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SUMMARY 

 The development and optimization of liquid rocket engines is an integral part of 

space vehicle design, since most Earth-to-orbit launch vehicles to date have used liquid 

rockets as their main propulsion system.  Rocket engine design tools range in fidelity 

from very simple conceptual level tools to full computational fluid dynamics (CFD) 

simulations.  The level of fidelity of interest in this research is a design tool that 

determines engine thrust and specific impulse as well as models the powerhead of the 

engine.  This is the highest level of fidelity applicable to a conceptual level design 

environment where faster running analyses are desired. 

 

The optimization of liquid rocket engines using a powerhead analysis tool is a 

difficult problem, because it involves both continuous and discrete inputs as well as a 

nonlinear design space.  Example continuous inputs are the main combustion chamber 

pressure, nozzle area ratio, engine mixture ratio, and desired thrust.  Example discrete 

variable inputs are the engine cycle (staged-combustion, gas generator, etc.), fuel/oxidizer 

combination, and engine material choices.   

 

Nonlinear optimization problems involving both continuous and discrete inputs 

are referred to as Mixed-Integer Nonlinear Programming (MINLP) problems.  Many 

methods exist in literature for solving MINLP problems; however none are applicable for 
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this research.  All of the existing MINLP methods require the relaxation of the discrete 

variables as part of their analysis procedure.  This means that the discrete choices must be 

evaluated at non-discrete values.  This is not possible with an engine powerhead design 

code.  Therefore, a new optimization method was developed that uses modified response 

surface equations to provide lower bounds of the continuous design space for each unique 

discrete variable combination.  These lower bounds are then used to efficiently solve the 

optimization problem.  The new optimization procedure was used to find optimal rocket 

engine designs subject to various weight, cost and performance constraints.  The results 

show that the new method efficiently solved the mixed-input optimization problem 

without requiring discrete variable relaxation. 



 
 

 1 

CHAPTER 1 

MOTIVATION 

1.1 Historical Background 

 

 Liquid rocket engines are a core technology for the exploration and development 

of space.  These engines have played a major role in the United States’ (US) space 

program since its inception.  Liquid rocket engines provided the power used in the first 

sounding rockets, intercontinental ballistic missiles, and the early manned and 

interplanetary missions [1].  The use of liquid rocket engines is just as prevalent today 

and they remain necessary for the continuation of assured space access. 

 

Liquid rocket engine design began at the turn of the 20th century with the 

pioneering works of Dr. Robert Goddard (Figure 1).  Goddard, known as the “Father of 

Modern Rocketry”, first began experimenting with liquid propellants for rocket engines 

in 1909.  His first liquid fueled rocket was launched on March 16, 1926.  The flight lasted 

a mere 2.5 seconds but the age of liquid-fueled rockets had begun.  Goddard moved to the 

deserts of New Mexico to continue his work on liquid-fueled rockets.  There he 

pioneered the use of stabilizing fins and gyroscopes to help control his rockets.  Most of 
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Goddard’s work went unnoticed in the US.  However, others noticed, most notable 

Wernher von Braun.  He took Goddard’s plans from various literature sources and used 

those as a starting point for the V-2 rocket [2,3,4,5]. 

 

 

Figure 1:  Dr. Robert Goddard 

 

 After WWII, the US rocketry industry began to evolve and grow.  With the influx 

of technology and man-power from Germany, many new rocket vehicles and liquid 

rocket engines were developed.  These new engines were used during different vehicle 

programs such as the Redstone, Atlas, Thor and later the Apollo program.  The current 

state of the art liquid rocket engine, the Space Shuttle Main Engine (SSME), was 

developed for the Space Shuttle program.  The SSME is currently the only reusable, 

booster-class, liquid rocket engine.  Figure 2 shows three different liquid rocket engines 

that represent the progression of engine design over the years.   The MB-1, developed in 

the 1950’s for the Thor program, was a Liquid Oxygen (LOX)/ Kerosene engine capable 
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of producing ~170 klbs of thrust.  The J-2 was used on the second and third stages of the 

Saturn V moon rocket.  This LOX/liquid hydrogen (LH2) engine, developed in the mid 

1960’s, was capable of producing ~230 klbs of thrust.  The final engine shown is the 

SSME.  This 500 klbs class engine was developed in the late 1970’s and also uses 

LOX/hydrogen propellants [6]. 

 

 
Figure 2:  The MB-1, J-2 and SSME 

 

 Liquid rocket engines are categorized by their propellant combination and by their 

engine cycle.  The engine cycle refers to the means by which the rocket propellant is 

moved from the vehicle’s tanks to the main combustion chamber of the engine.  The fuel 

and oxidizer should be at very high pressures (1000 – 3500 psia) when injected into the 

main combustion chamber.  This allows for more engine thrust and better engine 

performance.  Two broad classes of engine cycles exist.  The first and simplest is the 

pressure-fed cycle, where the propellants are stored at very high pressures in their 

respective tanks and the high pressure drives the propellants to the main combustion 

chamber.  These types of systems tend to be limited to low impulse applications.   
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The second class of engine cycle is the pump-fed cycle.  Here, the propellants are 

stored at relatively low pressures in their propellant tanks (~ 30 psia).  This allows for 

much lighter tanks and therefore less overall vehicle structural mass.  However, the fuel 

and oxidizer must now be pressurized in order to be injected at high pressures into the 

combustion chamber.  This pressurization is accomplished by using a grouping of 

turbopumps, mixers, heat exchangers, pre-burners and feed lines called a powerhead.  

These components work together to pressurize and move the propellants into the 

combustion chamber.  The turbopumps are powered by hot gases obtained by routing 

propellant through heat exchangers lining the main combustion chamber and nozzle or by 

using the hot gases resulting from combustion in a preburner.  The source of the hot gases 

for the turbines is the main parameter that defines the different types of pump-fed engine 

cycles.  Since this research deals with larger thrust class engines, only pump-fed liquid 

rocket engines will be further analyzed.   

 

 As space flight approaches 50 years of existence, vehicles are still relying on 

many of the fundamental technologies developed at the dawn of the space era.  Hence, all 

operational space vehicles today still use rocket power as the primary propulsion means.  

The vast majority of these vehicles choose liquid propellants over solid propellants 

because of the associated increase in engine performance.  Escaping Earth’s gravity and 

placing objects in orbit is a difficult challenge.  The benefit of using rocket propulsion is 

that space vehicles can quickly accelerate out of the Earth’s sensible atmosphere and 

therefore reduce the velocity losses occurred while reaching orbit. 
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 There have been many efforts to develop vehicles for space access that do not use 

rocket engines as their primary motive power.  The most famous, and well funded, of 

these programs was the National Aerospace Plane (NASP).  The NASP was to be 

powered by scramjets, a form of air-breathing combined cycle hypersonic propulsion.  

The scramjet engines proposed for NASP were designed to be much more fuel efficient 

than liquid rocket engines.  After spending $1.73B over the life time of the project, the 

goal of a reusable single-staged to orbit (SSTO) air-breathing vehicle was never met [7].  

Since the cancellation of NASP in the early 1990’s the development and study of 

hypersonic space vehicles has been relegated to design studies [8,9,10,11].  Many of 

these studies show the promise of hypersonic propulsion, but it is highly unlikely that a 

functioning hypersonic space vehicle will be built within the next 20 years.  To reinforce 

this fact, the next generation launch technology (NGLT) program, which is part of 

NASA’s space launch initiative, has focused it’s near term research on technologies for 

improving space access using liquid rocket engines.  The NGLT program has called for 

the development of the United States’ first reusable hydrocarbon fueled liquid rocket 

engine, the RS-84 (Figure 3) [12].  The RS-84 will represent the first oxidizer-rich staged 

combustion engine to be built in the US. 

 

 The majority of satellites and probes are launched from the Earth using 

expendable launch vehicles.   These rockets, which are the descendants of the first 

intercontinental ballistic missiles, almost always use liquid rocket engines during their 

ascent.  The desire of the expendable launch vehicle community is to have a fuel 

efficient, cheap and easy to manufacture engine since it will be discarded after every 
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flight.  The current generation of expendable launch vehicles are called the Evolved 

Expendable Launch Vehicles (EELV).  The two EELVs currently being produced are 

Boeing’s Delta IV and Lockheed Martin’s Atlas V launch vehicles.  While both of these 

rockets use variations of Pratt & Whitney’s LOX/LH2 expander cycle motor, the RL-10, 

as their upper stage engine, the first stage engines vary greatly.  The Atlas V uses a 

Russian built RD-180 LOX/hydrocarbon staged combustion engine, while the Delta IV 

uses a LOX/LH2 gas-generator engine, the RS-68. 

 

 

 

Figure 3:  RS-84 Engine 

 

 There is a continuing need for the development of new and improved liquid 

rocket engines.  Their use is just as prevalent today as it has ever been.  However, 

different engine applications use different metrics by which to measure “improvement” in 
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an engine design.  For an engine being used on a man-rated system, reliability is the 

dominant factor.  For expendable vehicles, cost might be the overwhelming factor.  In 

reality, the design metric chosen will most likely be a combination of performance, 

weight, economic and safety requirements.  

 

 

1.2 Design Environment 

 

 The design process for most systems, including liquid rocket engines can be 

divided into three design phases, conceptual, preliminary and detailed design [13].  

Conceptual design is the most free form design phase where the design is initially being 

formed.  Addressed during this time are the design options, requirements, and other top-

level design choices.  If the conceptual design phase produces a feasible product the 

preliminary design phase begins.  Here, major design changes are frozen and more 

detailed analysis and work is done to limit the uncertainty of the design.  After the 

preliminary design phase is complete the detailed design phase begins.  Now all the 

individual components must be developed along with all the requirements for the tooling 

and fabrication process.  The performance metrics are also finalized in the detailed design 

phase [13]. 

 

 The application of this work will be in the conceptual design phase of rocket 

powered space vehicles.  To design these vehicles, various individual disciplines are 

combined in a collaborative, multidisciplinary design process.  These disciplines include 
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aerodynamics, flight mechanics, structural and weight analysis, propulsion, cost, 

operations and reliability.  This combination forms an integrated design team where each 

team member is responsible for a specific discipline.  Team members execute an 

individual disciplinary analysis tool, and these disciplines are coupled in an iterative 

conceptual design process in which information about each candidate design is 

exchanged between the disciplines until the vehicle’s design converges.  The design 

process is most conveniently represented by the design structure matrix (DSM) shown in 

Figure 4 [14].  Design structure matrices are useful because they show the coupling 

between the various disciplines used in the design process.  Each box in the DSM 

represents a specific discipline and is called a contributing analysis (CA).  The feed 

forward links on the top of the CAs show where information must be fed downstream in 

the design process.  The feed back links underneath the CAs show information that must 

be relayed back upstream in the design process.  These feed back loops cause the design 

process to be iterative.  Some CAs are more strongly coupled than others, with the 

strongest coupling occurring between the propulsion, trajectory, and weights and sizing 

disciplines.  Typically 6-8 system level iterations are required to get a converged vehicle 

design. 

 

 Since the propulsion discipline is in the main iteration loop, it must be executed 

many times to get the final vehicle solution.  This makes it desirable to not have to spend 

a lot of time executing the propulsion discipline so vehicle designs can be completed 

quickly.  If one wishes to optimize the propulsion design inside the iteration loop, a 

problems exists.  Typical propulsion design tools have both discrete and continuous 
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inputs.  Most deterministic optimization routines can only handle continuous variables.  

Therefore, this optimization routine would have to be run for each discrete input variable 

combination in order to determine the optimal engine design.  The result is that the 

engine design code must be run many times to complete one analysis of the propulsion 

discipline.  If forced to optimize the engine design in this way, the design time constraint 

will limit the tool choices for the propulsion discipline to very fast running propulsion 

codes.  Typically, low fidelity level design tools or meta-models of higher fidelity tools 

would have to be used.  Both of these choices increase the uncertainty of the propulsion 

results.  The lower fidelity tools make simplifying assumptions in an effort to decrease 

computational time.  Meta-models of higher fidelity tools have inherent inaccuracies 

because of the error associated with fitting the model to the given data. 
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Figure 4:  Design Structure Matrix (DSM) 
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 If a higher fidelity code is used, there is typically little, if any optimization done 

on the engine design.  The design would either be fixed early in the iteration process by a 

knowledgeable propulsion engineer, or only a limited search of the design space would 

occur.  The latter would be the case if the discrete variables, such as engine cycle and the 

fuel/oxidizer combination are fixed, and then an optimization process is applied to the 

continuous design space. 

 

 The ideal case would to be able to use a higher fidelity code for the propulsion 

analysis and still search the entire design space (including the discrete space) without 

greatly increasing the design time.  In order to do this, a new, more efficient optimization 

approach is needed.  This approach needs to be able to handle both discrete and 

continuous variables and be able to find the optimal solution in an appropriate amount of 

time. 

 

 

1.3 Optimization Problem 

 

Many different types of rocket engine design codes currently exist [15 - 20].  

These range in fidelity and scope from simple, system level tools to high fidelity CFD 

analyses.  This research is focused on applying optimization techniques to a liquid rocket 

engine design tool that models the powerhead of the engine as well as determines the 

engine’s performance.  Given the current level of available computing power, this type of 

engine analysis tool probably represents the highest level of fidelity suitable for a 
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conceptual level design environment.  The optimization of liquid rocket engine designs 

using a powerhead analysis tool poses an interesting problem, because codes of this type 

have both discrete and continuous design inputs.  Traditionally, optimization schemes use 

gradient information to guide the search of the design space [21].  This gradient 

information is not available for discrete variables, so a non-traditional optimization 

approach must be used.   

 

The discrete inputs into the engine code include different material choices, the 

fuel/oxidizer combination, the basic engine cycle, and variations of these cycles (i.e. 

whether to use boost pumps, the turbine configuration…).  The continuous inputs 

common for every cycle include desired chamber pressure, nozzle expansion ratio, 

propellant mixture ratio (oxidizer to fuel ratio by mass), and desired vacuum thrust.   

 

 Nonlinear optimization problems involving both discrete and continuous inputs 

are called Mixed-Integer Nonlinear Programming (MINLP) problems.  The optimization 

of a rocket engine design using a powerhead analysis tool is an MINLP problem.  Many 

methods exist for solving MINLP problems.  These include Generalized Bender’s 

Decomposition (GBD), Outer Approximation (OA) and its variants, and methods based 

on a Branch and Bound (B&B) framework [22].  Unfortunately, none of the existing 

methods will work for the problem presented here.  The reason for this is the inability to 

easily relax the discrete variables (evaluate at non-discrete settings).   
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 A new optimization scheme was developed to solve the problem of interest.  The 

new method finds the lower bound of the continuous design space for each discrete 

variable combination.  The solution of the lower bounding space will provide a solution 

that is equal to or better than the solution of the true space.  The discrete variable 

combination with the most promising lower bound is solved for its optimum in the 

continuous space using a traditional local nonlinear optimization method.  This solution 

of the true space is then used to determine what, if any, discrete variable combination 

needs to be solved next in order to find the optimal solution.  The lower bounds of the 

continuous space for each discrete variable combination are found by fitting response 

surface equations (RSE) to the gathered data and then modifying these equations using 

underestimating techniques pioneered in global optimization.  The underestimating 

techniques turn the RSE into a lower bound. 

 

This new method has been applied to two different engine design codes.  The first 

proof-of-concept application was to a quick running rocket engine performance code on a 

test problem involving two discrete variables (13 discrete variable combinations) and 

three continuous variables.  This proof-of-concept showed that the proposed method 

solves the rocket optimization problem without requiring the relaxation of the discrete 

variables.  The final application was to a more detailed and hence slower running rocket 

engine powerhead design code.  This optimization problem involved three discrete 

variables (110 discrete variable combinations) and four continuous variables.  Again, the 

method was able to efficiently find the optimal solution and did so within a time frame 

appropriate for a conceptual design environment.  
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1.4 Goals and Objectives 

 

 The objective of this research is to develop an efficient optimization method that 

is able to optimize designs that have both discrete and continuous inputs, without 

requiring the relaxation of the discrete space.  This optimization method will be applied 

to a liquid rocket engine design code that not only determines the performance 

characteristics of the engine, but also analyzes the engine’s powerhead.  A code of this 

fidelity will allow a more complete analysis of the rocket engine because details about 

specific engine components will be available.  An existing liquid rocket engine 

powerhead analysis code, PHATCAT, is available to the author [16].  For this research, 

some current inadequacies in PHATCAT will be addressed.  Also, inaccuracies in the 

code will be mediated and the code’s capability will be expanded to increase the number 

of different engine cycles it is able to analyze.  Listed below are several specific goals of 

this research. 

 

§ Goal 1: Determine the applicability of existing optimization techniques. 

 

A great deal of research has been conducted in the area of numerical optimization.  

A portion of this research is dedicated to optimization methods designed specifically for 

problems with mixed-inputs (both continuous and discrete).  The applicability of these 

schemes to this research needs to be determined.  Also, there are a plethora of nonlinear 

optimization schemes that are designed for continuous variable inputs.  Their usefulness 

for this research also needs to be decided.  Finally, the performance of a baseline 
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optimization method needs to be established to give a benchmark for future 

improvements.  The baseline method will use a nonlinear optimization routine to find the 

optimum of the continuous variable space for every discrete variable combination.   

 

§ Goal 2: Develop a new optimization method that is able to solve mixed-input 

problems where the discrete variables can not be relaxed. 

 

The rocket engine powerhead design code that will be used for this research has 

both continuous and discrete inputs.  This code is unable to run when the discrete input 

variable settings are not at one of the appropriate discrete values.  Therefore, any new 

optimization method developed for this research must not require that these discrete 

inputs be set to a non-discrete setting.  

 

§ Goal 3:  Use the new optimization procedure to obtain the same solution found by 

the baseline method in a time appropriate for a conceptual design environment. 

 

The new optimization method is intended to allow the use of the higher fidelity 

powerhead analysis code in a conceptual design environment.  To accomplish this, the 

new method must be able to determine the optimal engine design, using a standard 

desktop computer, in less than 2 hours of computational time during the design process. 
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CHAPTER 2 

BACKGROUND 

2.1 Optimization Background 

 

2.1.1 Local Optimization Methods 

 

 The area of numerical optimization deals with the problem of finding the 

minimum or maximum of a particular objective function subject to various design 

constraints.  Many different optimization techniques have been developed and they are 

applicable to various problem types.  There are methods designed to handle functions 

with multiple extrema and those that only guarantee finding a local optimum.  Some 

methods are able to handle design constraints directly, while others must be modified to 

solve constrained problems.  Optimization problems are typically presented in the 

standard form outlined in Equation 1.   

)(min xF
x

                                                              (1a) 

..ts 0)( =xh                                                          (1b) 

0)( ≤xg                                                          (1c) 

ul xxx ≤≤                                                          (1d) 

Standard form for an Optimization Problem 
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 The function that is being minimized is called the objective function.  There are 

three different ways to represent constraints on the objective using standard form.  

Constraints can either be represented as equality [ ( )xh ], inequality constraints [ ( )xg ], or 

side constraints [21].  

 

 The type of classical numerical optimization problem that is of interest in this 

research is the constrained optimization of a continuous function.  This is one of the most 

common optimization problems and there are many methods that specialize in its 

solution.  In order for these methods to work properly several conditions are imposed on 

the design space.  First, as mentioned earlier, the design space must be continuous.  This 

is because these numerical optimizers must be able to obtain information about the 

objective function and constraints at any place within the domain of the solution.  Also, 

most of the common constrained optimization methods require that the design space be 

unimodal.  If the design space is multi-modal, these algorithms will tend to terminate at 

different extrema depending on the location of the initial starting point.  Even with these 

restrictions, these local optimization methods are very powerful and they will be used in 

this research to find the optimum of the design space represented by the continuous input 

variables. 

 

 Determining whether the current point being evaluated is an extrema is a critical 

concept in optimization.  For an unconstrained function this is a relatively simple task.  

At an extrema, the gradient of the function with respect to the design variables will 

vanish (Equation 2).  However, this condition does not guarantee that the point is a 
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minimum [21].  The signs of the eigenvalues of the Hessian matrix must also be checked 

(Equation 3).  At the minimum of the objective function the values of the eigenvalues of 

the Hessian formed by the second derivatives of this function will be positive (i.e. the 

Hessian will be positive definite [23]). 
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 While the above conditions define the minimum of an unconstrained design, they 

are insufficient to define the minimum of a constrained design space.  The location of the 

minimum of the objective function, as defined by the gradient and Hessian calculations 

might not be in the feasible region of the design space (Figure 5) [21]. 
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Figure 5:  Constrained Optimum 

 

 

 In order to determine whether the current point is a constrained optimum three 

conditions must be met [21].  These conditions, known as the Kuhn-Tucker conditions, 

are outlined below.  The geometric interpretation of the Kuhn-Tucker conditions is 

shown in Figure 6 [21].  The first condition states that the current point must be feasible.  

The second condition states that if an inequality constraint is not active, then its Lagrange 

multiplier must be zero.  The final Kuhn-Tucker condition implies that at the constrained 

optimum there is no longer a feasible and usable direction in which to improve the 
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design.  For an unconstrained problem, this final condition simplifies to the gradient of 

the objective is zero at the optimum. 

 

1. *x  is feasible 
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Figure 6:  Graphical Representation of the Kuhn-Tucker Conditions 
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 Now that the basic properties of numerical optimization have been established, 

the features of three popular constrained optimization methods will be discussed.  These 

three methods are the Method of Feasible Directions (MoFD), Sequential Linear 

Programming (SLP), and Sequential Quadratic Programming (SQP). 

 

 

Method of Feasible Directions (MoFD): 

 

 The method of feasible directions is a popular numerical optimization scheme 

[21,24].  Many different optimization codes include MoFD as a solution choice 

[25,26,27].  The method of feasible directions attempts to directly deal with the design 

constraints by finding search directions that improve the solution without violating the 

constraints.  This method attempts to search in a usable (decreases objective function 

value) and feasible (no violated constraints) direction.  The method essentially tries to 

follow the constraint boundaries until it reaches a point in the design space where there is 

no longer a usable and feasible direction in which to proceed.  This point should be the 

constrained optimum.   

 

 

Sequential Linear Programming (SLP): 

 

 Constrained linear programming problems are relatively simple and easy to solve 

and many solution methods exist [28,29,30].  Sequential linear programming attempts to 
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take advantage of this by solving the nonlinear optimization problem as a series of linear 

programming problems [21,31].  The design space is linearized about an initial point and 

this linear programming problem is solved for the approximate solution of the design 

space.  Then a new linear programming problem is formed around this approximate 

solution and the process continues until the true solution is reached.  In practice, move 

limits must be placed on the design variables during the linear programming problem to 

eliminate the potential that the problem is unbounded [21].    

 

 

Sequential Quadratic Programming (SQP): 

 

 Sequential quadratic programming differs from the previous methods in the way 

in which the search direction of the design space is formed.  In SQP the search direction 

is formed by using a quadratic approximation of the objective function and linear 

approximations of the constraints.  Many optimization techniques are available to solve 

this quadratic direction finding problem [32,33].  After the search direction is determined, 

the minimum of an augmented objective function is found along this direction.  The 

objective function is augmented by adding penalty terms to account for the design 

constraints; therefore this search is not directly constrained.  The process of finding a 

search direction and then minimizing the augmented objective function along that 

direction is continued until a converged solution is reached. 
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Numerical Gradients: 

 

The methods outlined above use gradients of the objective and constraint 

functions to help solve the optimization problem.  Analytical gradients of these functions 

can be supplied if they are known.  Alternatively, numerical gradients can be calculated if 

analytical gradients are unavailable.  This is the case for the current research and two 

types of numerical gradients will be investigated.  Numerical gradients are calculated by 

taking the difference of function values obtained at points in the design space that are 

slightly different from one another.  For example, Equation 4 shows the formula for a 

forward difference gradient.  ( )xF  is the value of the function at the current design point 

and ( )hxF +  is the function value at the point x + h, where h is the step size.  Step sizes 

are usually on the order of ~10-6.  As the step size is made smaller the approximation 

error of the gradient decreases.  However, if step sizes are made too small, computer 

round-off error can become significant and cause an increase in the gradient calculation 

error.  Values on the order of 10-6 represent a compromise between these two competing 

factors.  Equation 4 is derived by solving the Taylor series approximation of ( )hxF +  

(Equation 5) to get ( )xF '  and then dropping the higher order terms.   

 

( ) ( ) ( )
h

xFhxF
xF

−+
=′     with error of Order (h)                 (4) 

 

( ) ( ) ( ) ( ) ( ) K+′′′+′′+′+=+ xF
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xF
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xFhxFhxF
!3!2

32

                     (5) 
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 The second numerical gradient option presented is a central difference gradient 

(Equation 6).  This gradient is formed by subtracting the Taylor series approximation of 

( )hxF +  from the approximation of ( )hxF −  (Equations 7 and 8).  The central 

difference gradient has one-tenth the error of the finite difference gradient for the same 

step size, but it requires twice the number of function calls. 

 

( ) ( ) ( )
h

hxFhxF
xF

2
−−+

=′     with error of Order (h2)                 (6) 
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2.1.2 MINLP Methods 

 

The optimization problem posed in this research falls under the broad class of 

Mixed Integer Nonlinear Programming (MINLP).  Problems of this nature are found in 

all classes of engineering and science [34,35].  The main thrust of work done in this area, 

however, has been concentrated in the field of chemical engineering, specifically in 

chemical process/plant design [36-51],  The coupling of the discrete and continuous 
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variables, with their inherent nonlinearities, make MINLP problems hard to solve [22].  

The standard form for MINLP problems is shown in Equation 9. 

 

),(min
,

yxF
yx

                                                              (9a) 

..ts 0),( =yxh                                                          (9b) 

0),( ≤yxg                                                          (9c) 

ul xxx ≤≤                                                         (9d) 

Yy ∈  integer                                                     (9e) 

Standard form of MINLP problems 

 

In the above formulation, ( )yxF ,  represents the objective function, ),( yxh  

represents equality constraints, ),( yxg  represents inequality constraints, the sx '  are the 

continuous variables, and the sy '  are the discrete variables.  Typically the discrete 

variables are reformulated and represented as binary variables as outlined in reference 22.   

  

The main reason that MINLP problems are difficult to solve is that as the number 

of discrete variables increase, any potential solution algorithm is faced with having to 

solve a large combinatorial problem in the y-space while at the same time coping with the 

nonlinearities of the x & y-spaces.  Several solution procedures for basic MINLP 

problems will be discussed.  These procedures all make the assumptions that the discrete 

variables can be relaxed (i.e. evaluated at non-integer values) and that the objective and 

constraint functions are convex.  The three methods that will be mentioned are Branch 
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and Bound (B&B), Generalized Bender’s Decomposition (GBD), and Generalized Outer 

Approximation (GOA).   

 

 

Branch and Bound: 

 

Branch and bound algorithms were developed to solve mixed integer linear 

programming problems but have successfully been employed for nonlinear problems.  

This algorithm was one of the first developed to optimize problems involving discrete 

inputs [52,53].  B&B algorithms are formulated as tree searches where the feasible region 

is partitioned into subdomains and valid upper and lower bounds are generated 

throughout the tree search.  For MINLP problems the B&B algorithm starts by solving a 

continuous relaxation of the problem at the root node.  Information from this solution is 

used to choose the discrete variables to branch on, and hence divide the computational 

domain.  These subdomains are explored and if the lower bound of a resulting subdomain 

is not greater than the currently available upper bound, the remaining subdomain is not 

explored because it will not lead to a better solution.  In this way only a portion of the 

design space needs to be investigated.  The following example is given to further clarify 

the Branch and Bound algorithm.  It is taken from reference 22. 

 

3211,
3232min yyyx

yx
−−−                                              (10a) 

s.t.      02 3211 ≤−−−− yyyx                                     (10b) 
01043510 3211 ≤−+++ yyyx                                     (10c) 
01 ≥x                                     (10d) 
1,0,, 321 =yyy                                     (10e) 
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 This problem has three binary variables, y1, y2, and y3 and one continuous 

variable, x1.  The first step in the algorithm is to find the solution at the root node of the 

Branch and Bound tree.  This value is found by relaxing the binary constraints on the y-

variables and in this case solving the resulting linear programming problem.  The value 

of the objective at the root node is -6.8.  This becomes the lower bound of the problem.  

Next variable y1 is branched on.  Node one is then searched next providing a new lower 

bound and branching variable.  This process continues until node 3 is reached.  Node 3 

provides an upper bound on the solution because all of the binary variables have binary 

values.  The solution is now bounded between (-5, -6.667).  Node 3 isn’t explored further 

since the binary variables have values of either 0 or 1.  Node 4 is infeasible so the rest of 

tree following that branch is ignored.  Node 5 provides a new upper bound for the 

solution which in now bounded by the interval (-6, -6.667).  The only remaining node 

that needs to be investigated is node 6.  The solution of this node is greater than the 

current upper bound, so the branch and bound algorithm is complete and the final 

solution is ( )yxF ,  = -6.0, at y1 = 1, y2 = 0, y3 = 1, and x1 = 0.  This example used a depth 

first tree search.  There are many variations on the basic Branch and Bound algorithm and 

details can be found in several other sources [54 - 61]. 
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Figure 7:  Branch and Bound Example 

 

 

Generalized Bender’s Decomposition: 

 

Generalized Bender’s Decomposition was first introduced by Geoffrion [62].  He 

generalized an approach first described by Bender in 1962 [63].  This method creates a 

non-increasing sequence of upper bounds and non-decreasing sequence of lower bounds 

for the solution of the MINLP.  The upper bounds are easily found by fixing the discrete 

variables to a chosen value and solving the resulting nonlinear programming problem 

(NLP) in the continuous space only.  This will either provide the optimal solution (if the 
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discrete variables are at their optimal values) or an upper bound on the optimal solution.  

The lower bounds are based on duality theory.  This solution method is an iterative 

process, where first the discrete variables are set to an initial value and an upper bound is 

obtained.  Then the lower bounding procedure calculates a lower bound and also provides 

the next set of discrete variables for the next upper bound.  This sequence continues until 

the upper and lower bounds converge to a desired tolerance.  Algorithms of this type are 

called decomposition algorithms.  Additional information on GBD can be found in 

references 64, 65, and 66. 

 

 

Generalized Outer Approximation: 

 

 Generalized outer approximation is another decomposition algorithm used to 

solve convex MINLP problems.  GOA is an extension of the original outer approximation 

method proposed by Duran and Grossman which makes it applicable to MINLP problems 

with a nonlinear objective function and nonlinear equality/inequality constraints [67].  

GOA is similar to the GBD algorithm described earlier.  The difference between the two 

is in the forming of the lower bounds.  In GOA the lower bounds are formed by 

linearizing the objective and constraint functions at the solution of the current upper 

bounding NLP.  The lower bounds are based on the accumulation of the linearized 

objective and constraint functions at the various solutions of the upper bounding NLP.  

These linearizations will provide a lower bound of the solution if both the objective and 

constraint functions are convex.  As more linearizations are added, the algorithm will 
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calculate a non-decreasing set of lower bounds of the objective function.  Reference 68 

provides the algorithm outlined below. 

 

REPEAT 

1. Solve the subproblem formed by fixing the discrete variables.  (Use nonlinear 

optimization scheme to find optimum of continuous space) 

2. Linearize the objective and constraint functions about the solution obtained in 

Step 1. 

3. IF (Solution from Step 1 is Feasible & < Current Upper Bound) THEN    

Mark the current solution as the best point and set the Upper Bound equal to 

that value. 

4. Solve the current relaxation Mi of the lower bounding problem, giving new 

discrete variable assignments yi+1 to be tested in the algorithm. Set i = i + 1. 

UNTIL (Upper Bound = Lower Bound) 

 

The lower bounding problem Mi is formed by the accumulation of the 

linearization of the objective and constraint values.  If an infeasible upper bounding 

problem is encountered, a feasibility problem is solved instead.  The solution of the 

feasibility problem is the values of the continuous variables that minimize the violation in 

the constraints.  A graphical depiction, of how adding more linearizations forms a 

sequence of non-decreasing lower bounds, is shown in Figure 8.  More details about 

GOA are in references 69, 70, and 71. 
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Figure 8:  GOA Lower Bound Formation 

 

 

2.1.3 Lower Bounding Techniques 

 

 

Nonconvex MINLP Methods: 

 

 Unfortunately, all of the MINLP methods described above will only work on 

problems that are convex in nature.  However, most engineering optimization problems 

tend to behave in a manner that isn’t purely convex.  These non-convexities can cause all 

of the aforementioned algorithms to terminate at non-optimal solutions.  Several 

nonconvex MINLP schemes have been developed.  These include branch and reduce 

[72], nonconvex outer approximation [73], SMIN-αBB, and GMIN-αBB [74,75,76,77].  

All of these methods employ convex underestimators to solve nonconvex MINLP 

problems.  Convex underestimators are convex functions that provide lower bounds of 
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the nonconvex function they are underestimating.  An example convex underestimator for 

a generic nonconvex function is shown in Figure 9. 

 

X (Continuous Space) 

Convex Underestimator 
Original Function 

 

Figure 9:  Example Convex Underestimator 

 

 

A nonconvex function does not have a unique convex underestimator.  In fact, 

any valid convex underestimator will work for the solution procedures mentioned above.  

However, these solution procedures will be more efficient the closer the convex 

underestimator is to the convex envelope of the original nonconvex function. 

 

 

Convex Underestimators: 

 

 Convex underestimators will be discussed further because of their use in the final 

solution approach.  These underestimators will be used to determine the lower bounding 

equations of the continuous design space for each discrete variable combination.  The 
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lowering bounding equations will be formed by combining a meta-model of the 

continuous space with an underestimator term.  The meta-model used for this research is 

a quadratic response surface equation which is already convex.  Therefore, the lower 

bounding properties of the convex underestimators are more important for this 

application than their ability to convexify the design space.  Reference 74 outlines several 

different convex underestimating strategies.  Most of these are for underestimating 

specific nonconvex terms found in the equation to be underestimated (bilinear, trilinear, 

fractional, and concave terms).  However, there is also a general convex underestimator 

that will be used for this research.  Equation 11 shows the equation for this general 

convex underestimator. 
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α                                        (11) 

 

Here the function ( )xf  is underestimated over the entire domain [xL, xU] by the 

function ( )xL .  The αi’s are positive scalars and therefore the summation term in 

Equation 11 is always negative.  This guarantees that ( )xL  is an underestimator of ( )xf .  

If the original ( )xf  is nonconvex, the values of the αi’s can be set so that ( )xL  becomes 

convex.  This is because the summation term in Equation 11 is convex and therefore all 

the non-convexities in the original function can be “overpowered” with large enough αi’s.  

A function is convex only if its Hessian matrix is positive semi-definite throughout the 

design space, and the Hessian of ( )xL  can be related to the Hessian of ( )xf  using 
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Equation 12, where ∆ is a diagonal shift matrix whose diagonal elements are the αi’s.  

Equation 12 leads directly to Theorem 1 also from reference 74.   

 

( ) ( ) ∆+= 2xHxH fL                                                     (12) 

 

Theorem 1: ( )xL , as defined in Equation 11, is convex if and only if 

( )xH f  + 2∆  = ( )xH f  + 2 diag(αi) is positive semi-definite for all 

[ ]UL xxx ,∈ . 

 

There are many methods available to determine the proper diagonal shift matrix 

needed to form an ( )xL  which is a convex underestimator of a nonconvex ( )xf  [78].  

However, in this research the αi’s need to be set to values which turn the convex meta-

model of the continuous design space for each discrete variable combination into a lower 

bounding model of each discrete variable combination’s true continuous design space.  

Therefore, a new approach was developed to find the required αi’s.  This approach will 

be outlined in Chapter 5. 

 

 

2.2 Rocket Engine Modeling 

 

2.2.1 SCORES Background 

 

The SpaceCraft Object-oriented Rocket Engine Simulation (SCORES) is a tool 

that was originally developed at The Georgia Institute of Technology to perform 
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conceptual level “quick-look” trade studies of liquid rocket engine performance 

characteristics [15].  The code has since been updated by John Bradford of SpaceWorks 

Engineering and this updated version was used for the proof-of-concept application for 

the new optimization method [20].  SCORES has the ability to simulate rocket engine 

combustion using various propellant choices.  Available fuels include liquid hydrogen, 

various hydrocarbons, as well as hydrazine.  Oxidizers that can be used are liquid 

oxygen, hydrogen peroxide, and nitrogen tetroxide.  Additional inputs to SCORES 

include the desired engine chamber pressure, the oxidizer to fuel ratio of the propellants, 

the nozzle expansion ratio, and the desired vacuum thrust.  However, SCORES is not a 

powerhead analysis code.  It uses efficiencies on the thrust and Isp calculations to account 

for the different engine thermodynamic cycles.  SCORES simulates the combustion 

process in the main combustion chamber as an adiabatic, constant pressure equilibrium 

calculation with the assumption that all of the species involved behave as perfect gases 

[15].  To calculate the equilibrium composition exiting the combustor, SCORES 

minimizes the Gibbs free energy of the mixture subject to mass conservation constraints 

[79,80,81].  The method used to minimize Gibbs free energy is based on the method 

described in reference 79.   

 

 Two different analysis methods are commonly used to calculate the equilibrium 

composition at a specified thermodynamic state.  These two methods are the equilibrium 

constant method and the minimization of energy method.  For the equilibrium constant 

method, a specific set of reactions must be specified in order to determine the equilibrium 

composition.  The minimization of free energy method does not require this reaction set 
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and therefore this method was used in SCORES.  Equilibrium can be defined using three 

different thermodynamic properties.  It is determined by maximizing entropy, or 

minimizing either Gibbs energy or Helmholtz energy.  For the current analysis, pressure 

and temperature are used to determine the thermodynamic state of the composition inside 

the combustion chamber and therefore it is appropriate to use the minimization of Gibbs 

energy approach. 

 

 The inputs into the equilibrium analysis are the combustion temperature and 

pressure and the number of atoms of each element present.  For a specified list of 

products, the equilibrium composition is one in which Gibbs energy is minimized at the 

given temperature and pressure subject to a conservation of atoms constraint.  For the 

analysis in SCORES it is necessary to determine the adiabatic flame temperature of the 

combustor at a given chamber pressure.  This is done by using a bisection algorithm 

which iterates on combustion temperature until the enthalpy of the equilibrium 

composition equals the initial enthalpy of the reactants entering the combustion chamber. 

 

After the equilibrium composition and combustion temperature are found, the 

nozzle is analyzed.  First, the nozzle exit Mach number is determined.  Several 

assumptions are made for this calculation.  The expansion process is modeled as a steady, 

inviscid, quasi-1D, isentropic process.  Also, the flow is assumed to be either chemically 

frozen or in equilibrium in the nozzle.  In chemically frozen flow, the reaction rates of the 

species in the nozzle are assumed to be zero.  This implies that the composition of the 

flow is “frozen” at the throat conditions throughout the nozzle.  Equilibrium flow makes 
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the opposite assumption that the composition in the nozzle has infinitely fast reaction 

rates.  Therefore, the flow composition is assumed to be at the equilibrium composition 

associated with the temperature and pressure at the nozzle exit.  The equilibrium 

assumption allows for the occurrence of recombination reactions inside the nozzle and an 

increased nozzle exit temperature.  The exit temperature increases because recombination 

reactions are exothermic and release energy back into the flow.  Figure 10 shows a plot of 

exit temperature versus expansion ratio for a 500 klbs, LOX/LH2 engine with an 

oxidizer-to-fuel ratio (O/F) of 6.0 and a chamber pressure of 3000 psia. 
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Figure 10: Exit Temperature (Frozen vs. Equilibrium Flow) 

 

Since the recombination reactions release more heat to the flow and allow for 

greater flow acceleration in the nozzle, the equilibrium assumption provides an upper 
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bound on engine performance.  The chemically frozen flow assumption gives a 

conservative estimate of performance.  True nozzle performance is somewhere between 

that predicted by these two assumptions.  The nozzle exit conditions obtained by 

assuming either chemically frozen or equilibrium flow are used along with the chamber 

conditions to determine engine thrust and specific impulse. 

 

 

2.2.2 Engine Cycle Background 

 

 Two broad categories of pump-fed powerhead cycles are used to move the 

propellants from their tanks to the high pressure combustion chamber.  These are open 

and closed cycles.  In closed cycles, all of the propellant leaving the vehicle’s tanks 

passes through the throat of the engine.  For open cycles, some of the propellant does not 

pass through the engine’s throat.  Open cycles tend to be less complicated because fewer 

powerhead components are in series with each other, but they also tend to have a lower 

specific impulse when compared to an equivalent closed cycle.  The open cycle that will 

be included in this research is the gas generator cycle.  The closed cycles included are the 

staged-combustion and the expander cycle.  Representative flow paths for these cycles 

are shown in Figure 11 [82].  Detailed discussion of rocket engine cycles can be found in 

references 82, 83, and 84. 
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Figure 11: Engine Powerhead Cycle Diagrams 

 

 

 

Staged-Combustion Cycle: 

 

  The staged-combustion cycle has the highest potential performance of the three 

cycles discussed above.  It is able to provide high thrust levels while maintaining a high 

specific impulse.  In staged-combustion engines, a preburner is used to combust 

propellants to produce the working fluid needed to power the turbines.  This preburner is 
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typically a small combustion chamber that is operated either very fuel rich or very fuel 

lean depending on the fuel/oxidizer combination and engine design heritage.  The most 

well known staged-combustion engine is probably the Space Shuttle Main Engine 

(SSME).  The SSME uses a fuel-rich dual preburner staged-combustion cycle.  In this 

cycle, the hydrogen fuel is used to regeneratively cool the engine nozzle and combustion 

chamber.  After the regenerative cooling, the majority of the fuel is sent to the preburners, 

while a small fraction is used to power the fuel boost pump turbine.  The fuel in the 

preburners is mixed with enough oxidizer to produce the energy required to power the 

turbines that drive the main fuel and oxidizer pumps.  For the SSME the fuel preburner is 

operated at a mixture ratio (oxidizer to fuel ratio by mass) of ~ 0.98 while the oxidizer 

preburner operates at a mixture ratio of ~ 0.68 [83].  The main combustion chamber O/F 

is near 6.0.  After the preburner exhaust gases exit the turbines they are injected into the 

main combustion chamber with the remaining oxidizer flow.  Since the turbines in a 

staged-combustion cycle are in series with the main combustion chamber, the turbine 

pressure ratios should be limited to 1.5 – 2.0 [85].  The turbine pressure ratio is the ratio 

of the turbine inlet pressure to the turbine exit pressure (Equation 13).  Since the turbine 

pressure ratio is limited, the turbine inlet temperature must be relatively high to produce 

enough turbine power to achieve high combustion pressures.     

 

 

exit

inlet
trat P

P
P =                                                              (13) 
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Expander Cycle: 

 

 The other closed cycle to be modeled is the expander cycle.  Examples of 

expander cycle engines are the RL-10 family of upper stage engines made by Pratt & 

Whitney.  In an expander cycle, the hot gas used to drive the turbines is produced using 

the heat transferred to the fuel while it is regeneratively cooling the nozzle.  Expander 

cycles tend to be power limited.  This is because the turbine drive gases receive limited 

energy from the heat transfer process and therefore lower chamber pressures are found in 

expander engines.  With a typical expander design, the available chamber pressure 

decreases as thrust increases.  This is because increased thrust brings an associated 

increase in mass flow rate.  This increased mass flow rate requires more power to 

pressurize the flow to the required chamber pressure and decreases the turbine inlet 

temperature if the heat transfer from the combustor remains constant.  There are ways to 

increase the heat transfer to the turbine drive gases as thrust and hence, fuel mass flow 

rate increases.  These include using different combustion chamber materials and 

increasing the chamber dimensions, but there are practical limitations on these increases.  

Making the chamber longer will increase the heat transfer, but the pressure drop through 

the regenerative cooling passages will also increase.  The highest thrust true expander 

engine currently being proposed is the RL-60.  This 50 klbs – 65 klbs vacuum thrust class 

engine is under development at Pratt & Whitney [86,87,88].  Even with the limited thrust 

constraint, true expander cycles have many advantages.  They offer good Isp, are simpler 

than staged-combustion cycles, have an inherently smooth start-up sequence, provide a 
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benign turbine environment, and have lighter turbopump weights when compared to 

staged-combustion or gas generator cycles.   

 

 An alternative to a true expander cycle is the split expander.  Split expander 

cycles offer the promise of a higher thrust engine with the same beneficial characteristics 

of a true expander.  A split expander engine attempts to reduce the required fuel pump 

power without reducing the available turbine power.  The fuel flow is split after the first 

stage of the main fuel pump.  Part of the fuel is diverted to the main combustion chamber, 

bypassing the regenerative cooling passages, while the rest of the fuel is pressurized by 

the second stage of the fuel pump.  This reduces the overall power requirements of the 

fuel pump, since less fuel encounters the pressure drop through the regenerative cooling 

passage, but also reduces the fuel flow through these cooling passages.  The turbines now 

have less working fluid, but since less fuel is used to cool the chamber and nozzle, the 

turbine inlet temperatures increase.  This increase in temperature offsets the decrease in 

mass flow and therefore there is no theoretical decrease in turbine work potential.  Since 

the pump power has decreased without an associated decrease in turbine power, the 

potential exists for higher chamber pressures at higher thrust levels.  The amount of flow 

that can be diverted and sent directly to the main combustion chamber without being used 

to cool the engine is limited.  There must be enough regenerative flow to assure that the 

engine can still be adequately cooled without the turbine inlet temperatures increasing 

dramatically.  Pratt & Whitney has proposed the RLX split-expander engine as a 

propulsion option for the 2nd generation launch vehicle program.  The proposed engine 

design had a vacuum thrust level of ~ 350 klbs [89,90]. 
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Figure 12: Split-Expander Cycle 

 

 

Gas Generator Cycle: 

 

 The gas generator cycle is similar to the staged-combustion cycle in that it uses a 

preburner to supply the turbine working fluid.  However, a gas generator cycle is an open 

cycle and therefore the turbine drive gases do not pass through the throat of the engine.  

Many engines employ the gas generator cycle including the Vulcain 2 used on the Ariane 

V and the F-1 engine used to power the first stage of the Saturn V.  The preburner in a 

gas generator cycle is usually fuel rich to provide a non-oxidative environment for the 

turbine blades.  The mixture ratio of the preburner in a gas generator, as well as the 
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staged-combustion cycle, is controlled in order to provide turbine drive gases with a 

temperature that does not exceed the allowable turbine inlet temperature.  Since the gas 

generator is an open cycle, the turbine drive gases are not introduced into the engine’s 

main combustion chamber.  They are usually expanded through a smaller separate nozzle 

or introduced into the main nozzle to provide film cooling and allow for further 

expansion.  This causes a decrease in engine performance since the propellants used to 

power the preburner are not fully expanded from the high chamber pressure in the 

engine’s nozzle.  Since the preburner exhaust flow is not introduced into the main 

combustion chamber, the turbine and chamber flows are not in series.  This allows a 

much greater pressure drop across the turbine so less mass flow is needed to produce a 

given power level.  Typical pressure ratios seen across gas generator turbines are on the 

order of 4.0 – 8.0.  If turbines are placed in series, the total pressure ratio across all the 

turbines can be as high as 20 [85].  The performance decrease associated with gas 

generator cycles is offset by their simpler design.  This simplicity tends to yield engines 

that are more reliable and cheaper to build and develop. 

 

Variations exist for all the cycles discussed above.  These include the use of boost 

pumps, number of preburners, number of turbines, and whether the pumps and/or 

turbines are geared.  These variations lead to a large number of possible engine cycles, 

with each one of these cycles representing a discrete variable choice in the optimization 

procedure.  
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2.2.3 Powerhead Code Background 

 

 There are many existing powerhead analysis tools.  They typically use a modular 

analysis approach, where individual engine components are modeled separately using 

thermodynamic and other appropriate relationships and these separate modules are then 

linked to form the desired engine cycle to be analyzed [16,18,91].  The main components 

that must be modeled are the combustors (main and preburners), pumps, turbines, heat 

exchangers, and the nozzle.  PHATCAT is the existing in-house Georgia Tech powerhead 

analysis tool.  Following is an overview of the analysis techniques used in the original 

version of PHATCAT.  In Chapter 3, specific modifications and additions made to 

PHATCAT for the current research will be addressed. 

 

 

Pumps: 

 

 Pumps are used to pressurize the fuel and oxidizer to pressures that are high 

enough to achieve the desired chamber pressure.  Every cycle modeled for this work 

contains at least one fuel and oxidizer pump.  Many of the cycles contain more than this 

and most include boost pumps.  The boost pumps are used for the initial pressurization 

from the low tank pressures.  These pumps produce a relatively small pressure increase 

and their main purpose is to help prevent cavitation in the larger pumps.  The inputs into 

the pump analysis used in PHATCAT are the fluid pressure and temperature at the pump 

inlet, the pump discharge pressure, and the propellant mass flow rate.  The pump exit 
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conditions and power requirements are determined by comparing the operation of the real 

pump being modeled to an isentropic pump.  This is accomplished by applying an 

efficiency (Equation 14) to the calculated isentropic pump work [92].  This efficiency is 

supplied by the user and typical values are around 65% for boost pumps, 70% - 75% for 

the main LH2 pumps, and between 75% - 80% for LOX and hydrocarbon main pumps 

[83].  

  

actual

isentropic
pump work

work
=η                                                      (14) 

 

 

The first step in calculating the power required by the pump is to calculate the 

isentropic work.  The isentropic work is calculated by first setting the ideal exit entropy 

equal to the inlet entropy.  Then, this ideal exit entropy and assumed pump exit pressure 

are used to lookup the ideal exit temperature in a propellant property database.  The ideal 

exit temperature and exit pressure are then used to determine the ideal exit enthalpy, 

again by using a property database.  The isentropic work of the pump is then calculated 

by subtracting the ideal exit enthalpy from the inlet enthalpy, which is found using the 

inlet temperature and pressure.  The real pump work is calculated using the pump 

isentropic efficiency and isentropic work, as shown in Equation 15.  Once the real pump 

work is known, the required pump power is simply calculated by multiplying the pump 

work by the propellant mass flow rate (Equation 16). 
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 The efficiency of the pump is a user input, but empirical relations exist that can be 

used to estimate pump efficiency if it is unknown.  Reference 85 outlines a procedure that 

uses stage-specific speed to determine pump efficiency.  Stage-specific speed is a 

similarity parameter used to characterize pumps and is determined using Equation 17. 
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where:  Nr –  pump rotational speed (rad/s) 

     Q  –  propellant volumetric flow rate (m3/s) 

     n   –  number of pump stages 

     Hp –  pump’s head rise (m) 

 

The head rise is the height that a column of propellant would have to be in order 

to have a pressure at the bottom of the column equal to the pump discharge pressure 

(Equation 18).  Reference 85 gives estimates for the total allowable pressure rise over a 
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single pump stage for various propellants.  These values can be used, along with a total 

pump pressure rise to determine the required number of pump stages. 
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For a given pump rotational speed, pump design, fluid flow rate and required head, the 

pump efficiency can be determine using Figure 13 [85]. 
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Figure 13: Pump Efficiency vs. Stage-Specific Speed 

 

If the pump rotational speed is not known, a stage-specific speed can be assumed 

and Equation 17 can be used to solve for the pump rotational speed.  Suggested values for 



 
 

 48 

stage-specific speeds are 2.0 for liquid hydrogen and 3.0 for other propellants [85].  

Equation 17 can only be used to calculate the pump’s rotational speed if a boost pump is 

present.  If no boost pump is present, the lesser of the values obtained from Equations 17 

and 19 should be used in order to prevent cavitation in the main pump.   
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where:  uss – suction specific speed 

     uss = 130 for LH2 

     uss = 90 for other cryogens 

     uss = 70 for other propellants 
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 Equation 19 calculates the rotational speed of the pump based on cavitation 

effects.  The net positive suction head (NPSH) is a measure of the margin available in the 

pump to prevent cavitation.  More details about pump analysis and design can be found in 

references 85, 93, 94. 
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Turbines: 

 

 Turbines are used to provide the power needed by the pumps.  The turbines are 

driven by hot gases obtained by combusting some fuel and oxidizer in a preburner/gas 

generator or from heat transferred to the fuel during the regenerative cooling process.  

The analysis of the turbine in PHATCAT is similar to the pump calculations.  The 

required inputs into the turbine model are the working fluid inlet pressure and 

temperature, the working fluid’s mass flow rate, its composition, the turbine pressure 

ratio, and the turbine efficiency.  The turbine pressure ratio was defined in Equation 13 

which is repeated here for convenience. 

 

exit

inlet
trat P

P
P =                                                      (13) 

 

 As with the pump analysis, the isentropic work provided by the turbine is first 

calculated and then this work is modified by the turbine efficiency to get the actual work.  

The inlet pressure and temperature are used to find the inlet enthalpy and entropy.  The 

ideal exit entropy is then set equal to the inlet entropy and this ideal entropy along with 

the defined exit pressure are used to find the ideal exit temperature.  The ideal exit 

enthalpy can then be found using the exit pressure and ideal exit temperature.  The ideal 

exit enthalpy and the inlet enthalpy are then used to calculate the ideal turbine work.  

This ideal work is adjusted by the turbine efficiency in order to obtain the actual turbine 

work (Equations 21 & 22).  Now that the actual turbine work is known, the power 
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produced by the turbine can be found by multiplying this work by the working fluid mass 

flow rate (Equation 23). 

 

isentropic

actual
turbine work

work
=η                                                (21) 

 

( )
soutinturbineactual hhwork −= η                                       (22) 

 

( )
soutinturbineproduced hhmPower −= η&                                   (23) 

 

 

As with the pump efficiency, if the turbine efficiency is unknown, it can be 

estimated using empirical relations.  The procedure to calculate turbine efficiency again 

follows the analysis outlined in Reference 85.  The first parameter that must be calculated 

in order to determine the turbine efficiency is the turbine isentropic spouting velocity 

(Equation 24).  This is the velocity the turbine working fluid would have if it was 

expanded isentropically from the turbine inlet conditions to the turbine exit pressure. 
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where:  Ti     –  turbine inlet temperature (K) 

     Ptrat  –  turbine pressure ratio (Equation 13) 
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 The next parameter that is needed is the maximum allowable turbine pitchline 

velocity.  This velocity is a function of the turbine inlet temperature and the turbine blade 

material.  Figure 14 shows data for allowable pitchline velocities versus inlet temperature 

for various turbine blade materials [95]. 
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Figure 14: Pitchline Velocity versus Turbine Inlet Temperature 

 

 

 Once turbine pitchline velocity and isentropic spouting velocity are found, the 

only remaining design decision is to determine what type of turbine to use.  Most turbine 

designs are limited to 2-rotors or less to reduce weight and complexity.  For gas-

generator cycles, where large turbine pressure ratios are desired, a pressure compounded 

turbine is usually used.  However, if the inlet blade heights of the pressure compound 
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turbine are too small a designer may be forced to switch to a velocity compound turbine 

because they usually have taller inlet blades [85].  The reaction turbine design is typically 

used in expander and staged-combustion engines.  These turbines are designed for higher 

pitchline to spouting velocity ratios, which are common in closed cycle engines because 

of the desire to limit the turbine pressure ratio.  The following figures, from reference 96, 

allow the determination of turbine efficiency using the pitchline velocity, isentropic 

spouting velocity, and turbine type.  These efficiencies do not take into account losses 

from viscous effects, friction, or leakage.  Therefore, for large turbines, the efficiency 

should be reduced by 5% and for small turbines it should be decreased by 25% [85].  

Additional information about liquid rocket engine turbines can be found in reference 97. 
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Figure 15: Turbine Efficiency versus Velocity Ratio (One Rotor Turbines) 
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Figure 16: Turbine Efficiency versus Velocity Ratio (Two Rotor Turbines) 
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Figure 17: Turbine Efficiency versus Velocity Ratio (Three Rotor Turbines) 
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Heat Exchangers: 

 

 Heat exchangers are used in several places in an engine powerhead cycle.  The 

most obvious place is the use of a heat exchanger to regeneratively cool the engine nozzle 

and main combustion chamber.  For expander cycles, this heat transfer is what produces 

the high temperature gas used to power the turbines.  Also, the regenerative cooling 

passages must transfer enough heat to the propellant to keep the nozzle and chamber 

below their structural temperature limits.  Another use for heat exchangers in an engine 

cycle is to add energy to the small amount of propellant that is commonly used to 

maintain the pressure in the main propellant tanks. 

 

 A heat exchanger is modeled in PHATCAT using the first law of 

thermodynamics.  The inputs into the heat exchanger analysis are the inlet pressure, 

temperature and mass flow rate, along with the fluid pressure drop across the heat 

exchanger, the efficiency of the exchanger, and the baseline heat transfer rate.  The heat 

exchanger efficiency is a measure of how much of the energy leaving the chamber and 

nozzle flow is captured by the fluid in the exchanger.  The energy capture is quantified by 

the increase in fluid enthalpy after it passes through the heat exchanger.  Using the known 

fluid inlet conditions, the heat exchanger exit enthalpy can be calculated using Equation 

25.  Then this exit enthalpy is used, along with the exit pressure, to find the fluid exit 

temperature. 
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The heat transfer rate used in Equation 25 is not necessarily equal to the baseline 

heat transfer rate input by the user.  The baseline heat transfer rate is scaled depending on 

the current main combustion chamber target.  This scaling is done using an empirical 

relationship outlined in reference 84 (Equation 26). 
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Combustors: 

 

 Two different combustion devices are use in engine cycles.  The first is the main 

combustion chamber which is usually operated at conventional mixture ratios.  The other 

combustion device is the preburners found in staged-combustion and gas generator 

cycles.  These preburners run either very fuel rich or fuel lean depending on the engine 

cycle and propellant combination.  Both of these combustion devices are modeled by the 

same minimization of Gibb’s energy equilibrium analysis used in SCORES.  Several 

modifications to the standard equilibrium analysis had to be made for it to be able to 

model both fuel rich and fuel lean combustion.  The convergence of the equilibrium 

product species concentrations is dependent on the initial guesses of those concentrations.  

Therefore, for both the fuel rich and fuel lean combustion devices the product species 

initial guesses were changed to better reflect the final solution.  For fuel rich combustion, 

the initial guesses for the concentrations of the more fuel oriented products were 

increased.  Similarly, for lean combustion, the concentrations of the more oxidizer 
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oriented products were increased.  More specific information about both main 

combustion chambers and preburners is available in references 98 and 99. 

 

 

Flow Mixes and Splits: 

 

 Not all of the propellant leaving the vehicle’s tank follows the same path to the 

main combustion chamber.  There are many instances where part of the main propellant 

flow needs to be diverted or mixed together.  For example, in the split-expander cycle 

(Figure 12) the fuel flow is split after the first pump and the mixed back together after the 

split flow has passed through the turbines.  The flow splits are modeled in PHATCAT as 

lossless devices.  The fluid properties leaving the split are the same as those entering.  

The amount of flow exiting each outlet of the split is determined by a split percentage 

that is input by the user.  Mixers are also modeled as lossless devices and the mixer exit 

enthalpy is found by taking the mass average of the input enthalpies (Equation 27).  The 

exit enthalpy and pressure are then used to determine the remaining exit conditions. 
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Valves and Injectors: 

 

 Valves and injectors are both modeled as isenthalpic devices across which there is 

a large pressure decrease.  The user specifies the pressure drop across the injectors and 
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valves, and the exit temperature is then found by using the calculated exit pressure and 

the inlet enthalpy.  The pressure drop across an injector should be about 20% for 

unthrottled engines and as high as 30% for throttled engines.  This pressure drop helps 

isolate the combustion chamber from the rest of the powerhead so combustion pressure 

oscillations do not propagate back through propellant feed system [85]. 

 

 

Nozzle: 

 

 The final component to be addressed is the nozzle.  Nozzle calculations in a 

powerhead code must take into account heat transfer to the propellant during the 

regenerative cooling process.  If this heat transfer from the nozzle is not accounted for, an 

overly optimistic assessment of engine performance will result.  The nozzle is divided at 

the throat and two different analysis methods are used for each half.  For the convergent 

section, isentropic relations are assumed to hold true, and they are used to find the throat 

conditions assuming choked flow at the throat. 

 

The divergent section of the nozzle is where the heat transfer to the cooling flow 

is taken into account.  Therefore, the divergent section is not adiabatic, and isentropic 

relations can not be used.  The method of potentials outlined in reference 100 was used to 

determine nozzle performance.  This method allows for the modeling of flow with 

multiple driving potentials.  For this nozzle analysis, two driving potentials exist, the 

nozzle area change and the regenerative heat transfer. 
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The variable that is solved for using the method of potentials is the nozzle exit 

Mach number.  The Mach number is found by using a Runge-Kutta numerical integration 

routine that solves for the flow Mach number as a function of axial distance from the 

throat.  The contours of the nozzle must be known in order to determine the exit Mach 

number.  Both conical and bell nozzles are available in PHATCAT.  For more details on 

the nozzle analysis see references 16 and 100. 

 

 

Fluid Properties: 

 

 All of the modular analysis routines described above require the availability of 

fluid properties at various temperatures and pressures in order to complete their 

calculations.  Two different property databases were included with the original version of 

PHATCAT.  The first is tabular data for hydrogen and oxygen that was used to determine 

the properties needed for any analysis routine encountered before a combustion device.  

The source for the original cold flow data used in PHATCAT is the NIST properties code 

SUPERTRAPP [101].  After the fluid passes through a combustion device, the second 

fluid properties database is used.  This database consists of curve fits of various species 

included in the JANAF tables [102].  The species that were included are H2, O2 and the 

possible products of their equilibrium reaction.  For both the JANAF curve fits and the 

tabular NIST data, the fluid properties included are enthalpy, entropy, and specific heat as 

functions of temperature and pressure.  The JANAF curve fits also supply Gibb’s energy 

which is needed in the equilibrium routine.   
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Two different ways are needed by the modular analyses to determine fluid 

properties.  The first way is by supplying a temperature and pressure and receiving an 

enthalpy, entropy, specific heat, or Gibb’s value.  This is very straightforward because 

temperature and pressure are the natural inputs for both the curve fits and the 2-D tabular 

interpolation routine.  The second way in which properties need to be determined is by 

supplying a pressure and either an enthalpy or entropy and receive temperature as the 

output.  This requires a root finding method to be employed.  The original version of 

PHATCAT uses a Newton-Raphson root finding method to determine the correct 

temperature.  Details of this method are provided in the next section.   

 

 

Power Balancing: 

 

 In order to complete the analysis of an engine cycle, it must be “balanced.”  A 

balanced engine cycle is one in which the power required by the pumps is produced by 

the turbines.  Also, a balanced cycle will have the desired chamber pressure.  Typically, 

the pump and turbine powers are balanced by changing the pressure ratio across the 

turbines until the turbine power matches the pump power.  Simultaneously the pump exit 

pressures will be varied until the desired chamber pressure is achieved.  The pump exit 

pressures must be high enough to make up for the pressure drop that occurs as the 

propellant is traveling from the pump to the chamber.  The pressure drop comes from 

injector pressure losses, regenerative cooling pressure losses, and depending on the cycle, 

the turbine pressure drop.  Other balances exist and many are cycle dependent.  Total 
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propellant mass flow rate can be varied to achieve a desired thrust level.  Also, gas 

generator mixture ratio or regenerative flow split percentages can be varied to set a 

specific turbine inlet temperature. 

 

 A multi-dimensional Newton-Raphson root finding scheme is used in PHATCAT 

to balance the engine.  The method requires unimodal, continuous and differentiable 

functions.  Since analytical derivatives of the engine analysis are not available, numerical 

derivatives are used.  To begin the Newton-Raphson iteration process, an initial guess is 

made for the independent variable.  Then the analysis function is evaluated at that point 

and the difference between the target for the dependent variable and its actual value is 

calculated.  Figure 18 shows a graphical representation of one iteration of a 1-D Newton-

Raphson problem [16].  After the function is evaluated at the initial guess, the x-intercept 

of the line tangent to the function at the initial point is found.  This x-intercept provides 

the updated solution (Equation 28). 
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This process continues until the root of the function is found.  To extend the 

Newton-Raphson method to multiple dimensions, the points 1+nx , nx  and the function 

value ( )nxF  become vectors and the function’s derivative, ( )nxF ′  becomes the Jacobian 

matrix.  The multi-dimensional form is given in Equation 29. 
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Figure 18: Newton-Raphson Graphical Example 
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CHAPTER 3 

ENGINE ANALYSIS DETAILS 

3.1 Additions to PHATCAT 

 

 PHATCAT was used to simulate the powerhead and determine the performance 

characteristics of the various engine cycles studied for this research.  The original version 

of PHATCAT was written in July, 2001, by Tim Cormier at The Georgia Institute of 

Technology.  In its original state, PHATCAT does not provide the desired accuracy or 

capability required for this research.  Therefore, several changes/additions were made to 

the program to tailor it for this use.  A list of these modifications follows, and more 

detailed information about certain changes will be provided. 

 

§ The Newton-Raphson root finding method used to balance the powerhead was 

made more robust, allowing the code to be used more effectively in an 

optimization scheme. 

§ The hydrogen property database was changed, which fixed errors in the power 

and exit temperature results supplied by the pump and turbine routines. 

§ The JANAF curve fits for the specific heat of H2, H and OH were fixed. 
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§ RP-1, methane (CH4), and propane (C3H8) were added as possible fuel choices.  

Original version only had the choice of hydrogen fuel. 

§ The equilibrium combustion model was adjusted to accurately model RP-1, CH4 

and C3H8 combustion.  This included stoichiometric, fuel-rich and fuel-lean 

combustion. 

§ An option to scale the regenerative heat transfer rate and boost pump exit 

pressures with chamber pressure was added.  This allowed for balanced engine 

designs, for specific engine cycles, to be achieved over a wider range of input 

variables. 

§ Twenty-one new engine cycles were added as input options to PHATCAT.  The 

original version included three. 

 

Two separate fluid property databases are used in PHATCAT.  The first is the 

cold flow database, which is used to get properties of fluids that haven’t gone through a 

combustion device.  This database originally consisted of tables of property data, for 

hydrogen and oxygen, obtained from the NIST properties code SUPERTRAPP [101].  

The second property database is the hot flow database, which is used to get properties of 

fluids and mixtures either during or after combustion.  This database consists of curve fits 

of data from the JANAF tables [102]. 

 

As will be shown in the next section, the original version of PHATCAT gave 

significant errors when comparing hydrogen turbopump powers and exit temperatures to 

data obtained from literature.  These discrepancies were found to be caused by errors in 
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the cold flow properties database.  After researching the problem, it was discovered that 

the NIST SUPERTRAPP code was not the best source for properties of hydrogen as a 

function of temperature and pressure.  The code is designed mainly to provide properties 

of hydrocarbon mixtures.  Therefore, a new source of hydrogen data was found.  The new 

source was also a code from NIST, called REFPROPS [103].  This code uses the 

equation of state by Youngblood to determine hydrogen fluid properties [104].  The 

replacement of the old hydrogen properties fixed the errors associated with the pump and 

turbine analyses. 

 

 One of the discrete variable choices, available in the final application of the 

optimization method, is the engine fuel choice.  In the original version of PHATCAT 

only one fuel choice is available.  Therefore, the number of fuels was expanded to 

include RP-1, methane, propane, and the original hydrogen fuel.  Both property databases 

had to be expanded to include these new fuels.  Also, missing properties for some of the 

possible combustion products of the new fuels were added to the hot flow database.  Cold 

flow data for methane, propane and RP-1 was obtained from SUPERTRAPP.  Methane 

and propane are included as default inputs to SUPERTRAPP, but RP-1 is not.   Several 

methods are available for simulating a mixture of hydrocarbons such as RP-1 in 

SUPERTRAPP.  These include inputting RP-1 as a single pseudo-fluid, a mixture of 

defined hydrocarbons, or as a petroleum fraction.  All three methods were investigated 

and it was found that the petroleum fraction method gave results that more closely agreed 

with that published in literature.  Since various properties were missing from the hot flow 

database for some of the hydrocarbon combustion products, additional curve fits were 
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added.  One curve fit that needed to be included was the enthalpy of RP-1 as a function of 

temperature.  The enthalpy of RP-1 is not available from the JANAF tables, so other 

sources for this data were found.  The enthalpy of formation for RP-1 was taken from 

reference 79.  Sensible enthalpy was determined using specific heat data found in 

reference 105 for JP-4 (Jet Propellant 4), which is very similar to RP-1.  This enthalpy 

data was used for the hot flow database, instead of the values obtained from 

SUPERTRAPP, because the equilibrium results for RP-1 combustion will be compared to 

those obtained from reference 79 and this comparison is more applicable if the initial 

enthalpy of RP-1 is the same in both codes.  

 

 In order to determine the equilibrium composition of the combustion products of 

RP-1, propane or methane with LOX, the equilibrium analysis routine in PHATCAT had 

to be adjusted.  The original equilibrium analysis model included H2, O2, H2O, OH, H, O, 

CO, and CO2 as possible combustion products.  These are all the products that are needed 

for hydrogen/oxygen combustion at various mixture ratios, and for hydrocarbon/oxygen 

combustion at either fuel-lean or near stoichiometric mixture ratios.  For fuel-rich 

hydrocarbon combustion more product species are needed.  Therefore, for propane 

combustion, C3H8 was added as a possible product, and for methane combustion, CH4 

was added as a product choice.  For fuel-rich RP-1 combustion, CH4, C3H8, C2H2, and 

C2H6 were included as additional products.  Also, the initial guesses for the product 

concentrations were changed depending on the mixture ratio.  This helped eliminate 

convergence problems at very fuel-rich or fuel-lean conditions. 

 



 
 

 66 

 Originally, PHATCAT only contained three specific engine cycle choices.  These 

were the RL-10 expander cycle, the SSME dual preburner fuel-rich staged-combustion 

cycle, and the Vulcain gas generator cycle.  Several new engine cycles were added in 

order to give more discrete variable choices for the final application of the optimization 

method.  The SSME cycle was replaced with two faster running LH2 staged-combustion 

cycles.  The first has a powerhead design very similar to the SSME, while the second 

only has a single preburner and one main turbine.  Variations of the Vulcain cycle were 

also added to PHATCAT.  These variations included the use of different numbers of 

turbines and boost pumps, and the use of hydrocarbon fuels.  The RL-10 expander cycle 

was replaced with a higher thrust class split expander cycle similar to the RLX.  Finally, 

an oxidizer-rich single preburner staged-combustion cycle was included, which used RP-

1, CH4 and C3H8 as fuels.  This cycle is similar to the RD-180, except it only has one 

main combustion chamber.  These additions increased the number of engine cycle 

choices in PHATCAT from three to twenty-two. 
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3.2 Verification of Additions 

 

3.2.1 Hydrogen Component Verification 

 

 The performance of the various modular components used to form the engine 

cycles in the original version of PHATCAT, were compared to powerhead data for the 

SSME taken from reference 83.  These comparisons, which can be found in the original 

PHATCAT documentation (reference 16), show that the original version of the code was 

able to match the performance data for the LOX side of the SSME cycle, but was unable 

to correctly predict the LH2 component properties.  For brevity, an interested reader is 

referred to reference 16 for the LOX component verification.  The LH2 component 

verifications will be repeated here along with the results from the updated version of 

PHATCAT.  The tables below show the comparisons of the results predicted by the 

original version of PHATCAT for the SSME low-pressure fuel pump (LPFP) and high-

pressure fuel pump (HPFP).  There is noticeable error in the exit temperature calculations 

for both pumps, and the power calculations for the low-pressure pump. 

 

Table 1: SSME LH2 Pump Exit Temperatures (Original Results) 

 Pin 
(psia) Tin (R) Pout (psia) mdot (lbm/s) η  

Original 
PHATCAT 

Tout (R) 

Ref. 83 
 Tout (R) 

% 
error 

LPFP 30.02 37.08 282.82 161.40 .65 39.6 40.9 3.18% 

HPFP 282.82 40.86 7055.95 161.40 .73 91.5 103.1 11.25% 
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Table 2: SSME LH2 Pump Powers (Original Results) 

 Pin 
(psia) Tin (R) Pout (psia) mdot (lbm/s) η  

Original 
PHATCAT 

Power (HP) 

Ref. 83 
Power 
(HP) 

% 
error 

LPFP 30.02 37.08 282.82 161.40 .65 3412 3694 7.63% 

HPFP 282.82 40.86 7055.95 161.40 .73 77235 77497 0.34% 

 

 The new version of PHATCAT includes updated hydrogen properties.  These new 

hydrogen properties, corrected the errors found for both fuel pumps.  The update results 

are shown in Table 3 and Table 4.  The error has been reduced to less than 0.5% for both 

the exit temperature and power calculations. 

Table 3: SSME LH2 Pump Exit Temperatures (New Results) 

 Pin 
(psia) Tin (R) Pout (psia) mdot (lbm/s) η  

New 
PHATCAT 

Tout (R) 

Ref. 83 
 Tout (R) 

% 
error 

LPFP 30.02 37.08 282.82 161.40 .65 41.0 40.9 0.24% 

HPFP 282.82 40.86 7055.95 161.40 .73 103.4 103.1 0.29% 

 

Table 4: SSME LH2 Pump Powers (New Results) 

 Pin 
(psia) Tin (R) Pout (psia) mdot (lbm/s) η  

New 
PHATCAT 

Power (HP) 

Ref. 83 
Power 
(HP) 

% 
error 

LPFP 30.02 37.08 282.82 161.40 .65 3682 3694 0.32% 

HPFP 282.82 40.86 7055.95 161.40 .73 77516 77497 0.02% 

 

Similar errors are noticed in the hydrogen turbine results.  The tables below show 

the comparison of the original and new results, for output temperature and power of the 

low-pressure fuel turbine (LPFT), to those published in reference 83.  The original 

PHATCAT analysis accurately predicted the turbine exit temperature, but over-predicted 

the turbine power output.  The new hydrogen properties added to the cold flow database 
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fixed the turbine output power results, while maintaining an accurate prediction of 

turbine exit temperature. 

Table 5: SSME LH2 Turbine Exit Temperature (Original Results) 

 Pin 
(psia) Tin (R) ∆P/P mdot (lbm/s) η  

Original 
PHATCAT 

Tout (R) 

Ref. 83 
 Tout (R) 

% 
error 

LPFT 5011.06 455.04 1.3219 34.08 .52 441.7 440.6 0.25% 

 

Table 6: SSME LH2 Turbine Power (Original Results) 

 Pin 
(psia) Tin (R) ∆P/P mdot (lbm/s) η  

Original 
PHATCAT 

Power (HP) 

Ref. 83 
Power 
(HP) 

% 
error 

LPFT 5011.06 455.04 1.3219 34.08 .52 3955 3694 7.07% 

 

Table 7: SSME LH2 Turbine Exit Temperature (New Results) 

 Pin 
(psia) Tin (R) ∆P/P mdot (lbm/s) η  

New 
PHATCAT 

Tout (R) 

Ref. 83 
 Tout (R) 

% 
error 

LPFT 5011.06 455.04 1.3219 34.08 .52 439.5 440.6 0.25% 

 

Table 8: SSME LH2 Turbine Power (New Results) 

 Pin 
(psia) Tin (R) ∆P/P mdot (lbm/s) η  

New 
PHATCAT 

Power (HP) 

Ref. 83 
Power 
(HP) 

% 
error 

LPFT 5011.06 455.04 1.3219 34.08 .52 3685 3694 0.24% 

 

 

The original PHATCAT analysis of the regenerative heat exchangers used for the 

cooling of the nozzle and chamber of the SSME, over-predicted the heat exchanger exit 

temperatures.  The following tables show that correcting the hydrogen properties again 

fixed these results. 
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Table 9: SSME LH2 Heat Exchanger Exit Temperatures (Original Results) 

 Pin 
(psia) Tin (R) ∆P/P 

mdot 
(lbm/s) 

Qdot 
(BTU/sec) 

Original 
PHATCAT 

Tout (R) 

Ref. 83 
Tout (R) 

% 
error 

Nozzle 
Cooling 6719.9 106.38 1.074 63.69 88349 500.0 464.0 7.76% 

Chamber 
Cooling 6719.9 106.38 1.341 34.08 45308 494.1 455.0 8.59% 

 

Table 10: SSME LH2 Heat Exchanger Exit Temperatures (New Results) 

 Pin 
(psia) Tin (R) ∆P/P 

mdot 
(lbm/s) 

Qdot 
(BTU/sec) 

New 
PHATCAT 

Tout (R) 

Ref. 83 
Tout (R) 

% 
error 

Nozzle 
Cooling 6719.9 106.38 1.074 63.69 88349 462.4 464.0 0.34% 

Chamber 
Cooling 6719.9 106.38 1.341 34.08 45308 455.4 455.0 0.09% 

 

 The calculations of the exit temperatures for the valves and mixers found in the 

hydrogen fuel lines also showed noticeable error when compared to the results from 

reference 83.  The following tables show that these errors were again eliminated by 

changing the hydrogen properties in the cold flow fluid properties database.  

 

Table 11: SSME LH2 Valve Exit Temperatures (Original Results) 

 Pin (psia) Tin (R) ∆P/P 
mdot 

(lbm/s) 

Original 
PHATCAT 

Tout (R) 

Ref. 83 
Tout (R) 

% 
error 

Main Fuel Valve 7055.95 103.14 1.050 161.42 105.3 106.4 1.03% 

Nozzle Cooling 
Bypass 6719.90 106.38 1.074 63.69 109.3 110.5 1.09% 

LH2 Tank 
Repressurization 3790.71 440.64 74.46 0.77 470.0 453.8 3.57% 

 



 
 

 71 

Table 12: SSME LH2 Valve Exit Temperatures (New Results) 

 Pin (psia) Tin (R) ∆P/P 
mdot 

(lbm/s) 

New 
PHATCAT 

Tout (R) 

Ref. 83 
Tout (R) 

% 
error 

Main Fuel Valve 7055.95 103.14 1.050 161.42 106.38 106.4 0.019% 

Nozzle Cooling 
Bypass 6719.90 106.38 1.074 63.69 110.7 110.5 0.18% 

LH2 Tank 
Repressurization 3790.71 440.64 74.46 0.77 454.9 453.8 0.24% 

 

Table 13: SSME LH2 Mixer Exit Temperature (Original Results) 

 Pin,1 
(psia) 

Tin,1 
(R) 

mdot,1 
(lbm/s) 

Pin,2 
(psia) 

Tin,2 
(R) 

mdot,2 
(lbm/s) 

Original 
PHATCAT 

Tout (R) 

Ref. 
83 
Tout 
(R) 

% 
error 

Nozzle 
Regenerator 

Bypass 
Mixer 

6256.9 110.52 63.69 6256.9 464.1 63.69 276.2 293.9 6.0% 

 

Table 14: SSME LH2 Mixer Exit Temperature (New Results) 

 Pin,1 
(psia) 

Tin,1 
(R) 

mdot,1 
(lbm/s) 

Pin,2 
(psia) 

Tin,2 
(R) 

mdot,2 
(lbm/s) 

New 
PHATCAT 

Tout (R) 

Ref. 
83 
Tout 
(R) 

% 
error 

Nozzle 
Regenerator 

Bypass 
Mixer 

6256.9 110.52 63.69 6256.9 464.1 63.69 296.1 293.9 0.8% 

 

 The final major powerhead component calculation that needs to be verified is 

equilibrium combustion analysis.  For hydrogen fueled engines, the combustion 

calculations need to be checked at mixture ratios near 6.0 and at very fuel-rich mixture 

ratios.  Table 15 gives a comparison between the results obtained from PHATCAT and 

the industry standard equilibrium analysis code, CEA (Ref. 79).  The adiabatic 

combustion temperature and mole fractions were determined for a mixture ratio of 6.0, a 
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chamber pressure of 3000 psia, and fuel and oxidizer inlet temperatures of 536.14 R.  

These conditions approximate typical main combustion chamber conditions found in the 

SSME.  The results in Table 15 show good agreement between PHATCAT and CEA. 

 

Table 15: Equilibrium Calculation Comparisons (O/F = 6.0, Pc = 3000 psia) 

 New PHATCAT CEA 
H2 0.2497 0.2497 
O2 0.0037 0.0036 

H2O 0.6623 0.6633 
OH 0.0467 0.0462 
H 0.0341 0.0336 
O 0.0036 0.0036 

Tad (R) 6726.9 6716.6 
MWmix 13.438 13.447 

 

 

The combustion equilibrium calculations were also checked at conditions typical 

for a fuel-rich preburner, found in a staged-combustion or gas-generator hydrogen fueled 

engine.  Table 16 shows the results for a mixture ratio of 0.8, chamber pressure of 5500 

psia, and fuel and oxidizer inlet temperatures of 536.14 R.  Again, good agreement is 

seen between PHATCAT and CEA. 

 

Table 16: Equilibrium Calculation Comparisons (O/F = 0.8, Pc = 5500 psia) 

 New PHATCAT CEA 
H2 0.8992 0.8992 
O2 0.0000 0.0000 

H2O 0.1008 0.1008 
OH 0.0000 0.0000 
H 0.0000 0.0000 
O 0.0000 0.0000 

Tad (R) 1990.17 1980.05 
MWmix 3.629 3.629 
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 Finally, Table 17 shows the results for the performance analysis of the SSME 

engine.  The balancing routine in PHATCAT was used to vary engine mass flow rate 

until the desired vacuum thrust was achieved.  Also, the pump output pressures were 

varied until the desired pressure in the main combustion chamber was achieved.  The 

performance results produced by the updated version of PHATCAT are very similar to 

those found in reference 83. 

 

Table 17: SSME Performance Comparison 

 New PHATCAT Results Ref. 83 Results % error 
Vacuum Thrust (lbf) 511350 511350 0.0% 

Mixture Ratio 6.0 6.0 0.0% 
Chamber Pressure (psia) 3264.8 3264.8 0.0% 
Mass Flow Rate (lbm/s) 1129.2 1127.5 0.2% 

Vacuum Isp 452.8 453.5 0.2% 
Throat Area (in2) 81.75 81.38 0.5% 

Exit Area (ft2) 43.88 44.02 0.3% 
 

 

3.2.1 Hydrocarbon Component Verification 

 

 Three new hydrocarbon fuels were added to PHATCAT for this research.  

However, detailed engine cycle data is only available from literature for RP-1 fueled 

engines.  Therefore, only results for modules using RP-1 will be presented in this section.  

Reference 83 provides cycle data for the RD-170 engine.  This data will be used to 

determine the performance of the pump, turbine, heat exchanger, mixer and valve 

analyses.  CEA will be used along with reference 84 to provide data for the equilibrium 

combustion analysis.  Overall engine performance values predicted by PHATCAT for the 

RD-180 are compared to results published in reference 106. 
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 The exit temperatures and powers for the LPFP, HPFP, and LPFT of the RD-170 

were calculated using the modular analyses in PHATCAT.  The tables below show the 

comparison of these results to those published in literature.  Excellent agreement is seen 

for all three components. 

 

Table 18: RD-170 RP-1 Pump Exit Temperatures 

 Pin 
(psia) Tin (R) Pout (psia) mdot (lbm/s) η  

New 
PHATCAT 

Tout (R) 

Ref. 83 
 Tout (R) 

% 
error 

LPFP 43.51 540.0 435.11 1466.69 .74 541.47 541.08 0.07% 

HPFP 435.11 547.38 6392.68 1703.55 .74 569.09 564.48 0.82% 

 

Table 19: RD-170 RP-1 Pump Powers 

 Pin 
(psia) Tin (R) Pout (psia) mdot (lbm/s) η  

New 
PHATCAT 

Power (HP) 

Ref. 83 
Power 
(HP) 

% 
error 

LPFP 43.51 540.0 435.11 1466.69 .74 4056 4034 0.55% 

HPFP 435.11 547.38 6392.68 1703.55 .74 70777 71275 0.70% 

 

Table 20: RD-170 RP-1 Turbine Exit Temperature 

 Pin 
(psia) Tin (R) ∆P/P mdot (lbm/s) η  

New 
PHATCAT 

Tout (R) 

Ref. 83 
 Tout (R) 

% 
error 

LPFT 6392.68 564.48 14.692 236.86 .55 577.04 586.44 1.60% 

 

Table 21: RD-170 RP-1 Turbine Power 

 Pin 
(psia) Tin (R) ∆P/P mdot (lbm/s) η  

New 
PHATCAT 

Power (HP) 

Ref. 83 
Power 
(HP) 

% 
error 

LPFT 6392.68 564.48 14.692 236.86 .55 4023 4034 0.27% 
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 The regenerative cooling of the nozzle and chamber of the RD-170 was modeled 

using the heat exchanger module in PHATCAT.  The results for this analysis are shown 

in Table 22.  There is a noticeable, yet tolerable, difference in the heat exchanger exit 

temperatures.  This difference is not entirely unexpected, given the many different ways 

RP-1 can be represented when trying to determine its thermodynamic properties.  

Table 22: RD-170 RP-1 Heat Exchanger Exit Temperatures 

 Pin 
(psia) Tin (R) ∆P/P 

mdot 
(lbm/s) 

Qdot 
(BTU/sec) 

New 
PHATCAT 

Tout (R) 

Ref. 83 
Tout (R) 

% 
error 

Nozzle 
Cooling 5811.6 569.16 1.2 348.44 23716 703.08 728.28 3.46% 

Chamber 
Cooling 4842.9 728.28 1.2 348.44 23716 845.31 885.96 4.59% 

 

 The exit temperatures for the valves and mixers encountered on the fuel side of 

the RD-170’s powerhead were modeled in PHATCAT.  These results are found in Table 

23 and Table 24.  Good agreement is seen for all the components tested. 

Table 23: RD-170 RP-1 Valve Exit Temperatures 

 Pin 
(psia) Tin (R) ∆P/P 

mdot 
(lbm/s) 

New 
PHATCAT 

Tout (R) 

Ref. 83 
Tout (R) 

% 
error 

Main Fuel Valve 6392.68 564.48 1.100 348.44 568.15 569.16 0.18% 

Preburner Fuel Valve 8992.48 572.04 1.100 72.91 577.21 578.70 0.26% 

 

Table 24: RD-170 RP-1 Mixer Exit Temperature 

 Pin,1 
(psia) 

Tin,1 
(R) 

mdot,1 
(lbm/s) 

Pin,2 
(psia) 

Tin,2 
(R) 

mdot,2 
(lbm/s) 

New 
PHATCAT 

Tout (R) 

Ref. 
83 
Tout 
(R) 

% 
error 

Fuel 
Recirculation 
Flow Mixer 

435.1 541.08 1466.7 435.1 586.4 236.86 547.50 547.4 0.02% 
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 In order to analyze all the engine cycles needed for this research, the equilibrium 

combustion model for RP-1 must be able to handle fuel-rich, fuel-lean and stoichiometric 

mixtures.  Table 25 provides the results for RP-1/LOX combustion at an O/F of 2.72 and 

a Pc of 3700 psia.  These conditions are very similar to those found in the main 

combustion chamber of the RD-180.  The results of this equilibrium combustion analysis 

show good agreement with those obtained from CEA.  The fuel-lean preburner results 

given in Table 26 are for the LOX-rich preburner found on the RD-170.  Table 27 shows 

results for a fuel-rich gas generator found in reference 84.  The results for both these 

cases are also good. 

Table 25: Equilibrium Calculation Comparisons (O/F = 2.72, Pc = 3700 psia) 

 New PHATCAT CEA 
H2 0.0681 0.0673 
O2 0.0255 0.0255 

H2O 0.3365 0.3380 
OH 0.0682 0.0679 
H 0.0242 0.0237 
O 0.0135 0.0134 

CO2 0.1689 0.1682 
CO 0.2951 0.2961 

Tad (R) 7116.58 7107.25 
MWmix 24.117 24.131 

 

Table 26: Equilibrium Calculation Comparisons (Fuel-Lean Preburner) 

 Pc 
(psia) 

Tfuel 
(R) 

Toxid 
(R) O/F 

New 
PHATCAT 

Tad (R) 

CEA 
Tad (R) 

% 
error 

Fuel-Lean 
Preburner 7400 536.4 220.0 52.31 1687.96 1682.95 0.30% 

 

Table 27: Equilibrium Calculation Comparisons (Fuel-Rich GG) 

 Pc 
(psia) 

Tfuel 
(R) 

Toxid 
(R) O/F 

New 
PHATCAT 

Tad (R) 

Ref. 84 
Tad (R) 

% 
error 

Fuel-Rich Gas 
Generator 612.1 536.4 220.0 0.342 1663.6 1659.7 0.23% 
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 As a last test, the actual performance of the RD-180 engine was compared to the 

performance calculation obtained from PHATCAT (Table 28).  In order to get the 

required results, the mass flow rate of the engine was adjusted until the desired vacuum 

thrust was achieved, and the pump exit pressures were set at values that gave the desired 

chamber pressure.  The values obtained by PHATCAT are similar to the published results 

for the RD-180.  There is a slight over-prediction of specific impulse, but this can be 

attributed to not having detailed information about the engine cycle of the RD-180.  

Without this detailed information, several engine parameters had to be determined from 

other sources.  These included pump and turbine efficiencies, regenerative heat flow 

rates, flow split percentages, and other cycle parameters.  The differences between the 

values used and the actual values for many of these parameters could easily account for 

the slight performance difference. 

 

Table 28: RD-180 Performance Comparison 

 New PHATCAT Results Ref. 106 Results % Error 
Vacuum Thrust (lbf) 933400 933400 0.0% 

Mixture Ratio 2.72 2.72 0.0% 
Chamber Pressure (psia) 3734.0 3734.0 0.0% 
Mass Flow Rate (lbm/s) 2719.4 2763.2 1.6% 

Vacuum Isp 343.2 337.8 1.6% 
Throat Area (in2) 133.2 135.1 1.4% 

Exit Area (ft2) 34.1 34.6 1.4% 
 

 

 

 

 

 



 
 

 78 

3.3 Weight and Cost Models 

 

 PHATCAT does not supply engine weight or cost as one of its outputs.  However, 

these are important metrics that need to be considered when trying to optimize an engine 

design for a particular application.  Therefore, a way to determine engine cost and weight 

had to be found for this research.  Two existing engine cost models for liquid rocket 

engines are included in the NASA/Air Force Cost Model 99 (NAFCOM99) [107].  The 

top-level, summary cost model was used for this research.  This model employs 

historically based equations to predict engine cost.  The NAFCOM99 model gives both 

the development and production costs of the engine.  The production costs are output as 

an average production cost per engine and as a theoretical first unit (TFU) cost.  The TFU 

is the cost required to produce the first engine off the assembly line.  The average 

production cost is less than the TFU because it accounts for cost reductions from the 

learning curve effects associated with producing many engines.   The inputs into the cost 

model include the engine’s thermodynamic cycle, vacuum thrust, chamber pressure, 

design and manufacturing inputs, and engine production rate.  The engine cycle is input 

as a complexity factor that influences the engine’s costs.  Development cost complexity 

factors for several engine cycles are shown in Table 29.    

 

Table 29: Development Cost Complexity Factors 

Engine Cycle Development Cost Complexity Factor 
Staged-Combustion 1.2 

Gas Generator 0.8 
Expander 0.7 

Combustion Tap-off 0.6 
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 No existing engine weight model was available, so a new engine weight model 

was developed using historical engine data.  Since PHATCAT provides information 

about the individual components of the engine’s powerhead, an attempt was made at 

forming a component based weight model.  However, there is not enough data on 

individual engine component weights in open literature.  Most data of this nature is 

proprietary.  Therefore, a top-level engine weight model was made.  The top-level weight 

model was formed using thrust-to-weight engine data for 35 different liquid rocket 

engines.  These engines were categorized by their basic engine cycle and fuel type.  At 

least six data points were available for each engine grouping.  The engine groups that 

were included are LH2 and RP-1 staged-combustion engines, LH2 and RP-1 gas 

generator engines, and LH2 expander cycle engines.  A linear fit of engine weight versus 

total propellant mass flow rate was made for each of the five engine classes.  The linear 

fits for each engine class, which are shown in the figures below, form the basis of the 

weight model. 
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Figure 19: Engine Weight vs. Mdot (Staged-Combustion Cycle) 
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Figure 20: Engine Weight vs. Mdot (Gas Generator Cycle) 
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Figure 21: Engine Weight vs. Mdot (Expander Cycle) 
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The chamber pressure of the engine also has a significant effect on engine weight.  

To account for this, a chamber pressure adjustment is applied to the linear fit.  This 

chamber pressure trend was taken from reference 84 and is shown in Figure 22.  For a 

fixed engine thrust, the combustion chamber weight decreases with chamber pressure, 

because a smaller chamber size is required.  However, turbopump weight increases with 

chamber pressure, because more power is required in order to pump the same mass flow 

up to the higher pressure.  These components show the most weight sensitivity with 

chamber pressure, and their influences combine to give the total engine weight versus 

chamber pressure trend.  For typical pump-fed engines, engine weight reaches a 

minimum for chamber pressures between 2000 and 3000 psia [84]. 
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Figure 22: Effect of Chamber Pressure on Engine Weight 
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 For each fuel type and engine cycle, the chamber pressure value giving the 

minimum engine weight was set, so that the error for the weight predictions of the 

engines used to fit the model was minimized.  This new weight model receives as inputs 

the engine cycle, fuel choice, total propellant mass flow rate (lbm/s), chamber pressure 

(psia), and a weight multiplication factor.  The weight multiplication factor is used to get 

weight for propane and methane fueled engines and for cycles that differ from the 

baseline cycles used to form the model.  For instance, a dual-preburner dual turbine 

staged-combustion engine cycle is the baseline cycle used to form the staged combustion 

weight model.  Therefore, a single-preburner, single turbine staged-combustion engine 

might have a multiplication factor of 90%, to represent that fact that this engine would be 

lighter than a similar dual-preburner dual turbine design. 
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CHAPTER 4 

RESPONSE SURFACE METHODOLOGY 

4.1 Response Surface Equations 

 

 A key component in the new optimization procedure developed for this research 

is the use of response surface equations (RSE’s) to help form the lower bounds of the 

continuous design space for each discrete variable setting [108,109].  Response surface 

equations are formed by performing a least squares fit on data that represents the design 

space of interest.  For this research, 2nd order RSE’s are used and the number of terms in 

the equation depends on the number of design variables under consideration.  Equation 

30 shows the general form of the RSE.  The x-variables represent the design variables 

and the β terms are coefficients determined by the least squares fit. 
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 A separate RSE must be formed for each possible output of the engine code that 

might be used as an objective function or constraint in the optimization process.  In order 

to form the RSE, data must be collected from the design space.  This is done by running 
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the desired engine design code at specific input variable settings.  These settings are 

determined by the bounds on the input variables and the type of response surface design 

that is chosen.  In order to fit a quadratic model of the design space, data must be 

available at three distinct settings of each input variable.  There are several common 

response surface designs that are typically used to fit a quadratic RSE.  These are a three-

level full or fractional factorial, a central composite, and a Box-Behnken design [110].  

Each of these designs has features that make them useful in specific cases.  The full 

factorial design requires the most data points but also allows for the most accurate 

approximation.  The central composite design (CCD) combines a two-level fractional (or 

full) factorial with center and star points to provide curvature to the space, while the Box-

Behnken design provides data without requiring that the input values be evaluated at the 

endpoints of their defined range (Figure 23).  A summary of the number of design points 

needed for each of these designs is provided in Table 30. 

 

 

Central Composite Design Box-Behnken DesignCentral Composite Design Box-Behnken Design
 

Figure 23: Response Surface Designs 
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Table 30: Design of Experiments 

Response Surface Design Number of Experiments 
(n = number input variables) 

Central Composite Design (2-Level Full Factorial) 2n + 2n + 1 

Box-Behnken Design ½ (n + 1)(n + 2) 

3-Level Full Factorial 3n 

 

 

 For this application a full factorial central composite design was chosen.  This 

represents a good compromise between a 3-level full factorial and a Box-Behnken 

design.  The star points are set on the face of the CCD cube because for each specific 

engine cycle, bounds on the input variables were found for which the engine power 

balance would converge.  Outside of these bounds, convergence is not guaranteed and 

therefore the on-face design was chosen so the input variables are never set to values 

outside their applicable range. 

 

 

4.2 RSE Example 

 

 One particular engine that was modeled for this research was the Vulcain 

LH2/LOX (liquid hydrogen/liquid oxygen) gas generator engine.  Table 31 shows the 

bounds used for the input variables for this engine.  An RSE was generated for each 

output variable that was used as either the objective or as a constraint in the optimization 

process.  The RSE coefficients generated for the Vulcain vacuum Isp are given in Table 

32.  
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Table 31: Vulcain Input Variable Bounds 

Input Variable Lower Bound Upper Bound 

Tvac (Vacuum Thrust) 80000 lbs 750000 lbs 

ε (Area Ratio) 15 125 

O/F (Mixture Ratio) 5.0 7.0 

Pc (Chamber Pressure) 500 psia 3500 psia 
 

 
The accuracy of the values predicted by the response surface, compared to the 

data used to fit the equation, can be quantified by the RSquared value (R2).  The value is 

computed using the calculated sum of squares of the error and the total sum of squares of 

the mean (Equation 31) [111].  The value of R2 is between 0 – 1, with 1 representing a 

perfect fit of the sampled points.  The R2 value for the Vulcain’s vacuum Isp RSE is .997. 

 

Table 32: Vulcain Vacuum Isp RSE Coefficients 

Response Surface Term Coefficients 
Intercept 427.610051 

Tvac 6.209670 

ε 18.782296 
O/F -14.623416 
Pc 1.757800 

Tvac * ε 0.640364 
Tvac * O/F 0.247773 
Tvac * Pc 3.708853 

ε ∗ O/F -0.439573 

ε ∗ Pc 0.034244 
O/F * Pc 0.450687 

Tvac * Tvac -5.288926 

ε ∗ ε -10.462974 
O/F * O/F -0.658320 

Pc * Pc -2.350497 
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SSM
SSE

R −= 12                                                      (31) 
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 The R2 value is calculated by comparing the fit of the RSE to the data points used 

for the fit.  A good test of a response surface is to see how it performs away from these 

specific points.  To demonstrate this for the Vulcain example, a sweep of each input 

variable was performed and the vacuum Isp value predicted by the RSE was compared to 

the actual vacuum Isp obtained from the rocket engine code.  These one dimensional 

sweeps were used since it isn’t possible to show a graph of the 4-D response surface.  The 

settings for the input variables not currently being swept are set to match the values of the 

actual Vulcain engine.  The default input values used were a vacuum thrust of 256 klbs, 

an expansion ratio of 45, a mixture ratio of 5.3, and a chamber pressure of 1595 psia.  

These settings do not correspond to any of the data points used to fit the RSE with the 

central composite design.  Graphical comparisons of the predicted versus actual vacuum 

Isp for a swept of each of the input variables are shown in Figures 24 - 27.   

 

 While these graphs show that the response surface equations capture the general 

trend in vacuum Isp, they do not predict the actual value with great accuracy.  This is not 

what one might expect with such a high R2 value, but these graphs are produced at a point 

in the design space not near those points used to fit the surface.  This illustrates the 

problem  with  using  RSE’s directly  to  predict  the  performance  of  each  engine being  
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Figure 24: Vacuum Isp vs. Tvac 
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Figure 25: Vacuum Isp vs. ε 
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Figure 26: Vacuum Isp vs. O/F 
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Figure 27: Vacuum Isp vs. Pc 
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modeled.  Since the RSE’s do not necessarily provide accurate results, error in the 

optimization procedure could occur. These errors could be quite serious, possibly causing 

the optimal engine design found using the RSE’s to actually be infeasible in the true 

design space.  Even with their associated inaccuracies, these response surfaces will be 

useful in this research.  They provide a good starting point for the lower bounds of the 

continuous space that will be used in the new optimization procedure to be outlined next.   
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CHAPTER 5 

OPTIMIZATION METHOD 

5.1 Applicability of Current MINLP Methods 

 

Several MINLP solution procedures have been outlined in Chapter 2.  However, 

none of these methods meet the requirements for this project.  All of these standard 

solution methods require that the discrete variables be relaxed (take on non-discrete 

values) at some point during the solution process.  The branch and bound algorithm 

requires relaxation to solve the nonlinear optimization problem at each node in the tree, 

while the GBD and GOA algorithms require the relaxation of the discrete variables in 

order to solve their respective lower bounding problems. 

 

These algorithms have been developed to solve problems where the objective and 

constraints functions are easily represented as analytical equations.  Therefore, it is of no 

concern to require that the discrete variables be relaxed.  However, when the values of 

the objective and constraints are being supplied by an engineering code, the proposition 

of relaxing the discrete variables becomes more daunting.  For example, if y = 1 

represents the choice of a staged-combustion cycle and y = 2 represents the choice of an 
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expander cycle, it is not obvious how y = 1.3 would be evaluated.  An attempt was made 

at relaxing the discrete variables by going deeper into the code and finding the continuous 

variables that the discrete variables set and then using these continuous variables to 

evaluate the relaxed discrete choices, but this leads to poorly behaved nonlinear 

programming (NLP) problems.  Table 33 shows the features of the existing MINLP 

solution methods discussed in Chapter 2 and illustrates why none are appropriate for this 

research. 

 

 

Table 33: Summary of MINLP Solution Methods 

Method Requires Relaxing 
Discrete Variables 

Only Solves Strictly 
Convex Problems 

Branch & Bound Yes Yes 

Generalized Bender’s 
Decomposition Yes Yes 

Generalized Outer Approximation Yes Yes 

Branch & Reduce Yes No 

Nonconvex Outer Approximation Yes No 

SMIN-αBB Yes No 

GMIN-αBB Yes No 

Desired Optimization Scheme No No 
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5.2 Details of New Optimization Method 

 

 All of the major MINLP optimization approaches are ill-suited for this research.  

Therefore, a new method had to be conceived.  Since the discrete input variables can not 

be relaxed, the first obvious optimization scheme is that for every discrete variable 

combination, solve the resulting continuous NLP, and take the minimum value of all the 

NLPs as the optimal solution.  This solution procedure requires an extremely large 

number of function calls to find the optimum.  Therefore, it is not an acceptable method.  

However, this optimization procedure will be used to determine the “correct” optimal 

solution and the baseline optimization time for each engine design problem investigated.  

These baseline solutions will be used to determine the success of the newly developed 

optimization approach. 

 

 Some of the NLPs associated with certain discrete variable combinations will 

have to be solved.  This is the only way to get the optimal solution.  The goal then is to 

minimize the number of discrete variable combinations that must to be investigated.  This 

is accomplished by first solving an approximation of the continuous space for each 

discrete variable combination.  This approximation is fast running and is designed to 

provide a solution for each discrete variable setting that is actually a lower bound of the 

true solution (a better solution).  In order to ensure that the solution of the approximation 

is a lower bound, the model of the continuous space must have a feasible region that is no 

smaller than the feasible region of the true continuous space.  After the lower bounds of 

all the discrete variable combinations are found, the combination having the lowest 
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feasible lower bound is determined.  Then, the solution of the true continuous space of 

this discrete variable choice is found using a standard nonlinear optimization technique 

and the actual engine code.  The solution of this NLP becomes the current upper bound of 

the final solution.  Any remaining discrete variable combinations with feasible lower 

bounds greater than the current upper bound can be eliminated from further 

consideration.  This is because the true solution of the continuous space for each discrete 

variable combination must be greater than or equal to the lower bound provided by the 

approximate solution.  Now, the discrete variable combination providing the next 

smallest lower bound is investigated.  If its true solution provides a better optimum than 

the current upper bound, the upper bound is replaced.  The process continues until none 

of the remaining discrete variable combinations have feasible lower bounds less than the 

current best upper bound.  This final upper bound is the optimal solution.  Figure 28 

shows a simple flowchart outlining the procedure. 
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NLP solution.
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Figure 28: Flowchart for New Optimization Procedure 
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Now the issue of how to form the lower bounding continuous space must be 

addressed.  This space is formed by making use of convex underestimation techniques 

developed for global optimization problems.  If the underestimator of the objective 

function is used along with underestimated constraints values, the optimal solution of this 

space will be a lower bound of the true objective function’s solution.  The 

underestimators of the constraints have the effect of expanding the feasible space.  

Therefore, if a discrete variable combination doesn’t yield a feasible solution when the 

continuous space is expanded, it will not have a feasible solution in the more restrictive 

original space and therefore, that combination can be eliminated from consideration.  

 

The new method that has been developed allows for the calculation of the desired 

lower bounds without any calls to the rocket engine code during the optimization process.  

All the needed function calls can be done beforehand and stored in an appropriate format.  

This is accomplished by making response surfaces of the continuous variable design 

space for each discrete variable setting.  These response surfaces are then transformed 

into lower bounds of the continuous space using underestimation techniques.  

Specifically for this application, response surfaces are formed for every discrete variable 

combination that is included in the optimization problem.  The engine code input 

variables used to form these response surfaces are vacuum thrust, nozzle expansion ratio, 

engine mixture ratio, and the engine chamber pressure.  Response surfaces are found for 

all the relevant engine outputs.  These include vacuum and sea-level Isp, sea-level thrust, 

engine vacuum thrust-to-weight (T/W), the maximum turbine inlet temperature, and the 

engine’s development costs.   
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The response surfaces are formed by using a central composite design of 

experiments (DOE).  The CCD for four input variables requires 25 function evaluations 

(Table 34).  The bounds of each input variable are predetermined for every discrete 

variable combination.  The values for the input variables in the DOE are -1, 0, or 1.  

These represent the respective variable’s lower bound, the mid-point between its bounds 

and the upper bound. 

 

Table 34: Central Composite Design of Experiments 

Vacuum 
Thrust 

Expansion 
Ratio 

Mixture 
Ratio 

Chamber 
Pressure 

-1 -1 -1 -1 
-1 -1 -1 1 
-1 -1 1 -1 
-1 -1 1 1 
-1 0 0 0 
-1 1 -1 -1 
-1 1 -1 1 
-1 1 1 -1 
-1 1 1 1 
0 -1 0 0 
0 0 -1 0 
0 0 0 -1 
0 0 0 0 
0 0 0 1 
0 0 1 0 
0 1 0 0 
1 -1 -1 -1 
1 -1 -1 1 
1 -1 1 -1 
1 -1 1 1 
1 0 0 0 
1 1 -1 -1 
1 1 -1 1 
1 1 1 -1 
1 1 1 1 
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As part of the preprocessing, the engine design code is run at the inputs specified 

in the DOE for each discrete variable combination to be included in the analysis.  Results 

of these runs are stored in a database file that allows for their retrieval during the 

optimization process.  When response surfaces of a specific engine are needed, this 

database file is queried and the outputs for the cases in the DOE are used to perform the 

least squares fit which determines the RSE for each output variable.   

 

Now that the RSE equations for each variable of interest are known, they must be 

turned into lower bounds of the outputs they are trying to predict.  As mentioned earlier, 

this will be accomplished using convex underestimation techniques.  The convex 

underestimator for a general function presented in Reference 74 will be used to form the 

lower bounds (Equation 32). 

 
 

( ) ( ) ( )( )∑
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−−+=
n

i
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ii
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ii xxxxxfxL

1

α                                        (32) 

 
 
 The ( )xf  term in Equation 32 is replaced with the response surface equation 

generated for the current output variable of interest and ( )xL  is the calculated lower 

bound.  For the current application, n is equal to four in the summation term, since four 

input variables are used to fit the RSE.  Also, the lower and upper bounds for the input 

variables in Equation 32 can be replaced with -1 and 1 respectively.  Equation 33 reflects 

these adjustments. 
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Another change must be made to the lower bounding equation for it to be correct 

for this research.  The convex underestimating terms (the α terms) in Equation 33 have 

no effect on the lower bounding value at points in the design space where all the input 

variables are at either their lower or upper bounds, because one of the terms inside the 

parentheses will be zero.  This is not a problem, if ( )xf  was used in Equation 33, 

because ( )xf  provides the true function value for every x .  However, for this research, 

( )xf  is now replaced with an approximation (the RSE, given the symbol ( )xf
~

).  

Therefore, the lower bound equation will have to account for any discrepancies between 

( )xf
~

 and the true function values at design points where all the input variables are at 

their bounds.  To do this, an additional delta (δ) term is subtracted from the lower 

bounding equation (Equation 34).   

 

( ) ( )( ) δαββββ −−−−++++= ∑∑ ∑∑∑
== +===

4

1

3

1

4

1

4

1

2
4

1

11
i

iii
i

j
ij

iij
i

ii
i

iio xxxxxxxL       (34) 

 

This δ term is the maximum positive difference found by subtracting the true 

function value from the response surface value for all the points in the CCD where every 

input value is at a bound.  This term shifts ( )xf
~

 down, so that at the endpoints, the value 

predicted by ( ) δ−xf
~

 is less than or equal to the true value.  A graphical representation 

of this shift for a one-dimensional response surface is shown in Figure 29. 
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  In this example the original response surface over predicts the true objective 

function value for some points in the design space, including one of the endpoints.  The δ 

term is used to shift the response surface so that at the endpoints of the design space, 

( ) δ−xf
~

 predicts values less than or equal to the true function value. 
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Figure 29: Shifting RSE by δ 

 

 Even after ( )xf
~

 is shifted by the δ term, it is still possible that at some points in 

the design space it will over-predict the true function value.  This over prediction is 

corrected by the convex underestimating terms.  The values of the αi's in the 

underestimation terms need to be set appropriately in order to make ( )xL  a lower bound 

of the entire design space.   Figure 30 shows the effect the addition of the convex 



 
 

 100 

underestimating terms have on ( ) δ−xf
~

.  At the endpoints, the lower bound equals the 

value of ( ) δ−xf
~

; this is again because the convex underestimating terms do not have an 

effect at points in the design space where all the input values are at an endpoint.  Away 

from the endpoints, Figure 30 shows the effect of the underestimators.  When the 

appropriate αi's are found, ( )xL  provides values that are equal to or below the values of 

the original function throughout the entire design space. 
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Figure 30: Formation of Lower Bound 

 

 A method for the determination of the appropriate values for the αi's in the lower 

bounding equation had to be developed for this research.  This proves to be an interesting 

problem because information about the design space is needed in order to determine if the 

values provided by the lower bounding equations are in fact lower bounds.  The convex 
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underestimating equation used for this research was developed for applications where a 

closed form analytical equation is used to determine the function value ( ( )xf ).  This has 

many advantages, including being able to easily determine the original value of the 

function anywhere in the design space.  Now that these underestimating techniques are 

being applied to an engineering code, the ability to quantify the entire design space 

before the optimization problem begins is not possible.  Therefore, a process had to be 

developed that allows for the forming of the lower bounds with only limited knowledge 

of the design space.  In order to form the response surface equations for a specific engine 

choice, the design code was run at the 25 unique input settings specified in the central 

composite design of experiments (Table 34).  This provides some knowledge of the true 

design space and the lower bound can be compared with these points.  However, these 

points only provide information about the center and edges of the design space.  

Additional information is needed about the interior to be able to determine the proper 

underestimation terms.  The desire for information about the entire design space has to be 

balanced by the time considerations involved with evaluating the engine design code at 

many distinct input settings.  This balance led to the decision to also run the engine code 

at an additional 2n points, where n is the number of input variables.  These points were 

placed in the design space in the areas covered the least by the original CCD.  The input 

values for these points were the full-factorial combination of the input variables being set 

at either a normalized value of -0.5 or 0.5.  Again, bounds are established for each input 

variable and ( )xf
~

 is fit using normalized versions of these bounds where -1 represents a 

lower bound and 1 represents an upper bound.  Therefore, -0.5 represents a point one-

quarter of the way between the lower and upper bound, and 0.5 represents a point that is 
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three-quarters of the way between the two bounds.  Figure 31 shows the points that would 

be used to form ( )xf
~

 (the RSE) and check the lower bounding equation for a 2-D design.   

 

 

Figure 31: Points Used to Form Lower Bound (2-D) 

 

 

Table 35: Additional Points Used to Establish Lower Bounds 

Vacuum 
Thrust 

Expansion 
Ratio 

Mixture 
Ratio 

Chamber 
Pressure 

-0.5 -0.5 -0.5 -0.5 
-0.5 -0.5 -0.5 0.5 
-0.5 -0.5 0.5 -0.5 
-0.5 -0.5 0.5 0.5 
-0.5 0.5 -0.5 -0.5 
-0.5 0.5 -0.5 0.5 
-0.5 0.5 0.5 -0.5 
-0.5 0.5 0.5 0.5 
0.5 -0.5 -0.5 -0.5 
0.5 -0.5 -0.5 0.5 
0.5 -0.5 0.5 -0.5 
0.5 -0.5 0.5 0.5 
0.5 0.5 -0.5 -0.5 
0.5 0.5 -0.5 0.5 
0.5 0.5 0.5 -0.5 
0.5 0.5 0.5 0.5 
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The corner points are the full factorial portion of the central composite design, the 

points on the dotted lines are the center and on-face star points, and the open circles 

represent the ½ points (+/- 0.5).  For the current work, which includes four input 

variables, Table 35 lists the additional points run for each engine choice in order to 

establish the lower bounding equations.  For n continuous variables, the number of total 

design points that must be run to determine the lower bounding equations is 2n + 2n + 2n 

+ 1 (includes CCD and ½ points).  The output values obtained from the rocket engine 

code for the points in Table 35 are stored in the same results database as the outputs from 

the points used to fit the RSE.  Therefore, these ½ points can also be run before the 

engine optimization process. 

 

 When a particular engine cycle is being optimized, the first step in forming the 

lower bounds of its continuous space will be to access the results database and fit RSE’s 

( ( )xf
~ ) to the output variables of interest.  Then, the δ term for each ( )xf

~  is determined 

by finding the maximum positive difference between the value predicted by ( )xf
~  and the 

value found in the results database for the points at which all the input variables are at 

either their upper or lower bound.  Now the values for the α coefficients in the lower 

bounding equation can be found.  These are set by comparing the lower bounding value 

and true function value of each point in Table 34 and Table 35, except those points where 

all the input variables are at an endpoint.  Each lower bounding equation will have an α 

value for each continuous input variable.  For the final application of the new 

optimization method, four continuous input variables are used, so each lower bounding 

equation will have four α terms.  The α values are increased until the lower bound 
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predictions for all non-bound points are less than the true function values stored in the 

response database.  This guarantees that the lower bound equation provides a lower 

bound of the design space only at the specific points that were analyzed.  Therefore, a 

margin is then chosen where the difference between the true function value and the 

values obtain by the lower bound equation must be greater than this margin for all the 

points used to find the αi’s.  The larger this margin is made, the more likely the lower 

bound equation will be valid throughout the entire design space. However, the 

optimization method will also be less efficient because the lower bound equation will 

most likely be greatly under-predicting the real function values.  This will cause more 

infeasible designs in the true design space to be feasible in the lower bounding space and 

also cause less designs to be eliminated by the upper bounds found during the 

optimization routine.  However, if the margin is set to zero, there is the chance that the 

lower bound equations will not be valid through the design space.   This is especially true 

if the design space is not well behaved, such as in multi-modal spaces or spaces in which 

the value of the global minimum is significantly less than values obtained in the majority 

of the design space.  The value chosen for the margin is therefore problem dependent.   

 

 For both the proof-of-concept and the final application, the design space for both 

rocket engine codes proved to be relatively well behaved.  Therefore, a smaller value for 

the margin could be used without sacrificing the lower bounding properties of the 

approximation.  For each application, the final margin value that was decided on was 1% 

of the average value for a particular output over all the cases in the results database.  So if 

the average vacuum Isp for a certain engine, over all the points in the CCD and the ½ 
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points, was 300 seconds, the lower bounding equation for vacuum Isp would have to give 

values that were at a minimum of 3 seconds lower than the true values. 

 

 For the optimization problems solved for this research, the proper values for each 

α term were determined using a nonlinear optimization technique, specifically method of 

feasible directions.  The objective function of the NLP was to minimize the sum of all the 

α terms subject to the constraint that at the ½ points and the non-bound points in the 

CCD the lower bounding equations under predict the true values by at least the margin 

percentage.  The procedure is designed to find the lower bounding equations that best 

approximate the true design space.  

 

 Recall the graphs comparing the true value of the Vulcain’s vacuum Isp to that 

predicted by the response surface equation (pages 88 and 89).  These graphs are repeated 

below except now they show the negative of vacuum Isp and the lower bounds on 

negative Isp predicted using the method outlined above.  The negative of Isp is used 

because specific impulse is commonly an objective function that is maximized.  In the 

optimization problem, negative Isp is minimized, instead of positive Isp being maximized, 

because the standard form of optimization problems require that the objective function be 

minimized.  As these graphs show, the response surface equation has now been 

transformed into a valid lower bound of negative vacuum Isp over the entire design space.  

This lower bound is used together with the lower bounds of the other output variables to 

form the lower bounding space used in the optimization process.   
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Figure 32: Vacuum Isp vs. Tvac (Lower Bound) 
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Figure 33: Vacuum Isp vs. ε (Lower Bound) 
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Figure 34: Vacuum Isp vs. O/F (Lower Bound) 
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Figure 35: Vacuum Isp vs. Pc (Lower Bound) 
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 It has been mentioned previously that the lower bounding space expands the 

feasible region of the true design space.  Figure 36 illustrates this fact by showing a plot 

of sea-level thrust versus expansion ratio for the Vulcain engine.  Also included in this 

graph, are the upper and lower bounds of Tsl used in the lower bound optimization 

process.  The lower bound values of Tsl are found by performing the lower bounding 

procedure outlined above on the positive values of Tsl.  This yields an equation that under 

predicts sea-level thrust.  The upper bound on sea-level thrust is found by performing the 

above procedure on the negative values of Tsl.  This gives an equation that under predicts 

the negative of the values of sea-level thrust (i.e. gives more negative values).  The 

results are then multiplied by -1 to get the positive upper bounds. 
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Figure 36: Upper and Lower Bounds on Tsl 
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For each output of the engine code, upper and lower bounding equations are 

formed.  In the lower bounding optimization procedure, the lower and upper bounds 

developed for all the output values are used to either determine the objective function or 

constraint values.  If a constraint on the optimization problem requires that a particular 

output be greater than or equal to a certain value, the upper bound on that output is used 

to evaluate the constraint.  Likewise, if a constraint requires that a particular output be 

less than or equal to a certain value, the lower bound on that output is used.  In this way, 

the feasible space is expanded which aids in finding optimal values that are lower bounds 

of the true design space.  

 

 There are alternate methods by which the response surface equations of the 

continuous design spaces could be used to find the optimal mixed-input solution.  The 

simplest approach would be to use unadjusted response surfaces to predict the solutions 

of the continuous spaces.  However, this could easily lead to the optimal solution being 

missed, since there will most likely be error associated with the predictions of the RSE’s.  

Constraints could be relaxed to provide a larger feasible space when using the unaltered 

RSE’s, but this will still not guarantee that the optimal solution will be found.  Turning 

the response surface equations into lower bounding equations provides many advantages 

over using unaltered RSE’s with relaxed constraints.  The ability to determine bounds on 

the optimal solution provides an exact way to establish which true continuous design 

spaces must be investigated.  A simpler method for forming the lower bounding 

equations by simply shifting the RSE’s by a larger δ term and eliminating the 

underestimator terms (α terms) was considered.  However, this has the potential to 
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provide less accurate lower bounds when compared to using both the δ and α terms to 

form the lower bounding equations.  This is because using both the δ and α terms allows 

the lower bounds to be tailored in order to more specifically match each portion of the 

design space.   

 

 

5.3 Example Problem 

 

 An example problem will now be solved to further illustrate the new optimization 

scheme.  This example, which is a modified version of one listed in reference 22, was 

chosen to provide a simple problem on which to demonstrate the features of the new 

optimization method.  This problem can be solved by existing MINLP methods because 

the discrete variables can be relaxed.  Therefore, when compared to existing MINLP 

algorithms, the new method will most likely be less efficient at solving this example.  

However, the solution process will still provide insight into the new optimization scheme. 

 

 Equation 35 shows the problem which will be solved.  The objective function that 

will be minimized is nonlinear with respect to both the discrete and continuous variables.  

The first constraint is nonconvex with respect to x1 and linear with respect to x2.  The 

second constraint is nonlinear in the continuous space and the final constraint is linear in 

both the continuous and discrete space.  The optimal solution for this problem is an 

objective function value of 11.272 at x1 = 0.2, x2 = -1, and y = 1. 
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yx,
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12 −−+                                             (35a) 
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12.0 1 ≤≤ x                                                  (35d) 
122554.2 2 −≤≤− x                                                  (35d) 
3,2,1=y                                                  (35e) 

 

 The first step in solving the example is to determine the lower bounding space.  

To do this, the objective function and constraints must be evaluated at the points needed 

to form the central composite design of experiments and at the ½ points used to 

determine the values of the α terms.  Thirty-nine function calls are required to find these 

points for the example problem.  After these points are determined, response surfaces are 

made for the objective function and constraints using the CCD points calculated for y = 1, 

2, and 3.  The values obtained by the response surfaces are then compared to the true 

values from the CCD and ½ points to determine the appropriate α and δ settings.  Tables 

36 - 41 show these comparisons.  The RSE’s of the objective function ( ( )xf
~

), for all the 

discrete variable settings, provide a good model of the true space.  However, there are 

points where the ( )xf
~

’s over-predict the true function value.  The RSE’s for the first and 

second constraints ( ( )xg~ ) also effectively model the true space, but their predictions are 

not exact.  For all the discrete variable settings, the ( )xg~ ’s for constraints 1 and 2 match 

the data used to fit them exactly, but some error is seen at the ½ points.  For all the 

discrete variable settings, the response surface equations for constraint 3 provide an exact 

fit compared to all the data points sampled.  This is because the constraint is linear and it 

is therefore easy for ( )xg~  to approximate this constraint. 
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Table 36: Real Values and RSE Values for Y=1 

X1 X2 ( )xf  ( )xg1  ( )xg 2  ( )xg 3  ( )xf
~  ( )xg1

~  ( )xg 2
~  ( )xg 3

~  

-1 -1 36.52 1.226 -2.281 -1.20 36.62 1.226 -2.281 -1.20 
-1 0 22.02 0.613 -1.668 -1.20 22.02 0.613 -1.668 -1.20 
-1 1 11.27 0.000 -1.055 -1.20 11.17 0.000 -1.055 -1.20 
0 -1 45.80 0.734 -1.884 -0.80 45.60 0.734 -1.884 -0.80 
0 0 29.30 0.121 -1.271 -0.80 29.30 0.121 -1.271 -0.80 
0 1 16.55 -0.492 -0.658 -0.80 16.75 -0.492 -0.658 -0.80 
1 -1 52.82 0.000 -1.426 -0.40 52.92 0.000 -1.426 -0.40 
1 0 34.93 -0.613 -0.813 -0.40 34.93 -0.613 -0.813 -0.40 
1 1 20.80 -1.226 -0.200 -0.40 20.70 -1.226 -0.200 -0.40 

-0.5 0.5 19.60 0.085 -1.173 -1.00 19.55 0.091 -1.171 -1.00 
-0.5 -0.5 33.35 0.698 -1.786 -1.00 33.12 0.703 -1.784 -1.00 
0.5 0.5 25.02 -0.516 -0.741 -0.60 25.16 -0.522 -0.743 -0.60 
0.5 -0.5 40.38 0.097 -1.354 -0.60 40.42 0.091 -1.356 -0.60 

 

 

Table 37: Difference Between True Values and RSE for Y=1 

X1 X2 Obj ∆ g1 ∆ g2 ∆ g3 ∆ 
-1 -1 0.3% 0.0% 0.0% 0.0% 
-1 0 0.0% 0.0% 0.0% 0.0% 
-1 1 -0.9% 0.0% 0.0% 0.0% 
0 -1 -0.4% 0.0% 0.0% 0.0% 
0 0 0.0% 0.0% 0.0% 0.0% 
0 1 1.2% 0.0% 0.0% 0.0% 
1 -1 0.2% 0.0% 0.0% 0.0% 
1 0 0.0% 0.0% 0.0% 0.0% 
1 1 -0.5% 0.0% 0.0% 0.0% 

-0.5 0.5 -0.2% 7.1% 0.2% 0.0% 
-0.5 -0.5 -0.7% 0.7% 0.1% 0.0% 
0.5 0.5 0.6% -1.2% -0.3% 0.0% 
0.5 -0.5 0.1% -6.2% -0.2% 0.0% 
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Table 38: Real Values and RSE Values for Y=2 

X1 X2 ( )xf  ( )xg1  ( )xg 2  ( )xg 3  ( )xf
~  ( )xg1

~  ( )xg 2
~  ( )xg 3

~  

-1 -1 36.03 1.226 -1.181 -2.40 36.14 1.226 -1.181 -2.40 
-1 0 21.53 0.613 -0.568 -2.40 21.53 0.613 -0.568 -2.40 
-1 1 10.79 0.000 0.045 -2.40 10.68 0.000 0.045 -2.40 
0 -1 45.32 0.734 -0.784 -2.00 45.11 0.734 -0.784 -2.00 
0 0 28.81 0.121 -0.171 -2.00 28.81 0.121 -0.171 -2.00 
0 1 16.06 -0.492 0.442 -2.00 16.27 -0.492 0.442 -2.00 
1 -1 52.34 0.000 -0.326 -1.60 52.44 0.000 -0.326 -1.60 
1 0 34.45 -0.613 0.287 -1.60 34.45 -0.613 0.287 -1.60 
1 1 20.31 -1.226 0.900 -1.60 20.21 -1.226 0.900 -1.60 

-0.5 0.5 19.11 0.085 -0.073 -2.20 19.06 0.091 -0.071 -2.20 
-0.5 -0.5 32.87 0.698 -0.686 -2.20 32.63 0.703 -0.684 -2.20 
0.5 0.5 24.53 -0.516 0.359 -1.80 24.67 -0.522 0.357 -1.80 
0.5 -0.5 39.90 0.097 -0.254 -1.80 39.94 0.091 -0.256 -1.80 

 

 

Table 39: Difference Between True Values and RSE for Y=2 

X1 X2 Obj ∆ g1 ∆ g2 ∆ g3 ∆ 
-1 -1 0.3% 0.0% 0.0% 0.0% 
-1 0 0.0% 0.0% 0.0% 0.0% 
-1 1 -1.0% 0.0% 0.0% 0.0% 
0 -1 -0.5% 0.0% 0.0% 0.0% 
0 0 0.0% 0.0% 0.0% 0.0% 
0 1 1.3% 0.0% 0.0% 0.0% 
1 -1 0.2% 0.0% 0.0% 0.0% 
1 0 0.0% 0.0% 0.0% 0.0% 
1 1 -0.5% 0.0% 0.0% 0.0% 

-0.5 0.5 -0.3% 7.1% 2.7% 0.0% 
-0.5 -0.5 -0.7% 0.7% 0.3% 0.0% 
0.5 0.5 0.6% -1.2% -0.6% 0.0% 
0.5 -0.5 0.1% -6.2% -0.8% 0.0% 
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Table 40: Real Values and RSE Values for Y=3 

X1 X2 ( )xf  ( )xg1  ( )xg 2  ( )xg 3  ( )xf
~  ( )xg1

~  ( )xg 2
~  ( )xg 3

~  

-1 -1 35.75 1.226 -0.081 -3.60 35.85 1.226 -0.081 -3.60 
-1 0 21.25 0.613 0.532 -3.60 21.25 0.613 0.532 -3.60 
-1 1 10.50 0.000 1.145 -3.60 10.40 0.000 1.145 -3.60 
0 -1 45.04 0.734 0.316 -3.20 44.83 0.734 0.316 -3.20 
0 0 28.53 0.121 0.929 -3.20 28.53 0.121 0.929 -3.20 
0 1 15.78 -0.492 1.542 -3.20 15.99 -0.492 1.542 -3.20 
1 -1 52.05 0.000 0.774 -2.80 52.16 0.000 0.774 -2.80 
1 0 34.16 -0.613 1.387 -2.80 34.16 -0.613 1.387 -2.80 
1 1 20.03 -1.226 2.000 -2.80 19.93 -1.226 2.000 -2.80 

-0.5 0.5 18.83 0.085 1.027 -3.40 18.78 0.091 1.029 -3.40 
-0.5 -0.5 32.58 0.698 0.414 -3.40 32.35 0.703 0.416 -3.40 
0.5 0.5 24.25 -0.516 1.459 -3.00 24.39 -0.522 1.457 -3.00 
0.5 -0.5 39.61 0.097 0.846 -3.00 39.65 0.091 0.844 -3.00 

 

 

Table 41: Difference Between True Values and RSE for Y=3 

X1 X2 Obj ∆ g1 ∆ g2 ∆ g3 ∆ 
-1 -1 0.3% 0.0% 0.0% 0.0% 
-1 0 0.0% 0.0% 0.0% 0.0% 
-1 1 -1.0% 0.0% 0.0% 0.0% 
0 -1 -0.5% 0.0% 0.0% 0.0% 
0 0 0.0% 0.0% 0.0% 0.0% 
0 1 1.3% 0.0% 0.0% 0.0% 
1 -1 0.2% 0.0% 0.0% 0.0% 
1 0 0.0% 0.0% 0.0% 0.0% 
1 1 -0.5% 0.0% 0.0% 0.0% 

-0.5 0.5 -0.3% 7.1% 0.2% 0.0% 
-0.5 -0.5 -0.7% 0.7% 0.5% 0.0% 
0.5 0.5 0.6% -1.2% -0.1% 0.0% 
0.5 -0.5 0.1% -6.2% -0.3% 0.0% 
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 The delta percentages shown in the tables above are the calculated using Equation 

36.  Therefore, a positive delta indicates that the RSE is over-predicting a value.  This 

occurs for both the objective function and constraints 1 and 2.  The over prediction of the 

constraint values causes the feasible region represented by the RSE to be smaller than the 

true feasible region in some portions of the design space.   

 
( ) ( )( )

( )( )xfabs
xfxf −

=∆
~

 or  
( ) ( )( )

( )( )xgabs
xgxg −

=∆
~

                                (36) 

 
At all the endpoints of the design space the constraint values predicted by the 

( )xg~ ’s match the true values.  Therefore, the δ terms in all the constraint lower bounding 

equations are set to zero.  However, for each discrete variable setting, there are endpoints 

for which the ( )xf
~  of the objective function over-predicts the true function value, so their 

will be nonzero δ terms in the objective function lower bounding equations.  For the 

objective function and constraints 1 and 2, a margin value of 0.5% was chosen.  The 

RSE’s for these values show some error, when compared to the true values, but the 

overall good agreement allows this margin value to be set relatively low.  The ( )xg~ ’s for 

constraint 3 predict the values so well that a very small margin can be used to determine 

the α values of the lower bounding equations.  A margin of 0.1% was chosen for this 

example.  In practice no margin is needed for this constraint term and the α’s could be set 

to zero since ( )xg 3
~  exactly matches the true space.  It should also be pointed out that in 

this particular example the first constraint is not a function of the discrete variable and 

that is why its value is the same for all the discrete variable settings.  Now that all the 

lower bounding information is available, the lower bounds of the design space can be 
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formed using the RSE’s as a starting point.  These lower bounds can then be used in the 

optimization procedure.  Tables 42 - 47 show the lower bound results. 

 
Table 42: Real Values and Lower Bound Values for Y=1 

X1 X2 ( )xf  ( )xg1  ( )xg 2  ( )xg 3  ( )xL  
Obj 

( )xL  
g1 

( )xL  
g2 

( )xL  
g3 

-1 -1 36.52 1.226 -2.281 -1.20 36.52 1.226 -2.281 -1.200 
-1 0 22.02 0.613 -1.668 -1.20 21.84 0.610 -1.676 -1.201 
-1 1 11.27 0.000 -1.055 -1.20 11.06 0.000 -1.055 -1.200 
0 -1 45.80 0.734 -1.884 -0.80 45.30 0.725 -1.893 -0.801 
0 0 29.30 0.121 -1.271 -0.80 28.94 0.109 -1.289 -0.802 
0 1 16.55 -0.492 -0.658 -0.80 16.46 -0.501 -0.668 -0.801 
1 -1 52.82 0.000 -1.426 -0.40 52.82 0.000 -1.426 -0.400 
1 0 34.93 -0.613 -0.813 -0.40 34.76 -0.616 -0.821 -0.401 
1 1 20.80 -1.226 -0.200 -0.40 20.59 -1.226 -0.200 -0.400 

-0.5 0.5 19.60 0.085 -1.173 -1.00 19.25 0.081 -1.184 -1.002 
-0.5 -0.5 33.35 0.698 -1.786 -1.00 32.82 0.694 -1.797 -1.002 
0.5 0.5 25.02 -0.516 -0.741 -0.60 24.86 -0.531 -0.757 -0.602 
0.5 -0.5 40.38 0.097 -1.354 -0.60 40.13 0.081 -1.369 -0.602 

 
Table 43: Difference Between True Values and Lower Bound Values for Y=1 

X1 X2 Obj ∆ g1 ∆ g2 ∆ g3 ∆ 
-1 -1 0.0% 0.0% 0.0% 0.0% 
-1 0 -0.8% -0.5% -0.5% -0.1% 
-1 1 -1.9% 0.0% 0.0% 0.0% 
0 -1 -1.1% -1.2% -0.5% -0.1% 
0 0 -1.2% -9.9% -1.4% -0.3% 
0 1 -0.5% -1.8% -1.5% -0.1% 
1 -1 0.0% 0.0% 0.0% 0.0% 
1 0 -0.5% -0.5% -1.0% -0.3% 
1 1 -1.0% 0.0% 0.0% 0.0% 

-0.5 0.5 -1.8% -4.7% -0.9% -0.2% 
-0.5 -0.5 -1.6% -0.6% -0.6% -0.2% 
0.5 0.5 -0.6% -2.9% -2.2% -0.3% 
0.5 -0.5 -0.6% -16.5% -1.1% -0.3% 
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Table 44: Real Values and Lower Bound Values for Y=2 

X1 X2 ( )xf  ( )xg1  ( )xg 2  ( )xg 3  ( )xL  
Obj 

( )xL  
g1 

( )xL  
g2 

( )xL  
g3 

-1 -1 36.03 1.226 -1.181 -2.40 36.03 1.226 -1.181 -2.400 
-1 0 21.53 0.613 -0.568 -2.40 21.36 0.607 -0.572 -2.403 
-1 1 10.79 0.000 0.045 -2.40 10.58 0.000 0.045 -2.400 
0 -1 45.32 0.734 -0.784 -2.00 44.82 0.728 -0.788 -2.002 
0 0 28.81 0.121 -0.171 -2.00 28.46 0.109 -0.179 -2.005 
0 1 16.06 -0.492 0.442 -2.00 15.98 -0.498 0.438 -2.002 
1 -1 52.34 0.000 -0.326 -1.60 52.34 0.000 -0.326 -1.600 
1 0 34.45 -0.613 0.287 -1.60 34.28 -0.619 0.283 -1.603 
1 1 20.31 -1.226 0.900 -1.60 20.11 -1.226 0.900 -1.600 

-0.5 0.5 19.11 0.085 -0.073 -2.20 18.77 0.081 -0.077 -2.204 
-0.5 -0.5 32.87 0.6977 -0.686 -2.20 32.34 0.694 -0.690 -2.204 
0.5 0.5 24.53 -0.516 0.359 -1.80 24.38 -0.531 0.351 -1.804 
0.5 -0.5 39.90 0.097 -0.254 -1.80 39.65 0.081 -0.262 -1.804 

 

 

Table 45: Difference Between True Values and Lower Bound Values for Y=2 

X1 X2 Obj ∆ g1 ∆ g2 ∆ g3 ∆ 
-1 -1 0.0% 0.0% 0.0% 0.0% 
-1 0 -0.8% -1.0% -0.7% -0.1% 
-1 1 -1.9% 0.0% 0.0% 0.0% 
0 -1 -1.1% -0.8% -0.5% -0.1% 
0 0 -1.2% -9.9% -4.7% -0.2% 
0 1 -0.5% -1.2% -0.9% -0.1% 
1 -1 0.0% 0.0% 0.0% 0.0% 
1 0 -0.5% -1.0% -1.4% -0.2% 
1 1 -1.0% 0.0% 0.0% 0.0% 

-0.5 0.5 -1.8% -4.7% -5.5% -0.2% 
-0.5 -0.5 -1.6% -0.5% -0.6% -0.2% 
0.5 0.5 -0.6% -2.9% -2.2% -0.2% 
0.5 -0.5 -0.6% -16.5% -3.1% -0.2% 
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Table 46: Real Values and Lower Bound Values for Y=3 

X1 X2 ( )xf  ( )xg1  ( )xg 2  ( )xg 3  ( )xL  
Obj 

( )xL  
g1 

( )xL  
g2 

( )xL  
g3 

-1 -1 35.75 1.226 -0.081 -3.60 35.75 1.226 -0.081 -3.600 
-1 0 21.25 0.613 0.532 -3.60 21.08 0.607 0.525 -3.604 
-1 1 10.50 0.000 1.145 -3.60 10.29 0.000 1.145 -3.600 
0 -1 45.04 0.734 0.316 -3.20 44.54 0.727 0.308 -3.203 
0 0 28.53 0.121 0.929 -3.20 28.17 0.109 0.913 -3.207 
0 1 15.78 -0.492 1.542 -3.20 15.70 -0.498 1.533 -3.203 
1 -1 52.05 0.000 0.774 -2.80 52.05 0.000 0.774 -2.800 
1 0 34.16 -0.613 1.387 -2.80 33.99 -0.619 1.380 -2.804 
1 1 20.03 -1.226 2.000 -2.80 19.82 -1.226 2.000 -2.800 

-0.5 0.5 18.83 0.085 1.027 -3.40 18.49 0.081 1.018 -3.405 
-0.5 -0.5 32.58 0.6977 0.414 -3.40 32.06 0.694 0.405 -3.405 
0.5 0.5 24.25 -0.516 1.459 -3.00 24.10 -0.531 1.445 -3.005 
0.5 -0.5 39.61 0.097 0.846 -3.00 39.36 0.081 0.832 -3.005 

 

 

Table 47: Difference Between True Values and Lower Bound Values for Y=3 

X1 X2 Obj ∆ g1 ∆ g2 ∆ g3 ∆ 
-1 -1 0.0% 0.0% 0.0% 0.0% 
-1 0 -0.8% -1.0% -1.3% -0.1% 
-1 1 -2.0% 0.0% 0.0% 0.0% 
0 -1 -1.1% -1.0% -2.5% -0.1% 
0 0 -1.3% -9.9% -1.7% -0.2% 
0 1 -0.5% -1.2% -0.6% -0.1% 
1 -1 0.0% 0.0% 0.0% 0.0% 
1 0 -0.5% -1.0% -0.5% -0.1% 
1 1 -1.0% 0.0% 0.0% 0.0% 

-0.5 0.5 -1.8% -4.7% -0.9% -0.1% 
-0.5 -0.5 -1.6% -0.5% -2.2% -0.1% 
0.5 0.5 -0.6% -2.9% -1.0% -0.2% 
0.5 -0.5 -0.6% -16.5% -1.7% -0.2% 
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 For the constraint functions, the ∆'s found by comparing the lower bounds to the 

true values are negative, except at the endpoints of the design space.  Those ∆'s are zero 

because the δ term was set to zero in the lowering bounding equations, since the ( )xg~ ’s 

exactly matched the true space at all the endpoints.  However, the lower bounding values 

for the objective functions at some of the endpoints are negative.  This is because the δ 

term in the lower bounding equations used to model the objective function is nonzero, for 

all the discrete variable settings.  For the objective function and constraints 1 and 2, the 

maximum ∆ between the lower bounds and the true space, not including the endpoints, is 

-0.5%.  This is the value that the margin was set to for these lower bounds for all the 

discrete variable choices.  Likewise, the maximum ∆ for constraint 3, for every discrete 

variable choice, is -0.1% (also excluding the endpoints).  This value is equal to the 

margin set for constraint 3.   

 

 The following tables show the values used to get the lower bounding equation for 

the objective function when y = 1.  These tables are shown to further illustrate the 

solution method.  Table 48 gives the β terms used to make the response surface equation 

( ( )xf
~ ).  The α and δ terms used to transform ( )xf

~  into a lower bound ( ( )xL ) are shown 

in Table 49.  As a reminder, the inputs into ( )xf
~  and ( )xL  are the values of X1 and X2 

that have been normalized to be between -1 and 1. 
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Table 48: ( )xf
~

 Coefficients for Y = 1 

Response Surface Term Coefficients 
Intercept 29.29760 

X1 6.45759 
X2 -14.42077 

X1* X1 -0.82235 
X1* X2 -1.69365 
X2* X2 1.87744 

 

Table 49: ( )xL  Constants for Y = 1 

Response Surface Term Coefficients 

δ 0.1041 
 

1Xα  0.1869 

2Xα  0.0705 
 

Now that all the lower bounding equations are known, they can be used to get the 

lower bound of the optimal solution for the discrete variable choices.  The lower 

bounding equations for y = 3 do not provide a feasible solution.  This means that this 

discrete variable choice is also infeasible in the true design space.  Therefore, this discrete 

variable choice can be eliminated as a possible optimal solution.  The lower bounding 

results for y = 1 and y = 2 are shown in Table 50 and Table 51.  Since the lowest 

objective function value is provided by the optimum of the lower bounding space of y = 

1, this discrete variable setting is used to find the first upper bound, which is found by 

solving the true space with y = 1.  After investigating the continuous space, the upper 

bound on the solution is 11.272 and the lower bound is 11.064.  The current upper bound 

is less than the solution of the lower bound of the y = 2 space, which is 18.040.  

Therefore, the true space obtained when y = 2 does not have to be investigated since it 
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will not provide a solution that improves the upper bound.  Since y = 2 and y = 3 have 

been eliminated as solution choices, the optimal solution of the optimization problem is 

the upper bound, 11.272, found when y = 1, x1 = 0.2 and x2 = -1.0.  

 
Table 50: Solutions for Lower Bound and True Space for Y = 1 

 X1 X2 Obj g1 g2 g3 

Lower Bound Solution 0.200 -1.000 11.064 0.000 -1.055 -1.200 
True Solution 0.200 -1.000 11.272 0.000 -1.055 -1.200 

 
Table 51: Solutions for Lower Bound and True Space for Y = 2 

 X1 X2 Obj g1 g2 g3 

Lower Bound Solution 0.421 -1.251 18.040 0.000 0.000 -2.183 
True Solution 0.448 -1.282 19.354 0.000 0.000 -2.152 

 
 

 

5.4 Applicability of New Optimization Method 

 

The new optimization method developed for this research has been tailored to 

work well with the rocket engine design codes to which it was applied.  However, this 

method will work well on any other optimization problems with similar features.  These 

include problems with the following characteristics. 

 

§ Mixed-Integer inputs where the discrete variables can not be relaxed 

§ A continuous variable design space that is smooth and free of discontinuities 

§ Objective and constraint values supplied by an analysis that is expensive (time 

consuming) to run  
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While the method is designed for problems with the above features, it will work for 

other applications, but perhaps less efficiently.  For problems where the discrete inputs 

can be relaxed and the analysis isn’t time consuming, like the example problem outlined 

above, other optimization methods will be able to find the solution in less computational 

time.  However, this method is still able to solve such problems.  Also, the method can be 

adapted to handle problems where the continuous input variable design space is not well-

behaved.  This could include problems with sharp, deep extrema or possibly even multi-

modal spaces.  For these types of continuous spaces, the margin used to find the α terms 

would have to be dramatically increased to ensure that the lower bounding procedure 

gives a lower bound.  Also, the NLP method used to find the optimal solutions of the true 

continuous spaces would most likely have to be changed to an optimization method 

capable of handling multi-modal spaces.  Some possible methods include genetic 

algorithms, simulated annealing, multilevel coordinate search, or Branch and Reduce 

[72,112,113]. 

 

 Even if the domain of applicability of this method is limited to problems with the 

original features mentioned above, problems with these characteristics still represent 

difficult applications for which very few, if any, optimization techniques can solve.  It 

should also be noted that no restrictions are placed on the discrete variables.  This allows 

for the solutions of problems with highly nonlinear, discrete variable spaces without any 

additional difficulty. 
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CHAPTER 6 

PROOF – OF – CONCEPT 

6.1 Problem Description 

 

 The optimization technique outlined in Chapter 5 needs to be tested on a relevant 

problem to validate the new method.  In order to be able to quickly test the optimization 

method on many different problems, a fast running design code was needed.  The use of a 

fast running code, allows the optimal solution to be found relatively quickly, by solving 

all the nonlinear optimization problems associated with every discrete variable 

combination.  The test code should also have features similar to PHATCAT, which will 

be used in the final application.  These include the use of mixed-inputs, where the 

discrete variables can not be relaxed, and a continuous variable design space that is well-

behaved.  The code that was chosen for the proof-of-concept demonstration is SCORES.  

Recall that SCORES is a relatively simple engine design tool that determines rocket 

performance characteristics very quickly.  It uses efficiencies on the ideal performance 

outputs to model different rocket engine powerhead cycles.  SCORES has both 

continuous and discrete inputs and the discrete input variables are not able to be relaxed.  

This, combined with its fast execution time, makes SCORES a good choice for a code on 

which to test the new optimization scheme. 
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The SCORES discrete input variables that were used for this analysis were the 

fuel and oxidizer choices.  The continuous variables used were the desired chamber 

pressure, oxidizer to fuel mixture ratio and the nozzle expansion ratio. As mentioned 

above, SCORES uses efficiencies to scale its performance outputs depending on the 

engine cycle being analyzed.  To avoid choosing a particular cycle, the ideal performance 

values were used for the optimization metrics.  The objective function for all the 

optimization test problems was the ideal specific impulse.  However, Isp should be 

maximized.  To accomplish this, the negative of the ideal Isp was minimized.  Variables 

used as constraints on the optimization problem were sea-level thrust (Tsl), nozzle exit 

area (Ae) and engine vacuum thrust to weight (T/W).  The SCORES inputs and outputs 

that were used for the proof-of-concept problems are shown below in Table 52. 

 

Table 52: Input and Output Descriptions for the Proof-of-Concept Problem 

Input Discrete/Continuous Output Objective/Constraint 
Fuel Discrete Ideal Isp Objective 

Oxidizer Discrete Sea-level Thrust Constraint 
Chamber Pressure Continuous Nozzle Exit Area Constraint 

Mixture Ratio Continuous Engine T/W Constraint 
Expansion Ratio Continuous   

 

 

 The version of SCORES used for this research does not supply engine T/W as one 

of its outputs.  However, the engine’s T/W is typically a very important metric for rocket 

powered space vehicles.  In order to include engine weight in this analysis, a simple 

calculation for T/W was created.  This calculation was based on empirical equations 

found in reference 85.  However, the original equations given in the reference only 
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provide engine weight as a function of vacuum thrust, which was fixed at a value of 1 

Mlbs for the proof-of-concept problems.  Therefore, in order to make T/W a function of 

the input variables used for these example problems, the model was adjusted to make the 

calculated engine weight a function of engine mixture ratio, chamber pressure and fuel 

choice.  

 

The discrete input variables used for the proof-of-concept cases are the fuel and 

oxidizer combinations.  Thirteen different fuel and oxidizer combinations were selected 

for this test problem, with each one representing a discrete variable choice in the new 

optimization scheme.     

 

Table 53: Fuel and Oxidizer Combinations 

Combination Fuel Oxidizer 
1 Hydrogen Oxygen 
2 Methane Oxygen 
3 Propane Oxygen 
4 RP-1 Oxygen 
5 C7.76H13.1 Oxygen 
6 C8.26H15.5 Oxygen 
7 C10.8H18.7 Oxygen 
8 Methane H2O2 

9 Propane H2O2 
10 RP-1 H2O2 
11 C7.76H13.1 H2O2 
12 C8.26H15.5 H2O2 
13 C10.8H18.7 H2O2 

 

 

 SCORES has several built-in fuel and oxidizer choices and also has the option to 

add new fuels if desired.  The fuels first listed for combinations 5, 6, and 7 in Table 53 

are new fuels that were added to SCORES.  New fuels are added by specifying the 
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number of carbon and hydrogen atoms in one molecule of the fuel, along with the fuels’ 

initial enthalpy.  The fuels in combinations 5 and 6 are types of gasoline and the fuel in 

combination 7 is diesel.  The values used to model these fuels in SCORES were taken 

from reference 80.  Though the new fuel choices are non-traditional rocket fuels, which 

would most likely not be considered for an actual engine design, they were added to the 

analysis in order to give more discrete variable choices and therefore provide a better test 

problem.   

 

 

6.2 Proof-of-Concept Test Cases 

 

Ten different test cases were used to study the performance of the new 

optimization method.  These test cases ranged from unconstrained optimization to cases 

involving constraints on all of the output variables.  Equality constraints were also 

included.  These cases were chosen to try to illustrate the different types of problems that 

can be solved with the new optimization procedure.  The cases used are listed in Table 

54. 

 

To solve these cases using the proposed optimization method, a C-code was 

written that ran and stored the results for the engine analyses needed to populate the 

design points used to determine the lower bounding equations.  Then, another C-code 

took the generated data and formed the response surface equations that represent the 

SCORES output variables of interest.  These response surface equations were then turned 
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into lower bounding equations by finding the correct δ and α terms using the methods 

described in Chapter 5. 

 
Table 54: Constraints used for Proof-of-Concept Problems 

Case Constraint 1 Constraint 2 Constraint 3 
1 N/A N/A N/A 
2 5.83/ ≥WT  N/A N/A 
3 95/ ≥WT  N/A N/A 
4 90/ ≥WT  lbsTsl 800000≥  N/A 
5 lbsTsl 895123≥  N/A N/A 
6 250 ftAe ≤  N/A N/A 
7 lbsTsl 902568≤  lbsTsl 863789≥  N/A 
8 2.89/ ≥WT  2135 ftAe ≤  lbsTsl 785028≥  
9 3.87/ ≥WT  lbsTsl 698000=  N/A 
10 lbsTsl 900000≥  N/A N/A 

 
 

To obtain the optimized solutions of the true continuous design space, the lower 

bounding C-code and SCORES was used in conjunction with a program called 

ModelCenter [114].  ModelCenter is a frameworks code that allows the easy integration 

of various codes regardless of the platform on which they are running.  Also, 

ModelCenter has a built-in optimization routine, which includes three constrained 

nonlinear optimization methods.  Sequential linear programming was used to find the 

optimal values of the true continuous design space and the method of feasible directions 

was used find the appropriate α values and the optimum of the lower bounding space.  

Figure 37 shows a screenshot of the ModelCenter application used to solve the lower 

bounding problem.  

 

 To determine the abilities of the new optimization procedure, the solution of each 

case shown in Table 54 was found using both the new optimization method, and by 
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finding the optimal solution of the continuous design space for every discrete variable 

choice.  The success of the new optimization method was determined by seeing if it could 

get the same optimal solution obtained by solving every discrete variable combination, 

but with significantly fewer function calls to SCORES. 

 

 

Figure 37: ModelCenter Interface 

 

To find the lower bounding equations of the continuous design space for a single 

discrete variable combination, 15 function calls were needed to fill in the CCD and an 

additional 8 were needed to find the output values at the ½ points.  Therefore, in order to 

determine the lower bounding equations for all the discrete variable combinations, 

SCORES had to be run 299 times.  Remember, however, that information used to get the 



 
 

 129 

lower bounding equations was saved in a database file and therefore the information only 

had to be generated for the first optimization case solved. 

 

It took an additional 860 SCORES function calls to evaluate the continuous 

variable nonlinear optimization problems (NLPs) needed to solve all ten cases using the 

new optimization method.  As a comparison, to solve all ten cases by finding the solution 

to the continuous variable nonlinear optimization problems for all the fuel and oxidizer 

combinations took 5687 SCORES function calls.  Including the function calls needed to 

find the lower bounds, the new method only takes 20% of the function calls required by 

the enumeration method.  Also, the enumeration method and the new optimization 

method being proposed for this research got the same answer for each case.  Table 55 

shows the results for the number of function calls needed for each of the ten cases.  As 

can be seen by these results, for every case, the proposed optimization method is much 

more efficient than enumerating all the discrete choices.   

 

Table 55: Proof-of-Concept Results 

Case Function Calls 
(Solving all NLPs) 

Function Calls w/ 
new method 

Number of NLPs 
evaluated w/ new 

method 

% of Baseline 
Function Calls 

1 295 30 1 10.2% 
2 394 53 2 13.5% 
3 398 62 3 15.6% 
4 661 188 3 28.4% 
5 583 53 1 9.09% 
6 645 60 1 9.30% 
7 685 46 1 6.72% 
8 699 177 3 25.3% 
9 788 174 2 22.1% 
10 539 17 1 3.15% 
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 More detailed results will now be presented for Case 8 and Case 10.  These results 

are intended to lend further insight into the optimization procedure.  Table 56 shows the 

values of ideal Isp obtained by the lower bounding procedure ( ( )xL ) and by optimizing 

the true continuous design space ( ( )xf ) for all 13 discrete variable combinations.  The 

true continuous space was optimized for all the discrete variable combinations to help 

further illustrate the new optimization method.  The new method only requires that the 

true continuous space of three discrete variable combinations be investigated.  As 

expected, the values of ideal Isp (actually the negative of ideal Isp, because Isp is being 

maximized) obtained by the lower bounding procedure are less than the values obtained 

by solving the NLP of the true space.  Also, the same five cases are infeasible for each 

solution method. 

Table 56: Results for Proof-of-Concept - Case 8 

Combination ( )xL  for Ideal Isp (sec) ( )xf  for Ideal Isp (sec) 
1 infeasible infeasible 
2 infeasible infeasible 
3 -326.9773 -325.2923 
4 infeasible infeasible 
5 -342.1558 -340.6288 
6 -347.8846 -345.1155 
7 -346.5635 -344.1238 
8 infeasible infeasible 
9 -362.5682 -359.8209 
10 infeasible infeasible 
11 -372.4407 -366.8554 
12 -372.0730 -367.8708 
13 -370.7460 -367.7762 

 

 

 According to Table 55, three NLP solutions were required to solve Case 8 using 

the new optimization method.  These three NLP solutions were for combinations 11, 12, 
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and 13.  Combination 11 provides the lowest lower bound, so its NLP was solved first, 

yielding an upper bound of -366.8554 seconds.  Combinations 12 and 13 are the only 

combinations to have lower bounds less than this upper bound.  Therefore, the rest of the 

combinations can be eliminated from consideration.  Next, the NLP for combination 12 

was solved, and its solution provides a better upper bound than the one obtained from 

combination 11.  Therefore, the new upper bound value is -367.8708.  Finally, the NLP 

for combination 13 was solved and its solution does not provide a better upper bound.  

Therefore, the solution of the NLP for combination 12 is the optimum (-367.87 sec).  

This solution occurred at the following continuous variable settings: O/F = 6.0, expansion 

ratio = 103.197, and chamber pressure = 3600.523 psia.  Before the optimization 

procedure, upper and lower bounds were established for each of the continuous input 

variables.  These bounds are listed in Table 57.  At the final solution, the O/F is set to its 

upper bound but the other input variables are not at either of their bounds.  The constraint 

values at the optimal solution are shown in Table 58. 

 

Table 57: Continuous Input Variable Bounds 

Continuous Input Variable Lower Bound Upper Bound 

Mixture Ratio (O/F) 4.5 6 

Expansion Ratio (ε) 50 150 
Chamber Pressure (Pc) 2500 psia 4000 psia 

 

Table 58: Constraint Values at Optimum (Case 8) 

Constraint Value 

Sea-Level Thrust (Tsl) 785156 lbs 
Exit Area (Ae) 101.5 ft2 

Thrust-to-Weight (T/W) 89.2 
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As a note, the reason some of the more conventional fuels performed poorly in 

this case was because of the T/W constraint.  As mentioned earlier, an equation for T/W 

was created that was a function of fuel type, O/F and chamber pressure.  The dependence 

on fuel type favored fuels with molecules that contained more C and H atoms.  This was 

done under the notion that fuels with larger molecules would be denser and therefore 

easier to pump, leading to lighter turbo machinery.  Therefore, the gasoline and diesel 

fuels have better T/W’s and the optimizer can choose high chamber pressures, which has 

a negative effect on T/W, to increase the performance without violating the T/W 

constraint.  The more traditional fuels must have lower chamber pressures to avoid 

violating the T/W constraint and therefore their performance suffers.  The notional T/W 

equation was only created to show interesting trends for the example problem.   

 

 The solution to Case 8 demonstrates why every discrete variable setting with a 

lower bound better than the current upper bound must be investigated.  For this case, if 

the discrete variable choice yielding the lowest lower bound (combination 11) was 

chosen as the optimal combination, without investigating the remaining valid discrete 

variable choices, the true optimal solution would be missed.  The next case that will be 

discussed is Case 10.  Two sets of results for Case 10 are presented below.  Table 59 

shows the results obtained using the new optimization procedure with the standard lower 

bounding equations ( ( )xL ), while Table 60 shows the results found using the new 

optimization procedure with only the original response surface equations ( ( )xf
~

).  
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Table 59: Results for Proof-of-Concept - Case 10 

Combination ( )xL  for Ideal Isp (sec) ( )xf  for Ideal Isp (sec) 
1 -464.3736 -459.9229 
2 -363.1333 -361.6224 
3 -347.7168 -346.3031 
4 -340.2295 -338.7311 
5 -337.5242 -336.1536 
6 -340.3359 -338.9547 
7 -336.5650 -335.3158 
8 -356.4762 -346.1678 
9 -356.7792 -354.9096 
10 -360.2676 -356.9867 
11 -363.8689 -357.8790 
12 -362.0663 -358.0523 
13 -360.9506 -356.5423 

 

 

Table 60: Results for Proof-of-Concept - Case 10 (Response Surface Only) 

Combination ( )xf
~

 for Ideal Isp (sec) ( )xf  for Ideal Isp (sec) 
1 infeasible -459.9229 
2 -361.2703 -361.6224 
3 -345.9736 -346.3031 
4 -338.4380 -338.7311 
5 -335.8734 -336.1536 
6 -338.6713 -338.9547 
7 -335.0275 -335.3158 
8 infeasible -346.1678 
9 -352.1760 -354.9096 

10 -356.2002 -356.9867 
11 -357.0584 -357.8790 
12 -357.0861 -358.0523 
13 -355.4782 -356.5423 

 

 

 The results obtained using the lower bounding equations confirm the data 

presented in Table 55.  Combination 1 provides the best lower bound (-464.3736) and the 

upper bound found by solving the true continuous space for that combination (-459.9229) 

is lower than any remaining lower bounds.  Therefore, only one NLP had to be solved to 
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find the optimal.  However, if only the response surfaces were used, instead of the lower 

bounding equations, the true optimal is not found.  Instead of expanding the feasible 

space and providing a lower bound, the response surface equations for combination 1 

actually decrease the feasible space.  The solution of the response surface is infeasible, 

which means combination 1 would never be investigated and the optimal solution would 

therefore be missed.  This illustrates why the using lower bounding equations to represent 

the continuous design space, instead of just traditional response surfaces, provides a more 

robust optimization method.  Detailed results for all the optimization cases used for this 

proof-of-concept analysis can be found in Appendix A. 
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CHAPTER 7 

FINAL APPLICATION 

7.1 Problem Description 

 

 The proof-of-concept problem in the previous chapter shows the promise of the 

lower bounding optimization method developed for this research.  However, since 

SCORES is a fast running code, an engine designed using SCORES could easily be 

optimized without the new method by finding the optimal solution of the continuous 

design space for all the discrete variable combinations.  The main objective of this 

research is to apply the method to a higher fidelity, and therefore slower running code.  

PHATCAT is the code that is used for this final application.  Optimizing engine designs 

using the new version of PHATCAT will show the full potential of the lower bounding 

method.  The longer the code supplying the engine performance results takes to run, the 

more time will be saved by switching to the new optimization scheme.  Also, as the 

number of discrete variable choices increases, the more computation time will be saved 

by using the new method versus solving the NLP for each discrete variable setting.   

 

 The modifications to PHATCAT detailed in Chapter 3 allow its use in this final 

test of the new optimization method.  The new version of PHATCAT is robust enough 
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that a nonlinear optimizer can be used to solve for the optimum of its continuous space.  

Also, twenty-two different engine cycles are now available as input choices.  These help 

provide enough discrete variable choices to adequately test the new method.  These new 

engine cycles are formed from four basic cycle designs.  The four main cycles are a fuel-

rich dual-preburner staged-combustion cycle based off the SSME, a fuel-rich gas 

generator cycle based off the Vulcain, an oxidizer-rich single-preburner staged-

combustion cycle based off the RD-180, and a split-expander cycle similar to the RLX.  

Variations of these basic cycles are also included as inputs and these combine to form the 

twenty-two cycles available in PHATCAT.  The variations made to the cycles include 

changing the fuel type and changing the number of fuel boost pumps, turbines, and pre-

burners/gas generators.  These changes alter the engine performance by possibly 

changing the engines Isp, thrust level, available chamber pressure, weight, cost, or more 

likely, a combination of all these effects. 

 

 The twenty-two engine cycles now available in PHATCAT are listed in Table 61.  

Each of these cycles represents a discrete variable choice for the optimization method.  

However, to further demonstrate the abilities of the new lower bounding method, more 

discrete variable choices are desired.  Therefore, the choice of turbine blade material was 

included as another discrete variable.  The turbine blade material affects the performance 

of the engine by limiting the allowable turbine inlet temperatures.  At higher turbine inlet 

temperatures, less turbine working fluid mass flow is needed to produce the same amount 

of turbine work.  Also, the turbine blade material choice was used to adjust the 

development and production costs of the engines.  Engines using the higher temperature 
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turbine blade materials incurred a cost penalty, while engines using lower temperature 

materials received a slight cost credit. 

 

Table 61: Engine Cycles Included in PHATCAT 

Cycle Name Baseline 
Cycle 

Fuel 
Type 

Uses Fuel 
Boost Pump 

# of 
Main 

Turbines 

# of 
Preburners/

GGs 
SSME SC LH2 Yes 2 2 

SSME_1PB_1T SC LH2 Yes 1 1 
Vulcain_LH2 GG LH2 Yes 2 1 
Vulcain_RP1 GG RP-1 Yes 2 1 
Vulcain_CH4 GG CH4 Yes 2 1 
Vulcain_C3H8 GG C3H8 Yes 2 1 

Vulcain_LH2_1T GG LH2 Yes 1 1 
Vulcain_RP1_1T GG RP-1 Yes 1 1 
Vulcain_CH4_1T GG CH4 Yes 1 1 
Vulcain_C3H8_1T GG C3H8 Yes 1 1 
Vulcain_LH2_NBP GG LH2 No 2 1 
Vulcain_RP1_NBP GG RP-1 No 2 1 
Vulcain_CH4_NBP GG CH4 No 2 1 
Vulcain_C3H8_NBP GG C3H8 No 2 1 

Vulcain_LH2_1T_NBP GG LH2 No 1 1 
Vulcain_RP1_1T_NBP GG RP-1 No 1 1 
Vulcain_CH4_1T_NBP GG CH4 No 1 1 
Vulcain_C3H8_1T_NBP GG C3H8 No 1 1 

RD180_RP1 SC RP-1 Yes 1 1 
RD180_CH4 SC CH4 Yes 1 1 
RD180_C3H8 SC C3H8 Yes 1 1 

RLX EX LH2 Yes 2 0 
 

 

 Reference 85 gives allowable turbine inlet temperatures as a function of the 

turbine blade mean pitchline velocity for various turbine blade materials.  Since the 

current version of PHATCAT does not calculate turbine rotational speed, a single value 

for the maximum allowable turbine inlet temperature was chosen for each of the five 
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turbine blade materials included as discrete variable choices.  The five materials used and 

their associated maximum turbine inlet temperatures are shown in Table 62. 

 

Table 62: Turbine Blade Materials 

Turbine Blade Material Maximum Allowable Turbine Inlet 
Temperature (R) 

Inconel 718 1870 
Waspaloy 1976 
Astroloy 2068 

Inconel 713LC 2250 
IN-100 2358 

 

 

 These five turbine blade material choices, along with the twenty-two different 

engine cycles, provide 110 discrete variable combinations for the final application.  These 

are combined with four continuous input variables to form the mixed-integer input set.  

The four continuous variables used are vacuum thrust, oxidizer to fuel mixture ratio, 

nozzle expansion ratio and chamber pressure.  Bounds are placed on each of these input 

variables to stop the optimization routine from evaluating an engine cycle at input 

variable settings outside of the range which guarantees the powerhead will balance.  The 

continuous input variable bounds for each engine cycle are listed in Appendix B. 

 

 Lower bounding equations must be formed for the continuous design space of 

each of the 110 discrete variable inputs.  The number of PHATCAT function calls 

required to form each lower bound space is 41.  These calls include the points used to 

populate the central composite design and those used to get the output values at the ½ 

points.  The total number of function calls required to get all the lower bounding 
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equations is 4510.  It takes just over 12 hrs to run all of these design points using a Dell 

Dimension 8200 PC with a 2.25 GHz, Pentium 4 processor and 512 MB of RAM.  While 

this represents a significant amount of processing time, all of these runs are done before 

the engine design process and stored in a database file.  As long as the database file 

remains intact, these cases do not have to be re-run and each time an engine design is 

optimized, the appropriate lower bounding data can be quickly accessed.   

 

 Like the proof-of-concept problems, this final application was solved using 

ModelCenter.  The same lower bounding C-code used in the proof-of-concept was altered 

to allow its use with PHATCAT instead of SCORES.  The nonlinear optimizers in 

ModelCenter were again used to solve for the α terms, the optimum of the lower 

bounding space, and the optimum of the true continuous variable space.  The method of 

feasible directions was used to find the α terms and optimize the lower bounding 

equations, while sequential linear programming was used to optimize the true continuous 

design space.  In order to optimize the true space, PHATCAT has to be evaluated many 

times.  Depending on the engine cycle being analyzed, each run can take up to one 

minute to finish.  Therefore, it is desirable to use the nonlinear optimization method that 

requires the least number of PHATCAT evaluations to find the optimum of the true 

continuous design space.  Typically, sequential quadratic programming is the 

optimization method that performs best when the optimization function (in this case 

PHATCAT) doesn’t run very quickly.  However, the SQP implementation in 

ModelCenter does not behave as expected.  Many times it was found that SQP would not 

be able to find a feasible solution, when MoFD and SLP could.  SLP was usually able to 
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find the optimal solution with fewer PHATCAT function calls, compared to MoFD, and 

that is why it was the optimization method used to find the optimal continuous variable 

settings for the true design space.   

 

 

7.2 Final Test Cases 

 

 Six different rocket engine optimization problems were investigated using both 

the new lower bounding method and the baseline method, which solves the continuous 

NLP optimization problem for all 110 discrete variable combinations.  For five of the six 

cases, the objective of the optimization routine was to maximize the vacuum specific 

impulse of the engine (minimize the negative is Isp).  The objective of the final case was 

to minimize the engine’s design, development, testing and evaluation cost (DDTE).  The 

number of constraints on the designs range from zero to four and include equality 

constraints.  Table 63 shows the details of the six cases solved. 

 

Table 63: Six Optimization Problems Solved 

Case Objective Constraint 1 Constraint 2 Constraint 3 Constraint 4 

1 Max Ispvac N/A N/A N/A N/A 

2 Max Ispvac lbsTsl 395000≥  lbsTsl 4500000≤  N/A N/A 

3 Max Ispvac lbsTsl 395000≥  lbsTsl 4500000≤  75/ ≥WTvac  N/A 

4 Max Ispvac lbsTsl 395000≥  lbsTsl 4500000≤  75/ ≥WTvac  MDDTE 695$≤  

5 Max Ispvac lbsTsl 395000≥  lbsTsl 4500000≤  75/ ≥WTvac  MDDTE 665$≤  

6 Min DDTE lbsTsl 400000=  sec350≥slIsp  60/ ≥WTvac  N/A 
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For each discrete variable combination, there is an additional constraint on the 

maximum allowable turbine inlet temperature, which depends on the current selection for 

the turbine blade material.  The maximum turbine inlet temperature is one of the outputs 

of PHATCAT for which a response surface and lower bounding equation is formed.  This 

allows the lower bounding problem to determine if any continuous variable settings will 

provide an engine design with turbine inlet temperatures that do not exceed the allowable 

limit.  It is possible that some engine cycles will be infeasible, even for Case 1, because 

low enough turbine temperatures could not be achieved.  This is particularly true for the 

low-temperature turbine blade materials.  However, it is not known beforehand which 

cycle/turbine blade material combinations will be infeasible.  Therefore, all 110 

combinations need to be investigated. 

 

 The constraint settings in Cases 1 – 5 were chosen to show the progression in the 

optimal engine design choice as the optimization problem becomes more constrained.  

This is meant to mimic the addition of more requirements on the engine design as the 

overall vehicle solution becomes more defined.  The optimization problem, presented in 

Case 6, is meant to simulate the situation where a replacement engine is being sought for 

an existing application.  Here, many of the design requirements are fixed and the 

propulsion engineer is charged with finding the cheapest solution to the problem. 

 

 The goal of the new optimization method is to be able to find the same optimal 

solution, obtained by optimizing the continuous space of all the discrete variable 

combinations, but in a much more time efficient manner.  To test this goal, a baseline 
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optimization time must be established by exhaustively optimizing all 110 true continuous 

subspaces for each case listed in Table 63.  Then, the time required to find the optimum 

using the new lower bounding procedure is found.  This time includes that needed to 

solve the lower bounding equations for every discrete variable combination, and the time 

required to find the optimum of the true continuous space for those discrete variable 

combinations providing the best lower bounds.  The total time for the new method does 

not include the 12 hrs needed for preprocessing, since these calculations were completed 

before the optimization process began. 

 

The first test of the new optimization method will be to see if it can get the same 

solution found by optimizing the continuous design space for each discrete variable 

combination.  Table 64 shows the comparison of the optimal discrete variable 

combination found using both methods.  This combination consists of the cycle choice 

and the turbine blade material.  For all six cases, both methods chose the same optimal 

discrete variable combination. 

 

Table 64: Optimal Discrete Variable Settings 

Case Optimal Discrete Variable Setting 
(Baseline Method) 

Optimal Discrete Variable Setting 
(New Method) 

1 RLX / Inconel 718 RLX / Inconel 718 
2 SSME / Inconel 713LC SSME / Inconel 713LC 
3 SSME_1PB_1T / Inconel 713LC SSME_1PB_1T / Inconel 713LC 
4 RD180_CH4 / Inconel 718 RD180_CH4 / Inconel 718 
5 RD180_RP1 / Inconel 718 RD180_RP1 / Inconel 718 
6 Vulcain_LH2_1T_NBP / Waspaloy Vulcain_LH2_1T_NBP / Waspaloy 
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 For the same discrete variable combination, both methods will find the same 

optimal continuous variable settings.  This is because, once a discrete variable setting is 

chosen for further investigation using the new method, the true continuous design space 

is solved in order to find the continuous variable settings.  This is the same true 

continuous design space that is solved using the baseline method.  Since the same 

nonlinear optimization method, (SLP) is used to solve for the optimum of the true design 

space in both methods, the same continuous variable settings are found.  The continuous 

input variable settings of the optimal solution found for each of the six optimization cases 

are listed in Table 65.  Also shown in the table are the values of the output variables that 

represent constraints for some of the optimization cases.   

 

Table 65: Objective, Constraint, and Continuous Input Vales at Optimum 

(Cont. Input Variable Settings) (Constraint Values at Optimum) 
Case 

Obj. 
Func. 
Value 

Tvac 
(klbs) O/F ε 

Pc 
(psia) 

Tsl 
(klbs) T/W DDTE 

($M) 
Isp 

(sec) 
1 472.9 sec 425.0 4.75 125 1750 276.2 92.9 577.2 307.3 
2 464.0 sec 598.5 5.75 125 3500 449.6 70.2 930.8 348.6 
3 461.7 sec 598.8 5.75 125 2850 449.8 76.6 891.1 346.8 
4 371.6 sec 579.9 3.54 125 4500 431.0 75.7 695.0 276.2 
5 355.2 sec 546.6 3.09 125 4500 397.8 83.2 665.0 258.5 
6 $729.5M 417.9 5.10 15 1559 400.1 67.8 729.5 381.5 

 

  

The first optimization problem is an unconstrained problem.  The optimal engine 

cycle chosen by both methods is the RLX split-expander engine.  The chamber pressure, 

expansion ratio, and vacuum thrust are set to their upper bound values, while the mixture 

ratio is set to its lower bound at the optimum.  This split-expander cycle has a low turbine 

inlet temperature, so all five turbine blade material choices provide the same maximum 
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Isp value.  The discrete variable combination using the lowest temperature turbine blade 

material is listed as the solution because it has the least development costs.  However, for 

this problem, all five blade materials provide an equally optimal solution. 

 

 The second case adds an upper and lower bound constraint on sea-level thrust.  

For this case, the RLX engine cycle provides an infeasible design, because it is not able 

to meet the lower bound constraint.  The optimal discrete variable combination found is 

the SSME with Inconel 713LC.  The SSME engine and two different turbine blade 

material combinations provide equally good solutions for this case and the lowest 

temperature material is listed as the solution for the same reasons described above.  The 

chamber pressure and expansion ratio are set to their upper bounds, while the mixture 

ratio is again set to its lower bound.  The vacuum thrust level was adjusted in order to 

meet the sea-level thrust upper bound constraint. 

 

 The addition of the vacuum T/W lower bound constraint in Case 3 eliminates the 

SSME cycle as an option.  Therefore, the optimal discrete variable combination is the 

modified SSME cycle.  This cycle only has one preburner and one main turbine.  

Therefore, this engine is given a weight reduction factor and it is consequently able to 

provide a feasible solution for Case 3.  The expansion ratio and chamber pressure are 

again set to their upper bounds and the mixture ratio is at its lower bound.  The vacuum 

thrust is once again set to meet the upper bound sea-level thrust constraint.  Also, the two 

highest temperature turbine blade materials provide the same optimal solution and the 

lower temperature material, Inconel 713LC, is listed as the best blade material choice. 
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 Case 4 adds an upper bound constraint on the allowable engine development cost, 

while maintaining the previous sea-level thrust and T/W constraints.  The optimal 

discrete variable combination for this case is the CH4 version of the RD-180 using 

turbine blades made of Inconel 718.  A development cost reduction is applied to engine 

designs using the lower temperature turbine blade materials, but a development cost 

increase is applied to engines using CH4 and C3H8 as their fuel choice.  The increase in 

development cost, associated with fuel type, is included to reflect the limited experience 

in using these fuels in operational engines.  The CH4 version of the RD-180 provides 

higher Isp values when compared to the RP-1 version and the cost decrease associated 

with the low temperature turbine blade material off sets the increase associated with 

using CH4 and allows the engine to meet the new development cost constraints. 

 

 The fifth case is similar to Case 4, except that the allowable development cost has 

been lowered by $30M.  The optimal discrete variable combination for this case is the 

baseline RD-180 cycle and Inconel 718.  The cost constraint is too low for the CH4 

version of the RD-180 to provide a feasible design.  The baseline version of the RD-180 

does not incur the development cost increase, since RP-1 is the fuel of this cycle.  The 

lowest temperature turbine blade material must be used to meet the cost requirement, 

even though there is a performance decrease associated with the lower turbine inlet 

temperatures.   

 

Cases 1 – 5 show the progression of the optimal value of the objective function as 

more constraints are added to the optimization problem.  The optimal value of Isp that is 
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found by the optimization methods decreases as the problems become more constrained.  

This is because the optimization method is forced to choose lower performing engines to 

meet the increasingly stringent design constraints. 

 

 The final case has a different objective function than Cases 1 – 5.  The objective 

of Case 6 is to minimize the development costs of an engine design subject to sea-level 

thrust, sea-level Isp and vacuum thrust to weight constraints.  The sea-level thrust 

constraint is actually an equality constraint.  This was modeled in the optimization 

methods by including two separate constraints, one requiring Tsl to be greater than or 

equal to 400 klbs and the other requiring it to be less than or equal to 400 klbs.  The 

optimal discrete variable combination for this case is an LH2 version of the Vulcain with 

no fuel boost pump and only one main turbine.  This variation of the Vulcain was given a 

development cost decrease when compared to the dual turbine, boost pump version.  

However, there is also an associated decrease in the engine’s performance.  Even with the 

performance decrease, this engine is able to meet the constraints on performance imposed 

in the optimization problem.   

 

 Included in Appendix C, for each optimization case, are the values of the 

objective function obtained by optimizing the lower bounding space and true continuous 

space for each discrete variable combination.  The discrete variable combinations whose 

true space had to be optimized to solve the problem using the new optimization method 

are highlighted in blue and bordered by dotted lines.  The optimal discrete combination 

for each problem is noted by a solid border. 
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 The final test of the new optimization method is to compare the solution times 

required for the new and baseline method.  This comparison is given in Table 66.  The 

times listed in the table are those required to solve the problem using a Dell Dimension 

8200 PC with a 2.25 GHz, Pentium 4 processor and 512 MB of RAM.  The time given 

for the baseline method is the time it takes to solve the true continuous design space for 

all 110 discrete variable combinations.  The time required for the new solution method is 

sum of two separate values.  The first is the time required to solve for the optimum of the 

lower bounding space for every discrete variable combination.  The second value is the 

time it takes to solve the true continuous space of the discrete variable combinations 

identified by the new method as possible candidates for the optimal discrete setting.  

Table 66 also shows the percentage of the original baseline time required by the new 

method to solve the optimization problem. 

 

Table 66: Comparison of Solution Times 

Case 

# of NLPs 
Solved for 
Baseline 
Method 

# of NLPs 
Solved for 

New 
Method 

% of 
Baseline 

NLPs 

Solution 
Time 

(Baseline 
Method) 

Solution 
Time (New 
Method) 

% of 
Baseline 

Time 

1 110 5 4.55% 20.56 hrs 1.06 hrs 5.15% 
2 110 6 5.45% 34.32 hrs 1.49 hrs 4.33% 
3 110 3 2.73% 50.60 hrs 1.13 hrs 2.23% 
4 110 1 0.91% 88.14 hrs 1.16 hrs 1.32% 
5 110 1 0.91% 98.66 hrs 1.04 hrs 1.05% 
6 110 1 0.91% 31.36 hrs 1.29 hrs 4.11% 

 

 

 The new method is able to solve each of the optimization problems in 

significantly less time than that required by the baseline solution procedure.  

Optimization times are reduced from one to four days to less than two hours.  This 
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reduction in time does not sacrifice accuracy, since both methods find the same optimal 

solution.  The times for the new optimization method shown in Table 66 do not include 

the 12 hrs of preprocessing needed to generate the data used to form the lower bounding 

procedure.  This time was not included because the preprocessing is only done once and 

it is completed before the optimization process begins.  However, if the 12 hrs are 

included in the time required to solve all six cases using the new method, a time savings 

of over 94% is still realized.   
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

  

Three specific goals for this research were identified in Chapter 1.  The first goal 

was to establish a baseline solution method and determine the applicability of existing 

optimization techniques.  The second goal was to develop a new optimization method 

that could solve the mixed-input rocket engine optimization problem without requiring 

the relaxation of the discrete variables.  The third goal required that this new method be 

able to optimize the problem of interest in a time frame appropriate for a conceptual 

design environment.  The following paragraphs will illustrate how each of these goals 

was met. 

 

The original contribution of this research was the development of a new 

optimization method that can solve mixed-input nonlinear optimization problems.  This 

new optimization method allows the determination of the optimal liquid rocket engine 

design using a powerhead analysis code.  This method is able to optimize problems 
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having mixed-inputs but does not require the relaxation of the discrete input variables.  

The steps involved in the optimization method are outlined below. 

 

1. Evaluate the engine design code at all points necessary to form the central 

composite design of experiments and at those points needed to determine the 

lower bounding equations of the continuous space.  This requires that the engine 

design code be run ( )( ) ynnn *1222 +++  times, where n is the number of 

continuous input variables and y is the number of discrete variable combinations. 

2. Form response surface equations of the continuous space ( ( )xf
~

), which predict 

all the relevant outputs of the engine design code using the data from the central 

composite design of experiments. 

3. Use the RSE’s to make lower bounding equations ( ( )xL ) that expand the feasible 

continuous design space.  These equations are formed by adding two terms to the 

original response surface equations.   The first shifts ( )xf
~

 down, so that at all the 

corner points, the value predicted by ( ) δ−xf
~

 is less than or equal to the true 

value ( ( )xf ).  The second term transforms this shifted RSE into a lower bound by 

applying a convex underestimation term.  The lower bounding equation is 

repeated here for convenience (Equation 37).  
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4. For every discrete variable combination, solve the lower bounding equations to 

determine a lower bound of the optimal solution for that combination’s 

continuous space. 

5. Optimize the true continuous space of the discrete variable combination providing 

the best lower bound.  This value provides an upper bound on the solution. 

6. Evaluate the next best lower bound that is less than the current upper bound.  If 

there are no lower bounds less than the current upper bound, the algorithm 

terminates and the current upper bound is the optimum.  Steps five and six are 

repeated until the solution is found.  Typically a maximum of 3 – 4 iterations are 

required before the optimal solution is found.   

 

This new optimization method does not require that the discrete variables be 

relaxed, since a lower bounding space is formed for every discrete variable combination.  

This allows it to be used on engineering codes which can not be executed at non-discrete 

settings for some of their input values.  The flow chart, first shown in Chapter 5, which 

outlines the solution process developed for this research, is presented again in Figure 38. 

 

The new optimization procedure successfully integrates techniques from many 

different optimization fields.  The basic strategy of using a set of non-increasing upper 

bounds and non-decreasing lower bounds to solve a mixed-input optimization problem is 

common to mixed-integer nonlinear programming methods.  Local numerical 

optimization methods are used to find the optimum of the true continuous space and the 

lower bounding space for each discrete variable combination.  Using design of 
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experiments to form response surface equations is an approximation technique typically 

employed when trying to optimize time consuming analyses.  Finally, the convex 

underestimator used to form the lower bounds was originally developed for use in the 

field of global optimization. 

 

Find lower bound (LB) of the 
expanded continuous space 
for each discrete variable 
combination.  Set current 
upper bound (UB) to    .

Solve the NLP of the true 
continuous space resulting 

from fixing the discrete 
variables to the values 
giving the lowest LB.

Set current UB equal to 
NLP solution.

Is solution of NLP feasible
and less than current UB?

Does a feasible discrete 
variable combination 

have a LB < UB?

End:
Current UB is 

optimal solution.
If UB =    , no 

feasible solution.

yes

yes

Eliminate current 
discrete variable 

combination from 
further consideration.

no
no

∞

∞
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∞

 

Figure 38: Flowchart for New Optimization Procedure (Repeated) 

  

 The accuracy of the new optimization procedure was tested by comparing it to a 

baseline method also implemented for this research.  The baseline method’s solution 

strategy was to simply solve for the optimum of the true continuous design space for all 

the discrete variable combinations and then chose the best optimum as the final solution.  

This method was easily implemented, since the optimum of the continuous design space 

can be found using one of the many available constrained nonlinear optimization 

techniques.  Six different optimization problems were solved by both the baseline method 
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and the new method.  The objective of five of the six problems was to maximize the 

specific impulse of the engine, while the objective for the sixth problem was to minimize 

the engine’s development cost.  The number of constraints for each of these problems 

varied from zero to four and included equality constraints.  For all six cases, the optimal 

solution found by the new method agreed with the solution found using the baseline 

method. 

 

 The solution time required to solve the engine optimization problems using the 

baseline optimization method varied between one and four days for each of the six cases 

tested.  This makes this method impractical for use in a conceptual design environment.  

The new optimization method, which was developed for use in such an environment, 

only takes between 1 to 1 ½ hours to optimize each of the six cases.  Compared to the 

baseline optimization method, this represents an average time savings of 97% for each 

design case. 

 

 

8.2 Comments and Recommendations 

 

 This new optimization method is flexible enough that it can be applied to other 

optimization problems not involving liquid rocket engine design.  The method will work 

best, compared to other methods, on problems where the optimization values are supplied 

by an analysis with the following features. 
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§ Mixed-Integer inputs where the discrete variables can not be relaxed 

§ A continuous variable design space that is smooth and free of discontinuities 

§ Objective and constraint values supplied by an analysis that is expensive (time 

consuming) to run  

 

The new method makes no assumptions on the behavior of the discrete design 

space.  Therefore, discrete design spaces that are highly nonlinear or even multi-modal 

pose no problem.  Also, the new method is able to optimize problems where the 

continuous variables can be relaxed, however other methods that can take advantage of 

the relaxation might prove more efficient.  The method is also able to optimize problems 

using fast running analyses, although the true potential of the new method is seen when 

used in conjunction with a more time consuming code.  For this research it was assumed 

that the optimum of the true continuous design space could be found using sequential 

linear programming.  However, if the continuous design space was not well-behaved, the 

local optimization technique (SLP) used to find the optimal solutions of the true 

continuous design spaces may fail.  The new method could be adjusted to handle poorly 

behaved continuous spaces by using global optimization methods instead of local 

optimization methods and by using a different meta-model type as the basis for the lower 

bounding equations.   

 

 The response surface equations of the continuous spaces will most likely not 

provide a completely accurate representation of the true continuous spaces being 

modeled.  Therefore, using just the original response surface equations to determine 
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which discrete variable combinations to investigate further, could lead to the algorithm 

terminating at a sub-optimal solution.  There are several potential ways in which the 

RSE’s could be adjusted in order to make it more likely that the true optimal solution will 

be found.  For this research the RSE’s were turned into lower bounding equations using 

underestimation techniques.  The ability to determine both upper and lower bounds of the 

optimum for each discrete variable combination is valuable because there is a body of 

knowledge regarding decomposition methods which make use of these bounds.  Other 

possible ways to adjust the RSE’s do not fit into this body of knowledge and are therefore 

not as valuable. 

 

 The test problems solved in the final application included 110 distinct discrete 

variable combinations.  However, this does not represent the upper limit that can be 

handled by the new procedure.  This number could easily be expanded without having an 

adverse effect on the algorithm’s performance.  In fact, as the number of discrete variable 

combinations is increased the new method should further outperform the baseline method 

because a larger percentage of the discrete variable combinations can be eliminated from 

further consideration as a result of their lowering bounding values.  As the number of 

discrete variable combinations increase the amount of preprocessing time also increases.  

However, this increase is linear and therefore problems involving a large number of 

discrete variable combinations (possibly several hundred) may still be efficiently solved 

by the new method.   
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There were four continuous input variables for the final application of the new 

optimization method.  This number could be expanded as needed to meet the input 

requirements of the analysis being optimized.  However, the growth in the number of 

continuous variables has the potential to significantly increase the amount of 

preprocessing time required to form the lower bounding equations.  This upfront 

investment of computational time must be manageable and this will most likely limit this 

new method to applications with a maximum of about ten continuous input variables.  

 

 This method could also have an application in the preliminary phase of design, 

where higher fidelity codes are typically used.  The longer it takes the analysis code to 

execute, the fewer number of times it can be called during the optimization procedure, if 

a solution is desired in a timely fashion.  If one is forced to use the baseline method to 

optimize the mixed-inputs of a high fidelity code, the optimization process might have to 

be avoided.  However, the new optimization scheme only requires the solution of the true 

design space for a limited number of discrete variable combinations and this has the 

potential to greatly reduce the optimization time for a high fidelity code.  The 

preprocessing time required to form the lower bounding equations will increase as the 

analysis code execution time increases, but this preprocessing only needs to be done once 

and can be completed off-line before the optimization process begins. 

 

 The new optimization method developed for this research was used to find the 

optimal liquid rocket engine design subject to various constraints.  This provides an 

optimal solution but no measure of the sensitivity or robustness of the final answer.  
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Knowledge of these characteristics is desirable because many uncertainties exist in the 

early phases of design.  One way to determine a more robust engine design is to use a 

Monte Carlo analysis, which evaluates the engine code several thousand times at 

different input settings that are determined by distributions on the input variables.  This 

allows for confidence levels to be established for the final solution.  Since the Monte 

Carlo analysis requires that the engine design code be run many times, this type of robust 

design is most likely limited to a faster running engine code such as SCORES.  The new 

optimization method could be used in conjunction with a Monte Carlo analysis to find an 

optimal engine design, using SCORES, that meets a desired confidence level.  If a more 

detailed engine design code, such as PHATCAT is used, a Monte Carlo analysis will not 

be practical.  However, even with these slower running codes, sensitivities of the final 

solution with respect to the various input variables could be determined.  These 

sensitivities can then be used to decide which aspects of the rocket engine warrant further 

attention as the design matures. 

 

 There exists the possibility of improving the efficiency of the new optimization 

method by changing the meta-modeling technique that is used as the basis for the lower 

bounding equations.  The current response surface equations could be replaced by a 

different model, which might allow the lower bounds to more accurately represent the 

true design space.  One alternate meta-modeling technique that might be explored is the 

use of neural networks [115,116].  Neural networks could offer an advantage since the 

mathematical form of the meta-model (i.e. choosing a 2nd order RSE) does not have to be 
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specified beforehand.  Possible drawbacks of using a neural network include the amount 

of information about the design space that is needed to sufficiently train the network.  

 

 The potential also exists to improve the efficiency and robustness of the new 

optimization method by monitoring the values produced while optimizing the true 

continuous design spaces and then comparing these values to the lower bound values at 

those points.  This has two benefits.  First, if a point in the design space is found where 

the lower bounding equations do not produce a true lower bound, the equations can be 

adjusted to provide the proper bounds at this design point.  This would help make the 

method more robust.  Conversely, if it is found that the lower bounding equations are 

severely underestimating the design space, they can be adjusted to more closely represent 

the true space.  This adjustment will help increase the efficiency of the method.  Over 

time, for a specific analysis, these two techniques could be used to refine the lower 

bounding equations and increase the method’s overall performance. 
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APPENDIX A 

PROOF – OF – CONCEPT CASE RESULTS 

Table 67: Results for Proof-of-Concept - Case 1 

Combination ( )xL  for Ideal Isp (sec) ( )xf  for Ideal Isp (sec) 
1 479.0166 476.3058 
2 380.0762 379.2494 
3 363.7709 363.0051 
4 355.9897 355.1814 
5 353.3577 352.5439 
6 356.3197 355.5087 
7 352.3348 351.5297 
8 369.5238 368.0115 
9 368.8630 367.1405 
10 372.5755 371.2316 
11 373.9608 372.6618 
12 373.8997 372.6352 
13 372.3244 371.0496 

 

Table 68: Results for Proof-of-Concept - Case 2 

Combination ( )xL  for Ideal Isp (sec) ( )xf  for Ideal Isp (sec) 
1 infeasible infeasible 
2 353.5836 351.8992 
3 355.8054 354.0851 
4 327.0032 325.0494 
5 353.2061 352.1000 
6 356.3152 355.1791 
7 352.3348 351.4132 
8 368.0744 368.0260 
9 368.8487 367.1549 
10 370.7559 370.5969 
11 373.9608 372.6496 
12 373.8997 372.6352 
13 372.3244 371.0496 
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Table 69: Results for Proof-of-Concept - Case 3 

Combination ( )xL  for Ideal Isp (sec) ( )xf  for Ideal Isp (sec) 
1 infeasible infeasible 
2 infeasible infeasible 
3 infeasible infeasible 
4 infeasible infeasible 
5 337.0844 335.0312 
6 347.5704 345.7721 
7 351.5737 350.8995 
8 infeasible infeasible 
9 infeasible infeasible 
10 infeasible infeasible 
11 373.5289 372.0338 
12 373.8353 371.9839 
13 372.3223 370.3816 

 

 

 

Table 70: Results for Proof-of-Concept - Case 4 

Combination ( )xL  for Ideal Isp (sec) ( )xf  for Ideal Isp (sec) 
1 infeasible infeasible 
2 infeasible infeasible 
3 323.5633 322.0904 
4 infeasible infeasible 
5 339.1115 337.4974 
6 345.8222 343.3574 
7 345.4972 342.5479 
8 infeasible infeasible 
9 360.5188 358.3632 
10 infeasible infeasible 
11 371.3709 365.5147 
12 371.1657 366.6566 
13 370.1574 366.7363 
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Table 71: Results for Proof-of-Concept - Case 5 

Combination ( )xL  for Ideal Isp (sec) ( )xf  for Ideal Isp (sec) 
1 464.1924 462.4594 
2 363.6720 362.6143 
3 348.2165 347.2133 
4 340.6895 339.6517 
5 337.2956 337.0605 
6 340.1170 339.8688 
7 336.3533 336.2290 
8 356.3242 350.0854 
9 357.9620 355.6865 
10 360.7904 357.7760 
11 365.2410 358.6827 
12 363.3465 358.8387 
13 362.3694 357.3051 

 

 

 

Table 72: Results for Proof-of-Concept - Case 6 

Combination ( )xL  for Ideal Isp (sec) ( )xf  for Ideal Isp (sec) 
1 464.4992 462.6082 
2 363.3671 362.7511 
3 347.9542 347.3428 
4 340.3828 339.7855 
5 337.8098 337.1908 
6 340.6285 340.0003 
7 336.9488 336.3676 
8 356.6278 350.4507 
9 358.3828 355.7970 
10 360.8482 357.8891 
11 365.0047 358.7840 
12 363.1426 358.9493 
13 362.1946 357.4098 
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Table 73: Results for Proof-of-Concept - Case 7 

Combination ( )xL  for Ideal Isp (sec) ( )xf  for Ideal Isp (sec) 
1 470.1176 466.6425 
2 369.3971 367.6127 
3 353.6824 351.9483 
4 346.0350 344.2982 
5 343.2854 341.6823 
6 346.1744 344.5318 
7 342.3242 340.8128 
8 360.9450 358.4752 
9 362.8528 359.5017 
10 365.1701 361.8100 
11 368.4710 362.8184 
12 367.0542 362.9297 
13 365.9269 361.4098 

 

 

 

Table 74: Results for Proof-of-Concept - Case 8 

Combination ( )xL  for Ideal Isp (sec) ( )xf  for Ideal Isp (sec) 
1 infeasible infeasible 
2 infeasible infeasible 
3 326.9773 325.2923 
4 infeasible infeasible 
5 342.1558 340.6288 
6 347.8846 345.1155 
7 346.5635 344.1238 
8 infeasible infeasible 
9 362.5682 359.8209 
10 infeasible infeasible 
11 372.4407 366.8554 
12 372.0730 367.8708 
13 370.7460 367.7762 
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Table 75: Results for Proof-of-Concept - Case 9 

Combination ( )xL  for Ideal Isp (sec) ( )xf  for Ideal Isp (sec) 
1 infeasible infeasible 
2 infeasible infeasible 
3 340.4908 335.6902 
4 infeasible infeasible 
5 349.7881 347.4321 
6 354.2168 351.7300 
7 352.1923 350.2133 
8 infeasible infeasible 
9 367.6816 363.2751 
10 infeasible infeasible 
11 373.9597 372.0077 
12 373.8753 372.5209 
13 372.3201 370.9242 

 

 

 

Table 76: Results for Proof-of-Concept - Case 10 

Combination ( )xL  for Ideal Isp (sec) ( )xf  for Ideal Isp (sec) 
1 464.3736 459.9229 
2 363.1333 361.6224 
3 347.7168 346.3031 
4 340.2295 338.7311 
5 337.5242 336.1536 
6 340.3359 338.9547 
7 336.5650 335.3158 
8 356.4762 346.1678 
9 356.7792 354.9096 
10 360.2676 356.9867 
11 363.8689 357.8790 
12 362.0663 358.0523 
13 360.9506 356.5423 
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APPENDIX B 

FINAL APPLICATION VARIABLE BOUNDS 

 

Table 77: Continuous Input Variable Bounds (SSME) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 200000 750000 

Expansion Ratio 15 125 
Mixture Ratio 5.75 6.8 

Chamber Pressure (psia) 1500 3500 
 

 

Table 78: Continuous Input Variable Bounds (SSME_1PB_1T) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 275000 750000 

Expansion Ratio 15 125 
Mixture Ratio 5.75 6.8 

Chamber Pressure (psia) 1500 2850 
 

 

Table 79: Continuous Input Variable Bounds (Vulcain_LH2) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 80000 750000 

Expansion Ratio 15 125 
Mixture Ratio 5 7 

Chamber Pressure (psia) 500 3500 
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Table 80: Continuous Input Variable Bounds (Vulcain_RP1) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 80000 750000 

Expansion Ratio 15 125 
Mixture Ratio 3 5 

Chamber Pressure (psia) 500 2000 
 

 

Table 81: Continuous Input Variable Bounds (Vulcain_CH4) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 80000 750000 

Expansion Ratio 15 125 
Mixture Ratio 3 5 

Chamber Pressure (psia) 500 2000 
 

 

Table 82: Continuous Input Variable Bounds (Vulcain_C3H8) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 80000 750000 

Expansion Ratio 15 125 
Mixture Ratio 3 5 

Chamber Pressure (psia) 500 2000 
 

 

Table 83: Continuous Input Variable Bounds (Vulcain_LH2_1T) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 80000 750000 

Expansion Ratio 15 125 
Mixture Ratio 5 7 

Chamber Pressure (psia) 500 3500 
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Table 84: Continuous Input Variable Bounds (Vulcain_RP1_1T) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 80000 750000 

Expansion Ratio 15 125 
Mixture Ratio 3 5 

Chamber Pressure (psia) 500 2000 
 

 

Table 85: Continuous Input Variable Bounds (Vulcain_CH4_1T) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 80000 750000 

Expansion Ratio 15 125 
Mixture Ratio 3 5 

Chamber Pressure (psia) 500 2000 
 

 

Table 86: Continuous Input Variable Bounds (Vulcain_C3H8_1T) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 80000 750000 

Expansion Ratio 15 125 
Mixture Ratio 3 5 

Chamber Pressure (psia) 500 2000 
 

 

Table 87: Continuous Input Variable Bounds (Vulcain_LH2_NBP) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 80000 750000 

Expansion Ratio 15 125 
Mixture Ratio 5 7 

Chamber Pressure (psia) 500 2500 
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Table 88: Continuous Input Variable Bounds (Vulcain_RP1_NBP) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 80000 750000 

Expansion Ratio 15 125 
Mixture Ratio 3 5 

Chamber Pressure (psia) 500 2000 
 

 

Table 89: Continuous Input Variable Bounds (Vulcain_CH4_NBP) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 80000 750000 

Expansion Ratio 15 125 
Mixture Ratio 3 5 

Chamber Pressure (psia) 500 2000 
 

 

Table 90: Continuous Input Variable Bounds (Vulcain_C3H8_NBP) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 80000 750000 

Expansion Ratio 15 125 
Mixture Ratio 3 5 

Chamber Pressure (psia) 500 2000 
 

 

Table 91: Continuous Input Variable Bounds (Vulcain_LH2_1T_NBP) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 80000 750000 

Expansion Ratio 15 125 
Mixture Ratio 5 7 

Chamber Pressure (psia) 500 2500 
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Table 92: Continuous Input Variable Bounds (Vulcain_RP1_1T_NBP) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 80000 750000 

Expansion Ratio 15 125 
Mixture Ratio 3 5 

Chamber Pressure (psia) 500 2000 
 

 

Table 93: Continuous Input Variable Bounds (Vulcain_CH4_1T_NBP) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 80000 750000 

Expansion Ratio 15 125 
Mixture Ratio 3 5 

Chamber Pressure (psia) 500 2000 
 

 

Table 94: Continuous Input Variable Bounds (Vulcain_C3H8_1T_NBP) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 80000 750000 

Expansion Ratio 15 125 
Mixture Ratio 3 5 

Chamber Pressure (psia) 500 2000 
 

 

Table 95: Continuous Input Variable Bounds (RD180_RP1) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 300000 1250000 

Expansion Ratio 15 125 
Mixture Ratio 2 4 

Chamber Pressure (psia) 2500 4500 
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Table 96: Continuous Input Variable Bounds (RD180_CH4) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 300000 1250000 

Expansion Ratio 15 125 
Mixture Ratio 3 5 

Chamber Pressure (psia) 2500 4500 
 

 

Table 97: Continuous Input Variable Bounds (RD180_C3H8) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 300000 1250000 

Expansion Ratio 15 125 
Mixture Ratio 3 5 

Chamber Pressure (psia) 2500 4500 
 

 

Table 98: Continuous Input Variable Bounds (RLX) 

Continuous Input Variable Lower Bound Upper Bound 
Vacuum Thrust (lbs) 220000 425000 

Expansion Ratio 35 125 
Mixture Ratio 4.75 6.5 

Chamber Pressure (psia) 500 1750 
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APPENDIX C 

FINAL APPLICATION CASE RESULTS 

Table 99: Results for Final Application - Case 1 

Discrete 
Variable 

Combination 
Engine Cycle 

Maximum Allowable 
Turbine Inlet 

Temperature (R) 

Solution of Lower 
Bounding Space  

Solution of True 
Continuous Space 

1 Vulcain_LH2 1485 infeasible infeasible 
2 Vulcain_LH2 1870 infeasible infeasible 
3 Vulcain_LH2 1976 infeasible infeasible 
4 Vulcain_LH2 2068 462.06 453.09 
5 Vulcain_LH2 2250 462.06 453.85 
6 Vulcain_RP1 1485 infeasible infeasible 
7 Vulcain_RP1 1870 331.67 329.92 
8 Vulcain_RP1 1976 331.67 329.92 
9 Vulcain_RP1 2068 331.67 329.92 

10 Vulcain_RP1 2250 331.67 329.92 
11 Vulcain_CH4 1485 infeasible infeasible 
12 Vulcain_CH4 1870 infeasible infeasible 
13 Vulcain_CH4 1976 infeasible infeasible 
14 Vulcain_CH4 2068 360.49 354.91 
15 Vulcain_CH4 2250 364.54 361.22 
16 Vulcain_C3H8 1485 infeasible infeasible 
17 Vulcain_C3H8 1870 infeasible infeasible 
18 Vulcain_C3H8 1976 349.11 342.84 
19 Vulcain_C3H8 2068 351.68 347.40 
20 Vulcain_C3H8 2250 351.68 348.96 
21 Vulcain_LH2_1T 1485 infeasible infeasible 
22 Vulcain_LH2_1T 1870 452.99 447.44 
23 Vulcain_LH2_1T 1976 452.99 447.44 
24 Vulcain_LH2_1T 2068 452.99 447.44 
25 Vulcain_LH2_1T 2250 452.99 447.44 
26 Vulcain_RP1_1T 1485 infeasible infeasible 
27 Vulcain_RP1_1T 1870 328.29 326.32 
28 Vulcain_RP1_1T 1976 328.29 326.32 
29 Vulcain_RP1_1T 2068 328.29 326.32 
30 Vulcain_RP1_1T 2250 328.29 326.32 
31 Vulcain_CH4_1T 1485 infeasible infeasible 
32 Vulcain_CH4_1T 1870 infeasible infeasible 
33 Vulcain_CH4_1T 1976 353.71 infeasible 
34 Vulcain_CH4_1T 2068 359.12 353.12 
35 Vulcain_CH4_1T 2250 360.47 357.21 
36 Vulcain_C3H8_1T 1485 infeasible infeasible 
37 Vulcain_C3H8_1T 1870 340.90 infeasible 
38 Vulcain_C3H8_1T 1976 346.96 341.58 
39 Vulcain_C3H8_1T 2068 347.30 344.66 
40 Vulcain_C3H8_1T 2250 347.31 344.66 
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Table 99: Results for Final Application - Case 1 (Continued) 
 

Discrete 
Variable 

Combination 
Engine Cycle 

Maximum Allowable 
Turbine Inlet 

Temperature (R) 

Solution of Lower 
Bounding Space 

Solution of True 
Continuous Space 

41 SSME 1485 infeasible infeasible 
42 SSME 1870 infeasible infeasible 
43 SSME 1976 468.24 463.35 
44 SSME 2068 468.30 464.58 
45 SSME 2250 468.30 464.58 
46 Vulcain_LH2_NBP 1485 infeasible infeasible 
47 Vulcain_LH2_NBP 1870 infeasible infeasible 
48 Vulcain_LH2_NBP 1976 454.90 449.77 
49 Vulcain_LH2_NBP 2068 454.90 449.77 
50 Vulcain_LH2_NBP 2250 454.90 449.77 
51 Vulcain_RP1_NBP 1485 infeasible infeasible 
52 Vulcain_RP1_NBP 1870 328.60 326.85 
53 Vulcain_RP1_NBP 1976 328.60 326.85 
54 Vulcain_RP1_NBP 2068 328.60 326.85 
55 Vulcain_RP1_NBP 2250 328.60 326.85 
56 Vulcain_CH4_NBP 1485 infeasible infeasible 
57 Vulcain_CH4_NBP 1870 infeasible infeasible 
58 Vulcain_CH4_NBP 1976 infeasible infeasible 
59 Vulcain_CH4_NBP 2068 357.98 350.99 
60 Vulcain_CH4_NBP 2250 361.79 358.59 
61 Vulcain_C3H8_NBP 1485 infeasible infeasible 
62 Vulcain_C3H8_NBP 1870 infeasible infeasible 
63 Vulcain_C3H8_NBP 1976 346.55 337.65 
64 Vulcain_C3H8_NBP 2068 348.89 344.65 
65 Vulcain_C3H8_NBP 2250 348.89 346.15 
66 Vulcain_LH2_1T_NBP 1485 infeasible infeasible 
67 Vulcain_LH2_1T_NBP 1870 448.26 442.18 
68 Vulcain_LH2_1T_NBP 1976 448.26 442.18 
69 Vulcain_LH2_1T_NBP 2068 448.26 442.18 
70 Vulcain_LH2_1T_NBP 2250 448.26 442.18 
71 Vulcain_RP1_1T_NBP 1485 infeasible infeasible 
72 Vulcain_RP1_1T_NBP 1870 324.61 322.94 
73 Vulcain_RP1_1T_NBP 1976 324.61 322.94 
74 Vulcain_RP1_1T_NBP 2068 324.61 322.94 
75 Vulcain_RP1_1T_NBP 2250 324.61 322.94 
76 Vulcain_CH4_1T_NBP 1485 infeasible infeasible 
77 Vulcain_CH4_1T_NBP 1870 infeasible infeasible 
78 Vulcain_CH4_1T_NBP 1976 346.44 infeasible 
79 Vulcain_CH4_1T_NBP 2068 356.09 350.57 
80 Vulcain_CH4_1T_NBP 2250 357.63 354.46 
81 Vulcain_C3H8_1T_NBP 1485 infeasible infeasible 
82 Vulcain_C3H8_1T_NBP 1870 338.20 333.55 
83 Vulcain_C3H8_1T_NBP 1976 344.09 338.69 
84 Vulcain_C3H8_1T_NBP 2068 344.43 341.87 
85 Vulcain_C3H8_1T_NBP 2250 344.45 341.87 
86 SSME_1PB_1T 1485 infeasible infeasible 
87 SSME_1PB_1T 1870 441.57 infeasible 
88 SSME_1PB_1T 1976 466.01 462.22 
89 SSME_1PB_1T 2068 466.01 462.50 
90 SSME_1PB_1T 2250 466.01 462.50 
91 RD180_RP1 1485 367.81 355.53 
92 RD180_RP1 1870 369.23 362.83 
93 RD180_RP1 1976 369.23 362.92 
94 RD180_RP1 2068 369.23 362.92 
95 RD180_RP1 2250 369.23 362.92 
96 RD180_CH4 1485 377.05 372.22 
97 RD180_CH4 1870 381.48 377.46 
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Table 99: Results for Final Application - Case 1 (Continued) 
 

Discrete 
Variable 

Combination 
Engine Cycle 

Maximum Allowable 
Turbine Inlet 

Temperature (R) 

Solution of Lower 
Bounding Space 

Solution of True 
Continuous Space 

98 RD180_CH4 1976 381.48 377.46 
99 RD180_CH4 2068 381.48 377.46 

100 RD180_CH4 2250 381.48 377.46 
101 RD180_C3H8 1485 367.14 362.92 
102 RD180_C3H8 1870 370.35 367.47 
103 RD180_C3H8 1976 370.35 367.47 
104 RD180_C3H8 2068 370.35 367.47 
105 RD180_C3H8 2250 370.35 367.47 
106 RLX 1485 474.23 472.88 
107 RLX 1870 474.23 472.88 
108 RLX 1976 474.23 472.88 
109 RLX 2068 474.23 472.88 
110 RLX 2250 474.23 472.88 
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Table 100: Results for Final Application - Case 2 

Discrete 
Variable 

Combination 
Engine Cycle 

Maximum Allowable 
Turbine Inlet 

Temperature (R) 

Solution of Lower 
Bounding Space 

Solution of True 
Continuous Space 

1 Vulcain_LH2 1485 infeasible infeasible 
2 Vulcain_LH2 1870 infeasible infeasible 
3 Vulcain_LH2 1976 infeasible infeasible 
4 Vulcain_LH2 2068 461.97 452.13 
5 Vulcain_LH2 2250 461.97 453.20 
6 Vulcain_RP1 1485 infeasible infeasible 
7 Vulcain_RP1 1870 332.01 329.74 
8 Vulcain_RP1 1976 332.01 329.74 
9 Vulcain_RP1 2068 332.01 329.74 

10 Vulcain_RP1 2250 332.01 329.74 
11 Vulcain_CH4 1485 infeasible infeasible 
12 Vulcain_CH4 1870 infeasible infeasible 
13 Vulcain_CH4 1976 infeasible infeasible 
14 Vulcain_CH4 2068 360.52 354.59 
15 Vulcain_CH4 2250 364.56 360.88 
16 Vulcain_C3H8 1485 infeasible infeasible 
17 Vulcain_C3H8 1870 infeasible infeasible 
18 Vulcain_C3H8 1976 349.21 342.62 
19 Vulcain_C3H8 2068 351.76 347.18 
20 Vulcain_C3H8 2250 351.76 348.62 
21 Vulcain_LH2_1T 1485 infeasible infeasible 
22 Vulcain_LH2_1T 1870 453.12 446.78 
23 Vulcain_LH2_1T 1976 453.12 446.80 
24 Vulcain_LH2_1T 2068 453.12 446.80 
25 Vulcain_LH2_1T 2250 453.12 446.80 
26 Vulcain_RP1_1T 1485 infeasible infeasible 
27 Vulcain_RP1_1T 1870 328.38 326.14 
28 Vulcain_RP1_1T 1976 328.38 326.14 
29 Vulcain_RP1_1T 2068 328.38 326.14 
30 Vulcain_RP1_1T 2250 328.38 326.14 
31 Vulcain_CH4_1T 1485 infeasible infeasible 
32 Vulcain_CH4_1T 1870 infeasible infeasible 
33 Vulcain_CH4_1T 1976 352.30 infeasible 
34 Vulcain_CH4_1T 2068 359.25 353.03 
35 Vulcain_CH4_1T 2250 360.45 356.86 
36 Vulcain_C3H8_1T 1485 infeasible infeasible 
37 Vulcain_C3H8_1T 1870 338.27 infeasible 
38 Vulcain_C3H8_1T 1976 347.00 341.09 
39 Vulcain_C3H8_1T 2068 347.39 344.32 
40 Vulcain_C3H8_1T 2250 347.39 344.32 
41 SSME 1485 infeasible infeasible 
42 SSME 1870 infeasible infeasible 
43 SSME 1976 468.18 462.41 
44 SSME 2068 468.19 464.03 
45 SSME 2250 468.19 464.03 
46 Vulcain_LH2_NBP 1485 infeasible infeasible 
47 Vulcain_LH2_NBP 1870 infeasible infeasible 
48 Vulcain_LH2_NBP 1976 454.83 449.26 
49 Vulcain_LH2_NBP 2068 454.83 449.26 
50 Vulcain_LH2_NBP 2250 454.84 449.26 
51 Vulcain_RP1_NBP 1485 infeasible infeasible 
52 Vulcain_RP1_NBP 1870 328.92 326.67 
53 Vulcain_RP1_NBP 1976 328.92 326.67 
54 Vulcain_RP1_NBP 2068 328.92 326.67 
55 Vulcain_RP1_NBP 2250 328.92 326.67 
56 Vulcain_CH4_NBP 1485 infeasible infeasible 
57 Vulcain_CH4_NBP 1870 infeasible infeasible 
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Table 100: Results for Final Application - Case 2 (Continued) 
 

Discrete 
Variable 

Combination 
Engine Cycle 

Maximum Allowable 
Turbine Inlet 

Temperature (R) 

Solution of Lower 
Bounding Space 

Solution of True 
Continuous Space 

58 Vulcain_CH4_NBP 1976 infeasible infeasible 
59 Vulcain_CH4_NBP 2068 357.99 352.38 
60 Vulcain_CH4_NBP 2250 361.90 357.49 
61 Vulcain_C3H8_NBP 1485 infeasible infeasible 
62 Vulcain_C3H8_NBP 1870 infeasible infeasible 
63 Vulcain_C3H8_NBP 1976 346.67 340.46 
64 Vulcain_C3H8_NBP 2068 348.85 344.47 
65 Vulcain_C3H8_NBP 2250 348.88 345.84 
66 Vulcain_LH2_1T_NBP 1485 infeasible infeasible 
67 Vulcain_LH2_1T_NBP 1870 448.21 441.67 
68 Vulcain_LH2_1T_NBP 1976 448.21 441.68 
69 Vulcain_LH2_1T_NBP 2068 448.21 441.68 
70 Vulcain_LH2_1T_NBP 2250 448.21 441.68 
71 Vulcain_RP1_1T_NBP 1485 infeasible infeasible 
72 Vulcain_RP1_1T_NBP 1870 324.94 322.73 
73 Vulcain_RP1_1T_NBP 1976 324.94 322.73 
74 Vulcain_RP1_1T_NBP 2068 324.94 322.73 
75 Vulcain_RP1_1T_NBP 2250 324.94 322.73 
76 Vulcain_CH4_1T_NBP 1485 infeasible infeasible 
77 Vulcain_CH4_1T_NBP 1870 infeasible infeasible 
78 Vulcain_CH4_1T_NBP 1976 344.94 infeasible 
79 Vulcain_CH4_1T_NBP 2068 356.19 349.97 
80 Vulcain_CH4_1T_NBP 2250 357.62 354.12 
81 Vulcain_C3H8_1T_NBP 1485 infeasible infeasible 
82 Vulcain_C3H8_1T_NBP 1870 336.62 333.38 
83 Vulcain_C3H8_1T_NBP 1976 344.13 338.27 
84 Vulcain_C3H8_1T_NBP 2068 344.53 341.55 
85 Vulcain_C3H8_1T_NBP 2250 344.53 341.55 
86 SSME_1PB_1T 1485 infeasible infeasible 
87 SSME_1PB_1T 1870 infeasible infeasible 
88 SSME_1PB_1T 1976 466.00 461.16 
89 SSME_1PB_1T 2068 466.00 461.68 
90 SSME_1PB_1T 2250 466.00 461.68 
91 RD180_RP1 1485 367.09 355.26 
92 RD180_RP1 1870 368.52 362.61 
93 RD180_RP1 1976 368.52 362.65 
94 RD180_RP1 2068 368.52 362.24 
95 RD180_RP1 2250 368.52 362.24 
96 RD180_CH4 1485 376.35 371.66 
97 RD180_CH4 1870 380.81 376.97 
98 RD180_CH4 1976 380.81 376.97 
99 RD180_CH4 2068 380.81 376.97 

100 RD180_CH4 2250 380.81 376.97 
101 RD180_C3H8 1485 366.48 362.53 
102 RD180_C3H8 1870 369.95 367.26 
103 RD180_C3H8 1976 369.95 367.26 
104 RD180_C3H8 2068 369.95 367.26 
105 RD180_C3H8 2250 369.95 367.26 
106 RLX 1485 infeasible infeasible 
107 RLX 1870 infeasible infeasible 
108 RLX 1976 infeasible infeasible 
109 RLX 2068 infeasible infeasible 
110 RLX 2250 infeasible infeasible 
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Table 101: Results for Final Application - Case 3 

Discrete 
Variable 

Combination 
Engine Cycle 

Maximum Allowable 
Turbine Inlet 

Temperature (R) 

Solution of Lower 
Bounding Space 

Solution of True 
Continuous Space 

1 Vulcain_LH2 1485 infeasible infeasible 
2 Vulcain_LH2 1870 infeasible infeasible 
3 Vulcain_LH2 1976 infeasible infeasible 
4 Vulcain_LH2 2068 infeasible infeasible 
5 Vulcain_LH2 2250 infeasible infeasible 
6 Vulcain_RP1 1485 infeasible infeasible 
7 Vulcain_RP1 1870 332.07 329.74 
8 Vulcain_RP1 1976 332.07 329.74 
9 Vulcain_RP1 2068 332.07 329.74 

10 Vulcain_RP1 2250 332.07 329.74 
11 Vulcain_CH4 1485 infeasible infeasible 
12 Vulcain_CH4 1870 infeasible infeasible 
13 Vulcain_CH4 1976 infeasible infeasible 
14 Vulcain_CH4 2068 360.22 354.59 
15 Vulcain_CH4 2250 364.69 360.88 
16 Vulcain_C3H8 1485 infeasible infeasible 
17 Vulcain_C3H8 1870 infeasible infeasible 
18 Vulcain_C3H8 1976 348.76 342.62 
19 Vulcain_C3H8 2068 351.79 347.18 
20 Vulcain_C3H8 2250 351.80 348.61 
21 Vulcain_LH2_1T 1485 infeasible infeasible 
22 Vulcain_LH2_1T 1870 infeasible infeasible 
23 Vulcain_LH2_1T 1976 infeasible infeasible 
24 Vulcain_LH2_1T 2068 infeasible infeasible 
25 Vulcain_LH2_1T 2250 infeasible infeasible 
26 Vulcain_RP1_1T 1485 infeasible infeasible 
27 Vulcain_RP1_1T 1870 328.45 326.14 
28 Vulcain_RP1_1T 1976 328.45 326.14 
29 Vulcain_RP1_1T 2068 328.45 326.14 
30 Vulcain_RP1_1T 2250 328.45 326.14 
31 Vulcain_CH4_1T 1485 infeasible infeasible 
32 Vulcain_CH4_1T 1870 infeasible infeasible 
33 Vulcain_CH4_1T 1976 353.74 infeasible 
34 Vulcain_CH4_1T 2068 359.07 353.03 
35 Vulcain_CH4_1T 2250 360.48 356.87 
36 Vulcain_C3H8_1T 1485 infeasible infeasible 
37 Vulcain_C3H8_1T 1870 340.40 infeasible 
38 Vulcain_C3H8_1T 1976 346.92 341.09 
39 Vulcain_C3H8_1T 2068 347.42 344.32 
40 Vulcain_C3H8_1T 2250 347.43 344.33 
41 SSME 1485 infeasible infeasible 
42 SSME 1870 infeasible infeasible 
43 SSME 1976 infeasible infeasible 
44 SSME 2068 infeasible infeasible 
45 SSME 2250 infeasible infeasible 
46 Vulcain_LH2_NBP 1485 infeasible infeasible 
47 Vulcain_LH2_NBP 1870 infeasible infeasible 
48 Vulcain_LH2_NBP 1976 infeasible infeasible 
49 Vulcain_LH2_NBP 2068 infeasible infeasible 
50 Vulcain_LH2_NBP 2250 infeasible infeasible 
51 Vulcain_RP1_NBP 1485 infeasible infeasible 
52 Vulcain_RP1_NBP 1870 328.97 326.67 
53 Vulcain_RP1_NBP 1976 328.98 326.67 
54 Vulcain_RP1_NBP 2068 328.98 326.67 
55 Vulcain_RP1_NBP 2250 328.98 326.67 
56 Vulcain_CH4_NBP 1485 infeasible infeasible 
57 Vulcain_CH4_NBP 1870 infeasible infeasible 
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Table 101: Results for Final Application - Case 3 (Continued) 
 

Discrete 
Variable 

Combination 
Engine Cycle 

Maximum Allowable 
Turbine Inlet 

Temperature (R) 

Solution of Lower 
Bounding Space 

Solution of True 
Continuous Space 

58 Vulcain_CH4_NBP 1976 infeasible infeasible 
59 Vulcain_CH4_NBP 2068 357.95 352.38 
60 Vulcain_CH4_NBP 2250 361.92 357.49 
61 Vulcain_C3H8_NBP 1485 infeasible infeasible 
62 Vulcain_C3H8_NBP 1870 infeasible infeasible 
63 Vulcain_C3H8_NBP 1976 346.29 340.43 
64 Vulcain_C3H8_NBP 2068 348.93 344.69 
65 Vulcain_C3H8_NBP 2250 348.93 345.84 
66 Vulcain_LH2_1T_NBP 1485 infeasible infeasible 
67 Vulcain_LH2_1T_NBP 1870 448.27 infeasible 
68 Vulcain_LH2_1T_NBP 1976 448.27 infeasible 
69 Vulcain_LH2_1T_NBP 2068 448.27 infeasible 
70 Vulcain_LH2_1T_NBP 2250 448.27 infeasible 
71 Vulcain_RP1_1T_NBP 1485 infeasible infeasible 
72 Vulcain_RP1_1T_NBP 1870 325.00 322.73 
73 Vulcain_RP1_1T_NBP 1976 325.00 322.73 
74 Vulcain_RP1_1T_NBP 2068 325.00 322.73 
75 Vulcain_RP1_1T_NBP 2250 325.00 322.73 
76 Vulcain_CH4_1T_NBP 1485 infeasible infeasible 
77 Vulcain_CH4_1T_NBP 1870 infeasible infeasible 
78 Vulcain_CH4_1T_NBP 1976 350.89 infeasible 
79 Vulcain_CH4_1T_NBP 2068 355.96 349.97 
80 Vulcain_CH4_1T_NBP 2250 357.64 354.12 
81 Vulcain_C3H8_1T_NBP 1485 infeasible infeasible 
82 Vulcain_C3H8_1T_NBP 1870 337.70 333.38 
83 Vulcain_C3H8_1T_NBP 1976 344.06 338.31 
84 Vulcain_C3H8_1T_NBP 2068 344.56 341.55 
85 Vulcain_C3H8_1T_NBP 2250 344.56 341.55 
86 SSME_1PB_1T 1485 infeasible infeasible 
87 SSME_1PB_1T 1870 infeasible infeasible 
88 SSME_1PB_1T 1976 466.03 461.02 
89 SSME_1PB_1T 2068 466.03 461.69 
90 SSME_1PB_1T 2250 466.03 461.69 
91 RD180_RP1 1485 367.28 355.26 
92 RD180_RP1 1870 368.54 362.61 
93 RD180_RP1 1976 368.54 362.65 
94 RD180_RP1 2068 368.54 362.65 
95 RD180_RP1 2250 368.54 362.65 
96 RD180_CH4 1485 376.35 371.66 
97 RD180_CH4 1870 380.83 376.91 
98 RD180_CH4 1976 380.83 376.91 
99 RD180_CH4 2068 380.83 376.91 

100 RD180_CH4 2250 380.83 376.91 
101 RD180_C3H8 1485 366.45 362.53 
102 RD180_C3H8 1870 370.03 367.26 
103 RD180_C3H8 1976 370.03 367.26 
104 RD180_C3H8 2068 370.03 367.26 
105 RD180_C3H8 2250 370.03 367.26 
106 RLX 1485 infeasible infeasible 
107 RLX 1870 infeasible infeasible 
108 RLX 1976 infeasible infeasible 
109 RLX 2068 infeasible infeasible 
110 RLX 2250 infeasible infeasible 
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Table 102: Results for Final Application - Case 4 

Discrete 
Variable 

Combination 
Engine Cycle 

Maximum Allowable 
Turbine Inlet 

Temperature (R) 

Solution of Lower 
Bounding Space 

Solution of True 
Continuous Space 

1 Vulcain_LH2 1485 infeasible infeasible 
2 Vulcain_LH2 1870 infeasible infeasible 
3 Vulcain_LH2 1976 infeasible infeasible 
4 Vulcain_LH2 2068 infeasible infeasible 
5 Vulcain_LH2 2250 infeasible infeasible 
6 Vulcain_RP1 1485 infeasible infeasible 
7 Vulcain_RP1 1870 308.38 302.24 
8 Vulcain_RP1 1976 infeasible infeasible 
9 Vulcain_RP1 2068 infeasible infeasible 

10 Vulcain_RP1 2250 infeasible infeasible 
11 Vulcain_CH4 1485 infeasible infeasible 
12 Vulcain_CH4 1870 infeasible infeasible 
13 Vulcain_CH4 1976 infeasible infeasible 
14 Vulcain_CH4 2068 infeasible infeasible 
15 Vulcain_CH4 2250 infeasible infeasible 
16 Vulcain_C3H8 1485 infeasible infeasible 
17 Vulcain_C3H8 1870 infeasible infeasible 
18 Vulcain_C3H8 1976 infeasible infeasible 
19 Vulcain_C3H8 2068 infeasible infeasible 
20 Vulcain_C3H8 2250 infeasible infeasible 
21 Vulcain_LH2_1T 1485 infeasible infeasible 
22 Vulcain_LH2_1T 1870 infeasible infeasible 
23 Vulcain_LH2_1T 1976 infeasible infeasible 
24 Vulcain_LH2_1T 2068 infeasible infeasible 
25 Vulcain_LH2_1T 2250 infeasible infeasible 
26 Vulcain_RP1_1T 1485 infeasible infeasible 
27 Vulcain_RP1_1T 1870 318.51 314.24 
28 Vulcain_RP1_1T 1976 infeasible infeasible 
29 Vulcain_RP1_1T 2068 infeasible infeasible 
30 Vulcain_RP1_1T 2250 infeasible infeasible 
31 Vulcain_CH4_1T 1485 infeasible infeasible 
32 Vulcain_CH4_1T 1870 infeasible infeasible 
33 Vulcain_CH4_1T 1976 infeasible infeasible 
34 Vulcain_CH4_1T 2068 infeasible infeasible 
35 Vulcain_CH4_1T 2250 infeasible infeasible 
36 Vulcain_C3H8_1T 1485 infeasible infeasible 
37 Vulcain_C3H8_1T 1870 infeasible infeasible 
38 Vulcain_C3H8_1T 1976 infeasible infeasible 
39 Vulcain_C3H8_1T 2068 infeasible infeasible 
40 Vulcain_C3H8_1T 2250 infeasible infeasible 
41 SSME 1485 infeasible infeasible 
42 SSME 1870 infeasible infeasible 
43 SSME 1976 infeasible infeasible 
44 SSME 2068 infeasible infeasible 
45 SSME 2250 infeasible infeasible 
46 Vulcain_LH2_NBP 1485 infeasible infeasible 
47 Vulcain_LH2_NBP 1870 infeasible infeasible 
48 Vulcain_LH2_NBP 1976 infeasible infeasible 
49 Vulcain_LH2_NBP 2068 infeasible infeasible 
50 Vulcain_LH2_NBP 2250 infeasible infeasible 
51 Vulcain_RP1_NBP 1485 infeasible infeasible 
52 Vulcain_RP1_NBP 1870 317.35 313.14 
53 Vulcain_RP1_NBP 1976 infeasible infeasible 
54 Vulcain_RP1_NBP 2068 infeasible infeasible 
55 Vulcain_RP1_NBP 2250 infeasible infeasible 
56 Vulcain_CH4_NBP 1485 infeasible infeasible 
57 Vulcain_CH4_NBP 1870 infeasible infeasible 
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Table 102: Results for Final Application - Case 4 (Continued) 
 

Discrete 
Variable 

Combination 
Engine Cycle 

Maximum Allowable 
Turbine Inlet 

Temperature (R) 

Solution of Lower 
Bounding Space 

Solution of True 
Continuous Space 

58 Vulcain_CH4_NBP 1976 infeasible infeasible 
59 Vulcain_CH4_NBP 2068 infeasible infeasible 
60 Vulcain_CH4_NBP 2250 infeasible infeasible 
61 Vulcain_C3H8_NBP 1485 infeasible infeasible 
62 Vulcain_C3H8_NBP 1870 infeasible infeasible 
63 Vulcain_C3H8_NBP 1976 infeasible infeasible 
64 Vulcain_C3H8_NBP 2068 infeasible infeasible 
65 Vulcain_C3H8_NBP 2250 infeasible infeasible 
66 Vulcain_LH2_1T_NBP 1485 infeasible infeasible 
67 Vulcain_LH2_1T_NBP 1870 infeasible infeasible 
68 Vulcain_LH2_1T_NBP 1976 infeasible infeasible 
69 Vulcain_LH2_1T_NBP 2068 infeasible infeasible 
70 Vulcain_LH2_1T_NBP 2250 infeasible infeasible 
71 Vulcain_RP1_1T_NBP 1485 infeasible infeasible 
72 Vulcain_RP1_1T_NBP 1870 320.74 314.77 
73 Vulcain_RP1_1T_NBP 1976 infeasible infeasible 
74 Vulcain_RP1_1T_NBP 2068 infeasible infeasible 
75 Vulcain_RP1_1T_NBP 2250 infeasible infeasible 
76 Vulcain_CH4_1T_NBP 1485 infeasible infeasible 
77 Vulcain_CH4_1T_NBP 1870 infeasible infeasible 
78 Vulcain_CH4_1T_NBP 1976 infeasible infeasible 
79 Vulcain_CH4_1T_NBP 2068 infeasible infeasible 
80 Vulcain_CH4_1T_NBP 2250 infeasible infeasible 
81 Vulcain_C3H8_1T_NBP 1485 infeasible infeasible 
82 Vulcain_C3H8_1T_NBP 1870 infeasible infeasible 
83 Vulcain_C3H8_1T_NBP 1976 infeasible infeasible 
84 Vulcain_C3H8_1T_NBP 2068 infeasible infeasible 
85 Vulcain_C3H8_1T_NBP 2250 infeasible infeasible 
86 SSME_1PB_1T 1485 infeasible infeasible 
87 SSME_1PB_1T 1870 infeasible infeasible 
88 SSME_1PB_1T 1976 infeasible infeasible 
89 SSME_1PB_1T 2068 infeasible infeasible 
90 SSME_1PB_1T 2250 infeasible infeasible 
91 RD180_RP1 1485 367.28 355.26 
92 RD180_RP1 1870 368.40 358.99 
93 RD180_RP1 1976 infeasible infeasible 
94 RD180_RP1 2068 infeasible infeasible 
95 RD180_RP1 2250 infeasible infeasible 
96 RD180_CH4 1485 376.36 371.64 
97 RD180_CH4 1870 infeasible infeasible 
98 RD180_CH4 1976 infeasible infeasible 
99 RD180_CH4 2068 infeasible infeasible 

100 RD180_CH4 2250 infeasible infeasible 
101 RD180_C3H8 1485 366.34 361.70 
102 RD180_C3H8 1870 infeasible infeasible 
103 RD180_C3H8 1976 infeasible infeasible 
104 RD180_C3H8 2068 infeasible infeasible 
105 RD180_C3H8 2250 infeasible infeasible 
106 RLX 1485 infeasible infeasible 
107 RLX 1870 infeasible infeasible 
108 RLX 1976 infeasible infeasible 
109 RLX 2068 infeasible infeasible 
110 RLX 2250 infeasible infeasible 
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Table 103: Results for Final Application - Case 5 

Discrete 
Variable 

Combination 
Engine Cycle 

Maximum Allowable 
Turbine Inlet 

Temperature (R) 

Solution of Lower 
Bounding Space 

Solution of True 
Continuous Space 

1 Vulcain_LH2 1485 infeasible infeasible 
2 Vulcain_LH2 1870 infeasible infeasible 
3 Vulcain_LH2 1976 infeasible infeasible 
4 Vulcain_LH2 2068 infeasible infeasible 
5 Vulcain_LH2 2250 infeasible infeasible 
6 Vulcain_RP1 1485 infeasible infeasible 
7 Vulcain_RP1 1870 infeasible infeasible 
8 Vulcain_RP1 1976 infeasible infeasible 
9 Vulcain_RP1 2068 infeasible infeasible 

10 Vulcain_RP1 2250 infeasible infeasible 
11 Vulcain_CH4 1485 infeasible infeasible 
12 Vulcain_CH4 1870 infeasible infeasible 
13 Vulcain_CH4 1976 infeasible infeasible 
14 Vulcain_CH4 2068 infeasible infeasible 
15 Vulcain_CH4 2250 infeasible infeasible 
16 Vulcain_C3H8 1485 infeasible infeasible 
17 Vulcain_C3H8 1870 infeasible infeasible 
18 Vulcain_C3H8 1976 infeasible infeasible 
19 Vulcain_C3H8 2068 infeasible infeasible 
20 Vulcain_C3H8 2250 infeasible infeasible 
21 Vulcain_LH2_1T 1485 infeasible infeasible 
22 Vulcain_LH2_1T 1870 infeasible infeasible 
23 Vulcain_LH2_1T 1976 infeasible infeasible 
24 Vulcain_LH2_1T 2068 infeasible infeasible 
25 Vulcain_LH2_1T 2250 infeasible infeasible 
26 Vulcain_RP1_1T 1485 infeasible infeasible 
27 Vulcain_RP1_1T 1870 infeasible infeasible 
28 Vulcain_RP1_1T 1976 infeasible infeasible 
29 Vulcain_RP1_1T 2068 infeasible infeasible 
30 Vulcain_RP1_1T 2250 infeasible infeasible 
31 Vulcain_CH4_1T 1485 infeasible infeasible 
32 Vulcain_CH4_1T 1870 infeasible infeasible 
33 Vulcain_CH4_1T 1976 infeasible infeasible 
34 Vulcain_CH4_1T 2068 infeasible infeasible 
35 Vulcain_CH4_1T 2250 infeasible infeasible 
36 Vulcain_C3H8_1T 1485 infeasible infeasible 
37 Vulcain_C3H8_1T 1870 infeasible infeasible 
38 Vulcain_C3H8_1T 1976 infeasible infeasible 
39 Vulcain_C3H8_1T 2068 infeasible infeasible 
40 Vulcain_C3H8_1T 2250 infeasible infeasible 
41 SSME 1485 infeasible infeasible 
42 SSME 1870 infeasible infeasible 
43 SSME 1976 infeasible infeasible 
44 SSME 2068 infeasible infeasible 
45 SSME 2250 infeasible infeasible 
46 Vulcain_LH2_NBP 1485 infeasible infeasible 
47 Vulcain_LH2_NBP 1870 infeasible infeasible 
48 Vulcain_LH2_NBP 1976 infeasible infeasible 
49 Vulcain_LH2_NBP 2068 infeasible infeasible 
50 Vulcain_LH2_NBP 2250 infeasible infeasible 
51 Vulcain_RP1_NBP 1485 infeasible infeasible 
52 Vulcain_RP1_NBP 1870 infeasible infeasible 
53 Vulcain_RP1_NBP 1976 infeasible infeasible 
54 Vulcain_RP1_NBP 2068 infeasible infeasible 
55 Vulcain_RP1_NBP 2250 infeasible infeasible 
56 Vulcain_CH4_NBP 1485 infeasible infeasible 
57 Vulcain_CH4_NBP 1870 infeasible infeasible 
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Table 103: Results for Final Application - Case 5 (Continued) 
 

Discrete 
Variable 

Combination 
Engine Cycle 

Maximum Allowable 
Turbine Inlet 

Temperature (R) 

Solution of Lower 
Bounding Space 

Solution of True 
Continuous Space 

58 Vulcain_CH4_NBP 1976 infeasible infeasible 
59 Vulcain_CH4_NBP 2068 infeasible infeasible 
60 Vulcain_CH4_NBP 2250 infeasible infeasible 
61 Vulcain_C3H8_NBP 1485 infeasible infeasible 
62 Vulcain_C3H8_NBP 1870 infeasible infeasible 
63 Vulcain_C3H8_NBP 1976 infeasible infeasible 
64 Vulcain_C3H8_NBP 2068 infeasible infeasible 
65 Vulcain_C3H8_NBP 2250 infeasible infeasible 
66 Vulcain_LH2_1T_NBP 1485 infeasible infeasible 
67 Vulcain_LH2_1T_NBP 1870 infeasible infeasible 
68 Vulcain_LH2_1T_NBP 1976 infeasible infeasible 
69 Vulcain_LH2_1T_NBP 2068 infeasible infeasible 
70 Vulcain_LH2_1T_NBP 2250 infeasible infeasible 
71 Vulcain_RP1_1T_NBP 1485 infeasible infeasible 
72 Vulcain_RP1_1T_NBP 1870 295.63 infeasible 
73 Vulcain_RP1_1T_NBP 1976 infeasible infeasible 
74 Vulcain_RP1_1T_NBP 2068 infeasible infeasible 
75 Vulcain_RP1_1T_NBP 2250 infeasible infeasible 
76 Vulcain_CH4_1T_NBP 1485 infeasible infeasible 
77 Vulcain_CH4_1T_NBP 1870 infeasible infeasible 
78 Vulcain_CH4_1T_NBP 1976 infeasible infeasible 
79 Vulcain_CH4_1T_NBP 2068 infeasible infeasible 
80 Vulcain_CH4_1T_NBP 2250 infeasible infeasible 
81 Vulcain_C3H8_1T_NBP 1485 infeasible infeasible 
82 Vulcain_C3H8_1T_NBP 1870 infeasible infeasible 
83 Vulcain_C3H8_1T_NBP 1976 infeasible infeasible 
84 Vulcain_C3H8_1T_NBP 2068 infeasible infeasible 
85 Vulcain_C3H8_1T_NBP 2250 infeasible infeasible 
86 SSME_1PB_1T 1485 infeasible infeasible 
87 SSME_1PB_1T 1870 infeasible infeasible 
88 SSME_1PB_1T 1976 infeasible infeasible 
89 SSME_1PB_1T 2068 infeasible infeasible 
90 SSME_1PB_1T 2250 infeasible infeasible 
91 RD180_RP1 1485 367.27 355.18 
92 RD180_RP1 1870 infeasible infeasible 
93 RD180_RP1 1976 infeasible infeasible 
94 RD180_RP1 2068 infeasible infeasible 
95 RD180_RP1 2250 infeasible infeasible 
96 RD180_CH4 1485 354.80 infeasible 
97 RD180_CH4 1870 infeasible infeasible 
98 RD180_CH4 1976 infeasible infeasible 
99 RD180_CH4 2068 infeasible infeasible 

100 RD180_CH4 2250 infeasible infeasible 
101 RD180_C3H8 1485 infeasible infeasible 
102 RD180_C3H8 1870 infeasible infeasible 
103 RD180_C3H8 1976 infeasible infeasible 
104 RD180_C3H8 2068 infeasible infeasible 
105 RD180_C3H8 2250 infeasible infeasible 
106 RLX 1485 infeasible infeasible 
107 RLX 1870 infeasible infeasible 
108 RLX 1976 infeasible infeasible 
109 RLX 2068 infeasible infeasible 
110 RLX 2250 infeasible infeasible 

 

 



 
 

 181 

Table 104: Results for Final Application - Case 6 

Discrete 
Variable 

Combination 
Engine Cycle 

Maximum Allowable 
Turbine Inlet 

Temperature (R) 

Solution of Lower 
Bounding Space 

Solution of True 
Continuous Space 

1 Vulcain_LH2 1485 infeasible infeasible 
2 Vulcain_LH2 1870 infeasible infeasible 
3 Vulcain_LH2 1976 infeasible infeasible 
4 Vulcain_LH2 2068 814.60 821.28 
5 Vulcain_LH2 2250 849.90 859.98 
6 Vulcain_RP1 1485 infeasible infeasible 
7 Vulcain_RP1 1870 infeasible infeasible 
8 Vulcain_RP1 1976 infeasible infeasible 
9 Vulcain_RP1 2068 infeasible infeasible 

10 Vulcain_RP1 2250 infeasible infeasible 
11 Vulcain_CH4 1485 infeasible infeasible 
12 Vulcain_CH4 1870 infeasible infeasible 
13 Vulcain_CH4 1976 infeasible infeasible 
14 Vulcain_CH4 2068 infeasible infeasible 
15 Vulcain_CH4 2250 infeasible infeasible 
16 Vulcain_C3H8 1485 infeasible infeasible 
17 Vulcain_C3H8 1870 infeasible infeasible 
18 Vulcain_C3H8 1976 infeasible infeasible 
19 Vulcain_C3H8 2068 infeasible infeasible 
20 Vulcain_C3H8 2250 infeasible infeasible 
21 Vulcain_LH2_1T 1485 infeasible infeasible 
22 Vulcain_LH2_1T 1870 733.94 737.63 
23 Vulcain_LH2_1T 1976 771.59 776.34 
24 Vulcain_LH2_1T 2068 810.27 815.16 
25 Vulcain_LH2_1T 2250 848.77 853.97 
26 Vulcain_RP1_1T 1485 infeasible infeasible 
27 Vulcain_RP1_1T 1870 infeasible infeasible 
28 Vulcain_RP1_1T 1976 infeasible infeasible 
29 Vulcain_RP1_1T 2068 infeasible infeasible 
30 Vulcain_RP1_1T 2250 infeasible infeasible 
31 Vulcain_CH4_1T 1485 infeasible infeasible 
32 Vulcain_CH4_1T 1870 infeasible infeasible 
33 Vulcain_CH4_1T 1976 infeasible infeasible 
34 Vulcain_CH4_1T 2068 infeasible infeasible 
35 Vulcain_CH4_1T 2250 infeasible infeasible 
36 Vulcain_C3H8_1T 1485 infeasible infeasible 
37 Vulcain_C3H8_1T 1870 infeasible infeasible 
38 Vulcain_C3H8_1T 1976 infeasible infeasible 
39 Vulcain_C3H8_1T 2068 infeasible infeasible 
40 Vulcain_C3H8_1T 2250 infeasible infeasible 
41 SSME 1485 infeasible infeasible 
42 SSME 1870 infeasible infeasible 
43 SSME 1976 821.04 825.81 
44 SSME 2068 860.60 867.35 
45 SSME 2250 901.47 908.66 
46 Vulcain_LH2_NBP 1485 infeasible infeasible 
47 Vulcain_LH2_NBP 1870 infeasible infeasible 
48 Vulcain_LH2_NBP 1976 769.41 772.93 
49 Vulcain_LH2_NBP 2068 807.16 811.93 
50 Vulcain_LH2_NBP 2250 844.99 850.18 
51 Vulcain_RP1_NBP 1485 infeasible infeasible 
52 Vulcain_RP1_NBP 1870 infeasible infeasible 
53 Vulcain_RP1_NBP 1976 infeasible infeasible 
54 Vulcain_RP1_NBP 2068 infeasible infeasible 
55 Vulcain_RP1_NBP 2250 infeasible infeasible 
56 Vulcain_CH4_NBP 1485 infeasible infeasible 
57 Vulcain_CH4_NBP 1870 infeasible infeasible 
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Table 104: Results for Final Application - Case 6 (Continued) 
 

Discrete 
Variable 

Combination 
Engine Cycle 

Maximum Allowable 
Turbine Inlet 

Temperature (R) 

Solution of Lower 
Bounding Space 

Solution of True 
Continuous Space 

58 Vulcain_CH4_NBP 1976 infeasible infeasible 
59 Vulcain_CH4_NBP 2068 infeasible infeasible 
60 Vulcain_CH4_NBP 2250 infeasible infeasible 
61 Vulcain_C3H8_NBP 1485 infeasible infeasible 
62 Vulcain_C3H8_NBP 1870 infeasible infeasible 
63 Vulcain_C3H8_NBP 1976 infeasible infeasible 
64 Vulcain_C3H8_NBP 2068 infeasible infeasible 
65 Vulcain_C3H8_NBP 2250 infeasible infeasible 
66 Vulcain_LH2_1T_NBP 1485 infeasible infeasible 
67 Vulcain_LH2_1T_NBP 1870 723.27 729.46 
68 Vulcain_LH2_1T_NBP 1976 760.67 767.56 
69 Vulcain_LH2_1T_NBP 2068 798.17 805.93 
70 Vulcain_LH2_1T_NBP 2250 836.18 844.31 
71 Vulcain_RP1_1T_NBP 1485 infeasible infeasible 
72 Vulcain_RP1_1T_NBP 1870 infeasible infeasible 
73 Vulcain_RP1_1T_NBP 1976 infeasible infeasible 
74 Vulcain_RP1_1T_NBP 2068 infeasible infeasible 
75 Vulcain_RP1_1T_NBP 2250 infeasible infeasible 
76 Vulcain_CH4_1T_NBP 1485 infeasible infeasible 
77 Vulcain_CH4_1T_NBP 1870 infeasible infeasible 
78 Vulcain_CH4_1T_NBP 1976 infeasible infeasible 
79 Vulcain_CH4_1T_NBP 2068 infeasible infeasible 
80 Vulcain_CH4_1T_NBP 2250 infeasible infeasible 
81 Vulcain_C3H8_1T_NBP 1485 infeasible infeasible 
82 Vulcain_C3H8_1T_NBP 1870 infeasible infeasible 
83 Vulcain_C3H8_1T_NBP 1976 infeasible infeasible 
84 Vulcain_C3H8_1T_NBP 2068 infeasible infeasible 
85 Vulcain_C3H8_1T_NBP 2250 infeasible infeasible 
86 SSME_1PB_1T 1485 infeasible infeasible 
87 SSME_1PB_1T 1870 infeasible infeasible 
88 SSME_1PB_1T 1976 787.30 790.51 
89 SSME_1PB_1T 2068 825.36 830.12 
90 SSME_1PB_1T 2250 863.98 869.72 
91 RD180_RP1 1485 infeasible infeasible 
92 RD180_RP1 1870 infeasible infeasible 
93 RD180_RP1 1976 infeasible infeasible 
94 RD180_RP1 2068 infeasible infeasible 
95 RD180_RP1 2250 infeasible infeasible 
96 RD180_CH4 1485 infeasible infeasible 
97 RD180_CH4 1870 infeasible infeasible 
98 RD180_CH4 1976 infeasible infeasible 
99 RD180_CH4 2068 infeasible infeasible 

100 RD180_CH4 2250 infeasible infeasible 
101 RD180_C3H8 1485 infeasible infeasible 
102 RD180_C3H8 1870 infeasible infeasible 
103 RD180_C3H8 1976 infeasible infeasible 
104 RD180_C3H8 2068 infeasible infeasible 
105 RD180_C3H8 2250 infeasible infeasible 
106 RLX 1485 infeasible infeasible 
107 RLX 1870 infeasible infeasible 
108 RLX 1976 infeasible infeasible 
109 RLX 2068 infeasible infeasible 
110 RLX 2250 infeasible infeasible 
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