This was done for 



 132 

all of the output variables. The adjusted R-square values for the four variables are shown 

in Table 15. 

 

 

Table 15 – Fit Values for Propulsion Response Surface 

Response Surface R-Square Adjusted R-Square 

Exit Area 1.000 1.000 

Vacuum Thrust 0.9990 0.9989 

Vacuum Specific Impulse 1.000 1.000 

Engine Thrust-to-Weight 0.9997 0.9996 

 

 

The fit for exit area generated by the stepwise regression initially was not as good 

as the other values. The adjusted R-Square for this initial fit was 0.9875. To remedy this, 

the natural log of the response was fit in place of the actual response. When this was 

done, the adjusted R-Square rose to 1.000. The initial adjusted R-Square value of 0.9875 

was therefore had no negative consequences for the test. The Monte Carlo simulation on 

the response surface was run using this log fit exit area. While not presented, the Monte 

Carlo simulation was performed on both the initial fit and the log fit. The log fit greatly 

outperformed the initial fit, so these are the results presented here. 

7.4 Response Surface Results 

These response surfaces were run 10,000 times using the same random number 

list as was used for the direct Monte Carlo simulation. The results of the current 
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simulation were then measured for sample means, standard deviations and correlation 

coefficients for the output parameters stated earlier in the section. 

 

 

Table 16 – Results of Propulsion RSE Monte Carlo 

Variable 
Monte Carlo 

Result 
95% c. l. RSE / MC 

Result 
Abs. Rel. 

Error 

Exit Area (Ae) Mean 295 sq. ft. ± 0.2 sq. ft. 291 sq. ft. 1.30 % 

Exit Area Std. Dev. 10.1 sq. ft. ± 0.14 sq. ft. 10.8 sq. ft. 7.35 % 

Vacuum Thrust (Tvac) Mean 3.145 Mlbs. ± 1.5 klb. 3.139 Mlbs. 0.184 % 

Vacuum Thrust Std. Dev. 76.86 klbs. ± 1.07 klb. 79.18 Mlbs. 3.02 % 

Engine Thrust-to-Weight (T/We) Mean 54.3 ± 0.1 54.1 0.401 % 

Engine Thrust-to-Weight Std. Dev. 5.05 ± 0.07 5.07 0.462 % 

Vacuum Specific Impulse (Ispvac) 
Mean 

449.4 sec. ± 0.002 sec. 449.2 sec. 0.029 % 

Vacuum Specific Impulse Std. Dev. 0.122 sec. ± 0.0017 sec. 0.102 sec. 16.8 % 

Ae / Tvac Correlation Coefficient 83.0 % ± 0.6% 87.0  % 4.83 % 

Ae / T/We Correlation Coefficient -3.43 % ± 2% -3.44 % 0.269 % 

Ae / Ispvac Correlation Coefficient -71.2 % ± 0.1% -67.6 % -5.07 % 

Tvac / T/We Correlation Coefficient -1.14 % ± 2% -1.31 % 14.8 % 

Tvac / Ispvac Correlation Coefficient -20.1 % ± 1.9% -22.6% 12.8 % 

MRreq / Ae Correlation Coefficient 10.7 % ± 1.9% 11.2 % 4.69 % 

Mrreq / Tvac Correlation Coefficient 14.6 % ± 1.9% 14.5 % 0.526 % 

Mrreq / T/We Correlation Coefficient -0.340 % ± 2% -0.341 % 0.229 % 

GLOW / Ae Correlation Coefficient 70.5 % ± 1% 73.9 % 4.92 % 

GLOW / Tvac Correlation Coefficient 98.0 % ± 0.08% 97.5 % 0.565 % 

GLOW / Ispvac Correlation Coefficient -0.421 % ± 2% -0.418 % 0.775% 
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Table 16 shows that the results of the propulsion response surface Monte Carlo 

simulation were generally good, with the exception of the vacuum specific impulse 

standard deviation. While the relative error is quite high, the actual error on this quantity 

is near the limits of fidelity for the SCORES model. However, specific impulse is a very 

sensitive variable, and should be as accurate as possible. 

 

 

 

Figure 40 – Histogram of Vacuum Thrust and Isp for Propulsion RSE/MC 

 

 

Figure 40 and Figure 41 are visually quite similar to the direct Monte Carlo 

simulation. Overall, the response surface method performed well on this problem and is a 

viable candidate for inclusion in the system level probabilistic optimization. 
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Figure 41 – Normal Probability Plot for Exit Area from Propulsion RSE/MC 

7.5 DPOMD Procedure 

The procedure for the DPOMD test on propulsion was identical to the other tests 

except for the reduction in the fractional factorial design in the fractional factorial-based 

DPOMD. In this case, because of the limited number of input variables, a reduction of 

zero was selected, creating a full factorial version of this method. The binomial 

distribution DPOMD method [91] could not be used because the inputs were not 

independent. 

 

The full factorial design was generated at levels of –1 and +1 for the four 

uncertainty variables, then an inverse Hasofer-Lind transform [138] based on the mean 

vector and covariance matrix of the input variables was applied to the variables in the 

DoE. See section 5.2.14 on DPOMD in the background chapter for details on this 
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process. The resulting table of runs was then a discrete probability distribution with the 

same mean vector and covariance matrix as the input random variables. This method did 

not take into consideration any skewness information, so the skewness in the triangular 

distribution for power-to-weight ratio was not taken into account. 

 

This table of runs was executed using SCORES [162] and the output parameters 

of interest were recorded. These parameters were then analyzed using sample estimates 

for mean, standard deviation and correlation coefficient, similar to those shown in Eqns. 

6.1-2. These parameters were compared using relative error to the results of the Monte 

Carlo simulation. This comparison is shown in Table 17. 

 

The negligible amount of adaptation required to analyze this new problem shows 

one of the advantages of the DPOMD method. For the types of problems observed in this 

research, the only user input required was a reduction factor indicating the desired 

number of runs and the input distribution information 

7.6 DPOMD Results 

 

The results of this test in Table 17 show that the DPOMD is accurate again. The 

only areas for concern with respect to relative error is on a pair of correlation coefficients 

that are very close to zero. These errors are acceptable given the absolute error values 

associated with them are quite small. 
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Table 17 – Results of Propulsion DPOMD Simulation 

Variable 
Monte Carlo 

Result 
95% c. l. DPOMD 

Result 
Abs. Rel. 

Error 

Exit Area (Ae) Mean 295 sq. ft. ± 0.2 sq. ft. 295 sq. ft. 3.09e-3 % 

Exit Area Std. Dev. 10.1 sq. ft. ± 0.14 sq. ft. 10.4 sq. ft. 2.68 % 

Vacuum Thrust (Tvac) Mean 3.145 Mlbs. ± 1.5 klb. 3.144 Mlbs. 0.0260 % 

Vacuum Thrust Std. Dev. 76.86 klbs. ± 1.07 klb. 78.9 klbs. 2.65 % 

Engine Thrust-to-Weight (T/We) Mean 54.3 ± 0.1 54.3 0.0206 % 

Engine Thrust-to-Weight Std. Dev. 5.05 ± 0.07 5.20 3.10 % 

Vacuum Specific Impulse (Ispvac) Mean 449.4 sec. ± 0.002 sec. 449.4 sec. 4.30e-4 % 

Vacuum Specific Impulse Std. Dev. 0.122 sec. ± 0.0017 sec. 0.127 3.71 % 

Ae / Tvac Correlation Coefficient 83.0 % ± 0.6% 82.8 % 0.300 % 

Ae / T/We Correlation Coefficient -3.43 % ± 2% 3.48 % 1.39 % 

Ae / Ispvac Correlation Coefficient -71.2 % ± 0.1% -71.4 % 0.233 % 

Tvac / T/We Correlation Coefficient -1.14 % ± 2% -0.967 % 15.4 % 

Tvac / Ispvac Correlation Coefficient -20.1 % ± 1.9% -19.9 % 1.10 % 

MRreq / Ae Correlation Coefficient 10.7 % ± 1.9% 10.5 % 1.78 % 

Mrreq / Tvac Correlation Coefficient 14.6 % ± 1.9% 14.7 % 0.638 % 

Mrreq / T/We Correlation Coefficient -0.340 % ± 2% 2.33e-5 % 100 % 

GLOW / Ae Correlation Coefficient 70.5 % ± 1% 70.0 % 0.645 % 

GLOW / Tvac Correlation Coefficient 98.0 % ± 0.08% 98.0 % 0.0388 % 

GLOW / Ispvac Correlation Coefficient -0.421 % ± 2% 0.00 % 100 % 
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The fact that this simulation consists of only sixteen runs does take away from the 

appearance of the histogram of vacuum thrust and vacuum Isp in Figure 42. If a 

constraint were to be applied to the engine exit area, a normal curve would also need to 

be fit, due to the sparseness of the data points. A normal probability plot showing roughly 

Gaussian behavior is in Figure 43. 

 

 

 

Figure 42 – Histogram of Vacuum Thrust and Isp for Propulsion DPOMD 

 

 

449.25 

449.38 

449.5 

449.31 

449.44 



 139 

280 285 290 295 300 305 310

0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 

Exit Area (sq. ft.)

P
ro

b
a

b
ili

ty

Normal Probability Plot

 

Figure 43 – Normal Probability Plot of Exit Area for Propulsion DPOMD 

7.7 Descriptive Sampling 

The same routine used to generate the probability map for the mass properties 

analysis was used for the propulsion analysis for sample sizes of 50 and 100. Once the 

probability map was generated, it could be conducted treated like any other Monte Carlo 

simulation using uniform [0,1] pseudo-random numbers. This was done by means of an 

inverse cumulative probability function transform, as described in detail in the previous 

section on the mass properties descriptive sampling test. 

 

The distribution variables sampled were identical to that of the Monte Carlo and 

DPOMD simulations. The extra deterministic variables that were present in the response 

surface method test were not required, as this method was expected to be run each time a 

new output distribution was required.  
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7.8 Descriptive Sampling Results 

The results in Table 18 show that the descriptive sampling method works well for 

predicting the means and standard deviations of the outputs. Many of the errors in 

correlation coefficient seem to be quite high. However, upon closer inspection, most of 

these extreme values are all near zero, creating misleading relative errors. Despite this, on 

some of the correlation coefficients, the method did not seem to be accurate enough. 

More specifically the mass ratio required and vacuum thrust correlation coefficient error 

on the 100 run version had both a high absolute and relative error. The same was true for 

the correlation between the engine exit area and thrust-to-weight at sea level. 

 

Figure 44 shows the similarity in appearance between the descriptive sampling 

and Monte Carlo simulations. Although over a much more coarse grid than that of the 

Monte Carlo simulation, the 100 run version of the method is beginning to show a 

multivariate normal behavior. This is impressive considering the limited number of runs. 

 

The normal probability plot in Figure 45 shows that with descriptive sampling, 

the output variable exit area retains the normal characteristics of the Monte Carlo 

simulation result. This was an important consideration for confidence level testing. It 

meant that a simple counting method could be used in place of an assumed distribution 

function. 
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Table 18 – Results for Descriptive Sampling Propulsion Test 

Variable Monte Carlo 
Result 

95% c. l. 50 run DS 
Result 

Abs. Rel. Error 100 run DS 
Result 

Abs. Rel. 
Error 

Exit Area (Ae) 
Mean 

295 sq. ft. ± 0.2 sq. ft. 295 sq. ft. 0.00106 % 295 sq. ft. 0.00322 % 

Exit Area Std. 
Dev. 

10.1 sq. ft. ± 0.14 sq. ft. 9.73 sq. ft. 3.32 % 10.2 sq. ft. 0.917 % 

Vacuum 
Thrust (Tvac) 

Mean 

3.145 Mlb. ± 1.5 klb. 3.144 Mlb. 0.0268 % 3.144 Mlb. 0.0259 % 

Vacuum 
Thrust Std. 

Dev. 

76.86 klb. ± 1.07 klb. 75.4 klb. 1.93 % 77.97 klb. 1.45 % 

Engine Thrust-
to-Weight 

(T/We) Mean 

54.3 ± 0.1 54.3 0.0198 % 54.3 0.0241 % 

Engine Thrust-
to-Weight Std. 

Dev. 

5.05 ± 0.07 5.10 1.03 % 5.04 0.0310 % 

Vacuum 
Specific 
Impulse 

(Ispvac) Mean 

449.4 sec. ± 0.002 sec. 449.4 sec. 4.03e-4 % 449.4 sec. 4.06e-4 % 

Vacuum 
Specific 

Impulse Std. 
Dev. 

0.122 sec. ± 0.0017 sec. 0.122 sec. 0.322 % 0.123 sec. 0.448 % 

Ae / Tvac 
Correlation 
Coefficient 

83.0 % ± 0.6% 81.6 % 1.69 % 83.4 % 0.480 % 

Ae / T/We 
Correlation 
Coefficient 

-3.43 % ± 2% -14.9 % 334 % 5.12 % 249 % 

Ae / Ispvac 
Correlation 
Coefficient 

-71.2 % ± 0.1% - 69.7 % 2.13 % - 71.3 % 0.120 % 

Tvac / T/We 
Correlation 
Coefficient 

-1.14 % ± 2% -10.3 % 798 % 5.52 % 583 % 

Tvac / Ispvac 
Correlation 
Coefficient 

-20.1 % ± 1.9% -15.5 % 22.7 % - 20.9 % 4.05 % 

MRreq / Ae 
Correlation 
Coefficient 

10.7 % ± 1.9% 11.2 % 5.10 % 13.0 % 22.1 % 

Mrreq / Tvac 
Correlation 
Coefficient 

14.6 % ± 1.9% 14.2 % 2.63 % 26.2 % 79.2 % 

Mrreq / T/We 
Correlation 
Coefficient 

-0.340 % ± 2% -2.72 % 699 % 2.23 % 754 % 

GLOW / Ae 
Correlation 
Coefficient 

70.5 % ± 1% 68.5 % 2.78 % 71.2 % 1.03 % 

GLOW / Tvac 
Correlation 
Coefficient 

98.0 % ± 0.08% 98.0 % 0.0491 % 98.1 % 0.0618 % 

GLOW / 
Ispvac 

Correlation 
Coefficient 

-0.421 % ± 2% 4.46 % 1,160 % -1.56 % 271 % 
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Figure 44 – 100 Run Descriptive Sampling Histogram of Vacuum Thrust and Isp 
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Figure 45 – 100 Run Descriptive Sampling Normal Probability Plot for Exit Area 
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7.9 Overall Comparisons 

The goal of this section was to provide a fast and accurate method for estimating 

the output distribution information of a rocket engine design simulation. This goal has 

been met in that several methods showed low error in estimating the probability of 

several parameters for the propulsion contributing analysis. 

 

Another goal was to measure the error in approximating the probabilistic analysis 

using the best possible method. The chosen method, DPOMD, showed minimal errors on 

all the output parameters of interest. There should not be any problems when applying 

this method to the propulsion contributing analysis. 
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Figure 46 – Relative Errors in Vacuum Isp Std. Deviation 
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The relative error history in Figure 46 shows why the response surface method 

was eliminated from contention for use in the full system-level optimization problem. It’s 

error in estimating the very important engine efficiency standard deviation was far too 

high. The other methods had errors an order of magnitude lower for this parameter. 

Figure 47 shows a parameter for which all the methods performed reasonably. It is likely 

a coincidence, but the error in the approximations seems to be decreasing rather 

exponentially with computational effort for this case. 
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Figure 47 – Relative Errors in Vacuum Thrust Std. Deviation 
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Figure 48 – Relative Errors in MRReq / Tvac Corr. Coeff. 

 

 

Figure 48 illustrates the difficulty the otherwise accurate and efficient descriptive 

sampling method had with predicting some of the correlation coefficients in this research. 

For this particular problem, the most serious error was present in the correlation between 

mass ratio required and vacuum thrust. The relative error is also not due to any scaling 

problems, as the baseline value was 14%, sufficiently far from zero to use relative error 

in a meaningful way. 

 

The execution times of the above methods are hinted at in the previous figures. 

These times varied greatly from one method to the other, as evidenced by the use of a log 

scale in the summary figures. The amount of computational time required for the runs for 

each method is given in Table 19. 
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Table 19 – Computational Time for Propulsion Uncertainty Methods 

Method Trials Platform Time 
Monte Carlo 10,000 SCORES calls SGI Octane 24 min. 

Descriptive Sampling 100 SCORES calls SGI Octane 14 sec. 

Descriptive Sampling 50 SCORES calls SGI Octane 7 sec. 

DPOMD 16 SCORES calls SGI Octane 2.3 sec. 

RSE / MC 10,000 C++ RSE calls SGI Octane 1.1 sec 

 

 

 

Taking into account accuracy and time considerations, the best method for 

estimating the uncertainty of the propulsion contributing analysis appears to be the full 

factorial DPOMD method. It was reasonably accurate, though not the best, in the mean 

and standard deviation output parameters. It also had no significant errors in any of the 

correlation coefficients, which could not be said for any of the other approximation 

methods.  
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CHAPTER VIII 

TRAJECTORY ANALYSIS TEST 

The trajectory analysis for this test was a single stage to orbit (SSTO) trajectory 

utilizing the POST [163] trajectory optimization program. It takes a set of pitch control 

variables at selected points along the trajectories and optimizes these for a user specified 

objective, usually the maximization of burnout weight, while at the same time meeting 

constraints based on desired burnout conditions, usually a target orbit. This idea is 

illustrated in Figure 49. 

 

 

 

 

 

 

Figure 49 – Trajectory Optimization Diagram 

 

This was a deterministic analysis when taken alone. However, with the inclusion 

of the GRAM99 [164] atmosphere model, the trajectory analysis included a larger 

number of noise variables than either of the previous analyses. This model used regressed 

atmosphere data for selected launch ranges around the world to predict atmospheric 

conditions given certain known factors. For this Monte Carlo simulation, the known 

4 pitch controls 
+ azimuth 

28.5° lat. launch (KSC) 
single stage to 50 x 
220 nmi. altitude and 
51.6° inc. 
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factors were considered random within a reasonable set of ranges. For the other analyses, 

because GRAM99 is an inherently stochastic program, the results of a Monte Carlo 

simulation of just GRAM99 had to be fit at certain key points in the atmosphere in order 

to use the listed approximation methods. These key points were selected by visual 

inspection of the mean results for the GRAM99 Monte Carlo for the atmospheric 

parameters important to the physics of the trajectory simulation. 

 

Once the deterministic version of the stochastic problem was formulated, several 

candidate methods for probabilistic analysis were tested at acceptable levels of 

computational expense. These candidate methods were the same as those in the previous 

tests. They were response surface / Monte Carlo analysis, descriptive sampling and 

discrete probability optimal matching distributions. These methods were tested for speed 

and accuracy on selected noise, coupling and output variables based on the goals and 

objectives stated in the goals and objectives chapter. 

 

While there are many possible outputs from trajectory into other contributing 

analyses, experience with this contributing analysis for this particular system problem 

indicates that the only output variable absolutely necessary is the mass ratio required to 

make the target orbit. However, due to the unique requirements of the probabilistic 

multidisciplinary design framework, the correlation of one of the outputs to one of the 

inputs was also required. This is because the input gross liftoff weight (GLOW) and the 

output mass ratio required are both inputs to the propulsion contributing analysis. 

Generating these required correlations is one of the important aspects of the proposed 

probabilistic framework. 

 



 149 

The inputs for the analysis include all the information required to perform the 

analysis and optimization of the trajectory. This translates to information that must be 

given the GRAM99 [164] in order to generate a random atmosphere deck. Also, for the 

test, the vehicle outer mold line (OML), including the engine exit area was assumed to be 

constant. This list of input noise variables is therefore as follows: 

 

• Vehicle gross liftoff weight (GLOW) – This gives the trajectory analysis a necessary 

initial condition to start its trajectory integration. 

• Vehicle thrust at vacuum condition (Tvac) – For a bell nozzle liquid rocket engine, 

this parameter, combined with total engine exit area gave the trajectory information 

about the thrust of the engine through a range of altitude conditions. 

• Engine Specific Impulse at vacuum condition (Ispvac) – This described the propellant 

efficiency of the engine. 

• Multiplier on Cl (Cl_mult) – This variable changed the overall aerodynamic lift 

coefficient at all conditions to simulate errors in the aerodynamic modeling. 

• Multiplier on Cd (Cd_mult) – This changed the overall aerodynamic drag coefficient 

at all conditions again to simulate errors in aerodynamic modeling. 

• Year of launch (year) – Information required by GRAM99 in order to generate 

accurate atmospheric condition scenarios. 

• Month of launch (month) – Information required by GRAM99 in order to generate 

accurate atmospheric condition scenarios. 

• Day of launch (day) – Information required by GRAM99 in order to generate 

accurate atmospheric condition scenarios. 

• Hour of launch (hour) – Information required by GRAM99 in order to generate 

accurate atmospheric condition scenarios. 
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The multipliers on coefficients of drag and lift Cd and Cl were solely to account 

of errors in the aerodynamic dataset. The program APAS [165] was used to generate the 

aerodynamic datasets for the OML of the launch vehicle used. It used a vortex panel 

method for subsonic and supersonic calculations and impact methods for hypersonic 

aerodynamics. The error for this code has been informally rumored to be about +/- 10%. 

However, as with any aerodynamic prediction, huge errors are possible from relatively 

small-scale phenomena. The other noise inputs are either probabilistic coupling variables 

to other contributing analyses, or inherently unknown quantities, like the time of launch. 

 

It is important to note that these inputs were only used in the direct Monte Carlo 

trajectory simulation. The other analyses required parameterization of the atmospheric 

inputs. This yielded a different and much larger set of inputs for the approximation 

methods. These sets will be described later in more detail in the sections on 

approximation methods for trajectory uncertainty analysis. 

8.1 Monte Carlo Simulation 

To calibrate the approximation methods, a Monte Carlo simulation of the 

combined trajectory / atmosphere problem was conducted. This used the variables listed 

above using distributions as described in Table 20. It is interesting to note that the 

simulation could not launch at the end of most months to avoid an error when launching 

in February. This was done because limitations in the input format for GRAM99. 
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Table 20 – Monte Carlo Simulation Input Variable Levels 

Variable Distribution 
Type 

Mean Std. Dev. X1 X2 X3 

GLOW Normal 2.1 Mlb. 50 klb. N/A N/A N/A 

Tvac Normal 2.9 Mlb. 50 klb. N/A N/A N/A 

Ispvac Normal 451 sec. 0.5 sec. N/A N/A N/A 

Clmult Triangular N/A N/A 0.9 1.0 1.1 

Cdmult Triangular N/A N/A 0.9 1.0 1.1 

Year Uniform N/A N/A 2005 2015 N/A 

Month Uniform N/A N/A 1 12 N/A 

Day Uniform N/A N/A 1 28 N/A 

Hour Uniform N/A N/A 0 24 N/A 

 

 

 

The above input variables were used to generate 10,000 trials which were 

executed using a scripted program that first ran GRAM99 to generate an atmosphere data 

deck, then ran POST [163] to generate a trajectory optimized for propellant consumed for 

each given scenario. The atmosphere data deck altitudes were selected to provide thirty 

evenly spaced altitudes through time for a typical SSTO rocket trajectory. This ensured 

that atmosphere information was available over the entire course of the trajectory. The 

random number generation scheme was the built-in Matlab© random number generator 

function [152]. 

 

The simulation consisting of 10,000 trials took approximately 12 hours to 

complete, with some extra manual interface time required to adjust trajectories that did 

not optimize. Overall, the process of evaluating the trials took approximately one day. 
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This was not remotely fast or automated enough to allow for optimization of the 

probabilistic problem. Therefore, finding a fast approximation method was imperative to 

incorporating this method into the probabilistic MDO framework. The results in Table 21 

will therefore be used as a reference for evaluating these approximation methods, as 

described in the goals and objectives section of this thesis. 

 

  

Table 21 – Trajectory Optimization Monte Carlo Simulation Results 

 MRreq µ MRreq σ Mrreq/GLOW corr. 

Monte Carlo 7.8934 0.0328 15.9% 

95% c. l. ± 0.00064 ± 0.00045 ± 1.9% 

 

 

A histogram of the mass ratio (Figure 50) required from this simulation shows 

that the response has a very normal behavior. This is important to note, as the proposed 

probabilistic multidisciplinary framework assumes that the coupling distributions have 

normal behavior. This fact is confirmed by the normal probability plot of MR required in 

Figure 51. 
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Figure 50 – Histogram of MR Required by Trajectory Monte Carlo Simulation 

 

 

 

Figure 51 – Normal Probability Plot of MR Required 
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The goals of this simulation were to provide reference data for the subsequent 

approximation methods and to confirm that the coupling variables were in fact normal. 

These goals were achieved, as GLOW was assumed as an input to be normal, and mass 

ratio required was shown in Figure 50 and Figure 51 to be similarly normal. 

8.2 Atmospheric Point Reduction Process 

The approximation methods for this analysis could not be used on the same 

analysis as the Monte Carlo simulation due to the inherent randomness of the GRAM99 

atmospheric model. Therefore, a multivariate normal distribution was fit to the data at 

selected points for each atmospheric parameter. The results were the same points used for 

the trajectory in the earlier Monte Carlo simulation. 

 

Because the number of atmosphere data points (204) was too high to effectively 

use an uncertainty approximation method, the number of atmosphere points had to be 

reduced. The points were reduced by visually inspecting the mean values of the results of 

a Monte Carlo simulation performed on the GRAM99 atmosphere model. Only the points 

necessary to satisfy the trends of the mean atmospheric parameters were retained. This 

section reviews this selection process. 

 

The means of the distributions at each of the points could be used as the criteria 

because of the relatively small perturbations from the means due to randomness. Figure 

52 shows uncertainty bands of plus and minus 5 standard deviations for air density. This 

is the number of standard deviations required to actually see the bands on the plot. 
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Figure 52 – Density v. Altitude with Uncertainty Bands 

 

 

The parameters required by the trajectory analysis as a function of altitude were 

the following: 

 

• Pressure – Ambient atmospheric pressure in lb./ft.2 

• Density – Ambient atmospheric density in slug/ft.3 

• Temperature – Ambient temperature in °R. 

• Northern wind – wind velocity in the northerly direction in fps. 

• Eastern wind – wind velocity in the easterly direction in fps. 

• Vertical wind – downward wind velocity in fps. 
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These factors were calculated for 10,000 random trials based on random inputs 

the same as those used in the combined trajectory / GRAM99 Monte Carlo simulation 

performed in the previous section. A single multivariate normal distribution was then fit 

to all 204 output responses. After that, the means of each dimension of this multivariate 

normal distribution were plotted and points for the reduced atmosphere model selected 

using these plots. 
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Figure 53 – Pressure Points Selected for Reduced Atmosphere Model 

 

The plot for mean pressure in Figure 53 showed an exponential decay, as was to 

be expected. The dotted line shows the linear interpolation between the points. This seven 

point interpolation is nearly indistinguishable from the thirty four point version shown by 
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the solid line. The final pressure on the interpolation table at an altitude of 210,000 ft. 

was assumed to be zero. 
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Figure 54 – Density Points Selected for Reduced Atmosphere Model   

 

 

The plot for density in Figure 54 shows similar behavior to the pressure plot, 

therefore points were taken at similar altitudes. Again, the seven points approximation is 

hard to distinguish from the thirty four point version. The final density of zero was also 

placed at 210,000 ft., just like the pressure table.  
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Figure 55 - Temperature Points Selected for Reduced Atmosphere Model 

 

Figure 55 showed that the temperature plot proved slightly more difficult to fit, 

but still is well represented by the reduced point table. For this table, because the 

temperature does not ever reach zero, the final value for the table was selected at an 

altitude of 304,000 ft. and was assumed to have the distribution described by GRAM99. 

It is important to note that the POST trajectory analysis was set to no extrapolation for all 

input tables, so this temperature would not be changed above this altitude during any of 

the trajectory simulation trials. 
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Figure 56 – North Wind Points Selected for Reduced Atmosphere Model 

 

 

Because the northerly wind (Figure 56) was a little more erratic than the previous 

parameters, more points were used to reduce the dataset. In this case, eleven points were 

selected at various altitudes, representing the changes in direction and magnitude for this 

particular wind component. While the fit of the linear interpolation seemed to fail at 

higher altitudes, it should be noted that the air density was assumed to be zero above 

210,000 ft. This means that these points would not have had any force effect on the 

vehicle.  
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Figure 57 – East Wind Points Selected for Reduced Atmosphere Model 

 

 

The fit on the east wind component in Figure 57 using the reduced number of 

points was quite good. This is important as it is expected to be the most influential of the 

wind components, because of the direction of the launch and the expected magnitude of 

the wind. Changes in the body axis velocity should have had the biggest effect on the 

overall trajectory performance, and the screening array results presented later in Table 22 

confirm this. Overall, seven points were used to represent this quantity. 
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Figure 58 – Vertical Wind Points Selected for Reduced Atmosphere Model 

 

 

While the vertical wind (Figure 58) was the most erratic and least accurately fit of 

the parameters, the magnitude of the vertical wind components were small at low 

altitudes. This where they would have had the best chance to have an effect on the 

vehicle, so this was the area best represented by the reduced point set. At higher altitudes, 

there are upward wind components, but these were so high as to be unlikely to have an 

effect on the trajectory. Eight points were used to represent this quantity. 

 

The selection process presented here left the trajectory contributing analysis with 

49 total variables, 5 that go directly into the trajectory analysis and 44 variables used to 

describe the atmospheric conditions. This means that the trajectory contributing analysis 

is now ready for the application of uncertainty approximation methods. A listing of the 

distribution information for the 44 atmospheric variables is available in Appendix A. 
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8.3 Response Surface Method  

Once the atmospheric inputs had been parameterized, the application of response 

surface methods was possible. This began with the application of a 49 variable screening 

array. The array was a 2(49-43)
III fractional factorial array of 64 runs. It could only generate 

effect estimates for main effects. This screening was therefore based only on the main 

effects of the 49 variables in question. The screening was also solely based on the 

contribution to the MR required response. This was the only output required using a 

response surface model. 

 

The results of the screening array show that the variables that went directly into 

the trajectory analysis contribute to the vast majority of the response. With the exception 

of the lift coefficient multiplier, these direct variables were all the top contributors to the 

response. This can be easily seen in Figure 59. The Pareto plot indicated that the top eight 

variables contribute to well over 80% of the response and should create an effective 

response surface representing the entire analysis. 

 

Besides the direct variables, the atmospheric variables that contribute are the sea 

level ambient pressure (P1) and easterly wind (EW1), along with the air density at 54,000 

ft. The importance of these variables makes sense physically. The sea level ambient 

pressure has a large effect on not only the thrust of the rocket engine, but also its 

propellant efficiency. The easterly wind makes sense because this is the closest compass 

heading to the direction of launch, and will effect the velocity of the vehicle when it is 

moving slowly and its velocity most easily changed. Finally the air density at 54 kft. 

makes sense because that is where the vehicle passes through transonic into supersonic 

and is the highest atmospheric drag point in the trajectory. 
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Figure 59 – Pareto Plot for MR Required 
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In summary for the screening, the variables selected and their levels are listed in 

Table 22 in order of their contribution to the response. 

 

 

Table 22 – Selected Variables and Levels for Trajectory RSE 

Variable Low Setting High Setting 

Ispv (engine vacuum specific impulse) 440 sec. 460 sec. 

T/W (vehicle liftoff thrust to weight ratio) 1.2 1.5 

GLOW (vehicle gross liftoff weight) 1.5 Mlbs. 4.0 Mlbs. 

Cd_mult (multiplier for vehicle drag) 0.9 1.1 

P1 (Ambient air pressure at sea level) 1980 psf. 2280 psf. 

Cl_mult (multiplier for vehicle lift) 0.9 1.1 

EW1 (east-direction wind) -60.1 fps. 65.6 fps. 

Rho4 (Air density at 54 kft.) 2.96e-4 slug/ft3 3.61e-4 slug/ft3 

 

 

Once the variables and levels were decided for the trajectory response surface, 

two different methods for generating the response surface were tested. The first was a 

uniform central composite design for eight variables comprising 273 runs, not including 

redundant center points. The second experiment design tested was a D-Optimal design 

for eight variables. This design contained 236 runs. After the responses for both the 

arrays were generated, they were both fit to the same quadratic equation of the form in 

Eqn. 6.3.  
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The central composite design was created using the JMP© [137] statistical 

software package. It was evaluated at the same levels, but with the center point defined as 

the average of the high and low levels. The variables not selected for the RSE were set to 

their mean values. 

 

The results of the central composite experiment were then fit using stepwise 

regression, as described in the section on the mass properties test. This was done to 

minimize the noise created by polynomial coefficients with little influence. The adjusted 

R-square result of this fitting process was 0.9996. This was quite good. The D-optimal 

design was also created using the JMP© statistical software package. First, a three level 

full factorial design was created. This design was then reduced using a D-optimal 

algorithm  [166, 167] with the settings described in Table 23. Once the design was 

determined, the experiment was evaluated. The results were fit using stepwise regression 

just as before and the coefficients used to form a response surface equation of the form in 

Eqn. 6.3. The fit for this regression was also quite good, with an adjusted R-square value 

of 0.9995. 

 

Table 23 – D-Optimal Settings 

Parameter Value 

N Desired 250 

N Random 23 

K Value 3 

Trips 5 
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8.4 Response Surface Results 

The coefficients were then evaluated for 10,000 trials using the same input 

distributions as the Monte Carlo simulation for the trajectory variables, and the normal fit 

of the GRAM99 Monte Carlo simulation results as inputs for the atmospheric variables in 

the equation. The results of this simulation were then compared to the direct Monte Carlo 

simulation for the mass ratio required distribution as described in the goals and objectives 

chapter. 

 

The plotted results in Figure 60 and Figure 61 of these analyses showed a great 

deal of similarity to the direct Monte Carlo simulation. This kind of smooth distribution 

information is an advantage of the response surface method. 

 

 

Figure 60 – Histogram of GLOW and MR using CC RSE 
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Figure 61 – Histogram of GLOW and MR using D-Optimal RSE 

 

 

Table 24 – Results of Trajectory Response Surface Monte Carlo Simulation  

 MRreq µ MRreq σ Mrreq/GLOW corr. 

Monte Carlo 7.8934 0.0328  15.9% 

95% c. l. ± 0.00064 ± 0.00045 ± 1.9% 

CC RSE / MC 7.9436 0.0343 13.7 % 

Abs. Rel. Error 0.637 % 4.54 % 13.7 % 

DO RSE / MC 8.0088 0.0350 16.6 % 

Abs. Rel. Error 1.46 % 6.78 % 4.47 % 

 

 

The results for the response surface methods presented in Table 24 show that 

errors exist, but they are tolerable given their fast evaluation capability during 
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optimization. This fast calculation capability could very well be the deciding factor, given 

the slow nature of the trajectory analysis, often taking over one minute to execute. This 

made nearly all the variance reduction methods look unattractive, when compared to the 

RSE on the basis of time. 

8.5 DPOMD 

To measure the effectiveness of DPOMD, a 128 run fractional factorial method 

was chosen. This method was selected because it can take handle the correlation between 

variables that goes along with the multivariate normal distribution coupling variables. 

Also in this case, a great many of the noise variable, namely the atmospheric variables, 

were distributed as a 44 dimensional multivariate normal distribution. The two triangular 

variables, multipliers on aerodynamic coefficients, were symmetric meaning that the lack 

of ability of this particular version of DPOMD to match skewed random input 

distributions was not as much of an issue. 

 

Because there was no screening process, the first step in the method was to 

acquire the means, standard deviations and correlation coefficients for all the variables. 

As described in the chapter on new uncertainty methods, these were used to create a 

Hasofer-Lind transform [138, 46] by way of Cholesky decomposition [90, 152] of the 

covariance matrix. 

 

The next step was the creation of a 2V
(49-42) fractional factorial experiment design. 

This design had a distribution mean and variance of zero and one respectively when the 

levels were set to –1 and +1. This matches the mean and variance a standard normal 

distribution. The inverse of the Hasofer-Lind transform was then applied to generate a 
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discrete distribution with the same second order moment characteristics as the input 

distribution. 

 

Once the discrete distribution was obtained, the points in the distribution were 

executed using POST [163]. Each point was optimized for minimum propellant 

consumed (maximum burnout weight) and then recorded along with the appropriate input 

information. 

8.6 DPOMD Results 

Once the outputs for the points were obtained, their moment characteristics were 

measured using the distribution techniques described in the mass properties test section. 

Eqn. 6.4 was used to calculate second moment information. The outputs were then 

compared to the Monte Carlo simulation results, as described in the chapter on goals and 

objectives. 

 

Figure 62 shows a histogram containing the output parameters of interest for this 

test. The correlation between the mass ratio required and the gross liftoff weight is 

slightly evident in the change in the MR required distribution between the two levels for 

GLOW. This plots also illustrates the need to fit a multivariate normal distribution to the 

results, especially the inputs, if confidence levels were required. For this test, however, 

none of the parameters of interest were confidence levels. 
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Figure 62 – Histogram of GLOW and Mass Ratio for DPOMD Trajectory Simulation 
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Figure 63 – Normal Probability Plot for DPOMD Trajectory Mass Ratio  
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The normal probability plot in Figure 63 shows that this DPOMD simulation had 

a much more normal output than those of the previous tests. This was likely due to the 

fact that there were many more variables that contributed fairly evenly to the response. 

This meant that the many discrete levels of the inputs were evenly spaced across the 

output mass ratio required axis. 

 

Table 25 – Results of DPOMD Trajectory Simulation 

 MRreq µ MRreq σ Mrreq/GLOW corr. 

Monte Carlo 7.8934 0.0328 15.9% 

95% c. l. ± 0.00064 ± 0.00045 ± 1.9% 

DPOMD 7.9168 0.0343 15.3 % 

Abs. Rel. Error 0.297 % 4.52 % 3.95 % 

 

 

Table 25 shows that the DPOMD method was again the most accurate method 

tested for the outputs in question. The results for the mean value of mass ratio required 

were closer than either of the response surfaces. The mass ratio required standard 

deviation matched that of the central composite response surface. For the correlation 

coefficient, this method was by far the closest to the Monte Carlo simulation, with a 

relative error of 2.41 %. 

 

Computational time was an issue. The POST trials comprising the simulation took 

approximately three hours to run, depending on the system load of the SGI Octane 
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workstation. This would be a major drag on an iterative system, and severely hurt the 

chances of this type of analysis being included in the iteration loop for the proposed 

probabilistic, multidisciplinary framework for launch vehicle conceptual design 

optimization. 

8.7 Descriptive Sampling 

Again, the descriptive sampling algorithm used was the Latin hypercube-based 

method presented by McKay [120], the same that was used in the previous analysis tests. 

It generated a map of probabilities for a set of independent random uniform variables that 

were then put through an inverse cumulative distribution variable corresponding to each 

input.  

 

The sample points were constructed using inverse cumulative probability 

functions corresponding to the type of random variable being sampled. For normal 

distributions, independent standard normal distributions were first sampled, then these 

results were transformed into the problem space using an inverse Hasofer-Lind transform. 

Because all the variables were sampled at the same time, the inverse transform for the 

triangular distributions was identity in the multiplicative matrix and zero for the mean 

vector, in effect leaving these variable unchanged. This left a table of 100 runs to be 

evaluated using POST [163]. 

 

POST subsequently optimized each table entry to maximize burnout weight. Once 

the run table optimized results were obtained, they were measured for the previously 

determined statistical criteria for this test. 
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8.8 Descriptive Sampling Results 

The completed run table was analyzed using sample mean variance calculations. 

The results were then compared to the Monte Carlo simulation for the selected output 

parameters as described in the goals and objectives chapter. 
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Figure 64 – Histogram of Mass Ratio from DS Trajectory Simulation 

 

 

As you can see in Figure 64, the histogram of mass ratio showed a developing 

normal appearance that would most likely be confirmed with more runs. This normality 

can be seen more easily in the normal probability plot in Figure 65. Other than at the 

extreme tails, this distribution is fairly normal. 
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Figure 65 – Normal Probability Plot for Mass Ratio in DS Simulation 

 

 

Table 26 shows fairly good results for the descriptive sampling simulation. The 

accuracy is about the same as the other approximation methods tested. Unfortunately for 

the descriptive sampling and DPOMD methods, this comes at a much higher expense 

than the response surface method.  

 

The computational effort needed to evaluate this method was a little less that that 

of the DPOMD. It took about 2.5 hours on an SGI Octane workstation. Coupled with the 

fact that the response surface methods proved to be just as accurate for this problem, 

descriptive sampling does not appear to be a standout option for the selected trajectory 

optimization problem. 
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Table 26 – Descriptive Sampling Trajectory Test Results 

 MRreq µ MRreq σ Mrreq/GLOW corr. 

Monte Carlo  7.8934 0.0328 15.9% 

95% c. l. ± 0.00064 ± 0.00045 ± 1.9% 

Descriptive 
Sampling  

7.9170 0.0342 16.7 % 

Abs. Rel. Error 0.299 % 4.25 % 4.89 % 

8.9 Overall Comparisons 

The primary aim of this analysis test was to find one or more uncertainty analysis 

techniques for the trajectory optimization contributing analysis that were both fast and 

accurate. The accuracies of the methods were compared to a Monte Carlo simulation to 

then determine which candidate method would be used in the full, multidisciplinary 

optimization problem. 

 

The first goal of testing the accuracies of the methods has been met. All the 

methods were tested at their most reasonable computational expense and the results were 

presented in the preceding sections. 

 

Of the methods tested, the descriptive sampling simulation technique proved to be 

the most accurate. However, the central composite response surface equation methods did 

not have as large errors during this test as in the previous ones. Combined with the 
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significant cost savings involved with using this type of analysis as shown in Table 27, 

this was the method selected for the probabilistic multidisciplinary optimization problem. 

 

The trial histories presented in Figure 66 and Figure 67 surprisingly shows that 

the Monte Carlo analysis got closer to its final answer sooner than either of the 

approximate sampling methods. This means that there would be almost no reason to use 

either of these methods, as the more general Monte Carlo simulation supercedes both the 

descriptive sampling and the discrete probability optimal matching distributions at their 

chosen resolutions for every output parameter of interest but MR-GLOW correlation 

coefficient. 
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Figure 66 – History of MR Required Mean Error 
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Figure 67 – History of MR Required Standard Deviation Error 
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Figure 68 – History of MRReq-GLOW Correlation Coefficient Error 



 178 

 

 

The accuracy of all the approximation methods was slightly lower for this 

analysis test than in the others. A likely cause of this was the reduction of the atmosphere 

model described earlier in the section. While necessary due to the program setup of the 

GRAM99 tool, this nonetheless created an inherent difference in the problem statement 

for all the approximation methods when compared to the Monte Carlo simulation. The 

consistent error across all the analyses supports this. Compared to similar tests [22] that 

neglected atmospheric uncertainty, the accuracy of approximation of this trajectory 

optimization problem was generally not as good. 

 

 

Table 27 – Run Times for Trajectory Uncertainty Methods 

Method Trials Platform Time 
Monte Carlo 10,000 POST Runs 2 SGI 

Octanes 
5 days 

DPOMD 128 POST Runs  SGI Octane 3 hrs. 

Descriptive Sampling 100 POST Runs SGI Octane 2.5 hrs. 

CC, D-Optimal RSE / MC 10,000 C++ RSE Calls  SGI Octane 1.1 sec. 
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CHAPTER IX 

DISTRIBUTED PROBABILISTIC MULTIDISCIPLINARY 

OPTIMIZATION 

Distributed probabilistic multidisciplinary optimization refers to a loosely coupled 

architecture of contributing analyses each providing their own techniques of uncertainty 

analysis. This architecture has certain required capabilities so that it can generate accurate 

results and be flexible in its implementation. It also has desired characteristics that 

provide an incentive for its future adaptation in engineering organizations. 

9.1 Desired Characteristics 

There are several characteristics that distributed probabilistic multidisciplinary 

design should possess in order to ensure that it retains the advantages of loosely coupled 

design [67, 63, 61, 77, 78, 79, 64]. These characteristics have to do with ownership of the 

analyses flexibility of the method over time, as well as accuracy and speed in the aid of 

optimization. 

9.1.1 Flexible Implementation 

The first capability desired for this methodology is that it be flexible in its 

implementation. This means that for each subproblem, widely differing techniques of 

probabilistic analysis can be employed, depending on the recommendations of 
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experiences disciplinary experts. This flexibility gives the experts control over the 

sublevel analysis and allows for improvements to the analysis with minimal impact to the 

other subproblems. Another advantage is that this will engage the expert and make them 

more likely to commit to the design process. 

9.1.2 Distributed Computational Effort 

Another desired characteristic for the method is that it can take advantage of 

distributed computational effort. This not only creates the possibility of parallel computer 

operation, but also means that many different people can monitor and provide “sanity 

checks” on the results. This can also be a way of maintaining responsibility for 

computational effort. The discipline experts are able to easily see the computational costs 

of their analyses, so that they can spend a proportional level of cost given the problem 

accuracy required. 

9.1.3 Reduced Computational Effort 

A third desired characteristic is that of reduced computational effort when 

compared to alternative system-level probability analysis. This is because of the 

possibility of reduced dimensionality of the noise characteristics of each contributing 

analysis optimization when compared to the whole system level problem. This happens 

for systems with lower coupling requirements. While this does not lead to any advantages 

for zeroth order methods such as direct Monte Carlo simulation, higher order methods 

should see computational cost savings. The assumption here is that direct system-level 

Monte Carlo simulation is too expensive an option for optimization and that higher order 

methods are required for the conceptual launch vehicle design problem. 
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9.2 Required Capabilities 

To be a valid multidisciplinary analysis technique, the proposed method must 

have certain characteristics related to passing accurate information between the 

disciplines. In addition to accurate data passing, it must also ensure that all the disciplines 

have all the required inputs for analysis. For deterministic analysis, this is a relatively 

simple task. When translating this to probabilistic analysis there are some important 

considerations. Finally, there should exist some capability for handling objective 

functions from several disciplines. This capability should also exist in deterministic 

design frameworks, but probabilistic optimization introduces new possibilities, as 

described in the background chapter, that require more computational effort than most 

deterministic multi-objective formulations.  

9.2.1 Variable Communication 

The requirement of accurate variable communication between the contributing 

analyses meant the transfer of data should include enough distribution information in the 

coupling variables to give each contributing analysis a good idea of the probability map 

exiting the other disciplines as they occurred together. This means that at a minimum, 

second order moments should be transferred. To do this, a set of standard deviations for 

each variable along with a correlation coefficient for each variable combination that is an 

input to any contributing analysis. The correlation is required because these variables are 

not assumptions, they are fits to the multivariate probabilistic solution of another 

analysis. In many cases, these outputs are highly correlated and ignoring this information 

would lead to faulty results for subsequent contributing analyses. 

 

This correlation information requirement means that the inputs and outputs of a 

probabilistic multidisciplinary analysis problem will be slightly different from that of a 
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deterministic one. In order to generate correlation coefficients required by other analyses, 

extra variables need to be added to certain contributing analyses that do not require them 

for deterministic optimization. The DSM in Figure 69 on page 186 illustrates this point. 

Contributing analyses for propulsion and trajectory both feed multivariate normal 

distributions into the mass properties analysis, but a correlation between propulsion and 

trajectory cannot be generated in this situation, yet it exists and is an important input to 

the mass properties analysis. Therefore, an extra link is created between propulsion and 

trajectory so that the propulsion analysis can calculate the required correlation between 

the output of the trajectory contributing analysis and its own outputs. 

9.2.2 Correct Distribution Expression 

This technique of adding links between disciplines should yield accurate 

simulation results, assuming that the results of the contributing analyses are in fact 

normal. This assumption should therefore be tested using a Monte Carlo analysis on each 

contributing analysis at a typical design point, before optimization begins. The type of 

output observed by each should then indicate what type of distribution is most 

appropriate to fit. These variables should still be fit in a multivariate manner, with 

correlation coefficients recorded and transferred to the other disciplines so that they can 

be simulated accurately as inputs. 

9.2.3 Contributing Analysis Requirements 

One of the advantages of this type of loosely coupled formulation is that there are 

minimal requirements placed on the subsystem probabilistic analysis other than accuracy 

and the ability to handle its own probabilistic constraints. Besides making sure that 

confidence levels for constraint satisfaction and the coupling variables are consistent 

within the system, there is very little else the system level implementation must handle.  
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The consistency between coupling variables is ensured by requiring the contributing 

analysis to provide information for its outputs based on updated information about its 

inputs. This delegation of authority is one of the primary advantages of the loosely 

coupled approach.  
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CHAPTER X 

LAUNCH VEHICLE EXAMPLE PROBLEM 

To test the methods presented in this research, a reusable launch vehicle (RLV) 

example optimization problem was created. Probabilistic multidisciplinary methods were 

applied to test the feasibility of generating optimums, then these optimums were 

confirmed by other optimizations using different starting points. The accuracy of the 

probabilistic methods was tested using a Monte Carlo simulation for the optimum 

vehicle. This confirmation was not a sizing process, but simply generated the 

distributions that were approximated during the optimization to test their accuracy. 

Finally, the probabilistic optimum was compared to the result of a deterministic 

optimization process based on the same contributing analyses as the probabilistic test. 

 

These analyses were integrated separately for the purpose of showing that 

specifically tailored probabilistic approximation methods would be able to execute large 

problems with accuracy. This was due to the lowering of the dimensionality of the 

uncertainty subproblems considered, enabling higher order methods with more included 

noise. This distributed probability analysis also reduces the communication slowdown 

present when using loosely coupled contributing analyses by greatly reducing data 

transmission frequency. On top of these benefits, it includes the disciplinary expert in the 

uncertainty approximation, a process that often makes large assumptions about the 

behavior of the problem under analysis. Disciplinary experts are extremely important to 

determining the best approximation method based on the assumptions. 
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First the example problem models had to be constructed and interfaced. The 

interfacing was done execution using Phoenix ModelCenter© analysis integration 

software. This software allows for simple, object-oriented integration of analysis codes 

that have been wrapped to interface with ModelCenter©. It handled the data flow and the 

execution scheduling per user instruction, allowing several codes to be interfaced in a 

loosely coupled manner. This was done across heterogeneous platforms, namely SGI 

IRIX and Windows NT. The control center for this was based on a Windows NT machine 

and ran across the local area network. It interfaces with the wrappers set up on local 

machines through Analysis Server©, also from Phoenix. This allows any models hosted 

on a local machine to be easily utilized in a system without complicated user-defined 

communication methods. 

 

ModelCenter© also provided the optimization modules used for both meeting the 

sizing constraints and optimizing the objective function. The optimizer included a 

wrapped version of DOT [168], Design Optimization Tool, from Vaderplaat’s Research 

and Development. The chosen method was conjugate gradient in all cases. Custom 

components were also written to handle system convergence issues, with each variable 

having a tolerance that must be met before the design is considered converged. 

 

The analyses integrated using ModelCenter© were the trajectory analysis, the 

mass properties and sizing and the propulsion analysis. The aerodynamics, aeroheating 

and configuration analyses were done offline before the other models were executed in 

ModelCenter©. This was possible because both these analyses were only weakly coupled 

to the rest of the system. They only need to be changed if the vehicle changes a great deal 

from its reference length, where these analyses were calculated. In this case, the reference 
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was very close to the actual sized length, so no recalculation of these weakly coupled 

analyses was required. 

 

The analyses to be calculated online were integrated into ModelCenter© using the 

probabilistic methods determined for each of them in the chapter on suitability of 

probabilistic methods. These methods were all applied locally. It allowed each 

approximation method to be applied in the most effective way possible for each of the 

analyses. The methods chosen were the fractional factorial DPOMD for the mass 

properties and sizing analysis, Central Composite RSE / MC method for the trajectory 

analysis and full factorial DPOMD for the propulsion analysis. These methods provided a 

maximum of accuracy in the required parameters in a minimum amount of time. 

 

The analysis system as it was applied for optimization can be seen in Figure 69. 

 

  

 

 

 

 

 

 

Figure 69 – Design Structure Matrix of Online Probabilistic Design Process 
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Table 28 – Coupling Variables for Distributed Probabilistic Launch Vehicle Design 

Coupling Location Parameters Passed 
Mass Properties and Sizing 

– Propulsion (1) 
GLOW mean, GLOW std. dev. 

Mass Properties and Sizing 
– Trajectory (2) 

GLOW mean, GLOW std. dev., Sref 

Propulsion – Trajectory (3) 

Tvac mean, Tvac std. dev., Ispvac mean, Ispvac std. dev., Ae 

mean, Ae std. dev., GLOW-Tvac corr., GLOW-Ispvac corr., 

GLOW-Ae corr., Tvac – Ispvac corr., Ae – Tvac corr., Ae – 

Ispvac corr.  

Trajectory – Propulsion (4) MRreq mean, MRreq std. dev., MRreq  - GLOW corr. 

Trajectory – Mass 
Properties and Sizing (5) 

MRreq mean, MRreq std. dev. 

Propulsion – Mass 
Properties and Sizing (6) 

Tvac mean, Tvac std. dev., Ae mean, Ae std. dev., T/We mean, 

T/We std. dev., MRreq – Ae corr., MRreq – Tvac corr., MRreq – 

T/We corr., Ae – Tvac corr., Ae – T/We corr., Tvac – T/We corr.  

 

 

As you can see, for a deterministic system, it is very nearly fully coupled. When 

probability distributions are considered, it becomes a fully coupled system due to the 

feedback from trajectory to propulsion where none existed before. This is because there is 

a correlation required by mass properties and sizing that is not a standard result of any 

analysis. To provide this correlation, it is was necessary to introduce a new input into an 

unrelated analysis, mass ratio required into propulsion in this case. Here, MRreq is input 

into propulsion so that it may calculate the correlation between MRreq and T/We, which is 

required by mass properties and sizing. An alternative method to the one presented here 

would be to introduce T/We into the trajectory analysis. The propulsion analysis was 

considered more flexible, due to its faster execution times and lower initial variable 

count. A full accounting of the couplings present in the probabilistic system is available 
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in Table 28. The numbers in the coupling location correspond to the coupling labels in 

Figure 69. 

 

It is easy to see that the propulsion contributing analysis provides many outputs to 

the system. This is partially by design, as many of the correlation coefficients can be 

generated in more than one contributing analysis. For example, the correlation between 

MRreq and Tvac can be generated either by the propulsion analysis, where MRreq is an 

input and Tvac an output or by trajectory analysis where Tvac is an input and GLOW is 

an output. The propulsion analysis was chosen because it can update these values more 

easily, as it is the fastest executing contributing analysis in the system. Once these 

coupling relationships were established, the probabilistic contributing analyses had to be 

wrapped for automatic execution. 

10.1 Mass Properties and Sizing 

The mass properties and sizing algorithm was originally constructed using an 

Excel© spreadsheet. This particular spreadsheet calculated the vehicle weight parameters 

for a given set of mass estimating relationship (MER) assumptions and a vehicle OML 

length. Because these MER’s were highly interrelated, fixed-point iteration with no 

relaxation was used. This has proven in this past to be a simple and reliable method for 

solving these sets of equations. Technically, the analysis performed by the spreadsheet in 

the probabilistic framework was only mass properties, not sizing. 

 

For this sizing analysis, the vehicle in question had a 20 klb. payload, a 350 fps. 

orbital maneuvering capability and a five minute powered landing capability provided by 

a pair of hydrogen turbofans. Also, zero weight growth margin was assumed. This is the 
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traditional safety factor method for accounting for uncertainty in the MER’s and 

performance estimates. Because this job is now done using more advanced probabilistic 

methods, this margin was no longer necessary. These assumptions were constant and 

have a significant impact on the size and weight distribution of the vehicle.  

 

Embedded in the spreadsheet was a Visual Basic (VB) macro that read in a text-

based data file of the assumptions and input variables, executed the spreadsheet, then 

calculated output parameters such as means, standard deviations and confidence levels. 

These responses include the items in the WBS shown in Table 2 as well as summary 

variables such as gross liftoff weight (GLOW), vehicle dry weight and mass ratio 

available (MRavail). These parameters were then sent to cells in the spreadsheet where 

they would be available to the Analysis Server© wrapper utility. 

 

A compiled Matlab© function generated the DPOMD tables in a format that could 

be read by the previously described VB script. This function took text file inputs for the 

mean, standard deviations and correlation coefficients for the input coupling variables 

and a separate file for triangular distribution information. This information, along with a 

reduction factor for the fractional factorial DPOMD method described in the chapter on 

probabilistic methods were the inputs used to generate the run table. 

 

To create the ModelCenter© contributing analysis, two different wrappers were 

created. The first step was to create a wrapper around the Excel©-based mass properties 

analysis. This wrapper provided inputs for deterministic variables such as vehicle length, 

vehicle thrust-to-weight ratio, etc. The output parameters for the probabilistic process 

were also wrapped during this step, as they were calculated by the VB script in the 

spreadsheet described in the paragraph above. 



 190 

 

The second wrapper provided inputs to the DPOMD analysis in a compiled 

Matlab© function. This wrapper provided data to the text files for input distribution 

information. The output from the DPOMD program, however, was not handled by 

ModelCenter©. DPOMD executable  and input files were placed in the same directory as 

the mass properties spreadsheet so that when the analyses were executed in order, the 

data was available to the mass properties analysis. This avoided having to send the rather 

large amounts of data through across the network to the ModelCenter© control panel. 

 

Once both parts of the analyses were wrapped, they were connected together in 

ModelCenter©. This meant that input distributions could be provided inside ModelCenter, 

along with a vehicle size and corresponding output parameters could be generated. The 

next step was to construct the sizing process. This was done using the integrated version 

of DOT [173]. Using the goal seek method, the 80% confidence level on the difference 

between the MRreq and MRavail by changing the vehicle length. This goal seek was only 

necessary on the mass properties spreadsheet, as none of the input distributions changed 

with the vehicle length directly. This added the sizing element to the process and 

completed the mass properties and sizing contributing analysis as it was incorporated 

here. This analysis was then inserted into the framework described earlier. A screen shot 

of the completed set of components in ModelCenter© can be seen in Figure 70. 
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Figure 70 – Probabilistic Weights and Sizing in ModelCenter© 

10.2 Propulsion 

The propulsion analysis consisted of three layers. The innermost layer was the 

SCORES analysis, which sized each engine scenario. Wrapped around this analysis was a 

Perl script that took inputs from a text table, then executed the table for each scenario 

listed. The outer layer was a Matlab function responsible for generating the DPOMD runs 

for the propulsion analysis to execute. This is shown in Figure 71. 

 

The input table consisted of the inputs for the propulsion analysis. This meant that 

variables added for the purpose of generating correlations such as the MRreq parameters 

did not need to be included in the list. The variables that were included in the list were 

Tsl, Pch, P/We, AR and r. The last two were deterministic variables, so these did not vary 

with the runs in the table. For each of the scenarios listed in the table, SCORES [162] 

constructed an engine with matching sea level thrust and reported the vacuum engine 

performance and thrust, exit area and whether or not there is a shock in the nozzle. 

 

To generate the table, a Matlab© function producing a full factorial version of the 

DPOMD method was constructed. This function took distribution information from input 
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files and then generated a DPOMD table corresponding to those inputs, minus those 

random variables that were added for the purpose of generating correlation coefficients. 

Once the script was done generating the table, it executed the Perl script described above. 

Once the Perl script had run SCORES for the required table of scenarios, the output 

responses were read from a text file of responses generated by the Perl script. Using these 

responses, distribution information was calculated and placed in another text file. This 

final text file would eventually be read by ModelCenter© and used as outputs to other 

contributing analyses. 

 

The final step of including this analysis in the overall system consisted of first 

wrapping the correlated normal coupling variable distribution parameters for GLOW and 

MRreq, the uncorrelated normal input Pch and finally the deterministic inputs T/Wv, AR 

and r. The outputs wrapped were the correlated normal coupling variables parameters for 

Ispvac, Tvac, Ae and T/We plus correlations to selected input variables as listed in Table 28. 

 

 

 

 

 

 

 

 

 

 

Figure 71 – Overview of Probabilistic Propulsion Analysis 
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10.3 Trajectory 

The trajectory contributing analysis consisted of a Monte Carlo simulation 

performed on a response surface of propellant-optimized trajectories. This response 

surface differed slightly from the one presented in Chapter 8 on the trajectory analysis 

tests, so it is appropriate to discuss those differences here. 

 

The first change made was to the size of the experiment. After the experience 

gained with the response surface tests in the chapter on suitability, it was easier to 

generate responses for experiment designs with more runs. Because of this, and the 

necessary addition of the deterministic variables Sref and T/Wv, a ten variable on-face 

central composite experiment with full factorial box points was used. This design had 

1,045 runs that took approximately two days evaluate.  

 

Once the responses to the experiment were generated, a quadratic function of the 

form in Eqn. 6.3. was fit in a least squares sense using the software package JMP©. A 

stepwise regression technique used sequential F-tests as described in the probabilistic 

methods chapter on response surface methods. These tests determined which terms of the 

equation would be used. This process improves the fit of the equation by eliminating 

terms that only slightly contributed to the response. The fit parameters resulting from this 

process are given in Table 29. 
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Table 29 – Results of Stepwise Regression for Trajectory RSE 

Fit Parameter Value 

R-Square Value 0.9995 

Adjusted R-Square Value 0.9995 

Number of Terms Selected 33 

Number of Terms Eliminated 33 

 

 

Once the coefficients of the equation were determined, they were put into a text 

file that was read by a C++ program designed to evaluate a response surface for a text file 

list of inputs. Now the probabilistic analysis was ready to be run using Monte Carlo 

simulation. Because of the inherent batch nature of the RSE evaluation program, this 

process did not require a Perl script step like the propulsion test. Instead, a Matlab© 

function that generated a list of inputs from a previously created list of pseudo-random 

numbers was wrapped directly around the RSE executable. 

 

The random number generation process used a table of random numbers 

generated offline, then relied on a transform to give the trials the proper distribution 

characteristics. First, for the normal distributions, samples from independent standard 

normal distributions were generated offline. This saved the expense of having to perform 

a costly inverse cumulative probability function call for each variable in each trial. For 

each subsequent Monte Carlo simulation, this list of standard normal samples was 

transformed into the required multivariate normal distribution by means of an inverse 

Hasofer-Lind [138, 46] transform. 
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For the triangular distributions, a more standard approach was taken. Here, a list 

of uniform [0,1) samples was generated offline. Then, for each different Monte Carlo 

simulation, an inverse triangular cumulative probability function was used to determine 

the samples from each of the triangular random variables. This was more time consuming 

than the normal distribution generation, but there were only two triangular random 

variables, so this extra expense was not noticeable. In addition, the distribution 

parameters for triangular distributions did not lend themselves to a simple transform like 

the normals. 

 

Once the table of random inputs for the RSE program was ready, the program was 

run and the responses recorded to a separate file. These responses were then read in by 

the outer Matlab function and the parameters for the output distributions calculated. In 

this case, the sole output distribution was the MRreq, but the correlation of this variable 

with GLOW was also calculated. These parameters were then written to a text file where 

they would be easily accessible to ModelCenter©. This process is illustrated in Figure 72. 

 

 

 

 

 

 

 

 

 

Figure 72 – Overview of Probabilistic Trajectory Analysis 
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10.4 Optimization 

To test the feasibility of these distributed probability methods to generate a 

probabilistically optimum launch vehicle, an optimization of the launch vehicle design 

system described in the previous section was undertaken. This optimization altered four 

design variables traditionally known to have a large effect on all-rocket SSTO RLV’s. 

These were: 

 

• Engine Mixture Ratio (r) – This variable is the ratio of oxidizer mass to fuel 

mass burned in the engine. This variable primarily affects engine efficiency 

and propellant bulk density. For optimization, the value of this variable was 

limited to values from 5 to 7. 

• Engine Area Ratio (AR) – This is the ratio of the engine exit area to the 

engine throat area. It primarily affects how the engine performs with changing 

altitude. For the system optimization, the value of this variable was 

constrained to be from 40 to 85. 

• Vehicle Liftoff Thrust to Weight (T/Wv) – This ratio determines how much 

vehicle thrust is present at liftoff. It primarily affects the relative weight of the 

engines on the vehicle, the trajectory gravity losses and required throttle level 

on ascent. The limits on this variable were set to be from 1.2 to 1.6. 1.2 was 

the minimum to ensure safety while clearing the launch tower, while 1.6 was 

chosen because of throttling concerns near burnout. 

• Mean Engine Combustion Chamber Pressure (Pch) – This variable was 

assumed to be a somewhat controllable noise. The mean value was varied 

while the standard deviation around that mean was assumed to be a constant 4 

atm. This parameter primarily affects engine weight and performance. It was 

limited to values from 150 atm. to 210 atm. 
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Each time these values were altered, the resulting vehicle was sized according to 

the rules and techniques laid out in the previous section. When this sizing was completed, 

the objective function, the 95th percentile dry weight, was returned to the optimizer. The 

particular optimizer used for this process was the DOT [168] package using conjugate 

gradient unconstrained optimization method. 

 

Because numerical noise from the sizing process was a concern, a finite 

difference derivative test was undertaken at a particularly difficult point. This point was 

identified by launching the optimizer using the default settings for finite difference 

gradients and observing the area where the optimizer could not generate a viable search 

direction. The defaults for this preliminary search were forward difference gradients with 

a relative step size of 0.001. This point around which the derivative test was conducted 

can be seen in Table 30. 

 

 

Table 30 – Testing Point for Finite Difference Derivatives 

Design Variable Value 

Mixture Ratio (r) 5 

Area Ratio (AR) 40 

Vehicle Thrust to Weight (T/Wv) 1.2 

Engine Chamber Pressure (Pch) 210 atm. 
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Once a trouble point was located, several step sizes using both forward and 

central differences were taken. These were used to calculate both forward and central 

difference partial derivative estimates. A sweep of step size can be seen in Figure 73. 
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Figure 73 – Step Size Sweep for Derivatives with Respect to Area Ratio  

 

 

The sweep in Figure 73 illustrates how the decision on step size was made. The 

general direction of the large step sizes was considered to be correct. This was assumed 

because the error here is in the finite difference approximation, which is unlikely to 

reverse the direction of the estimate for reasonably large derivative values. However, the 

magnitude of these large step sizes was assumed to be faulty. At the other extreme, the 

numerical noise in the sizing process can create huge errors in the derivative estimate. So 

to minimize the error due to both the finite difference approximation and numerical noise, 

the smallest step size that did not have obvious numerical noise was taken. Because the 

other three derivative sweeps exhibited similar behavior to the one shown in Figure 73, a 

relative step size of 0.005 was chosen. Because this was a rather large step size, central 
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difference gradient estimates were used in place of forward difference. This change made 

sure that the gradients supplied to the optimizer were as accurate as was possible. It will 

be shown later that this step size enabled the system optimizer to consistently find the 

optimum design. 

 

Once the derivative test was complete, the optimization process was started at 

several points, each one with its own rationale. The baseline point was an SSTO starting 

out with an engine design similar to the Space Shuttle Main Engine (SSME). This 

baseline optimization data can be found in Table 31. This baseline point optimized 

quickly, taking about six hours to find the best solution. An iteration history of the 

objective function, the 95% confidence level of dry weight, can be seen in Figure 74. 
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Figure 74 – Objective Function History for Initial Probabilistic Optimization 

 

 

The design variables in this case went to optimum settings common for this type 

of problem. The area ratio went to a lower value, from 77.5 to 53. This is to be expected, 
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since the engines must provide the entire vehicle thrust from the pad to orbit. This differs 

from the Shuttle Transportation System (STS) in that the STS delivers the majority of its 

main engine impulse at higher altitudes. The lower mixture ratio also shows indicated the 

high demand for engine performance provided by this variable. The other variables did 

not change very much, instead going to their constraints for this problem. 
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Figure 75 – Design Variable History for Initial Optimization 

 

 

To confirm that in fact this was the true optimum, two other starting points were 

run. The first re-optimization began from the engine manufacturer’s dream design. This 

point maximized area ratio for the best vacuum performance, minimized mixture ratio for 

the highest propellant efficiency, maximized chamber pressure in order to push the limits 

of power head technology and maximized vehicle thrust to weight in order to sell more 

engines. This set of design variables then proceeded to the system optimum found in the 
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initial optimization in about the same amount of time, even though it started further away. 

The overall comparison of start and end points can be seen in Table 31. 

 

The next point to be optimized came from the standpoint of using a slightly lower 

propellant performance, but also try to take advantage of a higher bulk density and higher 

thrust, lower gravity loss trajectory. This corresponded to a low engine chamber pressure, 

a high mixture ratio, a high area ratio and mid-level vehicle thrust to weight. This 

optimization also traveled to the same optimum as the others. This fact can be seen in 

Table 31. Each of these system-level optimizations took six hours to complete on a 

combination of Windows NT© and SGI Octane© workstations. 

 

 

Table 31 – Optimum Confirmation Run Results 

Design 
Variable 

Start Pt. 1 Opt. Pt. 1 Start Pt. 2 Opt Pt. 2 Start Pt. 3 Opt. Pt. 3 

Mixture Ratio 
(r) 

6 5.61 5 5.60 7 5.62 

Area Ratio 
(AR) 

77.5 53.2 85 52.1 85 51.3 

Vehicle 
Thrust to 

Weight (T/Wv) 

1.2 1.2 1.6 1.2 1.4 1.2 

Engine 
Chamber 
Pressure 

(Pch) 

206 atm. 210 atm. 210 atm. 210 atm. 150 atm. 210 atm. 

Objective: 
95% C.L. Dry 

Weight 

156.7 klb. 150.2 klb. 237.2 klb. 150.2 klb. 286.1 klb. 150.1 klb. 

 

 

The two design variables that were not limited by constraints generally fell to the 

same value. While there are slight differences in the optimum results, these all resulted in 
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negligible differences in the 95% confidence level value for dry weight, so they can be 

considered the same result. To further illustrate the convergence of these two variables, 

Figure 76 shows a path iteration history of mixture ratio versus area ratio. 
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Figure 76 – Design Variable Paths for Area Ratio and Mixture Ratio 

 

The results above show that consistent probabilistic optimums can be generated 

using this distributed probabilistic technique in a reasonable amount of time. This was 

one of the key goals of the research and the objectives relating to this goal have been met. 

10.5 Monte Carlo Confirmation 

To confirm that the generated probabilistic optimum has been accurately 

approximated, a Monte Carlo simulation of the optimum point was executed. This 

involved removing authority over the local noise variables and bringing them into 
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ModelCenter© and applying a central Monte Carlo simulation. This tested the accuracy of 

the overall process, including all of the approximations made. This simulation consisted 

of 1,000 trials, all of which had to be run on the heterogeneous framework. 

 

The process for each trial consisted of iteratively sizing the propulsion system 

with the mass properties analysis, then feeding the resultant scenario to the combination 

of POST/GRAM99. This system therefore tested the atmospheric approximation 

GRAM99 as well as the probabilistic methods. A design structure matrix and coupling 

table illustrating the confirmation process data flow are shown in Figure 77 and Table 32. 

 

 

 

 

 

 

 

 

Figure 77 – Design Structure Matrix for Monte Carlo Confirmation 

 

 

The coupling variables in Table 32 were all deterministic, since the probabilistic 

analysis would be handled at the system level. The DSM above was only responsible for 

evaluating the scenarios given to it by the top-level Monte Carlo simulation. 
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Table 32 – Table of Coupling Variables for Monte Carlo Confirmation 

Coupling Location Parameters Passed 
Mass Properties – 

Propulsion (1) 
GLOW 

Mass Properties – 
Trajectory (2) 

GLOW, Sref 

Propulsion – 
Trajectory (3) 

Tvac, Ae, Ispvac 

Propulsion – Mass 
Properties 

T/We 

 

 

The mass properties algorithm was different from the previous probabilistic 

optimization in two ways. First, there was no sizing step. This meant that the analysis 

took place for a single length vehicle, the same length that was the solution to the 

probabilistic optimization. Second, the probabilistic analysis does not take place at the 

contributing analysis level, so the functions to generate runs and pass them to the mass 

properties spreadsheets were eliminated. The steps taken to implement this were to 

eliminate the VB script to run several scenarios for mass properties and then wrap all of 

the assumptions corresponding to random variables into ModelCenter© as inputs, and all 

of the responses corresponding to output variables required by other analyses and output 

distributions. 

 

The propulsion contributing analysis in this case was a simple wrapping of the 

SCORES analysis, with no run generating function or Perl wrapper. Inputs were taken for 

Tsl (generated by T/Wv and GLOW) and the settings of the design variables at the 

optimum point, and a sized engine was sent back to the mass properties. These analyses 

were iterated until the engine size was consistent, then the propulsion data for the chosen 

scenario was sent to the trajectory analysis. 
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The Monte Carlo trial ended with a call to the trajectory contributing analysis. 

Because there was no sizing involved, a feedback to mass properties was not necessary. 

The trajectory contributing analysis here consisted of the original call to POST using a 

random atmosphere generated by the GRAM99 range model. This was not the 

parameterized atmosphere used by the approximation methods.  

 

This system of contributing analyses was run 1,000 times for random scenarios 

picked from the POST / GRAM99, SCORES and mass properties random inputs. For the 

POST analysis, the random variables that were required for input were the aerodynamic 

multipliers and the random atmosphere. The atmosphere generation required a different 

random seed each time, along with a random date and time of launch. SCORES required 

random values for the engine chamber pressure and power-to-weight ratio while the mass 

properties took random parameters corresponding the assumptions in the MER’s. The 

settings for these random variables were identical to those in the respective analysis test 

baseline Monte Carlo simulations. The simulation took approximately 24 hours running 

on a combination of Windows NT and SGI Octane workstations. This makes it far too 

slow to even use in a sizing process, much less an optimization. 

 

The table of results in Table 33 reveals some important facts about the 

approximations used for optimization in this research. Because there was no feedback 

from the trajectory optimization, inaccuracies in the results of this analysis must either 

come from an inaccurate input or a bias in the analysis approximation itself. In converse, 

inaccuracies in the trajectory outputs had no effect on the results from the other 

contributing analyses. Keeping this in mind, Table 33 seems to show that the propulsion 

and mass properties analyses matched well with the Monte Carlo simulation, while the 
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trajectory analysis output parameters had values outside the error bands for the Monte 

Carlo. Most likely due to a problem modeling the trajectory during optimization, this 

fortunately only lead to a slight underestimate of the probability of success with regards 

to meeting propellant requirements in the sizing process. This meant that the size of the 

vehicle was slightly overestimated when compared to the confidence level indicated by 

the result of the Monte Carlo simulation. However, this error was small enough that it 

was still well within the 95% confidence level error bands calculated for the Monte Carlo 

simulation. 

 

 

Table 33 – Results of Full Monte Carlo Confirmation of Optimum 

System Parameter Approx. 
Estimate 

Monte Carlo Estimate 95% C.l. Rel. Error 

Dry Weight µ 142,190 lb. 142,190 lb. ± 300 lb. 0 % 

Dry Weight σ 4,880 lb. 4,840 lb. ± 213 lb. 0.826 % 

P(Dry > 150,200 lb.) 95 % 94.7 % ± 11 % 0.317 % 

MRReq µ 8.0496 8.0400 ± 0.0016 0.119 % 

MRReq σ 0.0309 0.0261 ± 0.0011 18.4 % 

MRavail µ 8.2331 8.2446 ± 0.013 0.139 % 

MRavail σ 0.217 0.215 ± 0.010 0.930 % 

P(MRReq - MRavail > 0) 80 % 82.4 % ± 5 % 2.91 % 
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To show the accuracy of the propulsion and mass properties approximations, 

Figure 78 shows a plot of the approximate dry weight for the fixed OML optimum 

vehicle generated using the approximation compared to the Monte Carlo result for the 

same random variable. As is shown in Table 33, the result here has negligible error. The 

probability density values for the Gaussian plot were scaled to match the frequency plot 

for the Monte Carlo simulation. 
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Figure 78 – Dry Weight Approximation and Monte Carlo Confirmation 

 

 

Figure 79 shows the error in mass ratio required and the impact it had on the 

overall system. While the errors are significant to the estimate for required mass ratio, the 

large spread of the mass ratio available probability minimizes the impact of the error and 

puts the mass ratio difference error back in the confidence level for the Monte Carlo 
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simulation. For the Gaussian line plots, the probability density was scaled to match the 

frequency axis of the Monte Carlo simulation results. 

 

 

 

Figure 79 – Sizing Histogram for Full Monte Carlo Confirmation 

 

 

While the cause of this small error does lie in the trajectory analysis, the cause 

could be any number of approximations made by this algorithm. Because the error was 

not a problem to the overall synthesis estimates, this was still a good method for 

probabilistic optimization. However, it is clear where room for improvement in accuracy 

in terms of contributing analysis probability estimation lies. 
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10.6 Deterministic Optimization Comparison 

To see if there was any difference between the deterministic optimum and the 

probabilistic optimum solution, a deterministic optimization using the same models and 

design variables was conducted. The models used were the direct versions of the 

propulsion and mass properties/sizing algorithms and the response surface version of the 

trajectory analysis. The results of this were compared to the probabilistic optimum for 

95% confidence level dry weight to determine their differences.  

 

These results were compared using two criteria. First, it was determined if the 

settings of the design variables were any different from the probabilistic optimization. 

This should give relative information about which design variables are related to 

robustness in weight growth. Second, the difference will be shown in the results of the 

two optimizations, such as the reported dry weight value and OML size. This will show 

how using probabilistic information can tailor the reported results to the desired risk level 

of the program. If a high risk is tolerable, the confidence levels can be reduced and more 

optimistic results can be reported. If it is not tolerable, the confidence levels can be raised 

and correspondingly less optimistic results reported. The key is that the risk is expressed 

in easy to translate terms, such as the probability of not having enough propellant for the 

mission, or the probability of a dry weight value larger than 150,000 lb. It is easier to 

quantify this risk than the risk associated with changing dry weight margins. 

 

The results in Table 34 show a decided similarity between the design variable 

settings for the probabilistic and deterministic optimizations. The one small difference 

that is consistent is the difference in mixture ratio. The optimizations found that a slightly 

lower mixture ratio was favorable for the probabilistic optimum. This is surprising 

because most of the uncertainty in sizing is due to the mass properties algorithm, an 
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analysis that usually favors higher bulk density for system robustness [37]. The shift in 

mass ratio required due to the slightly higher engine specific impulse seems to have offset 

this effect. 

 

Table 34 – Results of Deterministic Optimization Comparison 

Design 
Variable 

Start Pt. 1 
Opt. Pt. 1 

(Prob./Det.) 
Start Pt. 2 

Opt Pt. 2 
(Prob./Det.) 

Start Pt. 3 
Opt. Pt. 3 

(Prob./Det.) 
Mixture 
Ratio (r) 

6 5.61 / 5.65 5 5.60 / 5.65 7 5.62 / 5.66 

Area Ratio 
(AR) 

77.5 53.2 / 52.3 85 52.1 / 52.7 85 51.3 / 54.0 

Vehicle 
Thrust to 
Weight 
(T/Wv) 

1.2 1.2 / 1.2 1.6 1.2 / 1.2 1.4 1.2 / 1.2 

Engine 
Chamber 
Pressure 

(Pch) 

206 atm. 
210 / 210 

atm. 
210 atm. 

210 / 210 

atm. 
150 atm. 

210 / 210 

atm. 

95% C.L. 
Dry Weight 

/ Dry 
Weight 

158.3 / 

138.4 klb. 

151.0 / 

133.8 klb. 

186.4 / 

163.5 klb. 

151.0 / 

133.8 klb. 

250.4 / 

213.7 klb. 

151.1 / 

133.9 klb. 

Prob. 
Length / 

Det. Length 

147 / 142 ft. 147 / 142 ft. 152 / 147 ft. 147 / 142 ft. 168 / 161 ft. 147 / 142 ft. 

 

 

These optimizations took around 10 minutes each to complete. While this was a 

very short amount of time, it took only 40 times longer (~6 hrs.) to optimize the 

probabilistic system. Considering the number of noise variables (84), this is a below 

linear real-time cost scale-up to use the distributed probabilistic system. This was a major 

cost savings over existing methods.  
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Figure 80 – Design Variable History for Initial Deterministic Optimization 

 

 

The convergence of the deterministic optimization was slightly better than that of 

the probabilistic optimization. This was most likely due to the more accurate gradients, 

since a smaller step size was possible for finite difference estimates. It is clear from a 

comparison of Figure 75 and Figure 80 that the deterministic optimization process was 

close to the optimum much sooner than the probabilistic process. The results here show 

that there is a small difference in the optimum variable settings for the two optimizations, 

but a large difference in the conservatism of the final answer.  

 

To determine to which confidence levels the deterministic optimum corresponded, 

a Monte Carlo simulation of the final deterministic optimum was conducted. This 

simulation was similar to the confirmation of the probabilistic optimum except that it was 

conducted at a smaller length for slightly different settings of the design variables. The 

results of this simulation show that the probability of the reported dry weight being equal 

to or lower than 133.8 klbs. was only 53%. In addition, the confidence level associated 



 212 

with having enough propellant to perform the mission was only 54%. When compared to 

the error associated with a 1,000 trial Monte Carlo simulation, these can be both 

considered around 50%. These values are much lower than the 95% and 80% confidence 

levels reported for the probabilistic optimum. Histograms of mass ratio required and mass 

ratio available for the deterministic optimum can be seen in Figure 81. The curves 

represent the predictions for the probabilistic optimum. As can be seen in Figure 81, the 

probabilistically sized vehicle has a much higher probability of the mass ratio available 

exceeding the mass ratio required. 

 

 

 

Figure 81 – Sizing Histogram of Deterministic Optimum 

 

 

Apparently, the deterministic assumption of 15% dry weight margin corresponds 

to a fairly high risk level when compared to what was considered acceptable for the 
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probabilistic phases of this study. The acceptable probability of success with regards to 

meeting propellant requirements for orbit was only 80%, and the probability of coming in 

under dry mass budget was 95%. These probabilities were not outrageously high, and in 

the case of the propellant requirement constraint, actually quite low. These results 

combined with the results of the Monte Carlo simulation of the deterministic optimum 

suggested that a 15% margin was very risky with respect to the assumptions made here 

about noise variables. 
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CHAPTER XI 

CONCLUSIONS AND RECOMMENDATIONS 

11.1 Conclusions 

In conclusion, the goals set for this research have been met as they pertained to 

aspects of the problem formulation, the distributed probabilistic launch vehicle design 

framework and the new methods for output distribution estimation. The contribution of 

the distributed probability method has been demonstrated and confirmed as accurate. 

Also, new methods for uncertainty analysis, and the inclusion of previously unconsidered 

uncertainties in the conceptual launch vehicle design process were demonstrated. When 

combined together, these contributions greatly enhance loosely coupled conceptual 

launch vehicle design. 

 

The specific goals attained were as follows: 

 

• A new distributed probabilistic framework for launch vehicle conceptual design was 

demonstrated.  

 

This was evidenced by the detailed process account given in this research. Also, 

now that the technique has been demonstrated, it should allow for this process to be re-

implemented in less than two man-weeks. This implementation can also be done in 
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parallel by individual disciplinary experts and as a result improve the overall process 

setup time. Finally, all of the uncertainty analysis was conducted at the contributing 

analysis level. This was important to retaining the advantages of distributed analysis. 

 

• The utilization of heterogeneous computing platforms in a distributed probabilistic 

framework was demonstrated by the inclusion of executable programs, Perl scripts, 

Matlab scripts and Excel worksheets in a single automated framework.  

 

These codes were based on both SGI workstations and Windows NT PC’s. While 

this was done using the ModelCenter© commercial analysis integration package, the 

compatibility of this package with the distributed probabilistic launch vehicle design 

problem was a key to the utility of the technique. 

 

• The goal of a multiple order of magnitude improvement in speed over a Monte Carlo 

simulation method was demonstrated.  

 

This was shown in the fact that an entire probabilistic vehicle sizing process could 

be accomplished in about thirty minutes using the distributed approximations, while just 

a single length evaluation process took around 16 hours using a non-distributed Monte 

Carlo simulation. Accounting for the repeated simulations that would be required for a 

sizing process, this is a three order of magnitude improvement over a direct, system-level 

Monte Carlo process. 

 

• Optimization utilizing the distributed probability analysis method was shown to be 

fast.  
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The goal of overnight optimization was met by the fact that the demonstration 

optimizations took between 6 and 8 hours each. Considering the amount of time that the 

non-distributed Monte Carlo simulation took for just a single length analysis, this is a 

huge savings. 

 

• The test optimization was confirmed, showing that the problem formulation was 

sound and that the noise in the sizing process was not so great as to interfere with 

accurate gradient generation. This was shown by the optimization finding the same 

point from three separate starting locations. 

 

• The accuracy of the distributed approximation was also found to be quite good.  

 

It exceeded the objective of 5% accuracy set for constraint satisfaction by a 

comfortable margin for both the propellant required and dry weight confidence level 

calculations. This was determined by comparison of the found optimum to a single length 

Monte Carlo simulation. In addition to this, all of the critical output parameters, along 

with the majority of all parameters were well within the error bounds calculated for the 

Monte Carlo simulation. 

 

• A new method of engineering uncertainty analysis, DPOMD, was demonstrated and 

tested. This was evidenced by a detailed description of the procedure, and a series of 

applications in the analysis testing section of this research. This method is separate 

from the distributed framework and can be applied to a single discipline problem. 

 

• This new method was shown to have ease of setup, as the only inputs to the process 

were the moment information and the reduction factor for the fractional factorial 
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design. This demonstration also showed that the technique could be easily applied 

once the underlying algorithm had been programmed. 

 

• Several techniques for uncertainty analysis on the conceptual launch vehicle design 

contributing analyses were tested and preferred methods were identified. 

 

The tests revealed several things about the methods that were tested with respect 

to each of the contributing analyses. First, it is important that all of the output parameters 

were accurately represented by the methods. Some of the eliminated techniques were 

excellent on the main output parameters, but were far away from the reference for many 

of the correlations. 

 

• More than one type of uncertainty analysis was chosen for the final optimization 

problem.  

 

This confirms the hypothesis that different methods are better suited for different 

contributing analyses. This is one of the major motivating factors behind using 

distributed probability analysis. 

 

• Several sources for uncertainty were identified and incorporated into the reusable 

launch vehicle conceptual design process.  

 

These sources included weight, engine performance and atmospheric 

uncertainties. For the distributions available in the open literature, historical values were 

set. Otherwise, reasonable assumptions were made based on deltas around deterministic 
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values. All major assumptions for this launch vehicle problem were expressed as noise 

distributions. 

 

• While the deterministic and probabilistic optimum design variable settings were not 

very different, the reported vehicle size by the two processes was vastly different. 

This means that the reported size of the analysis corresponds to a specific user 

confidence level, not just an arbitrary growth safety factor. 

 

All in all, a new fast and efficient method for probabilistic optimization of 

conceptual launch vehicle designs was presented, along with test results verifying its 

speed and accuracy. This new architecture has the potential to allow for the practical 

probabilistic optimization of reusable launch vehicles in inherently distributed 

environments where it was impractical before. 

11.2 Recommendations 

There are several recommendations related to future application of this work. 

These relate to areas for improvement of the existing system, as well as advice about the 

application of more advanced multidisciplinary design optimization (MDO) methods 

such as collaborative optimization and optimization-based decomposition. This advice 

should be a useful guide for future research in this area, as well as identify specific areas 

where technological advancement is need in optimization, analysis and meta-modeling 

techniques. 
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11.2.1 Trajectory Contributing Analysis 

The trajectory contributing analysis poses some unique obstacles to efficient 

conceptual design. An industry-standard tool used in this research, POST [163], is 

universally accepted as accurate, but has some robustness problems. This makes it 

difficult to use in an automated framework. To overcome this, there are several options.  

 

One option is to use a meta-modeling technique. This allows the code to be run 

offline, where failed runs can be fixed by user intervention. Once the meta-model is 

complete, the reliability of the original analysis no longer matters. Future work in this 

area should concentrate on finding meta-models that are more accurate for probabilistic 

analysis. While the response surface equations used in this research were acceptable, 

there is room for improvement in this area. This improvement could come from either 

alternative modeling techniques such as neural networks and Kriging, or methods that 

allow inherent uncertainties to represented by the model without variable assumptions. 

This would allow for higher numbers of noise variables to be considered without 

lowering the number of input variables in the model. 

 

Another way to improve the analysis would be to improve the speed and 

reliability of the trajectory analysis itself. Collocation methods could be one way to do 

this, but these are not yet as universally accepted as the integration methods of POST 

[190]. In any event, a several order of magnitude improvement in the optimization time 

would be required to make any of the accelerated sampling schemes such as Descriptive 

Sampling or DPOMD practical. This may be possible in the future, but right now it is 

impractical for even moderate levels of noise. 
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All considered, the trajectory problem with atmospheric uncertainty is a difficult 

analysis to incorporate into a conceptual design optimization. While it was done 

successfully here, future attempts could benefit from the advice in this section. 

11.2.2 Application of Advanced MDO Techniques 

There are many issues pertaining to the application of advanced MDO techniques 

to problems containing uncertainty. Primarily, these issues relate to the idea of near-term 

and far-term design variables, and how these are handled by the system. 

 

It may be possible to apply Collaborative Optimization (CO) to this problem, but 

the bi-level optimization of the standard CO application would have to become a tri-level 

scheme. This is because the near and far term variables at the contributing analysis level 

would have to be optimized separately. 

 

The system level optimization would coordinate the probabilistic analyses in 

much the same way a deterministic system would be optimized using CO. Here the 

coupling variables would be the distribution parameters and the compatibility constraints 

would be set up to ensure compatibility among these couplings.  

 

At the second level, the optimizer minimizes the compatibility constraint from the 

system, but for each analysis, selects randomly from its own version of the input and 

output coupling distributions. Based on each scenario selected from these distributions, a 

new compatibility constraint is constructed for each trial.  

 

The third-level optimizer minimizes this new compatibility constraint using its 

own version of the scenario variables, along with any far-term variables that may exist. 
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Back at the second level, this leads to a distribution of the lower level compatibility 

constraints that represents each scenario’s viability. This distribution is therefore a 

constraint at the second level that must be satisfied probabilistically, to some confidence 

level. This system would ensure an entire system optimum for a probabilistic objective 

function even with respect to variables that are not determined in the current analysis. 

 

Because bi-level optimization is only in the early stages of becoming practical, 

and usually leads to slower systems that generally find an answer similar to traditional 

methods, tri-level optimization was deemed not practical to include in this work. It had 

the disadvantage of being even more unintuitive than collaborative optimization and 

therefore even less likely to be applied in a real-world engineering environment. The 

above observations are offered solely out of academic interest. 

 

On another note, Optimization-Based Decomposition (OBD) is not very 

compatible with this idea of probability analysis, as the near-term and far-term variables 

would all have to be controlled by the same optimizer. This means that there would have 

to be a set of far-term variables for each scenario in the probabilistic analysis, potentially 

leading to millions of control variables for the system-level optimizer to handle, 

depending on the size of the probabilistic analysis. This also does not seem practical and 

is therefore not a recommended advanced method. 
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The following tables are the result of the GRAM99 Monte Carlo multivariate 

normal distribution fit for the reduced number of points. 

. 

Atmospheric Variable Alias Mean Std. Dev. 
Corr. to 

P1 
Corr. to 

P2 
Corr. to 

P3 
Corr. to 

P4 
Pressure @ S/L (psf.) P1 2.129E+03 3.649E+01 1.0000 0.7186 0.9671 -0.6247 

Pressure @ 14,880 ft. (psf.) P2 1.226E+03 1.330E+01 0.7186 1.0000 0.7845 0.0591 
Pressure @ 38,060 ft. (psf.) P3 4.571E+02 8.079E+00 0.9671 0.7845 1.0000 -0.5376 
Pressure @ 54,240 ft. (psf.) P4 2.063E+02 3.155E+00 -0.6247 0.0591 -0.5376 1.0000 
Pressure @ 73,200 ft. (psf.) P5 7.984E+01 1.030E+00 0.3921 -0.2083 0.2715 -0.7168 
Pressure @ 94,290 ft. (psf.) P6 2.972E+01 6.137E-01 -0.0838 0.5232 0.0576 0.6456 

Pressure @ 164,770 ft. (psf.) P7 1.639E+00 6.759E-02 0.8893 0.5775 0.9085 -0.6919 
Density @ S/L (slug/ft3.) ρ1 2.382E-03 3.767E-05 0.1090 -0.3463 -0.0423 -0.4314 

Density @ 14,880 ft. (slug/ft3.) ρ2 1.477E-03 1.379E-05 0.5512 0.0023 0.4769 -0.7676 
Density @ 38,060 ft. (slug/ft3.) ρ3 6.728E-04 1.311E-05 0.1190 -0.3757 0.0452 -0.4887 
Density @ 54,240 ft. (slug/ft3.) ρ4 3.287E-04 8.154E-06 0.3817 0.5716 0.4842 0.0902 
Density @ 73,200 ft. (slug/ft3.) ρ5 1.208E-04 1.857E-06 -0.6929 -0.5584 -0.7340 0.4651 
Density @ 94,290 ft. (slug/ft3.) ρ6 4.259E-05 7.344E-07 0.7236 0.4565 0.7383 -0.5730 

Density @ 140,660 ft. (slug/ft3.) ρ7 5.036E-06 1.822E-07 0.5142 0.6112 0.5964 -0.1351 
Temperature @ S/L (°R) T1 5.183E+02 7.119E+00 0.7120 0.8333 0.7854 -0.1508 

Temperature @ 54,240 ft. (°R) T2 3.657E+02 5.083E+00 -0.6259 -0.4247 -0.6672 0.4328 
Temperature @ 140,660 ft. (°R) T3 4.773E+02 1.083E+01 -0.7425 -0.3811 -0.7342 0.6868 
Temperature @ 164,770 ft. (°R) T4 4.776E+02 9.264E+00 0.5021 0.6041 0.5864 -0.1212 
Temperature @ 229,720 ft. (°R) T5 3.966E+02 1.307E+01 -0.5548 0.0018 -0.4753 0.7861 
Temperature @ 274,320 ft. (°R) T6 3.769E+02 1.526E+01 0.6701 0.2846 0.6486 -0.6729 
Temperature @ 303,800 ft. (°R) T7 3.496E+02 2.470E+01 -0.3831 -0.5291 -0.4651 0.0292 

Northerly Wind @ S/L (fps.) N1 2.770E+00 1.572E+01 -0.8555 -0.3823 -0.8298 0.8370 
Northerly Wind @ 38,060 ft. (fps.) N2 1.278E+02 4.650E+01 -0.8569 -0.4703 -0.8555 0.7544 
Northerly Wind @ 73,200 ft. (fps.) N3 1.681E+01 2.498E+01 -0.2035 0.3842 -0.0765 0.6575 

Northerly Wind @ 164,770 ft. (fps.) N4 7.264E+01 7.982E+01 -0.8228 -0.4388 -0.8171 0.7370 
Northerly Wind @ 210,080 ft. (fps.) N5 2.030E+02 1.027E+02 0.7330 0.2816 0.7027 -0.7632 
Northerly Wind @ 229,720 ft. (fps.) N6 1.928E+02 1.215E+02 0.0350 -0.4548 -0.0861 -0.4899 

Easterly Wind @ S/L (fps.) E1 -2.788E+00 1.591E+01 -0.6809 -0.4320 -0.6948 0.5424 
Easterly Wind @ 3,550 ft. (fps.) E2 5.186E+00 2.171E+01 -0.2229 0.2603 -0.1216 0.5631 

Easterly Wind @ 38,060 ft. (fps.) E3 1.626E+01 4.412E+01 -0.6567 -0.4685 -0.6833 0.4719 
Easterly Wind @ 73,200 ft. (fps.) E4 -1.005E-01 1.130E+01 -0.2935 0.1829 -0.2040 0.5860 
Easterly Wind @ 94,290 ft. (fps.) E5 8.268E+00 1.781E+01 0.1558 -0.3066 0.0531 -0.5178 

Easterly Wind @ 116,950 ft. (fps.) E6 1.203E+00 2.600E+01 -0.2319 0.2494 -0.1360 0.5667 
Easterly Wind @ 164,770 ft. (fps.) E7 2.633E+01 4.552E+01 -0.6312 -0.3788 -0.6388 0.5222 
Easterly Wind @ 188,260 ft. (fps.) E8 2.875E+01 4.618E+01 0.1342 0.4582 0.2304 0.2524 
Easterly Wind @ 247,020 ft. (fps.) E9 1.595E+01 8.840E+01 -0.6626 -0.6329 -0.7298 0.3244 
Easterly Wind @ 261,900 ft. (fps.) E10 2.269E+01 9.251E+01 -0.7571 -0.2830 -0.7213 0.7951 

Downward Wind @ S/L (fps.) D1 2.034E-02 3.066E+00 0.0051 -0.0089 -0.0006 -0.0127 
Downward Wind @ 844 ft. (fps.) D2 -2.860E-02 4.988E+00 0.0048 -0.0003 0.0003 -0.0069 

Downward Wind @ 3,550 ft. (fps.) D3 9.852E-03 5.050E+00 -0.0021 -0.0103 -0.0066 -0.0083 
Downward Wind @ 8,150 ft. (fps.) D4 -2.450E-02 4.582E+00 0.0117 0.0034 0.0110 -0.0137 

Downward Wind @ 14,880 ft. (fps.) D5 -7.831E-02 3.785E+00 -0.0092 -0.0037 -0.0094 0.0099 
Downward Wind @ 210,080 ft. (fps.) D6 7.499E-02 5.149E+00 0.0018 -0.0033 0.0022 -0.0077 
Downward Wind @ 297,520 ft. (fps.) D7 -3.853E-01 1.626E+01 0.0119 0.0131 0.0127 -0.0027 
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Atmospheric Variable Alias 
Corr. to 

P5 
Corr. to 

P6 
Corr. to 

P7 
Corr. to 

ρ1 
Corr. to 

ρ2 
Corr. to 

ρ3 
Pressure @ S/L (psf.) P1 0.3921 -0.0838 0.8893 0.1090 0.5512 0.1190 

Pressure @ 14,880 ft. (psf.) P2 -0.2083 0.5232 0.5775 -0.3463 0.0023 -0.3757 
Pressure @ 38,060 ft. (psf.) P3 0.2715 0.0576 0.9085 -0.0423 0.4769 0.0452 
Pressure @ 54,240 ft. (psf.) P4 -0.7168 0.6456 -0.6919 -0.4314 -0.7676 -0.4887 
Pressure @ 73,200 ft. (psf.) P5 1.0000 -0.9047 0.2327 0.8837 0.7330 0.8145 
Pressure @ 94,290 ft. (psf.) P6 -0.9047 1.0000 0.0259 -0.8965 -0.6179 -0.7984 

Pressure @ 164,770 ft. (psf.) P7 0.2327 0.0259 1.0000 -0.1345 0.5081 0.0072 
Density @ S/L (slug/ft3.) ρ1 0.8837 -0.8965 -0.1345 1.0000 0.5248 0.7696 

Density @ 14,880 ft. (slug/ft3.) ρ2 0.7330 -0.6179 0.5081 0.5248 1.0000 0.5586 
Density @ 38,060 ft. (slug/ft3.) ρ3 0.8145 -0.7984 0.0072 0.7696 0.5586 1.0000 
Density @ 54,240 ft. (slug/ft3.) ρ4 -0.3933 0.6293 0.5141 -0.6211 -0.1088 -0.4072 
Density @ 73,200 ft. (slug/ft3.) ρ5 0.0520 -0.1786 -0.7828 0.3038 -0.2789 0.1976 
Density @ 94,290 ft. (slug/ft3.) ρ6 0.2067 0.0628 0.8089 -0.1033 0.4244 0.0219 

Density @ 140,660 ft. (slug/ft3.) ρ7 -0.3286 0.5146 0.6941 -0.5578 0.0086 -0.4143 
Temperature @ S/L (°R) T1 -0.3031 0.5617 0.7609 -0.6078 0.0523 -0.4406 

Temperature @ 54,240 ft. (°R) T2 -0.0427 -0.1971 -0.7835 0.3041 -0.3029 0.0784 
Temperature @ 140,660 ft. (°R) T3 -0.3315 0.1464 -0.8479 -0.0281 -0.5184 -0.1300 
Temperature @ 164,770 ft. (°R) T4 -0.3282 0.5141 0.5497 -0.5558 -0.0006 -0.4079 
Temperature @ 229,720 ft. (°R) T5 -0.7389 0.6327 -0.5117 -0.5322 -0.6862 -0.5396 
Temperature @ 274,320 ft. (°R) T6 0.4123 -0.2403 0.7033 0.1373 0.5402 0.2137 
Temperature @ 303,800 ft. (°R) T7 0.3705 -0.5176 -0.4976 0.5493 0.0693 0.4214 

Northerly Wind @ S/L (fps.) N1 -0.4989 0.2812 -0.8920 -0.1555 -0.6630 -0.2545 
Northerly Wind @ 38,060 ft. (fps.) N2 -0.3545 0.1237 -0.9196 -0.0021 -0.5774 -0.1297 
Northerly Wind @ 73,200 ft. (fps.) N3 -0.9111 0.9180 -0.0867 -0.8550 -0.6410 -0.7803 

Northerly Wind @ 164,770 ft. (fps.) N4 -0.3562 0.1387 -0.8850 -0.0215 -0.5608 -0.1369 
Northerly Wind @ 210,080 ft. (fps.) N5 0.4986 -0.3164 0.7575 0.2011 0.6110 0.2877 
Northerly Wind @ 229,720 ft. (fps.) N6 0.7972 -0.8508 -0.0876 0.8111 0.5059 0.7115 

Easterly Wind @ S/L (fps.) E1 -0.1845 -0.0078 -0.7469 0.1010 -0.3971 -0.0127 
Easterly Wind @ 3,550 ft. (fps.) E2 -0.7270 0.7162 -0.1357 -0.6620 -0.5441 -0.6092 

Easterly Wind @ 38,060 ft. (fps.) E3 -0.0957 -0.0968 -0.7324 0.1800 -0.3312 0.0520 
Easterly Wind @ 73,200 ft. (fps.) E4 -0.7014 0.6606 -0.2193 -0.5981 -0.5523 -0.5694 
Easterly Wind @ 94,290 ft. (fps.) E5 0.7146 -0.7314 0.0616 0.6784 0.5022 0.6086 

Easterly Wind @ 116,950 ft. (fps.) E6 -0.7215 0.7073 -0.1496 -0.6490 -0.5434 -0.6042 
Easterly Wind @ 164,770 ft. (fps.) E7 -0.2036 0.0279 -0.6930 0.0596 -0.3920 -0.0379 
Easterly Wind @ 188,260 ft. (fps.) E8 -0.5819 0.6607 0.2380 -0.6545 -0.3031 -0.5570 
Easterly Wind @ 247,020 ft. (fps.) E9 0.1781 -0.3896 -0.7855 0.4644 -0.1620 0.3161 
Easterly Wind @ 261,900 ft. (fps.) E10 -0.5313 0.3466 -0.7778 -0.2309 -0.6421 -0.3080 

Downward Wind @ S/L (fps.) D1 0.0248 -0.0251 -0.0038 0.0300 0.0173 0.0234 
Downward Wind @ 844 ft. (fps.) D2 0.0123 -0.0164 -0.0035 0.0143 0.0015 0.0103 

Downward Wind @ 3,550 ft. (fps.) D3 0.0193 -0.0224 -0.0049 0.0199 0.0161 0.0156 
Downward Wind @ 8,150 ft. (fps.) D4 0.0114 -0.0091 0.0105 0.0074 0.0172 -0.0039 

Downward Wind @ 14,880 ft. (fps.) D5 -0.0015 -0.0020 -0.0152 0.0018 0.0054 -0.0032 
Downward Wind @ 210,080 ft. (fps.) D6 0.0047 -0.0034 0.0054 -0.0028 0.0069 0.0089 
Downward Wind @ 297,520 ft. (fps.) D7 0.0052 -0.0002 0.0132 0.0054 0.0081 0.0028 
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Atmospheric Variable Alias 
Corr. to 

ρ4 
Corr. to 

ρ5 
Corr. to 

ρ6 
Corr. to 

ρ7 
Corr. to 

T1 
Corr. to 

T2 
Pressure @ S/L (psf.) P1 0.3817 -0.6929 0.7236 0.5142 0.7120 -0.6259 

Pressure @ 14,880 ft. (psf.) P2 0.5716 -0.5584 0.4565 0.6112 0.8333 -0.4247 
Pressure @ 38,060 ft. (psf.) P3 0.4842 -0.7340 0.7383 0.5964 0.7854 -0.6672 
Pressure @ 54,240 ft. (psf.) P4 0.0902 0.4651 -0.5730 -0.1351 -0.1508 0.4328 
Pressure @ 73,200 ft. (psf.) P5 -0.3933 0.0520 0.2067 -0.3286 -0.3031 -0.0427 
Pressure @ 94,290 ft. (psf.) P6 0.6293 -0.1786 0.0628 0.5146 0.5617 -0.1971 

Pressure @ 164,770 ft. (psf.) P7 0.5141 -0.7828 0.8089 0.6941 0.7609 -0.7835 
Density @ S/L (slug/ft3.) ρ1 -0.6211 0.3038 -0.1033 -0.5578 -0.6078 0.3041 

Density @ 14,880 ft. (slug/ft3.) ρ2 -0.1088 -0.2789 0.4244 0.0086 0.0523 -0.3029 
Density @ 38,060 ft. (slug/ft3.) ρ3 -0.4072 0.1976 0.0219 -0.4143 -0.4406 0.0784 
Density @ 54,240 ft. (slug/ft3.) ρ4 1.0000 -0.4029 0.4361 0.6321 0.7134 -0.8541 
Density @ 73,200 ft. (slug/ft3.) ρ5 -0.4029 1.0000 -0.5706 -0.6161 -0.7301 0.5512 
Density @ 94,290 ft. (slug/ft3.) ρ6 0.4361 -0.5706 1.0000 0.5360 0.6135 -0.6617 

Density @ 140,660 ft. (slug/ft3.) ρ7 0.6321 -0.6161 0.5360 1.0000 0.7704 -0.5958 
Temperature @ S/L (°R) T1 0.7134 -0.7301 0.6135 0.7704 1.0000 -0.6650 

Temperature @ 54,240 ft. (°R) T2 -0.8541 0.5512 -0.6617 -0.5958 -0.6650 1.0000 
Temperature @ 140,660 ft. (°R) T3 -0.3104 0.6285 -0.6513 -0.7587 -0.5358 0.6089 
Temperature @ 164,770 ft. (°R) T4 0.6307 -0.6022 0.5174 0.6146 0.7612 -0.5884 
Temperature @ 229,720 ft. (°R) T5 0.1240 0.2896 -0.4235 -0.0006 -0.0485 0.2980 
Temperature @ 274,320 ft. (°R) T6 0.2162 -0.5148 0.5846 0.3356 0.4072 -0.5257 
Temperature @ 303,800 ft. (°R) T7 -0.5707 0.5105 -0.3980 -0.5870 -0.6662 0.4915 

Northerly Wind @ S/L (fps.) N1 -0.2842 0.6664 -0.7349 -0.4338 -0.5346 0.6651 
Northerly Wind @ 38,060 ft. (fps.) N2 -0.3972 0.7222 -0.7552 -0.5304 -0.6413 0.7177 
Northerly Wind @ 73,200 ft. (fps.) N3 0.5042 -0.1306 -0.0823 0.4149 0.4368 -0.0827 

Northerly Wind @ 164,770 ft. (fps.) N4 -0.3663 0.6857 -0.7271 -0.5044 -0.6018 0.6829 
Northerly Wind @ 210,080 ft. (fps.) N5 0.1964 -0.5474 0.6253 0.3270 0.4107 -0.5546 
Northerly Wind @ 229,720 ft. (fps.) N6 -0.5621 0.2449 -0.0606 -0.4952 -0.5336 0.2185 

Easterly Wind @ S/L (fps.) E1 -0.3935 0.6047 -0.6140 -0.4869 -0.5802 0.6068 
Easterly Wind @ 3,550 ft. (fps.) E2 0.3608 -0.0414 -0.1172 0.2755 0.2897 -0.0121 

Easterly Wind @ 38,060 ft. (fps.) E3 -0.4391 0.6110 -0.6005 -0.5211 -0.6167 0.6089 
Easterly Wind @ 73,200 ft. (fps.) E4 0.2767 0.0263 -0.1865 0.2003 0.1906 0.0711 
Easterly Wind @ 94,290 ft. (fps.) E5 -0.4170 0.0976 0.0276 -0.3318 -0.3509 0.0843 

Easterly Wind @ 116,950 ft. (fps.) E6 0.3507 -0.0188 -0.1389 0.2660 0.2732 -0.0021 
Easterly Wind @ 164,770 ft. (fps.) E7 -0.3404 0.5553 -0.5623 -0.4353 -0.5141 0.5522 
Easterly Wind @ 188,260 ft. (fps.) E8 0.5196 -0.3442 0.1799 0.4956 0.5526 -0.3031 
Easterly Wind @ 247,020 ft. (fps.) E9 -0.6331 0.7182 -0.6363 -0.7128 -0.8159 0.6934 
Easterly Wind @ 261,900 ft. (fps.) E10 -0.1844 0.5573 -0.6379 -0.3228 -0.4074 0.5599 

Downward Wind @ S/L (fps.) D1 -0.0251 0.0062 0.0041 -0.0209 -0.0163 0.0159 
Downward Wind @ 844 ft. (fps.) D2 -0.0237 -0.0082 -0.0183 -0.0166 -0.0040 0.0188 

Downward Wind @ 3,550 ft. (fps.) D3 -0.0137 0.0142 -0.0068 -0.0152 -0.0140 0.0065 
Downward Wind @ 8,150 ft. (fps.) D4 -0.0013 -0.0079 0.0137 0.0070 0.0034 -0.0056 

Downward Wind @ 14,880 ft. (fps.) D5 -0.0079 -0.0050 -0.0184 -0.0192 -0.0066 0.0118 
Downward Wind @ 210,080 ft. (fps.) D6 -0.0002 0.0067 0.0062 0.0016 0.0034 -0.0036 
Downward Wind @ 297,520 ft. (fps.) D7 0.0067 0.0028 0.0085 0.0121 0.0055 -0.0073 

 

 



 226 

 

 

 

Atmospheric Variable Alias 
Corr. to 

T3 
Corr. to 

T4 
Corr. to 

T5 
Corr. to 

T6 
Corr. to 

T7 
Corr. to 

N1 
Pressure @ S/L (psf.) P1 -0.7425 0.5021 -0.5548 0.6701 -0.3831 -0.8555 

Pressure @ 14,880 ft. (psf.) P2 -0.3811 0.6041 0.0018 0.2846 -0.5291 -0.3823 
Pressure @ 38,060 ft. (psf.) P3 -0.7342 0.5864 -0.4753 0.6486 -0.4651 -0.8298 
Pressure @ 54,240 ft. (psf.) P4 0.6868 -0.1212 0.7861 -0.6729 0.0292 0.8370 
Pressure @ 73,200 ft. (psf.) P5 -0.3315 -0.3282 -0.7389 0.4123 0.3705 -0.4989 
Pressure @ 94,290 ft. (psf.) P6 0.1464 0.5141 0.6327 -0.2403 -0.5176 0.2812 

Pressure @ 164,770 ft. (psf.) P7 -0.8479 0.5497 -0.5117 0.7033 -0.4976 -0.8920 
Density @ S/L (slug/ft3.) ρ1 -0.0281 -0.5558 -0.5322 0.1373 0.5493 -0.1555 

Density @ 14,880 ft. (slug/ft3.) ρ2 -0.5184 -0.0006 -0.6862 0.5402 0.0693 -0.6630 
Density @ 38,060 ft. (slug/ft3.) ρ3 -0.1300 -0.4079 -0.5396 0.2137 0.4214 -0.2545 
Density @ 54,240 ft. (slug/ft3.) ρ4 -0.3104 0.6307 0.1240 0.2162 -0.5707 -0.2842 
Density @ 73,200 ft. (slug/ft3.) ρ5 0.6285 -0.6022 0.2896 -0.5148 0.5105 0.6664 
Density @ 94,290 ft. (slug/ft3.) ρ6 -0.6513 0.5174 -0.4235 0.5846 -0.3980 -0.7349 

Density @ 140,660 ft. (slug/ft3.) ρ7 -0.7587 0.6146 -0.0006 0.3356 -0.5870 -0.4338 
Temperature @ S/L (°R) T1 -0.5358 0.7612 -0.0485 0.4072 -0.6662 -0.5346 

Temperature @ 54,240 ft. (°R) T2 0.6089 -0.5884 0.2980 -0.5257 0.4915 0.6651 
Temperature @ 140,660 ft. (°R) T3 1.0000 -0.3784 0.5210 -0.6247 0.3288 0.7859 
Temperature @ 164,770 ft. (°R) T4 -0.3784 1.0000 0.0022 0.3164 -0.5792 -0.4227 
Temperature @ 229,720 ft. (°R) T5 0.5210 0.0022 1.0000 -0.5286 -0.0711 0.6698 
Temperature @ 274,320 ft. (°R) T6 -0.6247 0.3164 -0.5286 1.0000 -0.2009 -0.7235 
Temperature @ 303,800 ft. (°R) T7 0.3288 -0.5792 -0.0711 -0.2009 1.0000 0.3003 

Northerly Wind @ S/L (fps.) N1 0.7859 -0.4227 0.6698 -0.7235 0.3003 1.0000 
Northerly Wind @ 38,060 ft. (fps.) N2 0.7817 -0.5202 0.5828 -0.7039 0.3951 0.8907 
Northerly Wind @ 73,200 ft. (fps.) N3 0.2193 0.4164 0.6545 -0.3067 -0.4351 0.3619 

Northerly Wind @ 164,770 ft. (fps.) N4 0.7580 -0.4691 0.5675 -0.6818 0.3701 0.8584 
Northerly Wind @ 210,080 ft. (fps.) N5 -0.6784 0.3243 -0.6173 0.6389 -0.2113 -0.8013 
Northerly Wind @ 229,720 ft. (fps.) N6 -0.0613 -0.4876 -0.5007 0.1627 0.4894 -0.1824 

Easterly Wind @ S/L (fps.) E1 0.6183 -0.4790 0.4064 -0.5346 0.3816 0.6923 
Easterly Wind @ 3,550 ft. (fps.) E2 0.2322 0.2853 0.5431 -0.2833 -0.3102 0.3485 

Easterly Wind @ 38,060 ft. (fps.) E3 0.5884 -0.5133 0.3363 -0.5104 0.4148 0.6477 
Easterly Wind @ 73,200 ft. (fps.) E4 0.2852 0.2016 0.5640 -0.3399 -0.2344 0.4062 
Easterly Wind @ 94,290 ft. (fps.) E5 -0.1715 -0.3462 -0.5114 0.2349 0.3554 -0.2802 

Easterly Wind @ 116,950 ft. (fps.) E6 0.2372 0.2732 0.5555 -0.2999 -0.2914 0.3516 
Easterly Wind @ 164,770 ft. (fps.) E7 0.5802 -0.3998 0.3995 -0.5188 0.3346 0.6451 
Easterly Wind @ 188,260 ft. (fps.) E8 -0.0929 0.5139 0.3166 -0.0046 -0.4713 -0.0226 
Easterly Wind @ 247,020 ft. (fps.) E9 0.5932 -0.6933 0.1844 -0.4700 0.5921 0.6061 
Easterly Wind @ 261,900 ft. (fps.) E10 0.6975 -0.3143 0.6600 -0.6510 0.2091 0.8262 

Downward Wind @ S/L (fps.) D1 0.0048 -0.0125 -0.0107 0.0081 0.0166 -0.0034 
Downward Wind @ 844 ft. (fps.) D2 0.0071 -0.0131 -0.0096 0.0102 0.0108 0.0000 

Downward Wind @ 3,550 ft. (fps.) D3 0.0025 -0.0257 -0.0179 0.0010 0.0205 -0.0021 
Downward Wind @ 8,150 ft. (fps.) D4 -0.0133 0.0131 -0.0016 0.0005 -0.0107 -0.0135 

Downward Wind @ 14,880 ft. (fps.) D5 0.0196 -0.0081 -0.0028 -0.0053 0.0133 0.0108 
Downward Wind @ 210,080 ft. (fps.) D6 -0.0056 0.0018 -0.0043 0.0074 -0.0089 -0.0065 
Downward Wind @ 297,520 ft. (fps.) D7 -0.0134 -0.0149 0.0047 0.0041 -0.0138 -0.0069 
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Atmospheric Variable Alias 
Corr. to 

N2 
Corr. to 

N3 
Corr. to 

N4 
Corr. to 

N5 
Corr. to 

N6 
Corr. to 

E1 
Pressure @ S/L (psf.) P1 -0.8569 -0.2035 -0.8228 0.7330 0.0350 -0.6809 

Pressure @ 14,880 ft. (psf.) P2 -0.4703 0.3842 -0.4388 0.2816 -0.4548 -0.4320 
Pressure @ 38,060 ft. (psf.) P3 -0.8555 -0.0765 -0.8171 0.7027 -0.0861 -0.6948 
Pressure @ 54,240 ft. (psf.) P4 0.7544 0.6575 0.7370 -0.7632 -0.4899 0.5424 
Pressure @ 73,200 ft. (psf.) P5 -0.3545 -0.9111 -0.3562 0.4986 0.7972 -0.1845 
Pressure @ 94,290 ft. (psf.) P6 0.1237 0.9180 0.1387 -0.3164 -0.8508 -0.0078 

Pressure @ 164,770 ft. (psf.) P7 -0.9196 -0.0867 -0.8850 0.7575 -0.0876 -0.7469 
Density @ S/L (slug/ft3.) ρ1 -0.0021 -0.8550 -0.0215 0.2011 0.8111 0.1010 

Density @ 14,880 ft. (slug/ft3.) ρ2 -0.5774 -0.6410 -0.5608 0.6110 0.5059 -0.3971 
Density @ 38,060 ft. (slug/ft3.) ρ3 -0.1297 -0.7803 -0.1369 0.2877 0.7115 -0.0127 
Density @ 54,240 ft. (slug/ft3.) ρ4 -0.3972 0.5042 -0.3663 0.1964 -0.5621 -0.3935 
Density @ 73,200 ft. (slug/ft3.) ρ5 0.7222 -0.1306 0.6857 -0.5474 0.2449 0.6047 
Density @ 94,290 ft. (slug/ft3.) ρ6 -0.7552 -0.0823 -0.7271 0.6253 -0.0606 -0.6140 

Density @ 140,660 ft. (slug/ft3.) ρ7 -0.5304 0.4149 -0.5044 0.3270 -0.4952 -0.4869 
Temperature @ S/L (°R) T1 -0.6413 0.4368 -0.6018 0.4107 -0.5336 -0.5802 

Temperature @ 54,240 ft. (°R) T2 0.7177 -0.0827 0.6829 -0.5546 0.2185 0.6068 
Temperature @ 140,660 ft. (°R) T3 0.7817 0.2193 0.7580 -0.6784 -0.0613 0.6183 
Temperature @ 164,770 ft. (°R) T4 -0.5202 0.4164 -0.4691 0.3243 -0.4876 -0.4790 
Temperature @ 229,720 ft. (°R) T5 0.5828 0.6545 0.5675 -0.6173 -0.5007 0.4064 
Temperature @ 274,320 ft. (°R) T6 -0.7039 -0.3067 -0.6818 0.6389 0.1627 -0.5346 
Temperature @ 303,800 ft. (°R) T7 0.3951 -0.4351 0.3701 -0.2113 0.4894 0.3816 

Northerly Wind @ S/L (fps.) N1 0.8907 0.3619 0.8584 -0.8013 -0.1824 0.6923 
Northerly Wind @ 38,060 ft. (fps.) N2 1.0000 0.2262 0.8578 -0.7721 -0.0454 0.7123 
Northerly Wind @ 73,200 ft. (fps.) N3 0.2262 1.0000 0.2271 -0.3835 -0.7982 0.0759 

Northerly Wind @ 164,770 ft. (fps.) N4 0.8578 0.2271 1.0000 -0.7164 -0.0451 0.6810 
Northerly Wind @ 210,080 ft. (fps.) N5 -0.7721 -0.3835 -0.7164 1.0000 0.3382 -0.5878 
Northerly Wind @ 229,720 ft. (fps.) N6 -0.0454 -0.7982 -0.0451 0.3382 1.0000 0.0607 

Easterly Wind @ S/L (fps.) E1 0.7123 0.0759 0.6810 -0.5878 0.0607 1.0000 
Easterly Wind @ 3,550 ft. (fps.) E2 0.2355 0.6921 0.2432 -0.3432 -0.6131 0.2099 

Easterly Wind @ 38,060 ft. (fps.) E3 0.6813 -0.0146 0.6539 -0.5460 0.1345 0.5641 
Easterly Wind @ 73,200 ft. (fps.) E4 0.3059 0.6539 0.3040 -0.3995 -0.5618 0.1776 
Easterly Wind @ 94,290 ft. (fps.) E5 -0.1648 -0.6971 -0.1753 0.3019 0.6391 -0.0518 

Easterly Wind @ 116,950 ft. (fps.) E6 0.2426 0.6846 0.2451 -0.3583 -0.6022 0.1191 
Easterly Wind @ 164,770 ft. (fps.) E7 0.6603 0.1005 0.6373 -0.5512 0.0252 0.5291 
Easterly Wind @ 188,260 ft. (fps.) E8 -0.1338 0.6076 -0.1119 -0.0402 -0.6038 -0.1732 
Easterly Wind @ 247,020 ft. (fps.) E9 0.6913 -0.2856 0.6559 -0.4868 0.4042 0.6063 
Easterly Wind @ 261,900 ft. (fps.) E10 0.7918 0.4129 0.7639 -0.7328 -0.2432 0.6092 

Downward Wind @ S/L (fps.) D1 0.0006 -0.0217 0.0014 0.0149 0.0345 0.0031 
Downward Wind @ 844 ft. (fps.) D2 -0.0003 -0.0098 -0.0005 0.0086 0.0099 0.0051 

Downward Wind @ 3,550 ft. (fps.) D3 0.0007 -0.0168 0.0018 -0.0017 0.0173 0.0042 
Downward Wind @ 8,150 ft. (fps.) D4 -0.0094 -0.0116 -0.0135 0.0057 0.0099 -0.0104 

Downward Wind @ 14,880 ft. (fps.) D5 0.0067 -0.0030 0.0137 -0.0119 0.0079 0.0048 
Downward Wind @ 210,080 ft. (fps.) D6 0.0044 -0.0013 -0.0089 -0.0014 -0.0020 -0.0140 
Downward Wind @ 297,520 ft. (fps.) D7 -0.0051 0.0023 -0.0065 0.0067 0.0004 -0.0181 
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Atmospheric Variable Alias 
Corr. to 

E2 
Corr. to 

E3 
Corr. to 

E4 
Corr. to 

E5 
Corr. to 

E6 
Corr. to 

E7 
Pressure @ S/L (psf.) P1 -0.2229 -0.6567 -0.2935 0.1558 -0.2319 -0.6312 

Pressure @ 14,880 ft. (psf.) P2 0.2603 -0.4685 0.1829 -0.3066 0.2494 -0.3788 
Pressure @ 38,060 ft. (psf.) P3 -0.1216 -0.6833 -0.2040 0.0531 -0.1360 -0.6388 
Pressure @ 54,240 ft. (psf.) P4 0.5631 0.4719 0.5860 -0.5178 0.5667 0.5222 
Pressure @ 73,200 ft. (psf.) P5 -0.7270 -0.0957 -0.7014 0.7146 -0.7215 -0.2036 
Pressure @ 94,290 ft. (psf.) P6 0.7162 -0.0968 0.6606 -0.7314 0.7073 0.0279 

Pressure @ 164,770 ft. (psf.) P7 -0.1357 -0.7324 -0.2193 0.0616 -0.1496 -0.6930 
Density @ S/L (slug/ft3.) ρ1 -0.6620 0.1800 -0.5981 0.6784 -0.6490 0.0596 

Density @ 14,880 ft. (slug/ft3.) ρ2 -0.5441 -0.3312 -0.5523 0.5022 -0.5434 -0.3920 
Density @ 38,060 ft. (slug/ft3.) ρ3 -0.6092 0.0520 -0.5694 0.6086 -0.6042 -0.0379 
Density @ 54,240 ft. (slug/ft3.) ρ4 0.3608 -0.4391 0.2767 -0.4170 0.3507 -0.3404 
Density @ 73,200 ft. (slug/ft3.) ρ5 -0.0414 0.6110 0.0263 0.0976 -0.0188 0.5553 
Density @ 94,290 ft. (slug/ft3.) ρ6 -0.1172 -0.6005 -0.1865 0.0276 -0.1389 -0.5623 

Density @ 140,660 ft. (slug/ft3.) ρ7 0.2755 -0.5211 0.2003 -0.3318 0.2660 -0.4353 

Temperature @ S/L (°R) T1 0.2897 -0.6167 0.1906 -0.3509 0.2732 -0.5141 

Temperature @ 54,240 ft. (°R) T2 -0.0121 0.6089 0.0711 0.0843 -0.0021 0.5522 

Temperature @ 140,660 ft. (°R) T3 0.2322 0.5884 0.2852 -0.1715 0.2372 0.5802 

Temperature @ 164,770 ft. (°R) T4 0.2853 -0.5133 0.2016 -0.3462 0.2732 -0.3998 

Temperature @ 229,720 ft. (°R) T5 0.5431 0.3363 0.5640 -0.5114 0.5555 0.3995 

Temperature @ 274,320 ft. (°R) T6 -0.2833 -0.5104 -0.3399 0.2349 -0.2999 -0.5188 

Temperature @ 303,800 ft. (°R) T7 -0.3102 0.4148 -0.2344 0.3554 -0.2914 0.3346 
Northerly Wind @ S/L (fps.) N1 0.3485 0.6477 0.4062 -0.2802 0.3516 0.6451 

Northerly Wind @ 38,060 ft. (fps.) N2 0.2355 0.6813 0.3059 -0.1648 0.2426 0.6603 
Northerly Wind @ 73,200 ft. (fps.) N3 0.6921 -0.0146 0.6539 -0.6971 0.6846 0.1005 

Northerly Wind @ 164,770 ft. (fps.) N4 0.2432 0.6539 0.3040 -0.1753 0.2451 0.6373 
Northerly Wind @ 210,080 ft. (fps.) N5 -0.3432 -0.5460 -0.3995 0.3019 -0.3583 -0.5512 
Northerly Wind @ 229,720 ft. (fps.) N6 -0.6131 0.1345 -0.5618 0.6391 -0.6022 0.0252 

Easterly Wind @ S/L (fps.) E1 0.2099 0.5641 0.1776 -0.0518 0.1191 0.5291 
Easterly Wind @ 3,550 ft. (fps.) E2 1.0000 0.0383 0.5320 -0.5482 0.5496 0.1312 

Easterly Wind @ 38,060 ft. (fps.) E3 0.0383 1.0000 0.2102 0.0342 0.0535 0.5234 
Easterly Wind @ 73,200 ft. (fps.) E4 0.5320 0.2102 1.0000 -0.3961 0.5505 0.1963 
Easterly Wind @ 94,290 ft. (fps.) E5 -0.5482 0.0342 -0.3961 1.0000 -0.4347 -0.0660 

Easterly Wind @ 116,950 ft. (fps.) E6 0.5496 0.0535 0.5505 -0.4347 1.0000 0.1690 
Easterly Wind @ 164,770 ft. (fps.) E7 0.1312 0.5234 0.1963 -0.0660 0.1690 1.0000 
Easterly Wind @ 188,260 ft. (fps.) E8 0.4543 -0.2368 0.4103 -0.4712 0.4633 0.0229 
Easterly Wind @ 247,020 ft. (fps.) E9 -0.1630 0.6256 -0.0835 0.2312 -0.1549 0.5464 
Easterly Wind @ 261,900 ft. (fps.) E10 0.3821 0.5565 0.4218 -0.3150 0.3863 0.5686 

Downward Wind @ S/L (fps.) D1 -0.0142 0.0021 -0.0083 0.0070 -0.0266 -0.0116 
Downward Wind @ 844 ft. (fps.) D2 -0.0182 0.0125 -0.0062 0.0028 -0.0164 -0.0100 

Downward Wind @ 3,550 ft. (fps.) D3 -0.0243 0.0250 -0.0044 0.0168 -0.0111 0.0005 
Downward Wind @ 8,150 ft. (fps.) D4 -0.0054 -0.0068 -0.0054 0.0025 -0.0071 -0.0251 

Downward Wind @ 14,880 ft. (fps.) D5 0.0058 0.0119 0.0169 0.0079 0.0010 0.0100 
Downward Wind @ 210,080 ft. (fps.) D6 -0.0030 -0.0093 0.0005 0.0063 -0.0031 -0.0110 
Downward Wind @ 297,520 ft. (fps.) D7 0.0038 -0.0089 -0.0066 -0.0052 -0.0047 0.0033 
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Atmospheric Variable Alias 
Corr. to 

E8 
Corr. to 

E9 
Corr. to 

E10 
Corr. to 

D1 
Corr. to 

D2 
Corr. to 

D3 
Pressure @ S/L (psf.) P1 0.1342 -0.6626 -0.7571 0.0051 0.0048 -0.0021 

Pressure @ 14,880 ft. (psf.) P2 0.4582 -0.6329 -0.2830 -0.0089 -0.0003 -0.0103 
Pressure @ 38,060 ft. (psf.) P3 0.2304 -0.7298 -0.7213 -0.0006 0.0003 -0.0066 
Pressure @ 54,240 ft. (psf.) P4 0.2524 0.3244 0.7951 -0.0127 -0.0069 -0.0083 
Pressure @ 73,200 ft. (psf.) P5 -0.5819 0.1781 -0.5313 0.0248 0.0123 0.0193 
Pressure @ 94,290 ft. (psf.) P6 0.6607 -0.3896 0.3466 -0.0251 -0.0164 -0.0224 

Pressure @ 164,770 ft. (psf.) P7 0.2380 -0.7855 -0.7778 -0.0038 -0.0035 -0.0049 
Density @ S/L (slug/ft3.) ρ1 -0.6545 0.4644 -0.2309 0.0300 0.0143 0.0199 

Density @ 14,880 ft. (slug/ft3.) ρ2 -0.3031 -0.1620 -0.6421 0.0173 0.0015 0.0161 
Density @ 38,060 ft. (slug/ft3.) ρ3 -0.5570 0.3161 -0.3080 0.0234 0.0103 0.0156 
Density @ 54,240 ft. (slug/ft3.) ρ4 0.5196 -0.6331 -0.1844 -0.0251 -0.0237 -0.0137 
Density @ 73,200 ft. (slug/ft3.) ρ5 -0.3442 0.7182 0.5573 0.0062 -0.0082 0.0142 
Density @ 94,290 ft. (slug/ft3.) ρ6 0.1799 -0.6363 -0.6379 0.0041 -0.0183 -0.0068 

Density @ 140,660 ft. (slug/ft3.) ρ7 0.4956 -0.7128 -0.3228 -0.0209 -0.0166 -0.0152 

Temperature @ S/L (°R) T1 0.5526 -0.8159 -0.4074 -0.0163 -0.0040 -0.0140 

Temperature @ 54,240 ft. (°R) T2 -0.3031 0.6934 0.5599 0.0159 0.0188 0.0065 

Temperature @ 140,660 ft. (°R) T3 -0.0929 0.5932 0.6975 0.0048 0.0071 0.0025 

Temperature @ 164,770 ft. (°R) T4 0.5139 -0.6933 -0.3143 -0.0125 -0.0131 -0.0257 

Temperature @ 229,720 ft. (°R) T5 0.3166 0.1844 0.6600 -0.0107 -0.0096 -0.0179 

Temperature @ 274,320 ft. (°R) T6 -0.0046 -0.4700 -0.6510 0.0081 0.0102 0.0010 

Temperature @ 303,800 ft. (°R) T7 -0.4713 0.5921 0.2091 0.0166 0.0108 0.0205 
Northerly Wind @ S/L (fps.) N1 -0.0226 0.6061 0.8262 -0.0034 0.0000 -0.0021 

Northerly Wind @ 38,060 ft. (fps.) N2 -0.1338 0.6913 0.7918 0.0006 -0.0003 0.0007 
Northerly Wind @ 73,200 ft. (fps.) N3 0.6076 -0.2856 0.4129 -0.0217 -0.0098 -0.0168 

Northerly Wind @ 164,770 ft. (fps.) N4 -0.1119 0.6559 0.7639 0.0014 -0.0005 0.0018 
Northerly Wind @ 210,080 ft. (fps.) N5 -0.0402 -0.4868 -0.7328 0.0149 0.0086 -0.0017 
Northerly Wind @ 229,720 ft. (fps.) N6 -0.6038 0.4042 -0.2432 0.0345 0.0099 0.0173 

Easterly Wind @ S/L (fps.) E1 -0.1732 0.6063 0.6092 0.0031 0.0051 0.0042 
Easterly Wind @ 3,550 ft. (fps.) E2 0.4543 -0.1630 0.3821 -0.0142 -0.0182 -0.0243 

Easterly Wind @ 38,060 ft. (fps.) E3 -0.2368 0.6256 0.5565 0.0021 0.0125 0.0250 
Easterly Wind @ 73,200 ft. (fps.) E4 0.4103 -0.0835 0.4218 -0.0083 -0.0062 -0.0044 
Easterly Wind @ 94,290 ft. (fps.) E5 -0.4712 0.2312 -0.3150 0.0070 0.0028 0.0168 

Easterly Wind @ 116,950 ft. (fps.) E6 0.4633 -0.1549 0.3863 -0.0266 -0.0164 -0.0111 
Easterly Wind @ 164,770 ft. (fps.) E7 0.0229 0.5464 0.5686 -0.0116 -0.0100 0.0005 
Easterly Wind @ 188,260 ft. (fps.) E8 1.0000 -0.4270 0.0614 -0.0334 -0.0285 -0.0185 
Easterly Wind @ 247,020 ft. (fps.) E9 -0.4270 1.0000 0.6070 0.0114 0.0071 0.0134 
Easterly Wind @ 261,900 ft. (fps.) E10 0.0614 0.6070 1.0000 -0.0148 -0.0069 -0.0059 

Downward Wind @ S/L (fps.) D1 -0.0334 0.0114 -0.0148 1.0000 0.3453 0.1086 
Downward Wind @ 844 ft. (fps.) D2 -0.0285 0.0071 -0.0069 0.3453 1.0000 0.1382 

Downward Wind @ 3,550 ft. (fps.) D3 -0.0185 0.0134 -0.0059 0.1086 0.1382 1.0000 
Downward Wind @ 8,150 ft. (fps.) D4 -0.0116 -0.0041 -0.0207 0.0482 0.0711 0.1081 

Downward Wind @ 14,880 ft. (fps.) D5 -0.0118 0.0140 0.0024 0.0169 0.0263 0.0485 
Downward Wind @ 210,080 ft. (fps.) D6 -0.0099 -0.0071 -0.0032 -0.0228 0.0024 0.0019 
Downward Wind @ 297,520 ft. (fps.) D7 -0.0012 -0.0052 -0.0047 -0.0101 -0.0095 -0.0086 
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Atmospheric Variable Alias 
Corr. to 

D4 
Corr. to 

D5 
Corr. to 

D6 
Corr. to 

D7 
Pressure @ S/L (psf.) P1 0.0117 -0.0092 0.0018 0.0119 

Pressure @ 14,880 ft. (psf.) P2 0.0034 -0.0037 -0.0033 0.0131 
Pressure @ 38,060 ft. (psf.) P3 0.0110 -0.0094 0.0022 0.0127 
Pressure @ 54,240 ft. (psf.) P4 -0.0137 0.0099 -0.0077 -0.0027 
Pressure @ 73,200 ft. (psf.) P5 0.0114 -0.0015 0.0047 0.0052 
Pressure @ 94,290 ft. (psf.) P6 -0.0091 -0.0020 -0.0034 -0.0002 

Pressure @ 164,770 ft. (psf.) P7 0.0105 -0.0152 0.0054 0.0132 
Density @ S/L (slug/ft3.) ρ1 0.0074 0.0018 -0.0028 0.0054 

Density @ 14,880 ft. (slug/ft3.) ρ2 0.0172 0.0054 0.0069 0.0081 
Density @ 38,060 ft. (slug/ft3.) ρ3 -0.0039 -0.0032 0.0089 0.0028 
Density @ 54,240 ft. (slug/ft3.) ρ4 -0.0013 -0.0079 -0.0002 0.0067 
Density @ 73,200 ft. (slug/ft3.) ρ5 -0.0079 -0.0050 0.0067 0.0028 
Density @ 94,290 ft. (slug/ft3.) ρ6 0.0137 -0.0184 0.0062 0.0085 

Density @ 140,660 ft. (slug/ft3.) ρ7 0.0070 -0.0192 0.0016 0.0121 

Temperature @ S/L (°R) T1 0.0034 -0.0066 0.0034 0.0055 

Temperature @ 54,240 ft. (°R) T2 -0.0056 0.0118 -0.0036 -0.0073 

Temperature @ 140,660 ft. (°R) T3 -0.0133 0.0196 -0.0056 -0.0134 

Temperature @ 164,770 ft. (°R) T4 0.0131 -0.0081 0.0018 -0.0149 

Temperature @ 229,720 ft. (°R) T5 -0.0016 -0.0028 -0.0043 0.0047 

Temperature @ 274,320 ft. (°R) T6 0.0005 -0.0053 0.0074 0.0041 

Temperature @ 303,800 ft. (°R) T7 -0.0107 0.0133 -0.0089 -0.0138 
Northerly Wind @ S/L (fps.) N1 -0.0135 0.0108 -0.0065 -0.0069 

Northerly Wind @ 38,060 ft. (fps.) N2 -0.0094 0.0067 0.0044 -0.0051 
Northerly Wind @ 73,200 ft. (fps.) N3 -0.0116 -0.0030 -0.0013 0.0023 

Northerly Wind @ 164,770 ft. (fps.) N4 -0.0135 0.0137 -0.0089 -0.0065 
Northerly Wind @ 210,080 ft. (fps.) N5 0.0057 -0.0119 -0.0014 0.0067 
Northerly Wind @ 229,720 ft. (fps.) N6 0.0099 0.0079 -0.0020 0.0004 

Easterly Wind @ S/L (fps.) E1 -0.0104 0.0048 -0.0140 -0.0181 
Easterly Wind @ 3,550 ft. (fps.) E2 -0.0054 0.0058 -0.0030 0.0038 

Easterly Wind @ 38,060 ft. (fps.) E3 -0.0068 0.0119 -0.0093 -0.0089 
Easterly Wind @ 73,200 ft. (fps.) E4 -0.0054 0.0169 0.0005 -0.0066 
Easterly Wind @ 94,290 ft. (fps.) E5 0.0025 0.0079 0.0063 -0.0052 

Easterly Wind @ 116,950 ft. (fps.) E6 -0.0071 0.0010 -0.0031 -0.0047 
Easterly Wind @ 164,770 ft. (fps.) E7 -0.0251 0.0100 -0.0110 0.0033 
Easterly Wind @ 188,260 ft. (fps.) E8 -0.0116 -0.0118 -0.0099 -0.0012 
Easterly Wind @ 247,020 ft. (fps.) E9 -0.0041 0.0140 -0.0071 -0.0052 
Easterly Wind @ 261,900 ft. (fps.) E10 -0.0207 0.0024 -0.0032 -0.0047 

Downward Wind @ S/L (fps.) D1 0.0482 0.0169 -0.0228 -0.0101 
Downward Wind @ 844 ft. (fps.) D2 0.0711 0.0263 0.0024 -0.0095 

Downward Wind @ 3,550 ft. (fps.) D3 0.1081 0.0485 0.0019 -0.0086 
Downward Wind @ 8,150 ft. (fps.) D4 1.0000 0.0881 0.0047 -0.0041 

Downward Wind @ 14,880 ft. (fps.) D5 0.0881 1.0000 0.0068 0.0009 
Downward Wind @ 210,080 ft. (fps.) D6 0.0047 0.0068 1.0000 0.0218 
Downward Wind @ 297,520 ft. (fps.) D7 -0.0041 0.0009 0.0218 1.0000 
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This appendix lists source code written for this research that might be useful in 

future applications. They are all written as Matlab© functions. 

 

File: ds_genprob.m 

Matlab© function ds_genprob.m generates a Descriptive Sampling probability 

map for a given number of variables and runs. 

 

function prob = ds_genprob(nvars, nruns); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Written by David McCormick in support of 
%% Ph.D. thesis work. 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Descriptive Sampling algorithm using 
%% combination of procedures from Saliby and McKay. 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Algorithm described in detail in background  
%% section of dissertation. 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% P contains the vectors to permute. 
 
p = zeros(nruns, nvars); 
 
k = 0; 
 
while (k<nvars) 
    
   check = 0; 
    
   temp = randperm(nruns)'; 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Check to make sure permutation is  
%% independent of previous permutations. 
    
    
   for i = 1:k-1, 
       
      if temp == p(:,i) 
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         check = 1 
          
      end 
       
   end 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Add permutation to matrix if it is  
%% independent. 
 
if check == 0, 
       
      k = k+1; 
       
      p(:,k) = temp; 
       
   end 
    
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Transform matrix to probabilities by moving 
%% to center of stratum and dividing by the 
%% number of runs. 
 
for j = 1:nruns, 
    
   for k = 1:nvars, 
       
      prob(j,k) = 1/nruns * (p(j,k)-0.5); 
       
   end 
    
end 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Report matrix prob. 
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File: DPOMD_frf.m 

This Matlab© function generates a fractional factorial DPOMD run list based an 

input mean vector, covariance matrix and reduction factor. 

 

function [x, template] = DPOMD_frf(mu, sig, reduction) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Written by David McCormick in support of 
%% Ph.D. thesis work. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Generate inverse linear transform matrix for  
%% Hasofer-Lind 
 
[transform, p] = chol(sig); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
n = size(mu,1); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Generate a -1, +1 fractional factorial design. 
 
[x, template] = frf2n(n, reduction); 
 
 
runs = size(x,1); 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Perform inverse transform on DOE. 
 
temp = mu'; 
 
mu = temp(ones(runs,1),:); 
 
 
x = x * transform + mu; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Report run list and template for DOE generation. 
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File: frf2n.m 

 Matlab© function that given the number of factors and reduction parameter, will 

find a maximum resolution two-level fractional factorial experiment design. 

 

function [Exp, template] = frf2n(nvars, reduction) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Written by David McCormick in support of 
%% Ph.D. thesis work. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Calculate the number of basic factors 
 
nbasic = nvars - reduction; 
 
table = ones(2^nbasic,1); 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Generate a full-factorial desgin for basic  
%% factors. 
 
table(:,2:nbasic+1) = ff2n(nbasic); 
 
nforsat = 0; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Remap the zeros to be -1. 
 
for i = 1:2^nbasic 
    
   for j = 2:nbasic+1 
       
      if table(i,j) == 0 
          
         table(i,j) = -1; 
          
      end 
       
   end 
    
end 
 
 
for i = 1:nbasic 
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   nforsat = nforsat + nchoosek(nbasic,i); 
    
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Generate a saturated design template and  
%% then grab the columns starting from the  
%% right so that the resolution is as high  
%% as possible.  
 
template = zeros( nbasic, nforsat-nbasic ); 
 
current_pos = 0; 
v = linspace(1,nbasic,nbasic); 
 
 
for i = 2:nbasic 
    
   nforthisblock = nchoosek(nbasic,i); 
       
   template(1:i,current_pos+1:current_pos+nforthisblock) = 
nchoosek(v,i)'; 
    
   current_pos = current_pos + nforthisblock; 
    
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Now step backwards through the template and 
%% generate enough rows to fill in the table. 
%% The template contains the position of the 
%% ordinate in one of the basic variables to  
%% use in the running product used in the direct  
%% method of table generation. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Produces an error if resolution is below 3. 
 
for i = nvars+1:-1:nbasic+2, 
    
   table(:,i) = ones(2^nbasic,1); 
    
   for j = 1:2^nbasic, 
       
      for k = 1:nbasic, 
          
         table(j,i) = table(j,i) * table(j, template( k, (nforsat - 
nbasic) - (nvars+1) + i)+1 ); 
          
      end 
       
   end 
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end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Report experiment design and template for  
%% generation. 
 
Exp = table(:,2:nvars+1); 
        
template = template(:,nforsat-nvars+1:nforsat-nbasic);   
    

 

File: inverse_tri.m 

 This Matlab© function calculates the inverse cumulative distribution function for a 

triangular distribution given a single probability. 

 

function x = inverse_tri( prob, x1, x2, x3 ); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Written by David McCormick in support of 
%% Ph.D. thesis work. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% transform so x starts at zero. 
 
   xa = x2 - x1 ; 
   xb = x3 - x1 ; 
   h = 2./xb; 
         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Find probability at discontinuity. 
    
   pa = xa .* h ./2; 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% if the prob. is before the break, calculate 
%% x. 
 
   if prob <= pa 
         
      x = sqrt( 2.0 .* xa ./ h .* prob ); 
                 
   else 
       
       
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Find probability on second half of distrbution. 
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      C = 1.0/2.0 .* xa .* h - h .* xa .* xb./( xb-xa ) + h .* xa .* xa 
./ (xb-xa) ./ 2 - prob ; 
                 
                 
      B = h.* xb./(xb-xa); 
  
                 
      A =  -h./(xb-xa)./2; 
  
  
      x = (-1.*B + sqrt(B.*B - 4.*A.*C))./(2.*A) ; 
                 
                 
      xp = (-1.*B - sqrt(B.*B - 4.*A.*C))./(2.*A) ; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Confirm that the calculated value is on the  
%% right interval. 
 
      if (xp >= xa) & (xp <= xb ) 
    
       x = xp; 
    
  end; 
 
   end 
 
         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% transform back and report. 
 
   x = x + x1 ; 

 

 

 

 



 243 

 
 

 

REFERENCES 

1. "Growing Pains," Aviation Week and Space Technology, Vol. 147, No. 15, 

October 13, 1997. 

2. "Wounded birds," The Economist, May 12, 2001. 

3. "Medicine Sales Forecast at $1 Billion," Aviation Week and Space Technology, 

June 25, 1984. 

4. Savage, P., Hines, M., Barnes, R., "An Inflight Refill Unit for Replenishing 

Research Animal Drinking Water," NASA Technical Memorandum TM-4684, 

May, 1995. 

5. "Nearly 900 Projects Vying for ISS Research," Aviation Week & Space 

Technology, Vol. 154, No. 7, February 12, 2001. 

6. Howell, J., Mankins, J., "Preliminary Results from NASA's Space Solar Power 

Exploratory Research and Technology Program," IAF Paper IAA-00-R.1.02, 

October 2000. 

7. Charania, A., Olds, J., "A Unified Economic View of Space Solar Power 

(SSP)," IAF IAA-00-R.1.06, 2000. 

8. Olds, J., Way, D., Charania, A., Budianto, I., and Marcus, L., "In-Space 

Deployment Options for Large Space Solar Power Satellites," IAF Paper IAA-

00-R.2.02, October, 2000. 

9. Collins, P., "Public Choice Economics and Space Policy: Realising Space 

Tourism," IAF IAA-00-IAA.1.3.03, Oct. 2000. 



 244 

10. Commercial Space Transportation Study Final Report, May 1994. 

11. Olds, J., McCormick, D., Charania, A., and Marcus, L., "Space Tourism: 

Making It Work for Fun and Profit," IAF Paper IAA-00-IAA.1.3.05, October 

2000. 

12. Grier, P., "NRO Needs Cash, Attention, Effort," Air Force Magazine, Jan. 2001. 

13. "Missile Defense: Still Mad," National Review, Vol. LIII, No. 10, May 2001. 

14. Simpson, S., "Deeper Impact: Was Yet Another Mass Extinction the Work of an 

Asteroid?" Scientific American, Vol. 284, No. 5, pp. 18-19, May 2001. 

15. lannotta, B. "China's Divine Craft," Aerospace America, April 2001, pg. 36. 

16. Hale, Francis J., Introduction to Space Flight, Englewood Cliffs, NJ: Prentice 

Hall, Inc., 1994. 

17. Raymer, D., Aircraft Design: A Conceptual Approach, Washington, DC: AIAA, 

1989. 

18. Bandte, O., "A Probabilistic Multi-Criteria Decision Making Technique for 

Conceptual and Preliminary Aerospace Systems Design," Ph.D. Thesis, Georgia 

Institute of Technology, 2000. 

19. Bandte, O., Mavris, D., and DeLaurentis, D., "Viable Designs Through a Joint 

Probabilistic Estimation Technique," SAE paper 1999-01-5623, 1999. 

20. Chen, W., Allen, J., Tsui, K. L., Mistree, F., "A Procedure for Robust Design: 

Minimizing Variations caused by Noise Factor and Control Factors," ASME 

Journal of Mechanical Design, Vol. 118, No. 4, 1996. 

21. Myers, R. H., Khuri, A. I., and Vining, G., "Response Surface Alternatives to 

the Taguchi Robust Parameter Design Approach," The American Statistician, 

Vol. 46, No. 2, May 1992. 



 245 

22. Mavris, D. N., Bandte, O., and Schrage, D. P., "Effect of Mission Requirements 

on the Economic Robustness of an HSCT Concept," 18th Annual Conference of 

the International Society of Parametric Analysts, Cannes, France, June 1996. 

23. Mavris, D.N., Bandte, O., and Schrage, D. P., "Application of Probabilistic 

Methods for the Determination of an Economically Robust HSCT 

Configuration," AIAA paper 96-4090, Oct. 1996. 

24. DeLaurentis, D. A., Mavris, D. N., and Schrage, D. P., "System Synthesis in 

Preliminary Aircraft Design Using Statistical Methods," 20th International 

Council of the Aeronautical Sciences (ICAS) Congress, Sorrento, Italy, 

September 8-13, 1996. 

25. "2nd Generation RLV Systems Engineering and Risk Reduction," NASA 

Research Announcement NRA8-30, October, 2000. 

26. "The Year in Review: Space Systems," Aerospace America, December 2000. 

27. Smith, B., "MCO Board Probes Deeper Into Flaws," Aviation Week and Space 

Technology, Vol. 152, No. 12, pg. 38, March 20, 2000. 

28. Oberg, J., "Houston, We Have a Problem," New Scientist, pg. 26, April 15, 

2000. 

29. Guterl, F., "The Space Siren," Newsweek, March 26, 2001. 

30. Morring, F., "NASA Kills X-33, X-34, Trims Space Station," Aviation Week 

and Space Technology, Vol. 154, No. 10, pg. 24, March 5, 2001. 

31. Research Opportunities in Engineering Design, NSF Strategic Planning 

Workshop Final Report, April 1996. 

32. DeLaurentis, D., "A Probabilistic Approach to Aircraft Desgin Emphasizing 

Stability and Control Uncertainties," Ph.D. Thesis, Georgia Institute of 

Technology, 1999. 



 246 

33. Zhao, K., Glover, K. and Doyle, J. C., Robust and Optimal Control, Englewood 

Cliffs, N.J.: Prentice Hall, 1996. 

34. Hazelrigg, G. A., Systems Engineering: An Approach to Information-Based 

Design, Upper Saddle River, NJ: Prentice Hall, 1996. 

35. Siddall, J. N., Probabilistic Engineering Design, New York, NY: Marcel 

Dekker, Inc., 1983. 

36. Yen, B. C. and Tung, Y. (ed.) Reliability and Uncertainty Analyses in Hydraulic 

Design, New York, NY: ASCE, 1993. 

37. McCormick, D. and Olds, J., “System Robustness Comparison of Advanced 

Space Launch Concepts,” AIAA paper 98-5209, Oct. 1998. 

38. Mavris, D. N., Bandte, O., and DeLaurentis, D. A., “Robust Design Simulation: 

A Probabilistic Approach to Multidisciplinary Design”, Journal of Aircraft, 

Vol. 36, No. 1, pp. 298-307, 1999. 

39. DeLaurentis, D., Mavris, D.N., "Uncertainty Modeling and Management in 

Multidisciplinary Analysis and Synthesis," AIAA paper 2000-0422, 2000. 

40. DeLaurentis, D. A., Mavris, D. N., Calise, A. C., and Schrage, D. P., 

"Generating Dynamic Models Including Uncertainty for Use in Aircraft 

Conceptual Design," AIAA paper 97-3590, Aug. 1997. 

41. Mavris, D.N., DeLaurentis, D.A., and Soban, D.S., "Probabilistic Assessment of 

Handling Qualities Constraints in Aircraft Preliminary Design," AIAA paper 

98-0492, Jan. 1998. 

42. Mavris, D.N., DeLaurentis, D.A., Bandte, O., and Hale, M.A., "A Stochastic 

Approach to Multi-disciplinary Aircraft Analysis and Design," AIAA paper 98-

0912, Jan. 1998. 

43. Mavris, D., DeLaurentis, D., Hale, M., and Tai, J., "Elements of an Emerging 

Virtual Stochastic Life Cycle Environment," World Aviation Congress, San 

Francisco, CA, paper 1999-01-5638, October 1999. 



 247 

44. Koch, P. N., Wujek, B. and Golovidov, O., "A Multi-Stage, Parallel 

Implementation of Probabilistic Design Optimization in an MDO Framework," 

AIAA paper 2000-4805, September 2000. 

45. Cagan, J., and Williams, B.C. , "First-Order Necessary Conditions for Robust 

Optimality," Advances in Design Automation, ASME DE-Vol. 65-1, 1993. 

46. Madsen, H. O., Krenk, S., and Lind, N. C., Methods of Structural Safety, 

Englewood Cliffs, NJ: Prentice-Hall, 1986. 

47. Taguchi, G., Wu, Y., "Introduction to Offline Quality Control," Central Japan 

Quality Control Association (available from the American Supplier Insititute, 

32100 Detroit Industrial Expressway, Romulus, MI, 48174) 

48. Phadke, Madhav S., “A Review of Taguchi and Related Approaches,” 

Proceedings of the Annual Reliability and Maintainability Symposium, 1993. 

49. Ross, P. J., Taguchi Techniques for Quality Engineering, New York, NY: 

McGraw-Hill, 1988. 

50. Tsui, K. L., "Taguchi's Robust Design and Some Alternatives", Ch. 8 in 

Statistics of Quality, New York, NY: Marcel Dekker, 1996. 

51. Du, X. and Chen, W., “An Efficient Approach to Probabilistic Uncertainty 

Analysis in Simulation-Based Multidisciplinary Design,” AIAA paper 2000-

0423, January 2000. 

52. Mavris, D.N., Bandte, O., and DeLaurentis, D.A., "Determination of System 

Feasibility and Viability Employing a Joint Probabilistic Formulation," AIAA 

paper 99-0183, Jan. 1999. 

53. Zink, P.S., Mavris, D.N., Love, M., and Karpel, M., "Robust Design for 

Aeroelastically Tailored/Active Aeroelastic Wing," AIAA paper 98-4781, Sept. 

1998. 

54. Mavris, D. N., Nottingham, C. R., and Bandte, O., "The Impact of 

Supportability on the Economic Viability of a High Speed Civil Transport", 1st 



 248 

Joint International Conference of the International Society of Parametric 

Analysts and the Society of Cost Estimating and Analysis, Toronto, Canada, 

June 1998. 

55. Mavris, D.N., and Bandte, O., "A Probabilistic Approach to Multivariate 

Constrained Robust Design Simulation," AIAA paper 97-5508, Oct. 1997. 

56. Roth, B., Mavris, D., and Elliott, D., "A Probabilistic Approach to UCAV 

Engine Sizing," AIAA paper 98-3264, July 1998. 

57. Mavris, D. N., Mantis, G., and Kirby, M. R. "Demonstration of a Probabilistic 

Technique for the Determination of Economic Viability," SAE paper 97-5585, 

Oct. 1997. 

58. Mavris, D. N., and Bandte, O., "Comparison of Two Probabilistic Techniques 

for the Assessment of Economic Uncertainty," 19th Annual Conference of the 

International Society of Parametric Analysts, New Orleans, LA, May, 1997. 

59. Chen, W., Allen, J. K., Schrage, D. P., and Mistree, F., "Statistical 

Experimentation Methods for Achieving Affordable Concurrent Systems 

Design," AIAA Journal, Vol. 35, No. 5, May 1997. 

60. Koch, P. N., Simpson, T. W., Allen, J. K., and Mistree, F., "Statistical 

Approximations for Multidisciplinary Design Optimization: The Problem of 

Size," Journal of Aircraft, Vol. 36, No. 1, pp. 275-286, Jan.-Feb. 1999. 

61. Cormier, T., Scott, A., Ledsinger, L., McCormick, D., Way, D., and Olds, J., 

"Comparison of Collaborative Optimization to Conventional Design Techniques 

for a Conceptual RLV," AIAA paper 2000-4885, Sept. 2000. 

62. Ledsinger, L., "Solutions to Decomposed Branching Trajectories with Powered 

Flyback Using Multidisciplinary Desgin Optimization," Ph.D. Thesis, Georgia 

Institute of Technology, July 2000. 



 249 

63. Braun, R. D., Kroo, I. M., "Development and Application of the Collaborative 

Optimization Architecture in a Multidisciplinary Design Environment," 

International Congress on Industrial and Applied Mathematics, August 1995. 

64. Budianto, I., "A Collaborative Optimization Approach to Inprove the Design 

and Deployment of Satellite Constellations," Ph.D. Thesis, Georgia Institute of 

Technology, 2000. 

65. Brady, H., Acting Head of Advanced Concepts, NASA-MSFC, Personal 

Correspondence, June 14, 2001. 

66. Stanley, T., Alexander, R., and Landrum, D. B., "A Collaborative Analysis Tool 

for Integrating Hypersonic Aerodynamics, Thermal Protection Systems, and 

RBCC Engine Performance for Single Stage to Orbit Launch Vehicles," AIAA 

paper 99-4808, Nov. 1999. 

67. Acton, D. and Olds, J., "Computational Frameworks for Collaborative 

Multidisciplinary Design of Complex Systems," AIAA 98-4942, Sept. 1998. 

68. Sobieszanski-Sobieski, J., "Optimization by Decomposition: A Step from 

Hierarchic to Non-Hierarchic Systems," NASA CP-3031, Sept. 1989. 

69. Himmelblau, D. M. ed., Decomposition of Large-Scale Problems,  Amsterdam: 

North Holland Publishing, 1973. 

70. Wagner, T. C. "A General Decomposition Methodology for Optimal System 

Design," Ph.D. Dissertation, University of Michigan, 9319649, 1993. 

71. Balling, R. J., and Sobiezanski-Sobieski, J., "An Algorithm for Solving the 

System-Level Problem in Multilevel Optimization," AIAA paper 94-4333, Sept. 

1994. 

72. Barthelemy, J.M., and Riley, M. F., "Improved Multilevel Optimization 

Approach for the Design of Complex Engineering Systems," AIAA Journal, 

Vol. 26, No. 3, March 1988. 



 250 

73. Beltracchi, T. J., "Decomposition Approach to Solving the All-Up Trajectory 

Optimization Problem," Journal of Guidance, Control and Dynamics, Vol. 15, 

No. 3, May-June 1992. 

74. Peterson, F.M., Cornick, D. E., Brauer, G. L., and Rehder, J. J., "A Two-Level 

Trajectory Decomposition Algorithm Featuring Optimal Intermediate Target 

Selection," Journal of Spacecraft and Rockets, Vol. 14, No. 11, pp. 676-682, 

Nov. 1977. 

75. Sobieszanski-Sobieski, J., "Two Alternative Ways for Solving the Coordination 

Problem in Multilevel Optimization," Structural Optimization, Vol. 6, pp. 205-

215, Dec. 1993. 

76. Walsh, J. L., Young, K. C., Pritchard, J. I., Adelman, H. M., and Mantay, W. R., 

"Integrated Aerodynamic/Dynamic/Structural Optimization of Heliocopter 

Rotor Blades Using Multilevel Decomposition," NASA TP-3465, Jan. 1995. 

77. Braun, R., "Collaborative Optimization: An Architecture for Large-Scale 

Distributed Design," Ph.D. Thesis, Stanford University, June 1996. 

78. Braun, R., Gage, P., Kroo, I., and Sobieski, I., "Implementation and 

Performance Issues in Collaborative Optimization," AIAA Paper 96-4017, 

1996. 

79. Braun, R., Moore, A., Kroo, I, "Use of the Collaborative Optimization 

Architecture for Launch Vehicle Design." AIAA paper 96-4018, 1996. 

80. Whitfield, J. and Olds, J., "Economic Uncertainty of Weight and Market 

Parameters for Advanced Space Launch Vehicles," AIAA Paper 98-5179, 

October 1998. 

81. Engler, V., Coors, D., Jacob, D., "Optimization of a Space Transportation 

System Including Design Sensitivities," AIAA Paper 98-1553, April 1998. 

82. Bertin, J. and Smith, M., Aerodynamics for Engineers, Prentice Hall, NJ, 1989. 



 251 

83. Anderson, J., Hypersonic and High Temperature Gas Dynamics, Boston, MA: 

McGraw-Hill, Inc., 1989. 

84. Brauer, G. L., Cornick D. E., Olson, D., Peterson, F., and Stevenson, R., 

“Program to Optimize Simulated Trajectories (POST) Formulation Manual," 

NAS1-18147, September 1990. 

85. Thornton, S. and Rex, A., Modern Physics for Scientists and Engineers, 

Orlando, FL: Saunders College Publishing, 1993. 

86. Cowart, K. and Olds, J., "TCAT - A Tool for Automated Thermal Protection 

System Design," AIAA 2000-5265, 2000. 

87. Hill, P. and Peterson, R., Mechanics and Thermodynamics of Propulsion, 

Boston, MA: Addison-Wesley, 1992. 

88. Bate, R.,  Mueller, D., and White, J., Fundamentals of Astrodynamics, New 

York, NY: Dover Publications Inc., 1971. 

89. Fehlberg, E., "Klassiche Runge-Kutta-Formeln vierter und niedrigerer Ordnumg 

mit Schrittweiten-Kontrolle und ihre Anwendung auf Warmeleitungsprobleme," 

Computing Vol. 6, 1970. 

90. Atkinson, K., An Introduction To Numerical Analysis, New York, NY: John 

Wiley & Sons, 1989. 

91. McCormick, D. and Olds, J., “Approximation of Probabilistic Distributions 

Using Selected Discrete Simulations,” AIAA paper 2000-4863, Sept. 2000. 

92. Wu, Y.-T., "Structural Reliability Analysis Methods for Implicit Performance 

Functions," Probabilistic Mechanics and Structural and Geotechnical Reliability 

Proceedings of the Special Conference, New York, NY: ASCE, pp. 483-486, 

1992. 

93. Wirsching, Paul H. Martin, Warren S., "Fracture Mechanics Fatigue Reliability 

Assessment Employing the Most Probable Point Locus Method," Probabilistic 



 252 

Methods in Civil Engineering, Proceedings of the 5th ASCE Special 

Conference, New York, NY, pp. 78-81. 

94. Wu, Y. T., Millwater, H. R., and Cruse, T. A., "An Advanced Probabilistic 

Structural Analysis Method for Implicit Performance Functions," AIAA Journal, 

Vol. 28, No. 9, pp. 1663-1669, 1990. 

95. Wu, Y. T., Burnside, O. H., Cruse, T. A., "Probabilistic Methods for Structural 

Response Analysis," Ch. 7 of Computational Mechanics of Reliability Analysis, 

W. K. Liu and T. Belytschko (ed.), Lauseanne, WA: Elmepress International, 

1989. 

96. Wu, Y. T., "Demonstration of a Fast, New Probability Integration Method for 

Reliability Analysis," ASME Journal of Engineering for Industry, Vol. 109, pp. 

24-28, 1987. 

97. Wu, Y.-T. and Wirsching, P.H., "Advanced Reliability Methods for 

Probabilistic Structural Analysis," Structural Safety and Reliability, Vol. III, 

New York, NY: ASCE pp. 2275-2281, 1989. 

98. Wu, Y. T. and Wirsching, P. H., "New Algorithm for Structural Reliability 

Estimation," ASCE Journal of Engineering Mechanics, Vol. 113, No. 9, Sept. 

1987. 

99. Cruse, T. A., Chamis, C. C., and Millwater, H. R., "An Overview of the NASA 

(LeRC) - SwRI Probabilistic Structural Analysis (PSAM) Program." 5th 

International Conference on Structural Safety and Reliability, 1989. 

100. Du, X. and Chen, W., “A Most Probable Point Based Method for Uncertainty 

Analysis,” ASME paper DETC2000/DAC-14263, September 2000. 

101. Khalessi, M.R. Wu, Y.-T. and Torng, T.Y., "Most-Probable-Point-Locus 

Reliability Method in Standard Normal Space," ASME Design Engineering 

Division, Vol. 30, pp. 15-20, 1991. 



 253 

102. Mahadevan, Sankaran Cruse, Thomas A., "Advanced First-Order Method for 

System Reliability," ASCE Probabilistic Mechanics and Structural and 

Geotechnical Reliabiability Special Conference Proceedings, New York, NY 

pp. 487-490, 1992. 

103. Lin, H.-Z. Khalessi, M.R., "Calculation of Failure Probability by Using X-

Space Most-Probable-Point," Collection of Technical Papers from the AIAA 

ASME Structures, Structural Dynamics and Materials Conference, pt. 5, 

Washington, DC: AIAA, pp. 2801-2808, 1993. 

104. Lin, H.-Z. Khalessi, M.R., "Identification of the Most-Probable-Point in 

Original Space - Applications to Structural Reliability," Collection of Technical 

Papers from the AIAA ASME Structures, Structural Dynamics and Materials 

Conference, Pt. 5, Washington, DC: AIAA, pp. 2791-2800, 1993. 

105. Grandhi, R. V. and Wang, L., "Higher-order Failure Probability Calculation 

Using Nonlinear Approximations," Computer Methods in Applied Mechanics 

and Engineering, Vol. 168, No. 1-4, Jan. 1999. 

106. Thacker, B. H., and Wu, Y. T., "A New Response Surface Approach for 

Structural Reliability Analysis," Proceedings of the AIAA 33rd Structural 

Dynamics and Materials Conference, Washington, DC: AIAA, 1992. 

107. Dieter, G. E., Engineering Design, A Materials Processing Approach , 2nd 

Edition, New York, NY: McGraw Hill Inc., 1971. 

108. Unal, R. Stanley, D., Engelund, W. and Lepsch, R., "Design for Quality Using 

Response Surface Methods: An Alternative to Taguchi's Parameter Design 

Approach," Engineering Management Journal, Vol. 6, No. 3, Sept. 1994. 

109. Hammersley, J. M. and Handscomb, D. C., Monte Carlo Methods, London: 

Chapman and Hall, 1964. 

110. Law, A. M. and Kelton, W. D., Simulation Modeling and Analysis, New York, 

NY: McGraw-Hill, 1982. 



 254 

111. Hogg, R. V., and Tanis, E. A., Probability and Statistical Inference, 4th Ed.,  

Englewood Cliffs, NJ: Prentice-Hall, Inc., 1993. 

112. Lavenberg, S., and Welch, P., "A Perspective on the Use of Control Variables to 

Increase the Efficiency of Monte Carlo Simulations," Management Science, 

Vol. 27, 1981, pp. 322-335. 

113. James, B., "Variance Reduction Techniques," Journal of the Operational 

Research Society, Vol. 36, pp. 525-530, 1985. 

114. Ang, G. L., Ang, A. H-S., and Tang W. H., "Optimal Importance-Sampling 

Density Function," Journal of Engineering Mechanics, Vol. 118, No. 6, 1992. 

115. Ang, G. L., Ang, A. H-S., and Tang W. H., "Kernel Method in Importance 

Sampling Density Function," Structural Safety and Reliability, Vol. II. New 

York, NY: ASCE, 1989. 

116. Karamchandari, A. , "New Methods in System Reliability," Report No. RMS-7, 

Reliability of Marine Structures Program, Department of Civil Engineering, 

Stanford University, Stanford, CA, 1990. 

117. Bourgund, U. and Bucher, C. G., "Importance Sampling Procedure Using 

Design Points (ISPUD) - A User's Manual," Report No. 8, Institute of 

Engineering Mechanics, University of Innsbruck, Austria, 1986. 

118. Harbitz, A., "An Efficient Sampling Method for Probability of Failure 

Calculation." Structural Safety, Vol. 3, No. 2, 1986. 

119. Schueller, G. I., and Stix, R. "A Critical Appraisal of Methods to Determine 

Failure Probabilities," Structural Safety, Vol. 4, No. 4, pp. 293-309, 1987. 

120. McKay, M. D., Beckman, R. J., and Conover, W. J., "A Comparison of Three 

Methods for Selecting Values of Input Variables in the Analysis of Output from 

a Computer Code." Technometrics, Vol. 21, pp. 239-245, 1979. 

121. Stein, M., "Large Sample Properties of Simulations Using Latin Hypercube 

Sampling," Technometrics, Vol. 29, pp. 143-151, 1985. 



 255 

122. Iman, R. and Conover, W., "A Distribution-Free Approach to Inducing Rank 

Correlation Among Input Variables," Communications in Statistics, Ser. B 11, 

pp. 311-334, 1982. 

123. Iman, R. and Helton, J., "The Repeatability of Uncertainty and Sensitivity 

Analyses for Complex Probabilistic Risk Assesments," Risk Analysis, Vol. 11, 

pp. 591-606, 1991. 

124. Loh, W., "On Latin Hypercube Sampling," The Annals of Statistics, Vol. 24, pp. 

2058-2080, 1996. 

125. Owen, A., "A Central Limit Theorum for Latin Hypercube Sampling," Journal 

of the Royal Statistical Society Ser. B 54, pp. 541-551, 1992. 

126. Kleijnen, J., Statistical Techniques in Simulation, Part 1, New York: Marcel 

Dekker, 1974. 

127. Saliby, E., "Descriptive Sampling: A Better Approach to Monte Carlo 

Simulation," Journal of the Operational Research Society, Vol. 41, No. 12, pp. 

113-114, 1990. 

128. Paul, R. J. and Doudkis, G. I., “Artificial Intelligence and Expert Systems in 

Simulation Modeling,” Artificial Intelligence in Operational Research,  pp. 

229-238, 1992. 

129. Ziha, K., "Descriptive Sampling in Structural Safety," Structural Safety, Vol. 

17, pp. 33-41, 1995. 

130. Jonsson, H. S., and Edward A., "Some Insights Regarding Selecting Sets of 

Scenarios in Combinatorial Stochastic Problems," International Journal of 

Production Economics, Vol. 45, No. 1-3, pp. 463-472, 1996. 

131. Saliby, E., and Paul, R., "Implementing Descriptive Sampling in Three-Phase 

Discrete Event Simulation Models," Journal of the Operational Research 

Society, Vol. 44, No. 2, pp. 147-160, Feb. 1993. 



 256 

132. Saliby, E., "Descriptive Sampling: An Improvement over Latin Hypercube 

Sampling," IEEE Cat. No. 97CB36141, 1997. 

133. Tocher, K., The Art of Simulation, London: English University Press, 1963. 

134. Clark, C., "The Utility of Statistics of Random Numbers," Operations Research, 

Vol. 8, 1960. 

135. Rackwitz, R. and Fiessler, B., "Structural Stability Under Combined Random 

Load Sequences," Computers and Structures, Vol. 9, pp. 489-494, 1978. 

136. Y.-T. Wu and Chen, K., "Characterization of Input Uncertainties Using Random 

Variables for Reliability Analysis," AIAA Paper 99-1606, April, 1999. 

137. FPI User's and Theoretical Manual, San Antonio, TX: Southwest Research 

Institute, 1995. 

138. Hasofer, A. M. and Lind, N. C., "Exact and Invariant Second Moment Code 

Format," Journal of Engineering Mechanics, ASCE, Vol. 100, No. EM1, 

February, 1974. 

139. Chen, X., and Lind, N. C., "Fast Probability Integration by Three Parameter 

Normal Tail Approximation," Structural Safety, Vol. 1,  pp. 269-276, 1983. 

140. Kreyszig, E., Advanced Engineering Mathematics, New York, NY: John Wiley 

& Sons, 1993. 

141. Kaplan, S., “On the Method of Discrete Probability Distributions in Risk and 

Reliability Calculations - Application to Seismic Risk Assesments,” Risk 

Analysis, Vol. 1, pp. 189-196, 1981. 

142. Kaplan, S., and James C., “Improved Condensation Procedure In Discrete 

Probability Distribution Calculations.” Risk Analysis Vol. 7, No. 1, pp. 15-19, 

Mar 1987. 



 257 

143. Kurth, Robert E. Cox, David C., “Random Sampling Discrete Probability 

Algorithm with Condensation for Probabilistic Analysis,” Nuclear Technology, 

Vol. 92, No. 2, pp. 186-193, Nov. 1990. 

144. Moghadam, A. and Theofanous, T. G., “On the Use of Discrete Probability 

Distributions in Failure Analysis-Numerical Aspects,” Reliabiality and 

Engineering System Safety, Vol. 23, No. 2, pp. 81-107, 1988. 

145. Kurth, R. E. and Cox, D. C., “Discrete Probability Distributions For 

Probabilistic Fracture Mechanics,” Risk Analysis Vol. 5, No. 3, pp. 235-240, 

Sept. 1985. 

146. Kleijnen, J. P., Statistical Tools for Simulation Practitioners, New York, NY: 

Marcel Dekker, 1987. 

147. Chen, W., Tsui, K-L., Allen, J. K., and Mistree, F., "Integration of Respnse 

Surface Method with the Compromise Decision Support Problem in Developing 

a General Robust Design Procedure," Advances in Design Automation , ASME 

DE - Vol. 82, No. 2, 1995. 

148. Mavris, D.N., and Bandte, O., "Economic Uncertainty Assessment Using a 

Combined Design of Experiments/Monte Carlo Simulation Approach with 

Application to an HSCT," 17th Annual Conference of the International Society 

of Parametric Analysts, San Diego, CA, May, 1995. 

149. JMP Statistics and Graphics Guide, Cary, NC: SAS Institute, Inc., 1995. 

150. Hayter, A. J., Probability and Statistics for Engineers and Scientists, Boston, 

MA: PWS Publishing, 1996. 

151. Box, G. E. P., Hunter, W. G., and Hunter, J. S., Statistics for Experimenters, 

New York, NY: John Wiley and Sons, 1978. 

152. MATLAB - User's Guide, Natick, MS: The Math Works, Inc., January 1995. 



 258 

153. Rogers, J. L., “DeMaid – A Design Manager’s Aid for Intelligent 

Decomposition – User’s Guide,” NASA Technical Memorandum TM-101575, 

March 1989. 

154. Braun, R. D., Powell, R. W., Lepsch, R. A., Stanley, D. O., and Kroo, I. M., 

"Multidisciplinary Optimization Strategies for Launch Vehicle Design," AIAA 

paper 94-4341, Sept. 1994. 

155. Hajela, P., Bloebaum, C., and SobieszczanskiSobieski, J., "Application of 

Global Sensitivity Equations in Multidisciplinary Aircraft Synthesis.'' Journal of 

Aircraft, Vol. 27, No. 12, December, 1990. 

156. Sobieszczanski-Sobieski, J. "Sensitivity Analysis and Multidisciplinary 

Optimization for Aircraft Design: Recent Advances and Results.'' Journal of 

Aircraft, Vol. 27, No. 12, December, 1990. 

157. Sobieszczanski-Sobieski, J. "A System Approach to Aircraft Optimization.'' 

NASA TM104074, March, 1991. 

158. Sobieszczanski-Sobieski, J. "Sensitivity of Complex, Internally Coupled 

Systems,'' AIAA Journal, Vol. 28, No. 1, January, 1990. 

159. Sobieszczanski-Sobieski, J. "On the Sensitivity of Complex, Internally Coupled 

Systems,'' AIAA paper 882378, April 1988. 

160. Olds, J., "System Sensitivity Analysis Applied to the Conceptual Design of a 

Dual Fuel Rocket SSTO," AIAA paper 94-4339, Sept. 1994. 

161. Olds, J., "Multidisciplinary Design Techniques Applied to Conceptual 

Aerospace Vehicle Design," Ph.D. Thesis, North Carolina State University, 

1993. 

162. Way, D. W., Olds, J. R., "SCORES: Web-Based Rocket Propulsion Analysis 

Tool for Space Transportation System Design," AIAA paper 99-2353, June 

1999. 



 259 

163. Brauer, G. L., Cornick D. E., and Stevenson, R., “Capabilities and Applications 

of the Program to Optimize Simulated Trajectories,” NASA CR-2770, Feb. 

1977. 

164. Justus, C. G., Johnson, D. L., "The NASA/MSFC Global Reference 

Atmospheric Model - 1999 Version (GRAM-99)," NASA Technical 

Memorandum TM-1999-209630, May 1999. 

165. Sova, G., and Divan, P., "Aerodynamic Preliminary Analysis System II, Part II - 

User's Manual," NASA CR-182077, April, 1991. 

166. Mitchell, T., "An Algorithm for the Construction of "D-optimal" Experimental 

Designs," Technometrics, Vol. 42, No. 1, pp. 48-54, Feb. 2000. 

167. Khuri, A., "A Note on D-optimal Designs for Partially Nonlinear Regression 

Models," Technometrics, Vol. 26, pp. 59-61, Feb. 1984. 

168. DOT™ User's Manual, Version 4.20., Vanderplaats Research & Development, 

Inc., Colorado Springs, CO, 1995. 

 

 



 260 

VITA 

David Jeremy McCormick was born on January 15, 1974 in Jamestown, New 

York. After moving to Florida at an early age, he graduated from Lake Brantley High 

School in Altamonte Springs, Florida in 1992. In August of that same year, he enrolled at 

the University of Florida for his undergraduate studies in Aerospace Engineering. During 

this time, David was an undergraduate researcher in the Florida Space Grant Consortium 

Program studying computational fluid dynamics. He received his Bachelor of Science 

degree, with Highest Honor, in May of 1996. 

 

The following October, David began his graduate studies by enrolling at the 

Georgia Institute of Technology. Upon arrival, he began work for Dr. John Olds studying 

advanced concepts for reusable launch vehicles. During this time, he worked on the 

Argus and Hyperion concepts. He also spent a summer working on Rocket-Based 

Combined Cycle engine weight estimation at the Kaiser-Marquardt Corporation of Van 

Nuys, CA. He earned his Master of Science degree in Aerospace Engineering in 

December of 1997, but stayed to continue his studies. While continuing to work on 

concept vehicles for Dr. Olds, he subsequently spent summers working at the NASA-

Langley Vehicle Analysis Branch in Hampton, VA and Lockheed-Martin Reusable Space 

Transportation Systems in Denver, CO. During this time, David began research into 

probabilistic methods for conceptual launch vehicle design, the culmination of which is 

the thesis entitled “Distributed Uncertainty Analysis Techniques for Conceptual Launch 

Vehicle Design.” David is a member of the American Institute of Aeronautics and 

Astronautics. 


